
U.S. Government work not protected by U.S. copyright

Historical Aerospace Software Errors
Categorized to Influence Fault Tolerance

Lorraine E. Prokop

NASA, Langley Research Center
1 Nasa Drive, Hampton, VA 23666

lorraine.e.prokop@nasa.gov
lore.prokop@gmail.com

Abstract—Since the first use of computers in space and aircraft,
software errors have occurred. These errors can manifest as
loss-of-life or less catastrophically. As the demand for
automation increases, software in mission or safety-critical
systems should be designed to be tolerant to the most likely
software faults. This paper categorizes a set of 55 historic
aerospace software error incidents from 1962 to 2023 to
determine trends of how and where automation is most likely to
fail, behaving unexpectedly. A distinction between software
producing unexpected (erroneous) output versus no output (fail-
silent) is introduced. Of the historical incidents analyzed, 85%
were from software producing wrong output rather than simply
stopping. Rebooting was found to be ineffective to clear
erroneous behavior, and not reliable to recover from silent
failures. Error origin was within the code/logic itself in 58% of
cases, 16% from configurable data, 15% from unexpected
sensor input, and 11% from command/operator input. A
substantial forty percent (40%) of unexpected software
behavior was indicated by the absence of code, arising from
unanticipated situations and missing requirements, and 16% of
incidents were subjectively deemed “unknown-unknowns”. No
incidents were found to be the result of programming language,
compiler, tool, or operating system; and only sixteen percent
(16%) of all incidents were considered errors traditional
computer science/programming in nature. These findings
indicate that for fault tolerance, erroneous automation behavior
must be a primary consideration especially at critical moments,
and reboot recoverability may not be viable. Special care should
be taken to validate configurable data and commands prior to
use. “Test-like-you-fly”, including hardware-in-the-loop
combined with robust off-nominal testing should be used to
uncover missing logic arising from unanticipated situations not
covered by requirements alone. This study uniquely focuses on
manifestations of unexpected flight software behavior,
independent of ultimate root cause. We characterize software
error behavior and origin to improve software design, test, and
operations for resilience to the most common manifestations,
and provide a rich dataset for further study.

TABLE OF CONTENTS
1. INTRODUCTION ... 1
2. INCIDENT DATASET .. 2
3. CATEGORIZATION DISCUSSION 3
4. DATA ... 4
5. RESULTS .. 8
6. CONCLUSIONS ... 10

ACKNOWLEDGEMENTS .. 11
REFERENCES ... 11
BIOGRAPHY ... 11

1. INTRODUCTION
THIS paper explores incidents of unexpected
automation/software behavior and software errors primarily
in aerospace to identify and raise awareness of erroneous
software manifestation trends. We study a dataset[1,2] of 55
incidents to expose trends in software behavior. We explore
if software more often behaves unexpectedly, producing
erroneous output, versus simply stopping/crashing. We
identify where within the software architecture the error
originated – within code itself, within configurable data, or
from sensor or command input. We quantify cases of missing
code, which includes missing requirements, and quantify
“unknown-unknowns” as causes for unexpected software
behavior. We also quantify errors resulting from traditional
computer science issues or poor programming. By
understanding how and where software is most likely to fail,
systems may be proportionately better designed, tested and
operated for robustness against the most probable failures,
and backup strategies may be better architected to detect and
mitigate software risk.

Paper Outline

The introduction covers previous work and related
background topics such as software standards, common-
cause failure, and backup strategies. Section 2 introduces the
incident dataset. Section 3 describes the categories chosen for
analysis. Sections 4, 5, and 6 provide data, results and
conclusions, respectively.

Previous Work

There has been some previous work enumerating failures in
space systems, most notably Harland and Lorenz’s book,
“Space System Failures”, published in 2005 [3], which
provides detailed accounts of incidents across engineering
disciplines. However, more incidents have occurred since
then, and no publication thus far has focused solely on
software, regardless of root cause, to characterize in more

mailto:lorraine.e.prokop@nasa.gov
mailto:lore.prokop@gmail.com

2

detail how and where aerospace software is most likely to
misbehave.

Some notable previous work regarding N-version
programming by Brilliant, et. al[4] and software error source
by Lutz[5] should be considered regarding backup strategies
and in conjunction with the results presented herein. After
producing multiple programs from the same specification,
Brilliant determined that the “cases in which more than one
[version] failed was substantially more than would be
expected if they were statistically independent.”, and that
“use of different programming languages … would not have
a major impact in reducing the incidence of faults”. Lutz
found that safety-related software errors are shown to arise
most commonly from requirements. These results coupled
with this study showing that 40% of errors were due to
missing code implies that if dissimilarity is employed, it
should not only start with different requirements to minimize
this dependency, but also carry the independence through
verification to better expose the details of what may be
missing. Similarly, no incidents in this dataset were due to
compiler, programming language, operating system, or
development tool errors, which agrees with the Brilliant study
that independence of these may be of lesser value than
independence of requirements and test. A more detailed
examination of previous work is found in Prokop [2].

