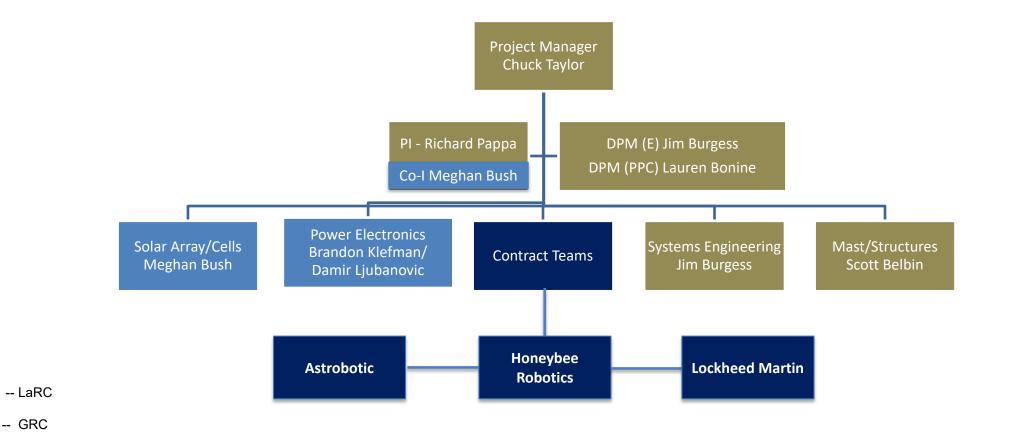



**Space Technology Mission Directorate** Game Changing Development Program - Vertical Solar Array Technology Project Chuck Taylor PM/Richard Pappa PI


# **VSAT** Overview



The Vertical Solar Array Technology (VSAT) project is focused on the development of solar array technologies necessary for sustained presence on the lunar surface circa 2028. Existing solar array structures and deployment system technologies are designed for either zero-g or horizontal surface deployment. VSAT is exploring vertical array deployment on extension masts of up to <u>20m</u> in length in order to capture near continuous sun light at the lunar south pole.



## Team Members / Project Org Slide



# **Mission Infusion & Partnerships**

### Contributing partners and/or stakeholders

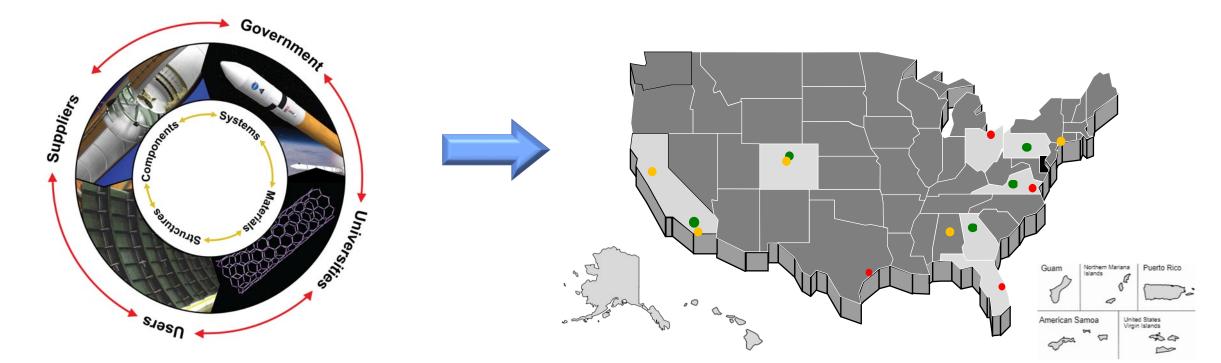
- STMD and ESDMD sponsor the project
- ESDMD is an obvious long-term stakeholder as the owner of future Lunar Exploration architectures

### Infusion/transition plan

- The primary infusion path is via NASA's "Sustained Presence" period of Lunar Exploration circa 2028 and beyond
- Providing primary power generation capability to lunar surface activities is the sole focus of VSAT
- Transition plan calls for VSAT technology adoption by prime contractors engaged in Lunar Sustainment exploration architecture development
- Transition may begin with Technical Demonstration Mission via a CLPS Lander

