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Abstract—Since the first use of computers in space and aircraft, 
software errors have occurred.  These errors can manifest as 
loss-of-life or less catastrophically.  As the demand for 
automation increases, software in mission or safety-critical 
systems should be designed to be tolerant to the most likely 
software faults.  This paper categorizes a set of 55 historic 
aerospace software error incidents from 1962 to 2023 to 
determine trends of how and where automation is most likely to 
fail, behaving unexpectedly.  A distinction between software 
producing unexpected (erroneous) output versus no output (fail-
silent) is introduced.  Of the historical incidents analyzed, 85% 
were from software producing wrong output rather than simply 
stopping.  Rebooting was found to be ineffective to clear 
erroneous behavior, and not reliable to recover from silent 
failures.  Error origin was within the code/logic itself in 58% of 
cases, 16% from configurable data, 15% from unexpected 
sensor input, and 11% from command/operator input. A 
substantial forty percent (40%) of unexpected software 
behavior was indicated by the absence of code, arising from 
unanticipated situations and missing requirements, and 16% of 
incidents were subjectively deemed “unknown-unknowns”. No 
incidents were found to be the result of programming language, 
compiler, tool, or operating system; and only sixteen percent 
(16%) of all incidents were considered errors traditional 
computer science/programming in nature. These findings 
indicate that for fault tolerance, erroneous automation behavior 
must be a primary consideration especially at critical moments, 
and reboot recoverability may not be viable. Special care should 
be taken to validate configurable data and commands prior to 
use.  “Test-like-you-fly”, including hardware-in-the-loop 
combined with robust off-nominal testing should be used to 
uncover missing logic arising from unanticipated situations not 
covered by requirements alone.  This study uniquely focuses on 
manifestations of unexpected flight software behavior, 
independent of ultimate root cause. We characterize software 
error behavior and origin to improve software design, test, and 
operations for resilience to the most common manifestations, 
and provide a rich dataset for further study.   
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1. INTRODUCTION 
THIS paper explores incidents of unexpected 
automation/software behavior and software errors primarily 
in aerospace to identify and raise awareness of erroneous 
software manifestation trends.  We study a dataset[1,2] of 55 
incidents to expose trends in software behavior.  We explore 
if software more often behaves unexpectedly, producing 
erroneous output, versus simply stopping/crashing.  We 
identify where within the software architecture the error 
originated – within code itself, within configurable data, or 
from sensor or command input.  We quantify cases of missing 
code, which includes missing requirements, and quantify 
“unknown-unknowns” as causes for unexpected software 
behavior. We also quantify errors resulting from traditional 
computer science issues or poor programming. By 
understanding how and where software is most likely to fail, 
systems may be proportionately better designed, tested and 
operated for robustness against the most probable failures, 
and backup strategies may be better architected to detect and 
mitigate software risk. 

Paper Outline 

The introduction covers previous work and related 
background topics such as software standards, common-
cause failure, and backup strategies.  Section 2 introduces the 
incident dataset. Section 3 describes the categories chosen for 
analysis.  Sections 4, 5, and 6 provide data, results and 
conclusions, respectively.  

Previous Work 

There has been some previous work enumerating failures in 
space systems, most notably Harland and Lorenz’s book, 
“Space System Failures”, published in 2005 [3], which 
provides detailed accounts of incidents across engineering 
disciplines. However, more incidents have occurred since 
then, and no publication thus far has focused solely on 
software, regardless of root cause, to characterize in more 
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detail how and where aerospace software is most likely to 
misbehave.    

Some notable previous work regarding N-version 
programming by Brilliant, et. al[4] and software error source 
by Lutz[5] should be considered regarding backup strategies 
and in conjunction with the results presented herein.  After 
producing multiple programs from the same specification, 
Brilliant determined that the “cases in which more than one 
[version] failed was substantially more than would be 
expected if they were statistically independent.”, and that 
“use of different programming languages … would not have 
a major impact in reducing the incidence of faults”.  Lutz 
found that safety-related software errors are shown to arise 
most commonly from requirements.  These results coupled 
with this study showing that 40% of errors were due to 
missing code implies that if dissimilarity is employed, it 
should not only start with different requirements to minimize 
this dependency, but also carry the independence through 
verification to better expose the details of what may be 
missing.  Similarly, no incidents in this dataset were due to 
compiler, programming language, operating system, or 
development tool errors, which agrees with the Brilliant study 
that independence of these may be of lesser value than 
independence of requirements and test. A more detailed 
examination of previous work is found in Prokop [2].  