A Note on Software Standards

 Several aerospace standards exist to ensure quality
software. At NASA, NPR 7150.2 “Software Engineering
Requirements” [6] standard is used to govern the
development of all NASA software, and the NASA Human-
Rating Requirements for Space Systems [7] governs design
for fault tolerance. Similarly for Aircraft, DO-178C
“Software Considerations in Airborne Systems and
Equipment Certification” [8], is the guide governing the
software lifecycle. Developing software according to these
and other standards supports a disciplined and rigorous
software development process, builds confidence in software,
and provides a framework for understanding software risk.
However, even with best practices, we show that software
errors occur for reasons beyond process.

Software Common-Cause Errors and Backup Strategies

Although not specifically studied here, the notion of software
errors being “common-cause” should be considered, because
many, if not all these incidents could be considered common-
cause. Software “common-cause” or “common-mode”
failures arise when software fails, either erroneously or
silently, but because identical software may be duplicated on
multiple redundant computers running at the same time, a
single software error can affect all redundant computers in
the same way simultaneously. This is a software common-
cause error. System software architecture determines the
vulnerability to software common-mode failures. In systems
where there is only one copy of flight software, a single
software error could be considered a common-cause error.

Mitigating software common-cause error effects should be
assessed based on system criticality and time-to-effect. Some
common mitigation strategies include providing manual
backup to automation (crew or ground control), employing a
dissimilar software backup, installing a separate safety
monitor for detecting erroneous behavior, failing into a safe
mode for communications and power generation, patching
the software during flight, and rebooting. Like including
avionic redundancy to protect against unexpected byzantine-
type faults [9], software backup strategies should be designed
to protect for errors in higher-level software control.
Determining which of these strategies, if any, were employed
or could have mitigated each of these incidents is left to
further study.

2. INCIDENT DATASET
A dataset enumerating 55 historical incidents is analyzed and
characterized. It includes all incidents found since the
beginning of employing computers in aerospace to present
day such that the software/automation behaved unexpectedly
and possibly could or should have been written differently in
hindsight to affect a different outcome. Due to length,
detailed accounts of each incident are omitted from this
paper, but details of each incident along with comprehensive
references for each may be found in [1,2], or obtained in
spreadsheet form from the conference/author. In each
incident, the automation controlling the system either acted
unexpectedly or failed to act (for whatever reason) leading to
loss of life, loss of mission, loss of time/revenue, or presented
a significant close call. It is important to note that the
ultimate root cause of these incidents is not necessarily
“software”. In fact, it could be argued that in all of these
cases the software performed exactly as programmed.
Determining root-cause of these failures – identifying why
the software was programmed that way – is left for further
study but may include examples such as lack of system
understanding, unknown physics, lack of time or resources,
lack of skills, or procedural/process errors. Regardless of
root cause, however, the software in these cases behaved in
an undesired way to cause an unwanted outcome. Two
NASA assessment teams over two years, cited in
acknowledgements, worked to identify, assess, and
characterize these incidents studying publications, NASA
mission archives, aviation reports, books, journals, and
verifiable internet sources, so the dataset therefore represents
all that the teams could collectively find with credible
reference documentation.

Table 1 shows a breakdown of studied incidents by industry
and Table 2 shows the impact of these incidents. Ninety
percent (90%) of these incidents are in aerospace (spacecraft,
aircraft, launch vehicle, and missile combined), with others
included as well-known representative software incidents in
medical or commercial. As shown in Table 1, over half of
the dataset consists of spacecraft. Spacecraft and launch
vehicles combined comprise two-thirds of the incidents.
Table 2 shows the resultant impact of the software errors,
15% being loss of life or injury, 35% loss of vehicle/mission,
15% premature end of mission, 22% close calls for loss of

3

life or mission, and 7% each for delayed objective or loss of
service.

Table 1. Industry of Incidents Studied

Industry Percent Quantity
Spacecraft
Launch Vehicle
Aircraft
Missile
Medical
Commercial

56 %
15 %
15 %
4 %
5 %
5 %

31
8
8
2
3
3

Table 2. Impact of Incidents Studied

Results/Impact Summary Percent Quantity
Loss of Life
Persons Injured
Loss of Vehicle/Mission
Premature End of Mission
Close Call for LOC/LOM
Delayed Objective
Loss of Service

13%
2%
35%
15%
22%
7%
7%

7
1

19
8

12
4
4

3. CATEGORIZATION DISCUSSION

Erroneous vs. Fail-Silent

First, we make a distinction between software failing
“erroneously”, which includes the automation producing
wrong or unexpected output, and software failing “silent”,
providing no output at all (i.e., crashing), or significant lag.
This is an important distinction because detecting the “fail-
silent” case is usually more straightforward. A watchdog
timer can detect the fail-silent case. Rebooting is typically
used to recover from a silent computer, but the effectiveness
of this strategy is unreliable as discussed in Section 5 Results.