## **Collaborations & Partnerships**

### NASA Centers


- LaRC
- GRC
- KSC
- JSC

### SBIR/STTR

- Dynovas
- Folditure
- Opterus
- Nexolve
- Ceres Robotics

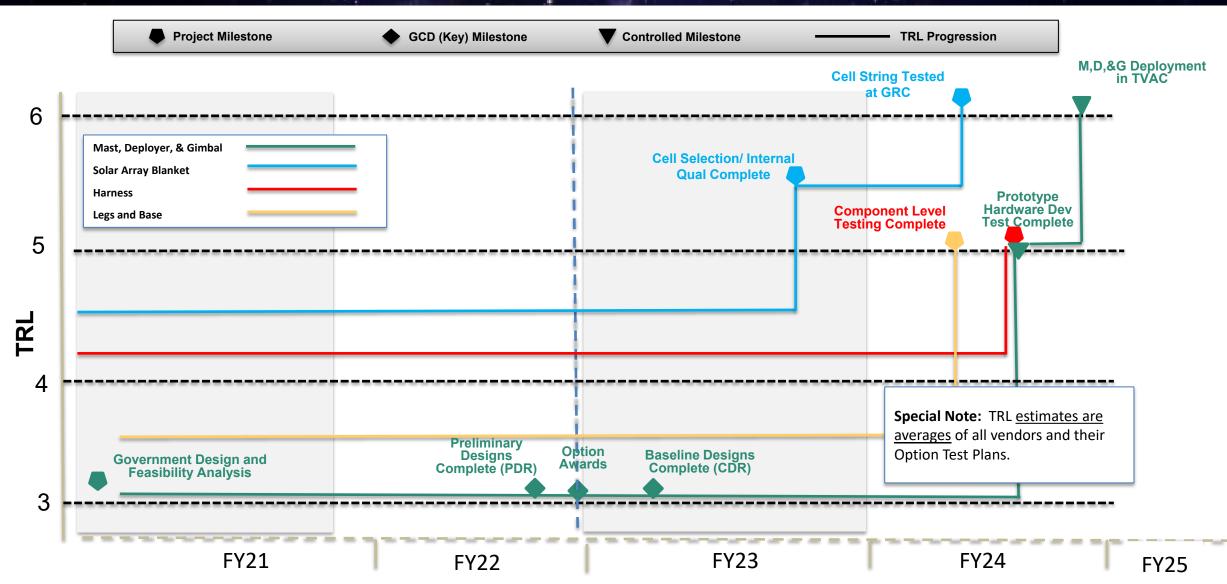
### Industry/Academia

- Astrobotic
- Honeybee Robotics
- Lockheed Martin
- VMI
- Georgia Tech ASDL



Collaborative multidisciplinary partnerships to leverage fiscal resources, ideas, knowledge & expertise.

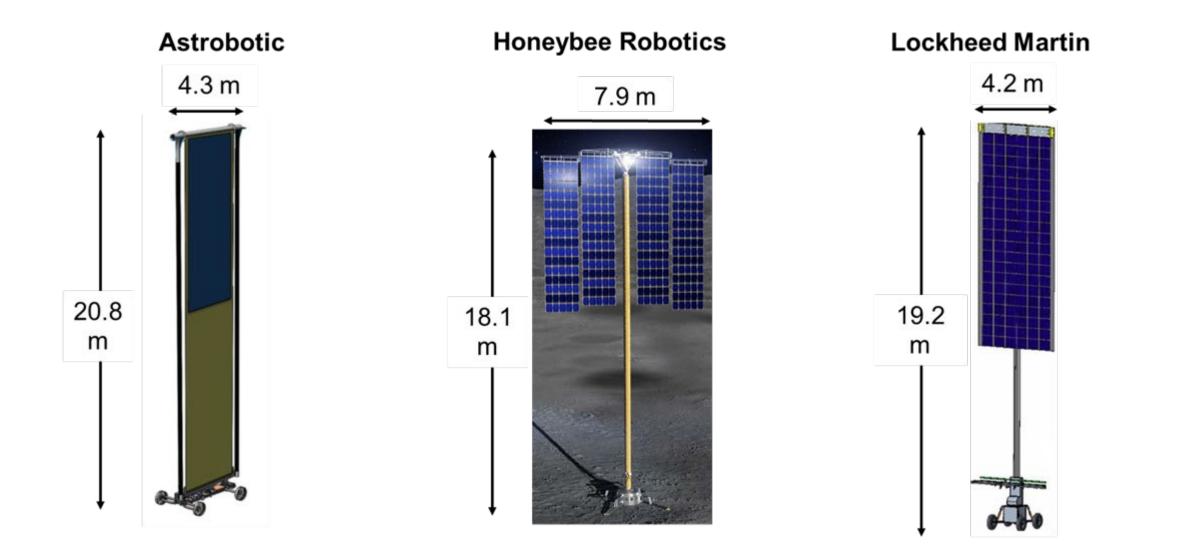
## VSAT Technology Goals & Project Objectives




|         | Technology Goals                                                                                                          |
|---------|---------------------------------------------------------------------------------------------------------------------------|
| Goal #1 | Autonomous system capable of vertical array deployment on extended mast on uneven terrain                                 |
| Goal #2 | Deployment mechanisms designed for reliable, autonomous retraction, and system mobility                                   |
| Goal #3 | Modular architecture component, adaptable to multiple mission architectures, designed to minimize mass and packing volume |

|              | Project Objectives                                                                                                          |
|--------------|-----------------------------------------------------------------------------------------------------------------------------|
| Objective #1 | Develop Design Reference Mission and Designs                                                                                |
| Objective #2 | Solicit competitive awards to industry to study (1) above and develop their own designs for a Lunar South Pole VSAT concept |
| Objective #3 | Award hardware development contracts to one or more vendor for the development of a prototype VSAT system                   |
| Objective #4 | Build and Test VSAT prototype hardware with an objective of reaching TRL 6 by project completion                            |

# VSAT Lifecycle Milestone/Maturity Schedule






## Status/Accomplishments

- During the Base Period five vendors completed initial designs and analyses to approximately a PDR level
- Three contractors received Option Awards:
  - > Astrobotic
  - Honeybee Robotics
  - Lockheed Martin
- During Option Phase each vendor will develop and test a prototype that will be tested in TVAC conditions at JSC Chamber A in 2024
  - The goal is for all three designs to reach TRL 6 through this testing
- > All three vendors have successfully completed their Detailed Design Reviews
  - ~CDR for their prototypes under test
- > Project completed their GCD Technical Assessment Periodic Review in April 2023
- > All three vendors are in final stages of design, procurement, and initial component fabrication
- ➢ Final TVAC testing at JSC will occur May through August of 2024

## Three Designs From 10,000 Feet



# Notable Design Features

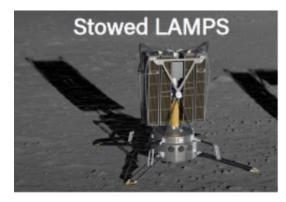
| Astrobotic           | <ul> <li>Based on ROSA Solar Array</li> <li>Self-propelled cart</li> <li>3 DOF parallel manipulator gimbal assembly</li> <li>Proposed high-voltage AC power transmission</li> </ul>      |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Honeybee<br>Robotics | <ul> <li>Helical metal-band mast based on drill concept</li> <li>Larger 12" diameter mast and wider solar cell area</li> <li>New miniature silicon solar cells (mPower DS200)</li> </ul> |
| Lockheed<br>Martin   | <ul> <li>Towed cart based on LM/GM lunar mobility vehicle</li> <li>Thin-wall (0.019-0.026"), rolled lenticular mast</li> <li>Heritage avionics</li> </ul>                                |

