Development and Manufacture of a Proof-of-Concept Magnetically-Geared Actuator for use in Extremely Cold Lunar Environments

Justin J. Scheidler¹

Jesse Hawk²

Peter A. Hoge²Thomas F. Tallerico¹Kyle R. Whitling²Aaron, D. Anderson¹Steven M. Darmon²Erica N. Montbach¹Derek J. Quade¹Michael D. Anderson¹

¹NASA Glenn Research Center, Cleveland, OH 44135, USA

²HX5, LLC, Brook Park, OH 44142, USA

This material is a work of the U.S. Government and is not subject to copyright protection in the United States.

ESMATS 2023 21 September, 2023

- Motivation
- Overview of MDECE Project
- Overview of magnetically-geared actuator
- Key changes made to the proof-of-concept prototype
- Lessons learned from proof-of-concept prototype
- Conclusions & future work

- Rotational actuators almost always require a mechanical gearbox to meet mass, volume requirements
- Challenging to lubricate a gearbox operating in cold environments
 - <u>Pervasive problem</u> *potential for big impact*

Theoretical limit on average total efficiency (%) of heated actuator for indefinite operation [1]

- <u>Objective</u>: enable operation in cold to extremely cold environments...
 - Without the mass, complexity, & energy/efficiency penalties of heating actuators
 - Without the strict design constraints & life limitations of solid lubricated gears
- 1. Scheidler, J.J. et al., in. Proc. IEEE Aerospace Conference, 2022.

- R&D & ground test project, Oct 2020 Sep 2024
- Goal: Develop 2 <u>unheated</u> rotational actuators that can operate for a long duration in extreme cold (ambient temperature of -243 °C (30 K))
 - Evaluate life in controlled, representative lunar dust environment with and without lunar simulant
- Approach: Eliminate gear lubrication 1 actuator with non-contact gearing, 1 actuator with no gears
- Key Performance Parameters: Min. operating temperature

 dust-free life
 efficiency of magnetic actuator
 output resolution of piezoelectric actuator
- Relevant environment: Broadly applicable; focusing on lunar PSR
- Promising applications:
 - <u>Magnetic actuator</u>: rover mobility in-situ resource utilization robotic arm joints • rotors for powered flight
 - <u>Piezoelectric actuator</u>: precision pointing (e.g., laser communication) - low power robotic arm joints

Example mechanisms for demonstrating prototypes (NASA KSC)

- Mechanical Continuous output Peak
 105 Nm at 2 rpm (22 W power)
 Match flight-qualified reference actuator

 Life 6,000 output revolutions (min), 50,000 (goal) [dust free]
 Match flight-qualified reference actuator
- Size / mass No strict requirements
 - Mass
 - Envelope volume
 - Aspect ratio (length / diameter)

(TRL 2-5)

4.73 kg (max), < 3.15 kg (goal)

1440 cm³ (max), < 960 cm³ (goal)

0.5 to 1.75

Thermal specifications for operation

Parameter	Minimum		Maximum	
	Goal	Required	Required	Goal
Lunar surface temperature	30 K (-243 °C)	108 K (-165 °C)	293 K (20 °C)	313 K (40 °C)
Solar heating environment	Shadowed		_	Lunar 85° S

Notable characteristics:

- Gear ratios: 13:1 (motor), 43:1 (cycloidal)
- Air gaps 0.25 mm thick
- 14 ball bearings & 20 needle bearings

- Critical Design Review completed July 2023
- Expect actuator to be operable over full internal temperature range: 24 K (-249 °C) to 371 K (98 °C)
- Predicted actuator life (over 150 K to upper limit)
 - 46,500 output revolutions (bearing limited)

Specification		Threshold	Goal	Predicted
Continuous	≥ 105		5	105
Short duration	INITI	≥ 208		≥ 208
Continuous	rpm	≥2	≥2	2
Short duration		> 0	1.5	1.5
Mass		≤ 4.73	≤ 3.15	4.55 [†]
				5.30 [‡]
Physical size aspect ratio		0.50 to 1.75		1.44
Envelope volume		≤ 1,440	≤ 960	2,317
	ation Continuous Short duration Continuous Short duration size aspect ratio e volume	cationUnitContinuousNmShort durationPnpmContinuousPnpmShort durationkgsize aspect ratio-e volumeCm³	cationUnitThresholdContinuous Nm ≥ 10 Short duration Nm ≥ 20 Continuous Ppm ≥ 2 Short duration Ppm ≥ 2 Short duration kg ≤ 4.73 size aspect ratio- 0.50 toe volume cm^3 $\leq 1,440$	cationUnitThresholdGoalContinuous Nm $\geq 10^{-5}$ Short duration Nm $\geq 20^{-5}$ Continuous Pm $\geq 22^{-5}$ Short duration Pm $\geq 20^{-5}$ Short duration Pm $\leq 20^{-5}$ Short duration Pm Pm Short dura

Key specs

Predicted efficiency of actuator

No resolver

With resolver (may not be needed)

Proof-of-Concept Prototype

Key differences from fully-functional actuator:

- Geared motor & cycloidal gear separated to allow independent testing
- Only ambient environment
- Not light weighted extra material & mostly stainless steel instead of titanium
- Cycloidal gear not revised to mitigate high bearing loads
 - Prototype's configuration also less stiff