Detecting and responding to the “erroneous output” case,
however, may not be as straightforward. If a human is
onboard, or a ground team is actively monitoring, they may
be able to recognize software performing unexpectedly and
override the automation to take appropriate action. But if
there is no human in the loop, or if time-critical,
software/automatic backup systems may be employed to
detect/recognize and respond to the primary software
behaving unexpectedly. Fail-down strategies should be
employed in safety-critical systems to mitigate the effects of
erroneous output by transitioning to backup strategies.

Reboot Recoverability

A common strategy to recover from faulty software is to
reboot. Unfortunately, reboots do not fix all software
problems. The incident dataset was reviewed subjectively

considering the following question, “Would reboot have
cleared this problem?” A yes/no answer is tabulated and
presented under Section 4 Data. This is important to know
because depending on the problem, it is often assumed that
performing a simple reboot may correct the problem. But
given the effectiveness presented here, depending on the
criticality, and alternate approach should be considered.

Absence of Code

An interesting statistic studied against this dataset is whether
the incident could have been avoided by adding code (in
hindsight). The incidents were reviewed subjectively
considering the following question, “Could the problem have
been averted by adding some code?” A yes/no answer to this
question is tabulated in Section 4. It is well understood that
it is much easier to know what code to add after a mishap
rather than predicting the failure in advance. Considering
whether the code could or should have been there is a more
difficult question addressed in the categorization of
“unknown-unknowns” below. But simply determining if an
incident was the result of the absence of software has large
testing implications. If software is only tested against
requirements, or tested against code that exists, then how can
errors caused by the absence of software be discovered?
Performing off-nominal testing and using random input sets
may help uncover missing code. Test campaigns should
consider testing both existing code to expose the absence of
code proportionate with how errors usually manifest.

The question of absence of code is also closely related to
missing requirements and includes “unknown-unknowns”
discussed later. It could be said that missing code equates to
missing requirements, so in that regard, 40% of these errors
would be attributable to the requirements phase. However,
the author’s opinion is that software requirements are in
practice far less detailed than could have been written in
advance to avert many of these errors. For example, consider
the 2007 F22 first deployment international date line incident.
Should there have been a requirement stating, “Software
calculations shall consider crossing the international date
line.”, or alike, or would that error have been better
discovered in a test-like-you-fly scenario?

Error Location

A categorization as to where in the software the error
originated or initially manifested is performed by
distinguishing between the following four groups:
code/logic, data, sensor input, and command input. The
reason for this distinction is because assuring integrity in each
of these areas both pre-flight and operationally have different
testing characteristics and procedural validation methods.

First, “coding/logic” includes errors that are in the code itself,
encoded into logic or algorithms. This category largely
encompasses both the “absence of code” and “computer
science/poor programming” categories as discussed and
includes missing requirements or logic unable to handle
unforeseen circumstances. Next, “data” includes those errors

4

due to misconfigured data, or erroneous stored parameters.
This is separated from “code/logic” to distinguish between
the fact that software is becoming more data-driven, and that
data is more likely to change than the code itself. Also, in
data driven systems, even though the code may not change,
data may change from flight to flight and is often governed
by different validation practices. The third category, “sensor
input”, addresses errors stemming from unexpected or
erroneous sensor input. This distinction is made because
testing with actual sensor hardware or generating off-nominal
tests specifically targeting random sensor input may help to
avert this error. The final category, “command input”,
includes erroneous command input due to operator or
procedural error. These errors should normally be averted
through command verification during operations prior to
their issuance and by process assurance. The overall
prevalence of each of these categories is given in Section 4.

Computer Science / Poor Programming

Since this paper focuses on “software errors” it might be
presumed that all these incidents were caused by errors
within the realm of the computer science discipline or as a
result of poor programming. This category quantifies the
incidents subjectively considered to fall within the realm of
traditional computer science. This includes errors relating to
real-time or concurrent programming, race conditions,
priority inversion, or simple programming mistakes such as
erroneous keystrokes/keywords. This category also would
also include errors introduced through programming
language selection, development tools, compilers, or
operating systems; however, as our results indicate, no
incidents were attributable to these.