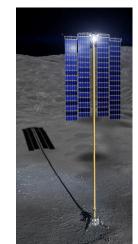
# Sub-Contractors

| Astrobotic           | <ul> <li><u>Redwire DSS</u>: ROSA solar array</li> <li><u>GRC</u>: Universal Modular Interface Converter (UMIC)</li> <li><u>KSC</u>: Electrodynamic Dust Shield</li> </ul> |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Honeybee<br>Robotics | <ul> <li><u>mPower</u>: "DragonSCALES" small Si solar cells</li> <li><u>Ingenium</u>: Thermal analysis</li> <li><u>Opterus</u>: Composite flex hinges</li> </ul>           |
| Lockheed<br>Martin   | <ul> <li><u>GM</u>: Batteries and Lunar Mobility Vehicle tech</li> <li><u>Goodyear</u>: Wheels</li> <li><u>KSC</u>: Electrodynamic Dust Shield</li> </ul>                  |
| All                  | <u>JSC</u> : Chamber A thermal-vac tests                                                                                                                                   |

## **Honeybee Robotics**

### What is it?


- LAMPS:Lunar Array Mast & Power System
- 10kW solar power
- Autonomous deploy/stow
- 10-year Lunar South Pole environment


### **Technologies Matured in Option Phase**

- Deployable/Retractable mast
- Accordion folded solar sails using flexible solar power modules
- Solar sail stowage
- High power flat umbilical & storage reel

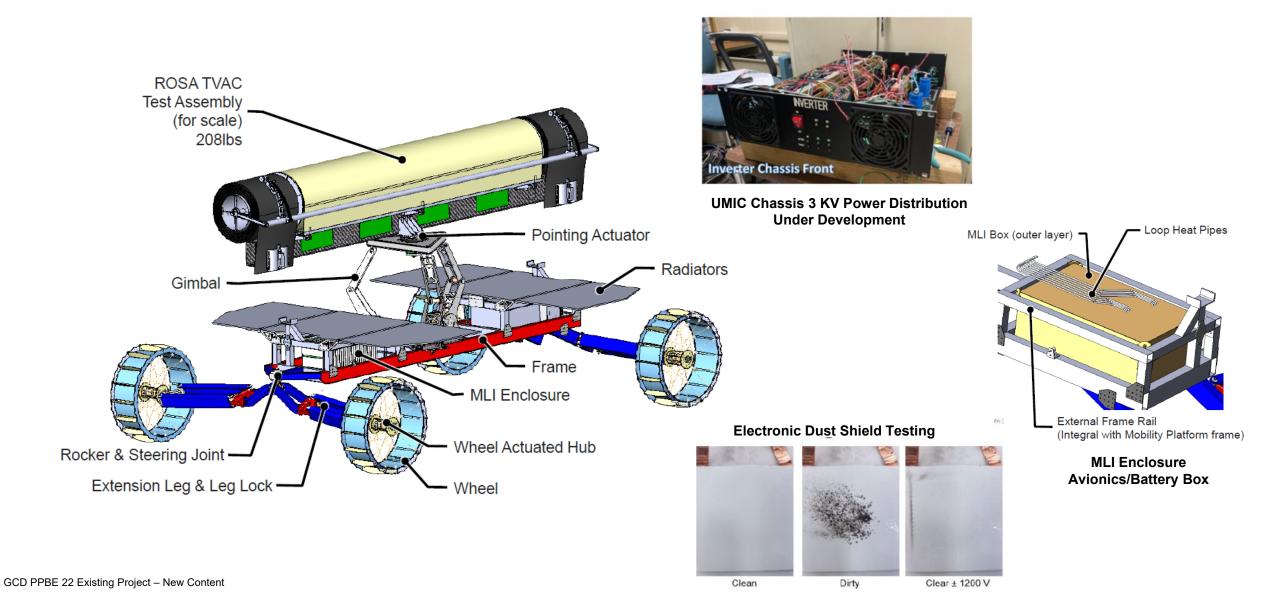
### Key Milestones & Status

- ✓ Oct 2022 Kick off
- ✓ Dec 2022 Concept review
- ✓ Jun 2023 Design Review
- Dec 2023 Component tests
- Feb 2024 Subsystem tests
- May 2024 TVAC at JSC Chamber A