A Note on Software Standards 

 Several aerospace standards exist to ensure quality 
software.  At NASA, NPR 7150.2 “Software Engineering 
Requirements” [6] standard is used to govern the 
development of all NASA software, and the NASA Human-
Rating Requirements for Space Systems [7] governs design 
for fault tolerance.  Similarly for Aircraft, DO-178C 
“Software Considerations in Airborne Systems and 
Equipment Certification” [8], is the guide governing the 
software lifecycle.  Developing software according to these 
and other standards supports a disciplined and rigorous 
software development process, builds confidence in software, 
and provides a framework for understanding software risk.  
However, even with best practices, we show that software 
errors occur for reasons beyond process. 

Software Common-Cause Errors and Backup Strategies 

Although not specifically studied here, the notion of software 
errors being “common-cause” should be considered, because 
many, if not all these incidents could be considered common-
cause.  Software “common-cause” or “common-mode” 
failures arise when software fails, either erroneously or 
silently, but because identical software may be duplicated on 
multiple redundant computers running at the same time, a 
single software error can affect all redundant computers in 
the same way simultaneously.  This is a software common-
cause error.  System software architecture determines the 
vulnerability to software common-mode failures.  In systems 
where there is only one copy of flight software, a single 
software error could be considered a common-cause error.   

Mitigating software common-cause error effects should be 
assessed based on system criticality and time-to-effect.  Some 
common mitigation strategies include providing manual 
backup to automation (crew or ground control), employing a 
dissimilar software backup, installing a separate safety 
monitor for detecting erroneous behavior, failing into a safe 
mode for communications and power generation, patching 
the software during flight, and rebooting.  Like including 
avionic redundancy to protect against unexpected byzantine-
type faults [9], software backup strategies should be designed 
to protect for errors in higher-level software control. 
Determining which of these strategies, if any, were employed 
or could have mitigated each of these incidents is left to 
further study. 

2. INCIDENT DATASET 
A dataset enumerating 55 historical incidents is analyzed and 
characterized.  It includes all incidents found since the 
beginning of employing computers in aerospace to present 
day such that the software/automation behaved unexpectedly 
and possibly could or should have been written differently in 
hindsight to affect a different outcome.  Due to length, 
detailed accounts of each incident are omitted from this 
paper, but details of each incident along with comprehensive 
references for each may be found in [1,2], or obtained in 
spreadsheet form from the conference/author.  In each 
incident, the automation controlling the system either acted 
unexpectedly or failed to act (for whatever reason) leading to 
loss of life, loss of mission, loss of time/revenue, or presented 
a significant close call.  It is important to note that the 
ultimate root cause of these incidents is not necessarily 
“software”.  In fact, it could be argued that in all of these 
cases the software performed exactly as programmed.  
Determining root-cause of these failures – identifying why 
the software was programmed that way – is left for further 
study but may include examples such as lack of system 
understanding, unknown physics, lack of time or resources, 
lack of skills, or procedural/process errors.  Regardless of 
root cause, however, the software in these cases behaved in 
an undesired way to cause an unwanted outcome.  Two 
NASA assessment teams over two years, cited in 
acknowledgements, worked to identify, assess, and 
characterize these incidents studying publications, NASA 
mission archives, aviation reports, books, journals, and 
verifiable internet sources, so the dataset therefore represents 
all that the teams could collectively find with credible 
reference documentation.   

Table 1 shows a breakdown of studied incidents by industry 
and Table 2 shows the impact of these incidents.  Ninety 
percent  (90%) of these incidents are in aerospace (spacecraft, 
aircraft, launch vehicle, and missile combined), with others 
included as well-known representative software incidents in 
medical or commercial.  As shown in Table 1, over half of 
the dataset consists of spacecraft.  Spacecraft and launch 
vehicles combined comprise two-thirds of the incidents.  
Table 2 shows the resultant impact of the software errors, 
15% being loss of life or injury, 35% loss of vehicle/mission, 
15% premature end of mission, 22% close calls for loss of 
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life or mission, and 7% each for delayed objective or loss of 
service. 