Unknown-unknowns

The last category, “unknown-unknowns”, a term popularized
by Donald Rumsfeld referring to “the ones we don’t know we

don’t know [10]”, is a highly subjective category and is
largely a subset of the “Absence of code”. This attempts to
conservatively quantify how many of these incidents arose
from knowledge only realized or conceived in hindsight that
could not have been discovered ahead of time with reasonable
effort. It primarily includes cases where aerodynamics or
physics were studied but not fully understood, cases of highly
unusual sensor input, or behaviors resulting from an
unanticipated situation or created by fault situations. It could
be argued that with infinite resources, all of these could have
been known, such as by performing more wind tunnel testing,
more simulation, more analysis, deeper fault level scenario
study, or longer and more robust sensor characterization. A
subjective evaluation of the question “Could/should it have
been reasonably known?” within reasonable project
constraints is provided here. This may be used as a rough
level-of-risk measure for the unplanned and unexpected in
addition to the more concrete “absence of code” category,
and its mitigation should be assessed in relation to software
criticality and backup options.

4. DATA

Table 3 shows the tabular data resulting from team analysis
of each incident in the dataset according to the categories
outlined in Section 3. Erroneous versus Silent is designated
with an “E” for Erroneous or “S” meaning “Fail Silent”.
Yes/No answers are provided for the questions of “Would it
have been recoverable by reboot”, “Could adding code have
corrected this issue”, “Could this be considered an unknown-
unknown”, and “Was this poor programming/computer
science discipline issue?” according to the previous
discussion. For Error location, “C” is used for “Code/Logic”,
“D” is used for data, “O” is used for Command/Operator
Input, and “S” is used for “Sensor Input”.

Table 3. Incident Categorization

Year System Title Result

E
rr

on
eo

us
 o

r
Si

le
nt

R
eb

oo
t R

ec
ov

er
ab

le
?

M
is

si
ng

 C
od

e?

E
rr

or
 L

oc
at

io
n

C
om

pu
te

r
Sc

ie
nc

e?

U
nk

no
w

n-
un

kn
ow

n?

1962 Mariner 1
Mission – Atlas-

Agena

Programmer error in ground
guidance veered launch vehicle
off course

Loss of vehicle E N N C Y N

1965 Gemini 3 Incorrect lift estimate causes
short landing

Landed 84 km short,
crew manually
compensated, decreasing
short landing error

E N Y C N Y

1965 Gemini 5 Data error of earth rotation lands
Gemini 5 short

Landed 130 km short E N N D N N

1968 Apollo 8 Memory Inadvertently Erased Close Call fixed
manually

E N N O N N

5

Year System Title Result

E
rr

on
eo

us
 o

r
Si

le
nt

R
eb

oo
t R

ec
ov

er
ab

le
?

M
is

si
ng

 C
od

e?

E
rr

or
 L

oc
at

io
n

C
om

pu
te

r
Sc

ie
nc

e?

U
nk

no
w

n-
un

kn
ow

n?

1969 Apollo 10 Switch Misconfigured as bad
input data to abort guidance

Vehicle tumbled, close
call, recovered manually

E N N D N N

1981 STS-1 Failure of computers to sync Launch Scrub of First
Shuttle flight

S Y Y C N N

1982 Viking-1 Erroneous Command caused
loss of comm

End of mission E N N O N N

1985-
87

Therac-25 Radiation Therapy machine
output lethal doses, user input
speed

Four deaths, two chronic
injured

E N N C Y N

1988 Phobos-1 Erroneous unchecked uplinked
command lost vehicle

Loss of vehicle/Mission E N N O N N

1988 Soyuz TM-5 Wrong code executed to perform
de-orbit burn

Extra day in orbit, New
code uplinked

E N N C N N

1991 Aries - Red
Tigress I

Bad command causes guidance
error

Loss of Vehicle E N N S N N

1991 Patriot Missile Patriot failed target intercept due
to 24-bit rounding error growth
in time over time

Failed to intercept scud
missile, resulting in
American barracks
being struck, 28 soldiers
killed, 100 injured

E Y N C Y N

1992 F-22 Raptor Software failed to compensate
for pilot-induced oscillation in
presence of lag

Loss of test vehicle E N Y S N Y

1994 Clementine
Lunar Mission

Erroneous thruster firing
exhausted propellant, cancelling
asteroid flyby

Failed mission objective E N N C N N

1994 Pegasus XL
STEP-1

Booster loss of control due to
lateral instability

Loss of vehicle/Mission E N Y C N Y

1994 Pegasus HAPS Navigation software error
prematurely shut down upper
stage

Unintended/low orbit E N Y C N N

1995 Solar and
Heliospheric
Observatory

(SOHO)

Gyro Data used from unpowered
sensor spins vehicle out of
communication

Loss of mission during
extended use

E N Y C N N

1996 Ariane 5
Maiden Flight

Unprotected overflow in
floating-point to integer
conversion disrupted inertial
navigation system

Loss of Vehicle E N N C Y N

1997 Pathfinder Software priority inversion
caused images to stall

Close Call for Mission
Loss

E N N C Y N

1998 Delta III Unanticipated 4Hz Oscillation in
control system led to vehicle
loss

Loss of vehicle E N Y C N Y

1999 Mars Polar
Lander

Premature shut down of landing
engine due to misinterpretation
of landing signature

Loss of Vehicle/mission E N Y S N N

1999 Mars Climate
Orbiter

Metric vs. imperial units error Loss of vehicle/mission E N N D N N

6

Year System Title Result

E
rr

on
eo

us
 o

r
Si

le
nt

R
eb

oo
t R

ec
ov

er
ab

le
?