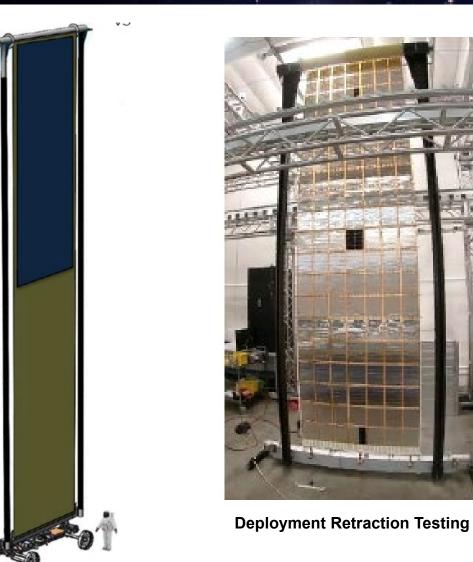




LAMPS Concept Lunar Deployment

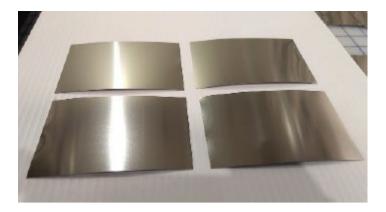






Prototype Mast Deployment



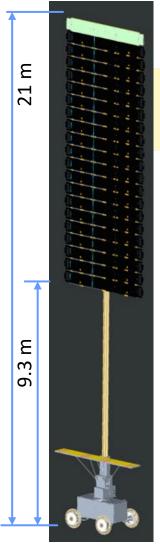
## **Astrobotic (Mobility Platform)**




## Astrobotic (ROSA)



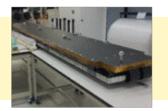



**Carbon Laminate Mandrel Tube** 

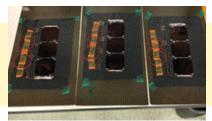


**Completed Cell Mass Simulators** 

# Lockheed Martin Design



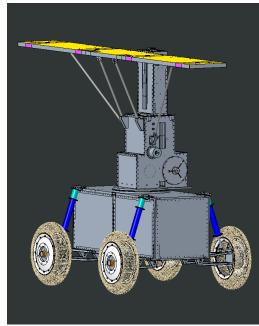




### Flight heritage Multi-Mission (MM) solar blanket, container, mast, and deployer system



MM Solar Array




**Blanket Assembly Container** 



**Delivered Solar Cell Coupons** 

Prototype

Parts in Work





Mast samples ready for deployer testing

MM deployer modified to also retract solar array











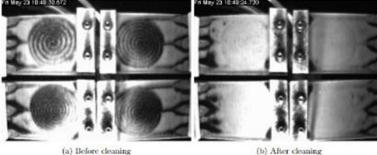
Machined deployer parts

**Deployer** motor

Deployed

Stowed

# Lockheed Martin Design




### **Dust Mitigation**

**Radiator Coatings** Solar Cell Coatings **Mechanical Seals** 

1.1

**Auto-leveling** 

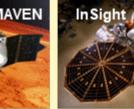


(a) Before cleaning

Figure from History and Flight Development of the Electrodynamic Dust Shield



Next Generation **Goodyear Tires** 


### Thermal & Avionics TRL 6 – 9


**Radiators & MLI** Heaters & Switches **Temp Sensors** 

S-Band Comm Low Gain Antennas **PDDU & Batteries** 

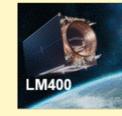
### Flight Heritage


















In Development









16

## Operating CONOPs during a Winter Month, Shackelton Ridge (March 2029)

Array and Surface Illuminated (~ 2 day accumulated)

Statement Street and

> 4kW Power Supplied to Users to survive/recharge

**Relay for Science** Rovers, LTV, other Assets (6) up to 10 km away

Array Illuminated but Surface Dark (~17 days accumulated)

Worst Shadow for users without Power/Relay~ 700 hrs111

> 4kW Power Supplied to Users to survive/recharge

**Relay for Science** Rovers, LTV, other Assets up to 10 km away.

Array > 10 m

Users assumed

2m high

Array and Surface Dark (~ 12 days accumulated)

and the second second second

Worst Shadow for Power/Relay. Tower users ~ 70 hrs per shadow

No Power

Supplied to

VSAT-LSR batteries sized for 100 hr shadow

Daily Housekeeping Relay for demonstrat GRC/COMPASS Study July 2023

# Project Assessment Summary



| Project Name | F | Perfor | manc | е | Comments                                                                                                                                                                                                   |
|--------------|---|--------|------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | С | S      | Т    | Ρ |                                                                                                                                                                                                            |
| Mid Year     |   |        |      |   | Technical – System mass above Project goals at PDR for all selected vendor designs<br>Cost –<br>Schedule –<br>Programmatic -                                                                               |
| Annual       |   |        |      |   | Technical – System mass is stable and withing limits of CLPS lander, CR has been<br>filed to modify KPP<br>Schedule – There is a potential for issues related to TVAC scheduling in 2024<br>Programmatic - |

# Plans Forward and Transition / Infusion Plan



- Immediate infusion plan is to advertise the three selected vendor prototype efforts as possible steppingstones to both NASA and Industry efforts to put Power Architectures on the Lunar Surface
- Internal to STMD we will advocate for the VSAT project to begin work on a "Next Steps" Flight Demonstration solicitation where industry will be encouraged to build a flight version of the their VSAT concept for demonstration on the Lunar Surface circa 2028-2029.

## **Education/Public Outreach**

### **EPO Involvement**

- Participated in multiple LSIC working group meetings
- Funded 4 Student Interns at LaRC
- Funded 2 Student Interns at VMI
- Funded 1 Graduate Student at GT ASDL
- Mentored 2 Governors School High School Interns

### EPO Calendar Outlook (High Priorities):

| 6 Month Look-Ahead |  |
|--------------------|--|
| None               |  |
|                    |  |

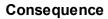
## Summary



- Completed Base Period VSAT design and analysis
- Completed Prototype design reviews and have begun fabrication
- > All three vendors will conduct TVAC testing of their designs May August next year
- The three approaches are very different and represent unique approaches to providing power on the lunar surface



# Back Up


# Project Plan - Milestone Status

| Milestone Title<br>(Mirror Project Plan)                               | Baseline<br>Date | Actual<br>Date  | Variance Explanation                                       |
|------------------------------------------------------------------------|------------------|-----------------|------------------------------------------------------------|
| Status of milestones due since March 2022                              |                  |                 |                                                            |
| Milestone Title                                                        | 10/1/17          |                 | Expected to slip 1 month due to test facility availability |
| Milestone Title                                                        | 10/15/17         | 10/12/17        | Completed ahead of schedule                                |
| Status of milestones due between<br>September 1, 2022 – March 30, 2023 | Baseline<br>Date | Planned<br>Date |                                                            |
| Milestone Title                                                        | 11/1/17          |                 | Delays with the widget                                     |
| Milestone Title                                                        | 11/15/17         |                 | Delay of abc, CR submitted                                 |