Table 1. Industry of Incidents Studied 

Industry Percent Quantity 
Spacecraft 
Launch Vehicle 
Aircraft 
Missile 
Medical 
Commercial 

56 % 
15 % 
15 % 
4 % 
5 % 
5 % 

31 
8 
8 
2 
3 
3 

 

Table 2. Impact of Incidents Studied 

Results/Impact Summary Percent Quantity 
Loss of Life 
Persons Injured 
Loss of Vehicle/Mission 
Premature End of Mission 
Close Call for LOC/LOM 
Delayed Objective 
Loss of Service 

13% 
2% 
35% 
15% 
22% 
7% 
7% 

7 
1 

19 
8 

12 
4 
4 

 
3. CATEGORIZATION DISCUSSION 

Erroneous vs. Fail-Silent 

First, we make a distinction between software failing 
“erroneously”, which includes the automation producing 
wrong or unexpected output, and software failing “silent”, 
providing no output at all  (i.e., crashing), or significant lag.  
This is an important distinction because detecting the “fail-
silent” case is usually more straightforward.  A watchdog 
timer can detect the fail-silent case.  Rebooting is typically 
used to recover from a silent computer, but the effectiveness 
of this strategy is unreliable as discussed in Section 5 Results. 

Detecting and responding to the “erroneous output” case, 
however, may not be as straightforward.  If a human is 
onboard, or a ground team is actively monitoring, they may 
be able to recognize software performing unexpectedly and 
override the automation to take appropriate action.  But if 
there is no human in the loop, or if time-critical, 
software/automatic backup systems may be employed to 
detect/recognize and respond to the primary software 
behaving unexpectedly.  Fail-down strategies should be 
employed in safety-critical systems to mitigate the effects of 
erroneous output by transitioning to backup strategies. 

Reboot Recoverability 

A common strategy to recover from faulty software is to 
reboot.  Unfortunately, reboots do not fix all software 
problems.  The incident dataset was reviewed subjectively 

considering the following question, “Would reboot have 
cleared this problem?”  A yes/no answer is tabulated and 
presented under Section 4 Data.  This is important to know 
because depending on the problem, it is often assumed that 
performing a simple reboot may correct the problem.  But 
given the effectiveness presented here, depending on the 
criticality, and alternate approach should be considered.  

Absence of Code 

An interesting statistic studied against this dataset is whether 
the incident could have been avoided by adding code (in 
hindsight).  The incidents were reviewed subjectively 
considering the following question, “Could the problem have 
been averted by adding some code?”  A yes/no answer to this 
question is tabulated in Section 4.  It is well understood that 
it is much easier to know what code to add after a mishap 
rather than predicting the failure in advance.  Considering 
whether the code could or should have been there is a more 
difficult question addressed in the categorization of 
“unknown-unknowns” below.  But simply determining if an 
incident was the result of the absence of software has large 
testing implications.  If software is only tested against 
requirements, or tested against code that exists, then how can 
errors caused by the absence of software be discovered?  
Performing off-nominal testing and using random input sets 
may help uncover missing code.  Test campaigns should 
consider testing both existing code to expose the absence of 
code proportionate with how errors usually manifest.   

The question of absence of code is also closely related to 
missing requirements and includes “unknown-unknowns” 
discussed later. It could be said that missing code equates to 
missing requirements, so in that regard, 40% of these errors 
would be attributable to the requirements phase.  However, 
the author’s opinion is that software requirements are in 
practice far less detailed than could have been written in 
advance to avert many of these errors. For example, consider 
the 2007 F22 first deployment international date line incident.  
Should there have been a requirement stating, “Software 
calculations shall consider crossing the international date 
line.”, or alike, or would that error have been better 
discovered in a test-like-you-fly scenario?   

Error Location 

A categorization as to where in the software the error 
originated or initially manifested is performed by 
distinguishing between the following four groups: 
code/logic, data, sensor input, and command input.  The 
reason for this distinction is because assuring integrity in each 
of these areas both pre-flight and operationally have different 
testing characteristics and procedural validation methods.   

First, “coding/logic” includes errors that are in the code itself, 
encoded into logic or algorithms.  This category largely 
encompasses both the “absence of code” and “computer 
science/poor programming” categories  as discussed and 
includes missing requirements or logic unable to handle 
unforeseen circumstances. Next, “data” includes those errors 
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due to misconfigured data, or erroneous stored parameters.  
This is separated from “code/logic” to distinguish between 
the fact that software is becoming more data-driven, and that 
data is more likely to change than the code itself.  Also, in 
data driven systems, even though the code may not change, 
data may change from flight to flight and is often governed 
by different validation practices.  The third category, “sensor 
input”, addresses errors stemming from unexpected or 
erroneous sensor input.  This distinction is made because 
testing with actual sensor hardware or generating off-nominal 
tests specifically targeting random sensor input may help to 
avert this error.  The final category, “command input”, 
includes erroneous command input due to operator or 
procedural error.  These errors should normally be averted 
through command verification during operations prior to 
their issuance and by process assurance.  The overall 
prevalence of each of these categories is given in Section 4. 

