## State of the Practice for MBSE at NASA GRC

Date: September 11, 2023

Presented by: Shira Nadile - MBSE Implementation Lead NASA GRC, System Engineering and Architecture Division



## Agenda

- 1. NASA's Digital Transformation Initiative
  - How Digital Engineering relates to NASA's Digital Transformation
  - How MBSE fits into Digital Engineering
- 2. How MBSE models can connect to Multiple Disciplines and Tools
  - Examples of modeling and data exchange capabilities
- 3. Progression of MBSE within the Agency
- 4. How is MBSE being used today at GRC
- 5. MBSE Resources to Facilitate Adoption at NASA and GRC

### 14 (den et et

## **Experience with MBSE**

- *MBSE and SysML applied experience in NASA, Defense, Automotive and Medical industries*
- Developed SysML Models for Multiple NASA Projects:
  - Deep Space Habitat Models
    - Requirements, Concept Operations, Functional Analysis, Design, Testing
  - Spacecraft Life Support System Models
    - Cascade Distiller System
    - Capillary Brine Residual in Containment System
  - Testbed Models
    - Human Exploration Testbed model for Integration and Analysis of Space Habitats
    - Integrated Power and Avionics System (IPAS)
  - Power System Models
- Modeled Solar Plant System using SysML
  - Heliostat, Solar Panels, thermal loops, reliability analysis
- Used SysML for Medical Device Modeling
  - Hardware and Software, and reliability analysis
- Developed SysML Library Repository
  - Collection of SysML Models

- Current Role: MBSE Implementation Lead at NASA GRC
  - Developing shared MBSE resources
  - Identify MBSE activities and products to increase MBSE usage
  - Provide modeling and SE support to GRC projects
  - Worked with multiple NASA MBSE SMEs to concur on a modeling approach and message for the NASA Systems Modeling Handbook for Systems Engineering (NASA-HDBK-1009)
  - Actively support the GRC Digital Transformation (DT) team



### MBSE Overview



# NASA's Digital Transformation (DT) Initiative

NASA's Digital Transformation Initiative is a HQ led initiative to

- Collectively acknowledge and support the Agency's need to transform the way we work, workforce and workplace (to meet the demands and challenges we face – complexity, adaptation)
- Develop an overarching Enterprise vision and strategy for transformation
- Focus, share and leverage the Agency's distributed efforts to apply new digital technologies and approaches in order to improve effectiveness at an enterprise level
- For more information about NASA's Digital Transformation
  - -Reference: NASA/TM-20220018538

- https://ntrs.nasa.gov/citations/20220018538



## How Does Digital Engineering Relate to NASA's Digital Transformation

### What is Digital Engineering?

- An integrated digital approach that uses authoritative sources of systems' data and models as a continuum across disciplines to support life cycle activities from concept through disposal. (DAU Glossary -Defense Acquisition Guidebook)
- A major target of the DT Strategic initiative is to **Transform Engineering**
- Transforming Engineering requires and includes Digital Engineering, specifically:
  - Model-Based Engineering: Design, Systems Engineering, Analysis, etc.
  - Leveraging new methods: Artificial Intelligence, Machine Learning, Virtual and Augmented Reality
  - Manipulating and leveraging data to understand and improve development and decision-making



## The 6 Key NASA Digital Technology Foundation Blocks

Here are 6 key NASA digital technology foundation areas to assist with ramping up transformational areas

### <u>Artificial Intelligence /</u> <u>Machine Learning (AI/ML):</u>

Harness machine capabilities to augment human intelligence in an era of big data

### Zero Trust Architecture:

Enable dynamic internal/external collaboration wherever teams need to work, leveraging secure infrastructure, identity, network & data architecture



### Intelligent Automation (IA):

Eliminate, optimize & automate processes into synchronized workflows across enterprise platforms to maximize our efficiency and effectiveness to enable bolder missions faster

### **Model-Based Anything (MBx):**

Employ digital models including digital twins across any/all functional domains to enable our people to address increasing complexity, scope, speed, uncertainty & changes

WORKFORCE

### Extended Reality:

Enhance agile internal/ external teaming via seamless, immersive, secure visualization & collaboration

## WORKPLACE

**ZTA** 

### Internet of Things:

Integrate wireless, networked sensors & controls at scale to

# How Does MBSE fit into Digital Engineering

- MBSE is a part of Digital Engineering
  - MBSE consists of data and relationships with a graphical overlay to support views of the data and relationships
- MBSE produces a system model that can link to models, documents, and additional digital engineering tools
  - Can be used to conduct analysis and reason on data for decisions
    - Can utilize Artificial Intelligence (to conduct analysis) and Machine Learning (to reason)
  - Can share data with third party tools to conduct analysis/ generate additional views



## The Relationship of Modeling and Simulation to Systems Engineering



MBSE Overview

Reference: https://www.incose.org/docs/default-source/midwest-gateway/events/incose-mg\_2018-11-13\_scheurer\_presentation.pdf

8

## Models Connected to Multiple Disciplines and Tools



#### MBSE Overview

Source: Izygon, M., Wang, L., Okon, S., Wagner, H., and Garner, L., "Effort to Accelerate MBSE Adoption and Usage at JSC," AIAA SPACE 2016, Long Beach, CA, 2016.<u>https://arc.aiaa.org/doi/pdf/10.2514/6.2016-5542</u>