## **VSAT** Risk Summary



| F | Report date: | 8/18/2023 | Т                    | rend since: | 6/30/2023 | Ran | k Trend       | Category | Approach | ID       | Title                                                 |
|---|--------------|-----------|----------------------|-------------|-----------|-----|---------------|----------|----------|----------|-------------------------------------------------------|
| 5 |              |           |                      |             |           | 1   | $\rightarrow$ | Sc Te    | Μ        | VSAT-004 | Low TRL for Astrobotic PMAD Architecture              |
| 5 |              |           |                      |             |           | 2   | $\rightarrow$ | Te Sc    | Μ        | VSAT-008 | Lockheed Martin Mast Retractibility                   |
| 4 |              |           | VSAT-001             |             |           | 3   | $\rightarrow$ | Те       | R        | VSAT-001 | HBR Heat Rejection System                             |
| 4 |              | VOAI -000 |                      |             |           | 4   | $\checkmark$  | Те       | R        | VSAT-003 | Lockheed Martin Mast Buckling                         |
| 3 |              |           | VSAT-002<br>VSAT-007 |             |           | 5   | $\rightarrow$ | Te Sc    | W        | VSAT-002 | Astrobotic/Lockheed Martin Maturity of KSC EDS System |
| 5 |              |           | VSAT-007<br>VSAT-009 |             |           | 6   | $\rightarrow$ | Co Te    | W        | VSAT-007 | Contractor Cost Growth in an FFP Environment          |
| 2 |              |           |                      | VSAT-006    |           | 7   | $\rightarrow$ | Sc Te    | W        | VSAT-009 | HBR Solar Cell Maturity                               |
| 2 |              |           |                      |             |           | 8   | $\rightarrow$ | Те       | R        | VSAT-006 | HBR Solar Array Mechanisms Dust Protection            |
| 1 |              |           |                      |             | VSAT-010  | 9   | $\rightarrow$ | Те       | R        | VSAT-005 | HBR Unregulated Power to User                         |
| I |              |           |                      |             |           | 10  | $\rightarrow$ | Те       | R        | VSAT-010 | HBR Mast Unraveling                                   |
|   | 1            | 2         | 3                    | 4           | 5         |     |               |          |          |          |                                                       |



Likelihood

Co Cost Sc Schedule Te Technical Sa Safety M Mitigate R Research W Watch A Accept E Elevate C Close Opportunity

(RISK ID number shown as reference in 5x5 matrix)

 $\Box$  New  $\uparrow$  Worsening  $\checkmark$  Improving  $\rightarrow$  No Change

## . VSAT



### **Risk: Low TRL for Astrobotic PMAD Architecture**

|          | Risk Identification                      |            |             |             |
|----------|------------------------------------------|------------|-------------|-------------|
| Risk ID  | Risk Title                               | Risk State | Current LxC | Criticality |
| VSAT-004 | Low TRL for Astrobotic PMAD Architecture | Open       | 4x4         | High        |
| <b>.</b> | -                                        |            |             |             |

#### Statement

Given that the Astrobotic PMAD architecture is designed around high voltage power transfer that is still at reasonable low TRL, there is a risk that the architecture elements will not be sufficiently developed to qualify as TRL 6 by the end of the VSAT Option period. This has multiple impacts as problems with design stemming from poor efficiency, heat generation, and mass growth will have ripple effects across the entire Astrobotic design.

#### Context

Astrobotic's power architecture relies heavily on the success of the Universal Modular Interface Converter (UMIC) development to support its 3-kV AC power grid and bidirectional power transfer. Concern that the UMIC will not be completed and delivered in time for TVAC testing to prove TRL6.

| Category 1 | Category 2 | Approach | VSAT POC   | Туре          | Discipline | Component | Category | Closure Date |
|------------|------------|----------|------------|---------------|------------|-----------|----------|--------------|
| Sc         | Те         | Mitigate | Ljubanovic | Development P | Electrical | Avionics  | Design   | 4/19/2024    |

|          |                         | Risk History & | & Handling Pla | n          |          |         |   |   |    |
|----------|-------------------------|----------------|----------------|------------|----------|---------|---|---|----|
| Action   | Description             | POC            | Cost (\$)      | Start Date | End Date | Status  | L | С | RS |
| Mitigate | UMIC Test at GRC        | GRC            | N/A            |            | 10/2/23  | Active  |   |   |    |
| Mitigate | UMIC Delivery           | GRC            | N/A            | 10/2/23    | 10/2/23  | Planned |   |   |    |
| Mitigate | UMIC Test at Astrobotic | Ast            | N/A            | 3/11/24    | 4/19/24  | Planned |   |   |    |

**Status**: initial testing of the Universal Modular Interface Controller (UMIC), to be performed at Glenn Research Center (GRC), will begin to reduce this risk. Additional UMIC testing will be performed at Astrobotic next year.

## VSAT



## **Risk: LM Mast Retractability**

| Risk ID          | Risk Title        |                                                 |  |     | Risk State | Current LxC | Criticality |
|------------------|-------------------|-------------------------------------------------|--|-----|------------|-------------|-------------|
| VSAT-008         | Lockheed Martin M | ast Retractibility                              |  |     | Open       | 3x4         | Moderate    |
| Statement        |                   |                                                 |  |     |            |             |             |
|                  |                   | as not proven that the                          |  | • • | -          | •           | •           |
|                  |                   | as not proven that the<br>system to not meet TF |  | • • | -          | •           | •           |
| will fail during |                   | -                                               |  | • • | -          | •           | •           |

|          |                    | Risk History & | & Handling Pla | n          |          |         |   |   |    |
|----------|--------------------|----------------|----------------|------------|----------|---------|---|---|----|
| Action   | Description        | POC            | Cost (\$)      | Start Date | End Date | Status  | L | С | RS |
| Mitigate | Test new retractor | LM             | N/A            | 4/30/24    | 7/1/24   | Planned |   |   |    |

**Status**: System Deployment/Retraction Test (Ambient) is scheduled for 4/30/24, to occur before TVAC testing starting in July.