M
is

si
ng

 C
od

e?

E
rr

or
 L

oc
at

io
n

C
om

pu
te

r
Sc

ie
nc

e?

U
nk

no
w

n-
un

kn
ow

n?

1999 Titan IV B
Centaur

Programming error omitting
decimal in data file caused loss
of control

Unintended orbit,
Milstar Satellite lost 10
days after launch

E N N D Y N

2000 Zenit 3SL Ground software error failed to
close valve.

Loss of Vehicle E N N C N N

2001 Pegasus
XL/HyperX

Launch Vehicle
/ X-43A

Airframe failure due to
inaccurate analytical models

Loss of vehicle/mission E N Y C N Y

2001 STS-108
through 110

Shuttle main engine controller
mix-ratio software coefficient
sign-flip error

Significant close call,
SME underperformance,
though not extreme
enough to not reach
orbit.

E N N D N N

2003 Multidata
Systems

Radiation
Machine

Radiation Therapy machine
output lethal doses,
counterclockwise user input

Many injured, 15 people
dead.

E N N C N N

2003 Soyuz - TMA-1 Undefined yaw value triggered
Ballistic reentry

landed 400 km short E N N C N N

2003 North American
Electric Power

Grid

Real-time software errors
contribute to Widespread power
outage

Widespread Loss of
Power Service (2 hr - 4
days)

S Y N C Y N

2004 Spirit Mars
Exploration

Rover

Repeated computer resets due to
saturated memory usage.

Temporary Loss of
Communication

S N N D Y N

2005 CryoSat-1 Missing command causes loss of
vehicle

Loss of Vehicle E N Y C N N

2005 DART
(Demonstration
of Autonomous

Rendezvous
Technology)

Navigation software errors fail
mission objectives.

Loss of mission
objectives

E N N C N N

2006 Mars Global
Surveyor
(MGS)

Erroneous command led to
pointing error and power/vehicle
loss

Premature Loss of
vehicle

E N N C N N

2007 F22 First
Deployment

International Date Line crossing
crashed computer systems

Loss of navigation &
communication

S N Y C N N

2008 STS-124 All 4 shuttle computers fail /
disagree during fueling

Fueling stopped E N Y S N N

2008 Quantas Flight
72, Airbus
A330-303

Sensor Input spikes caused
autopilot to pitch-down,
resulting in crew and passenger
injuries

One crew member and
11 passengers suffered
serious injuries

E N Y S N Y

2008 B-2 Spirit -
Guam crash

Miscalculation in flight
computers with missing input
data calculated uncommanded
pitch up

Crew members
successfully ejected.

E N Y S N Y

2012 Red Wings
Flight 9268 TU-

204 crash

Unanticipated landing
circumstances coupled with

5 of 8 crewmembers
killed

E N Y C N Y

7

Year System Title Result

E
rr

on
eo

us
 o

r
Si

le
nt

R
eb

oo
t R

ec
ov

er
ab

le
?

M
is

si
ng

 C
od

e?

E
rr

or
 L

oc
at

io
n

C
om

pu
te

r
Sc

ie
nc

e?

U
nk

no
w

n-
un

kn
ow

n?

design features resulted in crash
landing

2015 Airbus A400M
test flight

Missing software parameters
during installation cause crash

Four fatalities E N N D N N

2015 SpaceX CRS-7 “Open Chute” command
invalidated after launch vehicle
failure

Possibly could have
saved Dragon capsule
from crash landing.

E N Y C N N

2016 Hitomi X-ray
space telescope

Error in computing spacecraft
orientation led to spacecraft loss

Lost of vehicle E N N C N N

2017 SpaceX CRS-10 Erroneous relative state vector
transmitted to Dragon

ISS rendezvous delay E N N D N N

2018,
2019

Boeing 737
MAX

Unanticipated software response
to faulty sensor input

346 people died on two
flights

E N Y S N Y

2019 Boeing Orbital
Flight Test

(OFT)

Incorrect MET causes no ISS
rendezvous and short mission,
and uncovers other latent LOM
software errors.

Failed ISS rendezvous,
multi-year program
delay

E N N C N N

2019 Beresheet Reboots cause engine shutdown
on lunar descent

Loss of vehicle S N N C N N

2019 Chandrayaan-2
Vicram Lunar

Lander

Unexpected velocity behavior
during descent caused crash
landing

Loss of vehicle E N Y C N N

2020 Amazon Web
Service (AWS)

Kinesis

Maximum threads reached
caused cascading server outage

Loss of service,
revenues.