# System Decomposition and System Interface Modeling and Data Exchange Capabilities



### **Functional Decomposition and Interface Modeling and Data Exchange** Capabilities



## **System Requirements Modeling and Data Exchange Capabilities**



| # | ⊽ Id     | Name                      | Text                                         | Refined By                      | Derived From                       | Verify Method | Verified By                          | Satisfied By  |
|---|----------|---------------------------|----------------------------------------------|---------------------------------|------------------------------------|---------------|--------------------------------------|---------------|
| 1 | sys-1    | R System Requirement      | The system shall                             | B System Function 1(context     |                                    |               | R verif-1 Verification Requirement 1 | System XYZ    |
| 2 | subsys-2 | R Subsystem Requirement 2 | The subsystem total mass                     | B Subsytem Function 3(continue) | R sys-1 System Requirement         |               |                                      | m /mtotal     |
|   |          |                           | shall                                        | 🔁 Subsystem Function 4(con      |                                    |               |                                      |               |
| 3 | subsys-1 | R Subsystem Requirement 1 | The subsystem shall                          | 🔁 Subsystem Function 1(con      | R sys-1 System Requirement         |               | R verif-3 Verification Requirement 3 | Subsystem 1   |
|   |          |                           |                                              | 🔁 Subsystem Function 2(con      |                                    |               |                                      |               |
| 4 | comp-4   | Component Requirement 4   | Component 4 shall                            |                                 | R subsys-2 Subsystem Requirement 2 |               |                                      |               |
| 5 | comp-3   | Component Requirement 3   | Component 3 total mass shall                 |                                 | R subsys-2 Subsystem Requirement 2 |               |                                      | m mtotal      |
| 6 | comp-2   | E Component Requirement 2 | Component 2 shall                            | Component Function 2            | R subsys-1 Subsystem Requirement 1 | Test          |                                      | Component2    |
| 7 | comp-1   | E Component Requirement 1 | Component 1 shall generate<br>x-Watts power. | Component Function 1            | R subsys-1 Subsystem Requirement 1 | Analysis      | R verif-2 Verification Requirement 2 | v power value |

#### MBSE Overview

# **Progression of MBSE within The Agency**

History of MBSE Activity at the Agency Level:

- **NASA Systems Engineering Working Group (SEWG)** began MBSE discussions (2007)
  - Sub-team to investigate MBSE formed (2009)
- NASA Integrated Model-Based Centric Architecture (NIMA) (2011 2015)
- **MBSE Infusion and Modernization Initiative (MIAMI)** effort (2016 2020)





- **NASA MBSE Community of Practice** (~2018 Present)
- **NASA Digital Transformation (DT) Initiative (2020 Present)**
- There are approximately 89 multi-center collaborations utilizing MBSE with about 350 modelers
- NASA published a NASA System Modeling Handbook for Systems Engineering (Dec 2022)

•

# How has MBSE Adoption Progressed at GRC

- 2011: Started a MBSE GRC Working Group
  - Developed a MBSE Roadmap
- 2011-Present: Applying MBSE to projects at GRC
- 2021-Present: Maturing GRC's MBSE capability
  - Agency has applied the INCOSE MBSE Capability
    Assessment (MBCA) as a yardstick
  - GRC uses the MBCA together with our roadmap to gauge our current state and future state
  - Defines tasks and products to support future state goals
  - Laid out plans to mature our MBSE capability
  - Increased engagement at the Agency Level and crosscenters to collaborate and share/ leverage resources



## **GRC Projects Using MBSE and Application Areas**

### Some GRC projects applying MBSE include:

- Advance Air Mobility projects (includes unmanned aerial systems)
- Power Propulsion Element (PPE), a Gateway/Artemis system
- Exploration Medical Capabilities project
- Lunar Surface Architecture projects
- Fission Surface Power project
- Space Communications and Navigation (SCaN)
- High-Rate Delay Tolerant Networking

### Application Areas where MBSE is being used include:

- in support of Concept of Operations development
- for Requirements
- for Architecture and Interface definitions
- in support of Verification and Validation activities
- to support Safety Mission Assurance applications (ex: FMEAs)
- to support Security Engineering analysis and products



# MBSE Resources to Facilitate Adoption at NASA and GRC

- A GRC MBSE SharePoint
  - Common area to share knowledge and resources
- Starter Template Models
- Report Templates for extracting Word documents from the model
- Modeling guidelines that trace Technical Review Products to MBSE Products
- Revamping MBSE Training
- Agency and Center MBSE working groups
- The NASA System Modeling Handbook for Systems Engineering (NASA-HDBK-1009) *Public Resource*
- A Companion Model to the NASA-HDBK-1009 (A Template Model) *Public Resource*



## **NASA-HDBK 1009 Background and Scope**

### **Background:**

- Handbook development sponsored by the NASA Office of Chief Engineer (OCE)
  - Based on a need from practitioners for a system modeling handbook
- The handbook development and approval adhered to the NASA Technical Standards Development Process
  - Consensus based
  - Formally concurred by the Engineering Management Board (EMB) members from all NASA centers and signed by the NASA Chief Engineer

### Scope:

- Shows how system modeling using SysML® can be integrated with the NASA Systems Engineering processes in NPR 7123.1
  - The SE products covered are Concept of Operations (ConOps), Requirements, and Verification and Validation (V&V).
    - Based on feedback from the NASA Agency MBSE CoP

### 14 G + + + +

## **Example Product Views to Support Systems Engineering**



### MBSE Overview

Source: NASA-HDBK-1009 (Link to NASA-HDBK-1009)



## Questions





MBSE Overview