Computer Science / Poor Programming 

Since this paper focuses on “software errors” it might be 
presumed that all these incidents were caused by errors  
within the realm of the computer science discipline or as a 
result of poor programming. This category quantifies the 
incidents subjectively considered to fall within the realm of 
traditional computer science. This includes errors relating to 
real-time or concurrent programming, race conditions, 
priority inversion, or simple programming mistakes such as 
erroneous keystrokes/keywords. This category also would 
also include errors introduced through programming 
language selection, development tools, compilers, or 
operating systems; however, as our results indicate, no 
incidents were attributable to these. 

Unknown-unknowns 

The last category, “unknown-unknowns”, a term popularized 
by Donald Rumsfeld referring to “the ones we don’t know we 

don’t know [10]”, is a highly subjective category and is 
largely a subset of the “Absence of code”. This attempts to 
conservatively quantify how many of these incidents arose 
from knowledge only realized or conceived in hindsight that 
could not have been discovered ahead of time with reasonable 
effort.  It primarily includes cases where aerodynamics or 
physics were studied but not fully understood, cases of highly 
unusual sensor input, or behaviors resulting from an 
unanticipated situation or created by fault situations.  It could 
be argued that with infinite resources, all of these could have 
been known, such as by performing more wind tunnel testing, 
more simulation, more analysis, deeper fault level scenario 
study, or longer and more robust sensor characterization.  A 
subjective evaluation of the question “Could/should it have 
been reasonably known?” within reasonable project 
constraints is provided here.  This may be used as a rough 
level-of-risk measure for the unplanned and unexpected in 
addition to the more concrete “absence of code” category, 
and its mitigation should be assessed in relation to software 
criticality and backup options.   

 
4. DATA 

Table 3 shows the tabular data resulting from team analysis 
of each incident in the dataset according to the categories 
outlined in Section 3.   Erroneous versus Silent is designated 
with an “E” for Erroneous or “S” meaning “Fail Silent”.  
Yes/No answers are provided for the questions of “Would it 
have been recoverable by reboot”, “Could adding code have 
corrected this issue”, “Could this be considered an unknown-
unknown”, and “Was this poor programming/computer 
science discipline issue?” according to the previous 
discussion.  For Error location, “C” is used for “Code/Logic”, 
“D” is used for data, “O” is used for Command/Operator 
Input, and “S” is used for “Sensor Input”.  

 

Table 3. Incident Categorization 
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1962 Mariner 1 
Mission – Atlas-

Agena 

Programmer error in ground 
guidance veered launch vehicle 
off course 

Loss of vehicle E N N C Y N 

1965 Gemini 3 Incorrect lift estimate causes 
short landing 

Landed 84 km short, 
crew manually 
compensated, decreasing 
short landing error 

E N Y C N Y 

1965 Gemini 5 Data error of earth rotation lands 
Gemini 5 short 

Landed 130 km short E N N D N N 

1968 Apollo 8 Memory Inadvertently Erased Close Call fixed 
manually 

E N N O N N 
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1969 Apollo 10 Switch Misconfigured as bad 
input data to abort guidance 

Vehicle tumbled, close 
call, recovered manually 

E N N D N N 

1981 STS-1 Failure of computers to sync Launch Scrub of First 
Shuttle flight 

S Y Y C N N 

1982 Viking-1 Erroneous Command caused 
loss of comm 

End of mission E N N O N N 

1985-
87 

Therac-25 Radiation Therapy machine 
output lethal doses, user input 
speed 

Four deaths, two chronic 
injured 

E N N C Y N 

1988 Phobos-1 Erroneous unchecked uplinked 
command lost vehicle 

Loss of vehicle/Mission E N N O N N 

1988 Soyuz TM-5 Wrong code executed to perform 
de-orbit burn 

Extra day in orbit, New 
code uplinked 

E N N C N N 

1991 Aries - Red 
Tigress I 

Bad command causes guidance 
error 

Loss of Vehicle E N N S N N 

1991 Patriot Missile Patriot failed target intercept due 
to 24-bit rounding error growth 
in time over time 

Failed to intercept scud 
missile, resulting in 
American barracks 
being struck, 28 soldiers 
killed, 100 injured 