S N Y C Y N

2020 BD Alaris™
Infusion Pump

Infusion delivery system
software causes injury/death

55 injuries, 1 death E N N C Y N

2021 Global
Facebook

Outage

Bad command causes global
Facebook and cascading
communication outages.

Disrupted
communication, loss of
revenues

S Y N O N N

2021 ISS Uncontrolled ISS attitude spin
from erroneous thruster firing
software

Close Call E N N C N N

2022 CAPSTONE Bad Command causes
Temporary Comm Loss

Delayed Trajectory
Course Maneuver
Objective, Close Call for
LOM

E N N O N N

2023 NOTAM –
Notice To Air

Mission

Corrupted database file causes
flight cancellations

Loss of Service S N Y D N N

2023 ispace Hakuto-
R

Invalidated Altitude data during
Lunar descent loses Lander

Loss of Mission E N Y S N N

2023 Launcher
Orbiter SN3

space tug

Uncontrolled attitude spin lost
power and spacecraft

Loss of Mission E N Y C N N

2023 Voyager-2 Bad command causes
[Temporary] Loss of
communications

[Temporary] Loss of
Communications

E N N O N N

8

5. RESULTS
Erroneous vs. Fail-Silent

Using the data from Table 3, Figure 10 shows the number of
incidents and percent of erroneous versus fail silent
manifestations. Erroneous output was over five times as
likely, 85% of the cases as opposed to 15% of the cases
failing silent. Critical systems should take the substantially
greater likelihood of erroneous behavior into account when
considering and designing for fault tolerance. Based on this,
the system’s operation should be evaluated with the
following question in mind, “What would the impact be if the
software behaved unexpectedly at this moment?” Depending
on the answer, appropriate monitoring, override, and/or
backup systems should be employed.

Figure 1. Erroneous vs Fail-Silent Software
Manifestations

Reboot Recoverability

Figure 2 shows the subjective reboot recoverability
likelihood comparing erroneous output cases and fail-silent
cases. Shown here, 98% of the erroneous output cases were
deemed not correctable by reboot, with only 2%, the single
erroneous output case for the Patriot Missile, recoverable by
reboot. Reboot recoverability seems ineffective for
erroneous output cases. Fail-silent cases showed a greater
chance of reboot recoverability over a small data set of 8
cases with three of eight, or 37% deemed recoverable. This
implies that reboot may not be a reliabale strategy to clear
fail-silent situations. Perhaps depending upon criticality, an
alternate backup mitigation approach besides rebooting
should be considered. Overall, reboot only was deemed
effective for 4 out of 55 incidents, independent of
manifestation, or about 7% of the cases.

Figure 2. Reboot Recoverability for Erroneous Incidents

Figure 3. Reboot Recoverability for Fail-Silent Incidents

Absence of Code

Figure 4 indicates that an interestingly large 40% of these
incidents were the result of the absence of code, as opposed
to other causes, albeit in hindsight. The absence of code
satisfies the question, “Could/should software have been
added to correct this incident?”, and is subjective, but
includes cases such as missing requirements, incomplete
understanding or modeling of the real world, unexpected
inputs, and unknown-unknown subsequently discussed. This
result poses an interesting concern about testing code only
against requirements, and only the code that exists. If 40%
of errors are in code that isn’t there, how can missing code be
exposed? This result should influence software requirements
and testing. For example, a proportionate amount of
requirements verification and unit testing should be
performed on the code that exists, but a percentage of the
testing should also be reserved for off-nominal cases and
unexpected input scenarios, possibly exposing some of the
code that is lacking.

9

Figure 4. Absence of Code Percentages

Error Location

Figure 5 categorizes the location or point of origin for the
error within the software architecture. These categories were
chosen because mitigating errors between these categories is
normally done with different methods, testing, processes, and
procedures. Unsurprisingly, most of these errors were found
to be within the code and logic itself since this category
includes missing requirements, lack of response to
unexpected behavior, faulty programming, and “unknown-
unknowns”, discussed in Section II.F, below. It also largely
includes the “Sensor Input” category. Uncovering missing
code during earlier phases such as unit testing or
requirements verification may be a challenge, but missing
code could possibly be exposed during integration testing,
hardware-in-the-loop-testing, and especially with off-
nominal scenario testing. Code/logic errors could also be
exposed through more detailed requirements and interface
control documents, focused peer reviews and comprehensive
unit testing. Misconfigured data caused 16% of these errors.
To combat data misconfiguration errors, special testing
should be performed to assure that configurable data is
validated prior to flight and reviewed by system experts, even
if the software itself does not change. Unexpected sensor
input accounted for 15% of all errors. While handling input
could also be considered part of coding/logic, it is useful to
break this out knowing that comprehensive and off-nominal
input testing could be employed to uncover errors in this part
of the code. Randomized input could be computer-generated
to assure robustness to unexpected input. For sensor data,
actual sensor hardware should be used to “test like you fly”
rather than simulating sensor input. For command input
errors, operational procedures should be put in place and
safeguards followed to validate commands prior to issue.
Command input can be considered operator error, however,
safeguards such as two-stage commanding and dialog with
the operator on consequences of commands could be added
to software.

