Characterization of Low-Velocity Impact Damage in Thermoplastic Laminated Composites

Wade Jackson, Cheryl Rose, and Frank Leone

Durability, Damage Tolerance, and Reliability Branch NASA Langley Research Center

Hampton, VA

38th American Society for Composites Technical Conference Greater Boston, Massachusetts, September 18–20, 2023

Objectives

- Conduct impact testing to create a range of damage levels in thermoplastic materials
 - Investigate the effect of material system on damage
 - Investigate the effect of high-rate processing on damage
- Create detailed damage maps
 - Ultrasonic testing (UT)
 - Front- and back-surface scans to obtain delamination outlines
 - Time-of-flight (B-scan) data used to approximate depth of individual interfaces
 - X-ray computed tomography (CT)
 - Images used to document matrix cracking and fiber fractures
 - Provided partial images of delaminations (tightly closed delaminations were not visible)
 - UT and CT data combined to create layer-by-layer images of matrix cracks, delaminations, and fiber fractures
 - Create database to evaluate the accuracy of models to predict the impact performance of thermoplastics
- Compare the impact damage response of two thermoplastic materials
- Evaluate significance of low levels of crystallinity on the impact damage response

Specimens

Two Thermoplastic Materials

- Carbon-fiber-reinforced, semi-crystalline materials
- 24-ply quasi-isotropic layup

Material 1: PEKK (APC AS4D/PEKK-FC from Solvay[#])

- [-45/0/+45/90]_{3S} layup
- Thickness: 0.1359 inch

Material 2: PAEK (TC1225 T700/LMPAEK from Toray[#])

- [+45/0/-45/90]₃₅ layup
- Baseline PAEK
 - Thickness: 0.1283 inch
 - Typical degree of crystallinity (DOC) ranges from 20% to 30%
- Low-Crystallinity PAEK
 - Thickness: 0.1315 inch
 - Post-processed at NASA Glenn Research Center
 - Clamped between steel plates and held in an oven above melt temperature for 150 minutes
 - The assembly was then quenched in an ice bath and annealed between the glass transition temperature and melt temperature
 - DOC measurements ranged from 13% to 15%
 - # Specific manufacturer or product names are explicitly mentioned for informational purposes only. The use of these names does not imply an endorsement by the U.S. Government.

Impact Testing

Post-Impact Data

Ultrasonic Scan

- 10 MHz focused transducer
- Spatial resolution of 0.005 inch
- Impact and back surface scans
- 2-inch by 2-inch scan area
- Stored time of flight data for post processing
- Time-of-flight (B-scan) data used to approximate depth

X-Ray Computed Tomography Scan

- 1.9-inch by 1.4-inch scan area
- 6.57 x 10⁻⁴ inch (16.7-micron) voxel size
- X-ray source: 70kV and 140mA

Impact Surface [-45/0/+45/90/-45/0/+45/90 /-45/0/+45/90/90/+45/0/-45/ 90/+45/0/-45/ 90/+45/0/-45] Back Surface <u>3 4 5 6 7 8 9 10 11</u> 12 13 Interface #: 1 2 14 <mark>15 16 17 18 19 20</mark> 21 22 23 **Delamination**

Impact Side

6

Matrix Cracking and Delamination Maps Created Using UT and X-Ray CT Data

<u>Note</u>: Due to a deformed central section around the impact, a "thick slab" option was required to obtain complete damage images of non-planar damage

Full Delamination Analysis of PEKK Impacted at 15 ft-lbs

PEKK vs. PAEK Specimens: UT Scan Comparison at 10 ft-lbs to 15 ft-lbs

PEKK vs. PAEK Panels: UT Scan Comparison at 17 ft-lbs and 20 ft-lbs

PEKK

Baseline PAEK

Effects of Crystallinity on PAEK Specimens: UT Scan Comparison

Near-Surface Fiber Fractures

UT Scan

Impacts caused near-surface lines of fiber fracture in some specimens

- Observed only in PAEK specimens: ~50% of the baseline and all but one of the low-crystallinity specimens
- Fractures were generally perpendicular to the fiber directions
- Restricted to the top four plies near the impact surface

Typical Delamination Shapes in Each Interface

<u>PEKK</u>

Two pie-slice shaped delaminations with edges bounded by matrix cracks on two sides

Baseline PAEK

One or two delaminations with edges bounded by matrix cracks on one or two sides

<u>Low-Crystallinity PAEK</u> One or two delaminations, irregular shapes - not bounded by matrix cracks

Delaminated Area Calculation Per Interface

- All data except delamination images were removed from the damage analysis slides
- Slides were converted to an image stack
- Image stack was converted to black and white using the program ImageJ (National Institute of Health)
- Automated area calculations were performed using ImageJ on the stack and exported to a spreadsheet

<u>Calculation Check</u>: 1-inch square placed at symmetry plane to verify area calculation for each specimen

Damage by Interface/Ply for PEKK Specimens

Damage by Interface/Ply for PAEK Specimens

Damage by Interface/Ply for Low-Crystallinity PAEK Specimens

Damage Comparison of PEKK and PAEK Specimens at 15 ft-lbs

Damage Comparison of Baseline and Low-Crystallinity PAEK Specimens at 20 ft-lbs

Comparison of Total Delaminated Area

Summary

- **Testing**: 34 impact tests were performed and detailed ply-by-ply damage maps were created for three PEKK, three baseline PAEK, and three low-crystallinity PAEK specimens.
- Damage Initiation: PEKK: ~6.0 ft-lbs. Baseline PAEK: ~10 ft-lbs. Low-crystallinity PAEK: ~17 ft-lbs
- **Delaminated Area:** For a given impact energy: PEKK > baseline PAEK > low-crystallinity PAEK
- Delamination Pattern:
 - PEKK Specimens: Rotating fan of two pie-slice shaped delaminations that spiraled through the thickness (similar to thermosets).
 Largest delaminations located at 75% of thickness from front surface.
 - Baseline PAEK Specimens: Asymmetrical delamination pattern. Delamination bounded by a one or two matrix cracks. Largest
 delaminations near the center thickness.
 - Low-Crystallinity Specimens: Discontinuous between adjacent interfaces. Single unbounded delaminations with irregular shapes.
 Damage distributed through the thickness.
- Fiber Fracture:
 - **PEKK Specimens:** Small amount of fiber damage limited to a few back-surface plies
 - Baseline PAEK Specimens: Fiber fractures on impact-side near-surface plies and near back surface
 - Low-Crystallinity Specimens: Fiber fractures in impact-side near-surface plies with extensive fiber fractures observed throughout the thickness
- In General: The overall impact damage response shifts from primarily delamination in the PEKK specimens to primarily fiber damage in the tougher low-crystallinity PAEK specimens.