E Y N C Y N 

1992 F-22 Raptor Software failed to compensate 
for pilot-induced oscillation in 
presence of lag 

Loss of test vehicle E N Y S N Y 

1994 Clementine 
Lunar Mission 

Erroneous thruster firing 
exhausted propellant, cancelling 
asteroid flyby 

Failed mission objective E N N C N N 

1994 Pegasus XL 
STEP-1 

Booster loss of control due to 
lateral instability 

Loss of vehicle/Mission E N Y C N Y 

1994 Pegasus HAPS Navigation software error 
prematurely shut down upper 
stage 

Unintended/low orbit E N Y C N N 

1995 Solar and 
Heliospheric 
Observatory 

(SOHO) 

Gyro Data used from unpowered 
sensor spins vehicle out of 
communication 

Loss of mission during 
extended use 

E N Y C N N 

1996 Ariane 5 
Maiden Flight 

Unprotected overflow in 
floating-point to integer 
conversion disrupted inertial 
navigation system 

Loss of Vehicle E N N C Y N 

1997 Pathfinder Software priority inversion 
caused images to stall 

Close Call  for Mission 
Loss 

E N N C Y N 

1998 Delta III Unanticipated 4Hz Oscillation in 
control system led to vehicle 
loss 

Loss of vehicle E N Y C N Y 

1999 Mars Polar 
Lander 

Premature shut down of landing 
engine due to misinterpretation 
of landing signature 

Loss of Vehicle/mission E N Y S N N 

1999 Mars Climate 
Orbiter 

Metric vs. imperial units error Loss of vehicle/mission E N N D N N 
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1999 Titan IV B 
Centaur 

Programming error omitting 
decimal in data file caused loss 
of control 

Unintended orbit, 
Milstar Satellite lost 10 
days after launch 

E N N D Y N 

2000 Zenit 3SL Ground software error failed to 
close valve. 

Loss of Vehicle E N N C N N 

2001 Pegasus 
XL/HyperX 

Launch Vehicle 
/ X-43A 

Airframe failure due to 
inaccurate analytical models 

Loss of vehicle/mission E N Y C N Y 

2001 STS-108 
through 110 

Shuttle main engine controller 
mix-ratio software coefficient 
sign-flip error 

Significant close call, 
SME underperformance, 
though not extreme 
enough to not reach 
orbit. 

E N N D N N 

2003 Multidata 
Systems 

Radiation 
Machine 

Radiation Therapy machine 
output lethal doses, 
counterclockwise user input 

Many injured, 15 people 
dead. 

E N N C N N 

2003 Soyuz - TMA-1 Undefined yaw value triggered 
Ballistic reentry 

landed 400 km short E N N C N N 

2003 North American 
Electric Power 

Grid 

Real-time software errors 
contribute to Widespread power 
outage 

Widespread Loss of 
Power Service (2 hr - 4 
days) 

S Y N C Y N 

2004 Spirit Mars 
Exploration 

Rover 

Repeated computer resets due to 
saturated  memory usage. 

Temporary Loss of 
Communication 

S N N D Y N 

2005 CryoSat-1 Missing command causes loss of 
vehicle 

Loss of Vehicle E N Y C N N 

2005 DART 
(Demonstration 
of Autonomous 

Rendezvous 
Technology) 

Navigation software errors fail 
mission objectives. 

Loss of mission 
objectives 

E N N C N N 

2006 Mars Global 
Surveyor 
(MGS) 

Erroneous command led to 
pointing error and power/vehicle 
loss 

Premature Loss of 
vehicle 

E N N C N N 

2007 F22 First 
Deployment 

International Date Line crossing 
crashed computer systems 

Loss of navigation & 
communication 

S N Y C N N 

2008 STS-124 All 4 shuttle computers fail / 
disagree during fueling 

Fueling stopped E N Y S N N 

2008 Quantas Flight 
72, Airbus 
A330-303 

Sensor Input spikes caused 
autopilot to pitch-down, 
resulting in crew and passenger 
injuries 

One crew member and 
11 passengers suffered 
serious injuries 

E N Y S N Y 

2008 B-2 Spirit -
Guam crash 

Miscalculation in flight 
computers with missing input 
data calculated uncommanded 
pitch up 

Crew members 
successfully ejected.   