Figure 5. Error Location, Point of Origin

Computer Science/Poor Programming

Figure 6 shows the relative percent of incidents that were
categorized as computer science or programming in nature as
described in Section 3. Eighteen percent (18%) of the errors
were subjectively considered to be more localized to within
the realm of computer science. Interestingly, none of the
incidents studied were the result of operating system,
compiler, development tool, or programming language
selection. This result, coupled with the “absence of code”
result imply that effective dissimilar redundancy for fault
tolerance should better employ independent requirements and
test over dissimilar software platform.

Figure 6. Computer Science or Poor Programming
Related

Unknown-unknowns

Characterizing unknown-unknowns is highly subjective and
can be controversial. However, the term is commonly used
in aerospace practice as one justification for fault tolerance.
It could be argued that given enough time and resources, each
of these incidents could have been known a priori, so a
subjective reasonability test was considered against each
incident to distinguish “should or could this have been known
within reasonable project constraints” versus, “the project did
everything they should have, yet an unknown situation led to
unexpected software behavior”. Unknown-unknowns
include cases of unknown aerodynamics after modeling,
highly unusual sensor behavior, or behavior in the presence

10

of unlikely fault situations. Given this subjectivity, the
percent of these incidents that could be considered
“unknown-unknown” is conservatively 16%. If one-sixth of
software errors are due to things reasonably unknowable, this
alone could give credence to the consideration for erroneous
software backup strategies in safety-critical applications.
Overall strategies to mitigate the risk of software failing
during operations due to unknown-unknowns or other
software failures are usually time-criticality dependent, but
generally include manual human-in-the-loop control,
employing dissimilar backup systems, run-time monitoring
and response systems, computer reboot, entering a safe mode,
or time-permitting, software reload.

Figure 7. Unknown-unknowns

6. CONCLUSIONS

This paper enumerated a dataset of aerospace incidents
involving software[1,2] since the advent of computerized
automation. It analyzed aerospace failures through the eyes
of the software and automation discipline to characterize and
predict trends in software behavior (and misbehavior) as a
design and test aid to current and future aerospace systems.
It characterized how software is most likely to fail –
erroneously or silent – and determined that automation
predominantly fails erroneously, much more often than
simply “crashing” or ceasing to output. Systems should
recognize this relative risk and design accordingly.
Rebooting software, though used prevalently, was evaluated
to be largely ineffective to clear software failures, effective
in 7% of the total cases, 37% for failing silent, and less than
2% effective for the erroneous-output case, so relying on
reboot to recover from software faults should be carefully
considered. This paper explored software errors relating to
the absence of code as well as the prevalence of unknown-
unknowns, both of which were substantial constituents in the
dataset, 40% and 16% respectively. Software testing should
be planned to uncover missing code through off-nominal
input and integrated testing “as you fly”, and backup systems
should be considered to mitigate the risk of unanticipated
situations and “unknown-unknowns” in safety-critical
systems. A categorization determining the point of error
introduction to the software architecture (code, data, sensor
input, or command input) was provided to better influence

processes and testing related to those areas during both
development and operations. Finally, it was determined that
an arguably small number of cases, 18%, were attributable to
traditional computer science issues or poor programming,
with none of those issues a result of operating system,
programming language, or development tools. To
summarize, these results indicate that erroneous and
unexpected behavior, as opposed to crashing, must be
considered a primary software risk, that rebooting is not
reliable, and that many software errors are due to unknown or
unexpected situations rather than from simple programming
mistakes or development tools. Additionally, unique
strategies between code, data, sensor, and command input
sources should be undertaken to minimize software errors at
the point of origin.

The dataset presented here is rich for further study, especially
in the areas of backup systems, relationship to common-
cause, and manual control for safety-critical systems. Some
key questions such as, “Was this a multi-string common-
cause failure?”, “Was a manual or automated backup system
used?”, “Would a backup system have helped?”, “If so, what
kind of a backup system could have helped?” could be
explored. Would a human-in-the-loop, a dissimilar backup,
a monitor system, a focused backup, or no backup at all be
the best option for each situation? Are there any trends to
common backups that would have saved a class of these
errors?