## VSAT

# NASA

### **Risk: HBR Heat Rejection System**

|                                                           |                                         |                                                        |                      |                   |                   | 1               | 1                |             |
|-----------------------------------------------------------|-----------------------------------------|--------------------------------------------------------|----------------------|-------------------|-------------------|-----------------|------------------|-------------|
| Risk ID                                                   | Risk Title                              |                                                        |                      |                   |                   | Risk State      | Current LxC      | Criticality |
| VSAT-001                                                  | HBR Heat Reject                         | tion System                                            |                      |                   |                   | Open            | 4x3              | Moderate    |
| Statement                                                 | •                                       |                                                        |                      |                   |                   |                 |                  |             |
| There are seve                                            | eral unknowns in H                      | oneybee's present thern                                | nal analysis concerr | ning heat generat | ion and radiato   | sizina          |                  |             |
|                                                           |                                         |                                                        |                      |                   |                   | 0               |                  |             |
|                                                           |                                         | ····· <b>,</b> ·····                                   |                      |                   |                   | 5               |                  |             |
| Context                                                   |                                         |                                                        |                      |                   |                   | 0               |                  |             |
| Context                                                   |                                         |                                                        |                      |                   |                   |                 | nts for the prop | osed LAMPS  |
| Context<br>NASA does no                                   | ot have clear insig                     | ht into the designed syst                              | tem thermal/heat rej | ection system of  | r the legs and le | eveling compone |                  |             |
| <b>Context</b><br>NASA does no<br>system. NAS             | ot have clear insig                     |                                                        | tem thermal/heat rej | ection system of  | r the legs and le | eveling compone |                  |             |
| <b>Context</b><br>NASA does no<br>system. NAS<br>systems. | ot have clear insig<br>A requested a de | ht into the designed syst<br>ta design review of the b | tem thermal/heat rej | ection system of  | r the legs and le | eveling compone |                  |             |
| <b>Context</b><br>NASA does no<br>system. NAS<br>systems. | ot have clear insig<br>A requested a de | ht into the designed syst                              | tem thermal/heat rej | ection system of  | r the legs and le | eveling compone |                  |             |
| <b>Context</b><br>NASA does no<br>system. NAS<br>systems. | ot have clear insig<br>A requested a de | ht into the designed syst<br>ta design review of the b | tem thermal/heat rej | ection system of  | r the legs and le | eveling compone |                  |             |

|        |                                                       | Risk History 8 | & Handling Pla | n          |          |        |   |   |    |
|--------|-------------------------------------------------------|----------------|----------------|------------|----------|--------|---|---|----|
| Action | Description                                           | POC            | Cost (\$)      | Start Date | End Date | Status | L | С | RS |
|        | Perform thermal analysis and present results to NASA. | HBR            | N/A            | 6/1/23     | 9/15/23  | Active |   |   |    |

**Status**: Honeybee did not provide new information in this area at the Detailed Design Review. NASA issued a concern to Honeybee requesting additional information in this area A sensitivity study and updated thermal analysis is in progress and will be reported in September.

## VSAT

### Risk: LM Mast Buckling



|                                  |                                              |                                        | Risk Ide             | entification        |                  |                  |                  |                 |
|----------------------------------|----------------------------------------------|----------------------------------------|----------------------|---------------------|------------------|------------------|------------------|-----------------|
| Risk ID                          | Risk Title                                   |                                        |                      |                     |                  | Risk State       | Current LxC      | Criticality     |
| VSAT-003                         | Lockheed Martin Ma                           | ast Buckling                           |                      |                     |                  | Open             | 2x5              | Moderate        |
|                                  | LM mast is a thin wa<br>nent, causing missio | alled composite lenticu<br>on failure. | lar column, there is | s a possibility tha | at the mast will | buckle under the | e mass of the ar | rays in a lunar |
| <b>Context</b><br>Related Risk = | LM-027, Mast Buck                            | ling                                   |                      |                     |                  |                  |                  |                 |
| Category 1                       | Category 2                                   | Approach                               | VSAT POC             | Туре                | Discipline       | Component        | Category         | Closure Date    |
| Те                               |                                              | Research                               | Wright               | Flight/Mission      | Structural       | Solar Array      | Design           |                 |

|          |                                                                                   | Risk History & | & Handling Pla | n          |          |          |   |   |    |
|----------|-----------------------------------------------------------------------------------|----------------|----------------|------------|----------|----------|---|---|----|
| Action   | Description                                                                       | POC            | Cost (\$)      | Start Date | End Date | Status   | L | С | RS |
| Research | Both analytical and experimental data will be required to fully retire this risk. | LM             | N/A            |            |          |          |   |   |    |
| Mitigate | Perform buckling tests                                                            | LM             | N/A            |            |          | Proposed |   |   |    |

**Status**: LM increased layup with more composite material and updated analysis (risk recently reduced 3x5 to 2x5). Still need more information about CTE issue. Risk will remain open until buckling testing is completed.

## VSAT Risk: Title



|                          |                 |                               | Risk Ide   | entification |                  |                          |                   |                 |
|--------------------------|-----------------|-------------------------------|------------|--------------|------------------|--------------------------|-------------------|-----------------|
| Risk ID                  | Risk Title      |                               |            |              |                  | Risk State               | Current LxC       | Criticality     |
| VSAT-002                 | Astrobotic/Lock | heed Martin Maturity of KSC   | EDS System |              |                  | Open                     | 3x3               | Moderate        |
| Statement                |                 |                               |            |              |                  |                          |                   |                 |
| of the VSAT C<br>Context | ption           | LM are reliant on EDS technor |            |              | e that this dust | removal techno           | logy is not at TF | RL 6 by the end |
| of the VSAT C<br>Context | ption           |                               |            |              | e that this dust | removal techno Component | logy is not at TF | RL 6 by the end |

|        |             | Risk History 8 | & Handling Pla | n          |          |        |   |   |    |
|--------|-------------|----------------|----------------|------------|----------|--------|---|---|----|
| Action | Description | POC            | Cost (\$)      | Start Date | End Date | Status | L | С | RS |
|        |             |                |                |            |          |        |   |   |    |