E N Y S N Y 

2012 Red Wings 
Flight 9268 TU-

204 crash 

Unanticipated landing 
circumstances coupled with 

5 of 8 crewmembers 
killed 

E N Y C N Y 
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design features resulted in crash 
landing 

2015 Airbus A400M 
test flight  

Missing software parameters 
during installation cause crash 

Four fatalities E N N D N N 

2015 SpaceX CRS-7 “Open Chute” command 
invalidated after launch vehicle 
failure 

Possibly could have 
saved Dragon capsule 
from crash landing.  

E N Y C N N 

2016 Hitomi X-ray 
space telescope 

Error in computing spacecraft 
orientation led to spacecraft loss 

Lost of vehicle E N N C N N 

2017 SpaceX CRS-10 Erroneous relative state vector 
transmitted to Dragon 

ISS rendezvous delay E N N D N N 

2018, 
2019 

Boeing 737 
MAX 

Unanticipated software response 
to faulty sensor input 

346 people died on two 
flights 

E N Y S N Y 

2019 Boeing Orbital 
Flight Test 

(OFT) 

Incorrect MET causes no ISS 
rendezvous and short mission, 
and uncovers other latent LOM 
software errors. 

Failed ISS rendezvous, 
multi-year program 
delay 

E N N C N N 

2019 Beresheet Reboots cause engine shutdown 
on lunar descent 

Loss of vehicle S N N C N N 

2019 Chandrayaan-2 
Vicram Lunar 

Lander 

Unexpected velocity behavior 
during descent caused crash 
landing 

Loss of vehicle E N Y C N N 

2020 Amazon Web 
Service (AWS) 

Kinesis 

Maximum threads reached 
caused cascading server outage 

Loss of service, 
revenues.  

S N Y C Y N 

2020 BD Alaris™ 
Infusion Pump 

Infusion delivery system 
software causes injury/death 

55 injuries, 1 death E N N C Y N 

2021 Global 
Facebook 

Outage 

Bad command causes global 
Facebook and cascading 
communication outages. 

Disrupted 
communication, loss of 
revenues 

S Y N O N N 

2021 ISS Uncontrolled ISS attitude spin 
from erroneous  thruster firing 
software 

Close Call E N N C N N 

2022 CAPSTONE Bad Command causes 
Temporary Comm Loss  

Delayed Trajectory 
Course Maneuver 
Objective, Close Call for 
LOM 

E N N O N N 

2023 NOTAM – 
Notice To Air 

Mission 

Corrupted database file causes 
flight cancellations 

Loss of Service S N Y D N N 

2023 ispace Hakuto-
R  

Invalidated Altitude data during 
Lunar descent loses Lander  

Loss of Mission E N Y S N N 

2023 Launcher 
Orbiter SN3 

space tug 

Uncontrolled attitude spin lost 
power and spacecraft 

Loss of Mission E N Y C N N 

2023 Voyager-2 Bad command causes 
[Temporary] Loss of 
communications  

[Temporary] Loss of 
Communications  

E N N O N N 
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5. RESULTS 
Erroneous vs. Fail-Silent 

Using the data from Table 3, Figure 10 shows the number of 
incidents and percent of erroneous versus fail silent 
manifestations.  Erroneous output was over five times as 
likely, 85% of the cases as opposed to 15% of the cases 
failing silent.  Critical systems should take the substantially 
greater likelihood of erroneous behavior into account when 
considering and designing for fault tolerance.  Based on this, 
the system’s operation should be evaluated with the 
following question in mind, “What would the impact be if the 
software behaved unexpectedly at this moment?”  Depending 
on the answer, appropriate monitoring, override, and/or 
backup systems should be employed. 
 

 

Figure 1. Erroneous vs Fail-Silent Software 
Manifestations 

 

Reboot Recoverability 

Figure 2 shows the subjective reboot recoverability 
likelihood comparing erroneous output cases and fail-silent 
cases.  Shown here, 98% of the erroneous output cases were 
deemed not correctable by reboot, with only 2%, the single 
erroneous output case for the Patriot Missile,  recoverable by 
reboot.  Reboot recoverability seems ineffective for 
erroneous output cases.  Fail-silent cases showed a greater 
chance of reboot recoverability over a small data set of 8 
cases with three of eight, or 37% deemed recoverable.  This 
implies that reboot may not be a reliabale strategy to clear 
fail-silent situations. Perhaps depending upon criticality, an 
alternate backup mitigation approach besides rebooting 
should be considered.  Overall, reboot only was deemed 
effective for 4 out of 55 incidents, independent of 
manifestation, or about 7% of the cases. 