Modulator Design Considerations

- Structure of the motor's "modulator" must be designed to:
 - Minimize eddy current losses
 - Be radially thin (often < 2 mm) to optimize magnetic response
 - Remove heat from magnetic "pole pieces"
- Desired material properties
 - Low electrical conductivity
 - High stiffness & strength
 - High thermal conductivity
- Ceramic considered for prototype

Prototype Manufacture – Ceramic Structures

- Combination of trying to eliminate eddy currents in modulator and achieving 0.25 mm air gap found to be a difficult challenge
- No ceramic machine shop or manufacturer would commit to fabrication tolerances less than ±0.025 mm to ±0.05 mm (±0.001" to ±0.002")
- Ceramic parts received unable to be assembled
- For the prototype, ceramic parts replaced with G10 ones
 - Received G10 parts have high quality

Lessons learned

- Achievable tolerances of ceramic bearing seats may compromise bearing functionality or performance
- Larger mating interfaces or round features would improve manufacturability of ceramic structures
- G10 is a viable structural alternative to ceramics

Proof-of-Concept Magnetically-Geared Actuator

- Cycloidal magnetic gears contain two parts with unusual features that are required to create the gear ratio
 - Input shaft and pins have bearing seats on two axes
- Careful tolerance stack up analysis and dimensioning needed
- Parts received met requirements without the need for rework

Input shaft and eccentric pins in cycloidal magnetic gear

Lessons learned

- Dimensioning approach was successful and tight tolerances specified were achievable without excessive cost
- Requirements outside capability of some vendors

Prototype Manufacture – Magnetic Components

Magnetic lamination stacks

- 2-3 mm radial thickness at limit of vendor capability
 - No laser welding \rightarrow stack more fragile
- Desired part precision pushed tolerance limit for stacking
- Minor machining of a mating structure required to enable assembly

Magnet arrays

- Laminate thickness required for high efficiency well within vendor capability
- Scrap rate for cycloidal magnets high than expected

Lessons learned

- Eliminate backiron in cycloidal if possible
- Thin, high-precision modulator lamination pushes existing manufacturing capabilities
- Magnet array assembly & finish grinding have similar difficulty to conventional motor

Prototype Assembly – Magnetically-Geared Motor

Combined stator / ring gear

- Stator fabrication follows conventional practices until ring gear magnets installed
- Need slot wedges or epoxy to fill gap between stator teeth

Practice coil winding

Lessons learned

 No manufacturing or assembly challenges identified

Completed stator / ring gear assembly in motor's housing

Prototype Assembly – Cycloidal Magnetic Gear

- No influence of magnetic forces observed during subassembly of rotating components
- Aligning output shaft, eccentric pins, and eccentric rotor easier than expected
- Rotating subassembly had adequate off-axis backlash & stiffness
- Strong magnetic forces during install of rotating subassembly into housing (used lathe)
 - Forces tend to axially disassemble the rotating subassembly

Lessons learned

- Need temporary method to axially secure input shaft to output shaft
- Sufficient assembly conditions
 - Fixed housing
 - Axial positioning of output shaft

Subassembly of rotating components

Installation of rotating subassembly into housing

Testing to Date

Cycloidal magnetic gear

- Cycloidal magnetic gear functions and exhibits expected gear ratio
- Debris in 0.25 mm air gap
- Measured maximum torque 3% greater than design requirement (6% less than predicted)

Magnetically-geared motor

 No coils shorted after cold soak at 77 K

Lessons learned

- More thorough cleaning of magnetic debris off magnets needed in final actuator
- Quasi-static performance of cycloidal gear matches design

Stator after cold shock and cold soak at 77 K

Assembled cycloidal magnetic gear (left) mounted for testing (right)

Trial	Slip Torque, Nm
1	217.0
2	215.5
3	212.9
Mean	215

Conclusions

- <u>Predicted performance of final actuator</u>: operable from 24 K to 371 K · ≥ 208 Nm peak torque · 4.55 kg
 - life of 46,500 output cycles > 85% efficiency earlier in bearing life
- 0.25 mm air gaps achievable in terms of manufacturability and structural deformation under all loading conditions
- Either design changes to the motor's modulator structure or ceramic manufacturing improvements are needed to enable the use of ceramic modulator structures, but G10 may be a viable alternative
- No significant concerns uncovered during assembly & functionality testing of cycloidal magnetic gear

Based on manufacture of prototype & design of final actuator, magnetically-geared actuators are viable for space mechanisms & ready for cryo-vac demonstration

Future work

- Final design modifications to fully-functional actuator
- Procurement of fully-functional actuator underway
 - Ground testing in relevant cryogenic-vacuum-dust environment expected to start March 2024

This work was funded by the Motors for Dusty & Extremely Cold Environments (MDECE) Project Space Technology Mission Directorate

Contact Info

{justin.j.scheidler, peter.a.hoge, thomas.tallerico, kyle.r.whitling, aaron.d.anderson-1, jesse.hawk, erica.n.Montbach, derek.j.quade, michael.d.anderson-1}@nasa.gov

THANK YOU