**Status**: The VSAT team at GRC is working with KSC dust mitigation team to better understand is risk.

## · VSAT



### **Risk: Contractor Cost Growth in an FFP Environment**

|                  |                   |                                                        | Risk Ide           | entification                 |                   |                  |                  |                                  |
|------------------|-------------------|--------------------------------------------------------|--------------------|------------------------------|-------------------|------------------|------------------|----------------------------------|
| Risk ID          | Risk Title        |                                                        |                    |                              |                   | Risk State       | Current LxC      | Criticality                      |
| VSAT-007         | Contractor Cost G | rowth in an FFP Environr                               | ment               |                              |                   | Open             | 3x3              | Moderate                         |
|                  |                   | FFP contracts, there is<br>cal effort to stay within c |                    | endors will run in           | nto cost issues a | as the project c | ontinues, and th | is in turn may                   |
| Category 1<br>Co | Category 2<br>Te  | <b>Approach</b><br>Watch                               | VSAT POC<br>Taylor | <b>Type</b><br>Development P | Discipline        | Component        | Category         | <b>Closure Date</b><br>9/30/2024 |

|        |                                  | Risk History & | & Handling Pla | n          |          |        |   |   |    |
|--------|----------------------------------|----------------|----------------|------------|----------|--------|---|---|----|
| Action | Description                      | POC            | Cost (\$)      | Start Date | End Date | Status | L | С | RS |
| Watch  | Monitor for specific cost issues | Taylor         | N/A            | 9/30/22    | 9/30/24  | Active |   |   |    |

Status: Continue to watch for potential issues.

# VSAT ·

# NASA

## **Risk: HBR Solar Cell Maturity**

|                                   |                   |                               | Risk Ide            | entification      |                   |                    |                |                  |
|-----------------------------------|-------------------|-------------------------------|---------------------|-------------------|-------------------|--------------------|----------------|------------------|
| Risk ID                           | Risk Title        |                               |                     |                   |                   | Risk State         | Current LxC    | Criticality      |
| VSAT-009                          | HBR Solar Cell N  | Maturity                      |                     |                   |                   | Open               | 3x3            | Moderate         |
| Given that HBF<br>of the project. | R has chosen to נ | ise Si cell technology for th | eir array, there is | a probability tha | t the Si cells wi | ll not be qualifie | d for GEO/Luna | r use by the end |
| Category 1                        | Category 2        | Approach                      | VSAT POC            | Туре              | Discipline        | Component          | Category       | Closure Date     |
| Sc                                | Te                | Watch                         | Bush                | Development P     | Electrical        | Solar Array        | Design         |                  |

|        |                             | Risk History & | & Handling Pla | n          |          |        |   |   |    |
|--------|-----------------------------|----------------|----------------|------------|----------|--------|---|---|----|
| Action | Description                 | POC            | Cost (\$)      | Start Date | End Date | Status | L | С | RS |
| Watch  | DS200 Qualification testing | Bush           |                |            |          |        |   |   |    |

**Status**: Awaiting completion of testing for the DS200.

## . VSAT



## **Risk: HBR Solar Array Mechanisms Dust Protection**

|            |                    |                                                   | Risk Ide | entification |            |                  |                   |                 |
|------------|--------------------|---------------------------------------------------|----------|--------------|------------|------------------|-------------------|-----------------|
| Risk ID R  | Risk Title         |                                                   |          |              |            | Risk State       | Current LxC       | Criticality     |
| VSAT-006 H | IBR Solar Array Me | chanisms Dust Protec                              | tion     |              |            | Open             | 2x4               | Moderate        |
|            |                    | loyment system incluc<br>ossibility that these me | •        |              | •          | p of the mast th | at will be unprot | tected from the |
| Context    |                    |                                                   |          |              |            |                  |                   |                 |
|            | Category 2         | Approach                                          | VSAT POC | Туре         | Discipline | Component        | Category          | Closure Dat     |

| Risk History & Handling Plan |                        |        |           |            |          |          |   |   |    |
|------------------------------|------------------------|--------|-----------|------------|----------|----------|---|---|----|
| Action                       | Description            | POC    | Cost (\$) | Start Date | End Date | Status   | L | С | RS |
| Research                     | Evaluate HBR design    | Belbin | N/A       |            |          | Planned  |   |   |    |
| Mitigate                     | Risk reduction testing |        |           |            |          | Proposed |   |   |    |

Status: Langley team will be evaluating design and review for opportunities for risk reduction testing.

## · VSAT ·



## **Risk: HBR Unregulated Power to User**

| Risk ID           | Risk Title                    |                                                      | Risk State | Current LxC | xC Criticality |   |     |          |
|-------------------|-------------------------------|------------------------------------------------------|------------|-------------|----------------|---|-----|----------|
|                   | HBR Unregulated Power to User |                                                      |            |             |                |   | 4x2 | Moderate |
| Statement         |                               |                                                      |            |             |                | • | •   |          |
|                   | •                             | does not provide for th<br>red, or individual custor | •          |             | • •            | • |     | •        |
|                   | •                             | •                                                    | •          |             | • •            | • |     | •        |
| will have to be o | •                             | •                                                    | •          |             | • •            | • |     | •        |

| Risk History & Handling Plan |                        |     |           |            |          |         |   |   |    |
|------------------------------|------------------------|-----|-----------|------------|----------|---------|---|---|----|
| Action                       | Description            | POC | Cost (\$) | Start Date | End Date | Status  | L | С | RS |
| Research                     | TIM to discuss further | HBR |           |            |          | Planned |   |   |    |

Status: Have requested a Technical Interchange Meeting with HBR to discuss this risk.