 

 

Figure 2. Reboot Recoverability for Erroneous Incidents 

 

 
Figure 3. Reboot Recoverability for Fail-Silent Incidents 

 
Absence of Code 

Figure 4 indicates that an interestingly large 40% of these 
incidents were the result of the absence of code, as opposed 
to other causes, albeit in hindsight.  The absence of code 
satisfies the question, “Could/should software have been 
added to correct this incident?”, and is subjective, but 
includes cases such as missing requirements, incomplete 
understanding or modeling of the real world, unexpected 
inputs, and unknown-unknown subsequently discussed.  This 
result poses an interesting concern about testing code only 
against requirements, and only the code that exists.  If 40% 
of errors are in code that isn’t there, how can missing code be 
exposed?  This result should influence software requirements 
and testing. For example, a proportionate amount of 
requirements verification and unit testing should be 
performed on the code that exists, but a percentage of the 
testing should also be reserved for off-nominal cases and 
unexpected input scenarios, possibly exposing some of the 
code that is lacking. 
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Figure 4. Absence of Code Percentages 

 

Error Location 

Figure 5 categorizes the location or point of origin for the 
error within the software architecture.  These categories were 
chosen because mitigating errors between these categories is 
normally done with different methods, testing, processes, and 
procedures.  Unsurprisingly, most of these errors were found 
to be within the code and logic itself since this category 
includes missing requirements, lack of response to 
unexpected behavior, faulty programming, and “unknown-
unknowns”, discussed in Section II.F, below. It also largely 
includes the “Sensor Input” category. Uncovering missing 
code during earlier phases such as unit testing or 
requirements verification may be a challenge, but missing 
code could possibly be exposed during integration testing, 
hardware-in-the-loop-testing, and especially with off-
nominal scenario testing.  Code/logic errors could also be 
exposed through more detailed requirements and interface 
control documents, focused peer reviews and comprehensive 
unit testing. Misconfigured data caused 16% of these errors.  
To combat data misconfiguration errors, special testing 
should be performed to assure that configurable data is 
validated prior to flight and reviewed by system experts, even 
if the software itself does not change.  Unexpected sensor 
input accounted for 15% of all errors. While handling input 
could also be considered part of coding/logic, it is useful to 
break this out knowing that comprehensive and off-nominal 
input testing could be employed to uncover errors in this part 
of the code.  Randomized input could be computer-generated 
to assure robustness to unexpected input.  For sensor data, 
actual sensor hardware should be used to “test like you fly” 
rather than simulating sensor input.  For command input 
errors, operational procedures should be put in place and 
safeguards followed to validate commands prior to issue.  
Command input can be considered operator error, however, 
safeguards such as two-stage commanding and dialog with 
the operator on consequences of commands could be added 
to software. 

 
 

 
Figure 5. Error Location, Point of Origin 

Computer Science/Poor Programming 

Figure 6 shows the relative percent of incidents that were 
categorized as computer science or programming in nature as 
described in Section 3.  Eighteen percent (18%) of the errors 
were subjectively considered to be more localized to within 
the realm of computer science.  Interestingly, none of the 
incidents studied were the result of operating system, 
compiler, development tool, or programming language 
selection. This result, coupled with the “absence of code” 
result imply that effective dissimilar redundancy for fault 
tolerance should better employ independent requirements and 
test over dissimilar software platform.  

 

Figure 6. Computer Science or Poor Programming 
Related 

Unknown-unknowns 

Characterizing unknown-unknowns is highly subjective and 
can be controversial.  However, the term is commonly used 
in aerospace practice as one justification for fault tolerance.  
It could be argued that given enough time and resources, each 
of these incidents could have been known a priori, so a 
subjective reasonability test was considered against each 
incident to distinguish “should or could this have been known 
within reasonable project constraints” versus, “the project did 
everything they should have, yet an unknown situation led to 
unexpected software behavior”.  Unknown-unknowns 
include cases of unknown aerodynamics after modeling, 
highly unusual sensor behavior, or behavior in the presence 



10 
 

of unlikely fault situations.  Given this subjectivity, the 
percent of these incidents that could be considered 
“unknown-unknown” is conservatively 16%.  If one-sixth of 
software errors are due to things reasonably unknowable, this 
alone could give credence to the consideration for erroneous 
software backup strategies in safety-critical applications.  
Overall strategies to mitigate the risk of software failing 
during operations due to unknown-unknowns or other 
software failures are usually time-criticality dependent, but 
generally include manual human-in-the-loop control, 
employing dissimilar backup systems, run-time monitoring 
and response systems, computer reboot, entering a safe mode, 
or time-permitting, software reload. 