Other key questions could be, “What was the root cause of
this error?” Looking at how these errors might have been
avoided altogether has great merit. Since the software
performed exactly as programmed in these cases, exploring
“why” it was programmed the way it was in terms of root-
cause may be a lesson to organizations producing software.
“In what phase of the project could/should have this incident
been discovered and averted?” is another interesting
question. How much testing and what type of testing would
have provided the most “bang for the buck” in averting these
errors? All of these questions would be useful follow-on
work against this, hopefully stagnant, dataset.

Future Trend Speculation

We provide a final speculative note regarding the use and
effect of more modern software development strategies
employed by new or evolving companies entering the
aerospace industry. It is acknowledged that software
development tools and practices such as continuous
integration have enabled increased productivity and may help
ensure higher quality software, however, the author believes
that the rate of software/automation growth [11] has offset
these practice improvements. As a response to increased
volume, software development efforts have had to become
more data driven and more configurable -- it simply cannot
be rewritten for every configuration or for every flight. It is
speculated that errors introduced through configuration data
or version management will become more significant with
modern software designs, though the overall occurrence of
software error incidents will likely continue.

11

ACKNOWLEDGEMENTS

This work was sponsored and funded by the National
Aeronautics and Space Administration (NASA) Engineering
and Safety Center (NESC). It represents the work of several
individuals on assessment teams working to improve human
spaceflight safety by reducing software errors. I would like
to sincerely thank each of those members who contributed to
this dataset and information, in alphabetical order: Jon
Berndt, Tim Brady, Jesse Couch, Tim Crumbley, Neil
Dennehy, Jenny DeVasher, Captain Victor “Ike” Glover, E.
Bruce Jackson, Dr. Mary Kaiser, Kylene Kramer, John
LaNeave, Laura Maynard-Nelson, Dr. Paul Miner, Mike
Peacock, David Root, Manuel Rosso-Llopart, Jeremy
Shidner, Scott Tashakkor, John West, Daniel Williams, and
the late Aron Wolf.

REFERENCES
[1] Prokop, Lorraine, E., “Software Error Incident

Categorizations in Aerospace”, NASA Technical
Publication, NASA/TP−20230012154. August 2023.

[2] Prokop, Lorraine, E., “Software Error Incident
Categorizations in Aerospace”, [Manuscript in
Publication], Journal of Aerospace Information Systems.

[3] Harland, D., and Lorenz, R., “Space Systems Failures:
Disasters and Rescues of Satellites, Rockets and Space
Probes”, Library of Congress Control Number:
2005922815, ISBN 0-387-21519-0, Springer Berlin
Heidelberg New York, 2005.

[4] Brilliant, Susan S. John C. Knight, and Nancy G. Leveson.
"Analysis of faults in an N-version software experiment."
IEEE Transactions on software engineering 16.2 (1990):
238-247, 1990.

[5] Lutz, R., “Analyzing Software Requirements Errors in
Safety-Critical, Embedded Systems” ISBN:0-8186-3120-
1, DOI: 10.1109/ISRE.1993.324825, 1993 Proceedings of
the IEEE International Symposium on Requirements
Engineering, Page(s):126 – 133, 1993.

[6] NPR 7150.2D, NASA Software Engineering
Requirements, NASA, March 8, 2022, URL:
https://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7
150&s=2D [retrieved 23 Aug 2023].

[7] NPR 8705.2C, Human-Rating Requirements for Space
Systems, NASA, 10 July 2017. URL:
https://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=8
705&s=2C [retrieved 23 Aug 2023].

[8] RTCA/DO-178C, Software Considerations in Airborne
Systems and Equipment Certification. RTCA, Inc., 2011.

[9] Driscoll, K., Hall, B., Sivencrona, Phil Zumsteg, P.,
“Byzantine Fault Tolerance, from Theory to Reality,”
Computer Safety, Reliability, and Security, 22nd
International Conference, SAFECOMP 2003, Edinburgh,
UK, September 23-26, 2003.

[10] Zak, D., “’Nothing ever ends’: Sorting through
Rumsfeld’s knowns and unknowns”, The Washington
Post, July 1, 2021.

[11] Judas, P. and Prokop, L., “A Historical Compilation of
Software Metrics with Applicability to NASA’s Orion
Spacecraft Flight Software Sizing”, DOI:10.1007/s11334-
011-0142-7, Innovations in Systems and Software
Engineering, 1 Sept 2011.

BIOGRAPHY
Lorraine Prokop received her
BS, MS, and PhD in Computer
Science from the University of
Houston System. She currently
serves as the NASA Technical
Fellow for Software and has
been with NASA for over 35
years. Her focus has been in
developing and managing large

real-time safety-critical software projects. She works to
promote sound software architecture, software reuse,
value-added software engineering process, and to ensure
the safety of human-rated flight software. She is dedicated
to advancing the state of the software discipline at NASA
while reducing software risk and maximizing productivity
for current and future spaceflight programs.