## **VSAT** Risk: HBR Mast Unraveling



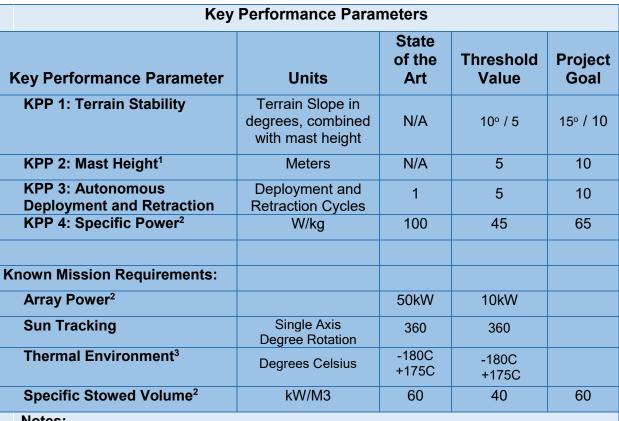
|                              | Risk Identification |            |             |             |
|------------------------------|---------------------|------------|-------------|-------------|
| Risk ID                      | Risk Title          | Risk State | Current LxC | Criticality |
| VSAT-010                     | HBR Mast Unraveling | Open       | 1x5         | Moderate    |
| <b>A</b> <i>i</i> <b>i i</b> |                     |            |             |             |

#### Statement

Given that the DIABLO mast contains a significant number of rivets must remain in the corresponding holes in adjacent bands, there is the possibility due to excessive motion or fatigue enough of the rivets will pull out of the holes, fail, or fail the edges of the holes, resulting in a catastrophic failure of the mast.

Given that the structural integrity of the DIABLO mast requires thousands of rivets to remain in corresponding holes in adjacent bands, there is a possibility that excessive motion or fatigue will cause the mast will unzip, resulting in collapse of the solar array.

### Context


Concern is that rivets may loosen or tolerance may very etc and there maybe a "spontaneous disassembly"

| Category 1 Category 2 | Approach | VSAT POC     | Туре | Discipline | Component | Category | Closure Date |
|-----------------------|----------|--------------|------|------------|-----------|----------|--------------|
| Те                    | Research | Pappa/Wright |      |            |           |          |              |

| Risk History & Handling Plan |                     |     |           |            |          |         |   |   |    |
|------------------------------|---------------------|-----|-----------|------------|----------|---------|---|---|----|
| Action                       | Description         | POC | Cost (\$) | Start Date | End Date | Status  | L | С | RS |
| Research                     | Hold TIM to discuss | HBR |           |            | TBD      | Planned |   |   |    |

Status: Have requested a Technical Interchange Meeting with HBR to discuss this risk.

## **VSAT Key Performance Parameters (KPP)**



Notes:

1) Mast Height – Mast height measured from the surface to the point at which the solar array blanket attaches to the lower cross boom.

2) State of the Art refers to Zero-G solar array, Threshold and Goal values calculated for entire system mass at array Beginning of Life (BOL)

3) Thermal Environment - System must be capable of surviving and operating in Lunar South Pole thermal environment (-180C<sup>0</sup> to 175C<sup>0</sup>) without external systems

## **Technical Assessment**



| Technical Canability Elementa |       | TRL  |         | TRL Verification              |
|-------------------------------|-------|------|---------|-------------------------------|
| Technical Capability Elements | Entry | Exit | Current |                               |
| Array Deployment Drive Unit   | 3     | 6    | 3       | Option Test Period (MS ID C5) |
| Array Gimbal                  | 3     | 6    | 3       | Option Test Period (MS ID C5) |
| Array Blanket                 | 4     | 6    | 4       | Option Test Period (MS ID C5) |
| Harness/PMAD                  | 4     | 6    | 4       | Option Test Period (MS ID C5) |
|                               |       |      |         |                               |

Assessment is based on GRD, several vendors proposed significant heritage sub-system reuse from zero G assets

## <Project Name> Key Performance Parameter (KPP) Status



|                                                                                                                                                                                                                                | Key Performance Parameters                                                                                                                                                                                                                                                                                                  |                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Parameter                                                                                                                                                                                                                      | Units State of the Threshold Project C<br>Please provide KPP Current Status updates via the<br>Please provide KPP Currents of KPP Evolution (MAKE) tool:                                                                                                                                                                    | for the provided<br>ected Exit Value           |
| <kpp paramete<="" th=""><th></th><th>mate based on<br/>e Carlo analysis</th></kpp>                                                                                                                                             |                                                                                                                                                                                                                                                                                                                             | mate based on<br>e Carlo analysis              |
| <kpp paramete<="" th=""><th>Measuring Advancements<br/>ocation on Teams: 'MAKE'&gt; 'MAKE_FY22_APR&gt; Files (Identify the Excel file for<br/>your project)</th><th>antiated based<br/>P ground test <sup>(4)</sup></th></kpp> | Measuring Advancements<br>ocation on Teams: 'MAKE'> 'MAKE_FY22_APR> Files (Identify the Excel file for<br>your project)                                                                                                                                                                                                     | antiated based<br>P ground test <sup>(4)</sup> |
| <kpp parameter<="" th=""><th>This location can be found via this <u>think</u></th><th>Verified</th></kpp>                                                                                                                      | This location can be found via this <u>think</u>                                                                                                                                                                                                                                                                            | Verified                                       |
| Notes:<br>Technical Basis of E<br><sup>(1)</sup> SOA comparison<br><sup>(2)</sup> Terrestrial day/nia<br><sup>(3)</sup> SOA comparison t<br><sup>(4)</sup> Test concluded M<br><sup>(5)</sup> Lunar Equator day                | Complete the table on this slide of the APR presentation via either:<br>1) Utilizing the 'PowerPoint Table' tab from MAKE and then copy and paste status<br>information on this slide<br>2) Entering data in both the MAKE tool and on this slide template<br>(contact Will Grier – will.j.grier@nasa.gov for further help) | addtl. cycles.                                 |

If KPPs have not yet been approved via PCD or PP, please keep this note: KPPs are not yet in an approved state. 37