 

 
Figure 7. Unknown-unknowns 

 
6. CONCLUSIONS  

This paper enumerated a dataset of aerospace incidents 
involving software[1,2] since the advent of computerized 
automation.  It analyzed aerospace failures through the eyes 
of the software and automation discipline to characterize and 
predict trends in software behavior (and misbehavior) as a 
design and test aid to current and future aerospace systems.  
It characterized how software is most likely to fail – 
erroneously or silent – and determined that automation 
predominantly fails erroneously, much more often than 
simply “crashing” or ceasing to output.  Systems should 
recognize this relative risk and design accordingly.  
Rebooting software, though used prevalently, was evaluated 
to be largely ineffective to clear software failures, effective 
in 7% of the total cases, 37% for failing silent, and less than 
2% effective for the erroneous-output case, so relying on 
reboot to recover from software faults should be carefully 
considered.  This paper explored software errors relating to 
the absence of code as well as the prevalence of unknown-
unknowns, both of which were substantial constituents in the 
dataset, 40% and 16% respectively.  Software testing should 
be planned to uncover missing code through off-nominal 
input and integrated testing “as you fly”, and backup systems 
should be considered to mitigate the risk of unanticipated 
situations and “unknown-unknowns” in safety-critical 
systems.  A categorization determining the point of error 
introduction to the software architecture (code, data, sensor 
input, or command input) was provided to better influence 

processes and testing related to those areas during both 
development and operations.  Finally, it was determined that 
an arguably small number of cases, 18%, were attributable to 
traditional computer science issues or poor programming, 
with none of those issues a result of operating system, 
programming language, or development tools. To 
summarize, these results indicate that erroneous and 
unexpected behavior, as opposed to crashing, must be 
considered a primary software risk, that rebooting is not 
reliable, and that many software errors are due to unknown or 
unexpected situations rather than from simple programming 
mistakes or development tools. Additionally, unique 
strategies between code, data, sensor, and command input 
sources should be undertaken to minimize software errors at 
the point of origin.   

The dataset presented here is rich for further study, especially 
in the areas of backup systems, relationship to common-
cause, and manual control for safety-critical systems.  Some 
key questions such as, “Was this a multi-string common-
cause failure?”, “Was a manual or automated backup system 
used?”, “Would a backup system have helped?”, “If so, what 
kind of a backup system could have helped?” could be 
explored.  Would a human-in-the-loop, a dissimilar backup, 
a monitor system, a focused backup, or no backup at all be 
the best option for each situation?  Are there any trends to 
common backups that would have saved a class of these 
errors? 

Other key questions could be, “What was the root cause of 
this error?”  Looking at how these errors might have been 
avoided altogether has great merit.  Since the software 
performed exactly as programmed in these cases, exploring 
“why” it was programmed the way it was in terms of root-
cause may be a lesson to organizations producing software.  
“In what phase of the project could/should have this incident 
been discovered and averted?” is another interesting 
question.  How much testing and what type of testing would 
have provided the most “bang for the buck” in averting these 
errors?  All of these questions would be useful follow-on 
work against this, hopefully stagnant, dataset.  

 
Future Trend Speculation 
 
We provide a final speculative note regarding the use and 
effect of more modern software development strategies 
employed by new or evolving companies entering the 
aerospace industry.  It is acknowledged that software 
development tools and practices such as continuous 
integration have enabled increased productivity and may help 
ensure higher quality software, however, the author believes 
that the rate of software/automation growth [11] has offset 
these practice improvements.  As a response to increased 
volume, software development efforts have had to become 
more data driven and more configurable -- it simply cannot 
be rewritten for every configuration or for every flight.  It is 
speculated that errors introduced through configuration data 
or version management will become more significant with 
modern software designs, though the overall occurrence of 
software error incidents will likely continue. 
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