Materials Informatics at NASA GRC

- Joshua Stuckner
- Materials Informatics Scientist
- NASA Glenn Research Center

CWRU Sept. 12, 2023

It takes 20 years to go from material discovery to commercial use ^{1,2}

Materials Genome Initiative – is a federal initiative for discovering, manufacturing, and deploying advanced materials twice as fast and at a fraction of the cost compared to traditional methods. Announced by Obama in 2011. Thanks Obama!

Material Informatics – application of informatics (statistics, data science, machine learning, AI, etc.) to materials science and engineering to improve the understanding, development, and discovery of materials.

¹ Faster: Accelerating the transition from materials discovery to commercial deployment. Alexander H. King. https://www.osti.gov/pages/servlets/purl/1556925 ² T.W. Eagar, Technology Review, 98, 43 (1995)

Predictive Models

Shape Memory Alloys

- Continuous features
 - o Ni %
 - o Ti %
 - Element 3 %
 - Element 4 %
 - Heat treat 1 time
 - Heat treat 1 temp
 - Heat treat 2 time
 - Heat treat 2 temp
 - Heat treat 3 time
 - Heat treat 3 temp
 - Lower Cycle Temperature
 - Higher Cycle Temperature
 - o Austenite Start temp
 - Austenite finish temp
 - Martensite start temp
 - Martensite finish temp
- Categorical features
 - o Element 3
 - o Element 4
 - Test type
 - Processing method

Martensite Finish Temperature

Inverse Design

Processing \rightarrow Properties Properties \rightarrow Processing x y y = F(x)processing: $x^* = argmax(F(x))$

Sequential Learning

Microstructure

Processing \rightarrow Structure \rightarrow Properties x z y

y = F(x,z)

Computer Vision

Computer Vision

Better feature representation

Computer Vision

joshua.stuckner@nasa.gov

Channel width [pixels]

CWRU

measurement

MicroNet

SLS Core Stage Welds

Modeling reduces the need for **expensive** physical experiments

Machine Learning reduces the need for expensive modeling

local strain (ϵ)

Outputs: homogenized stiffness (C) Updated damage (d_{n+1})

Outputs: global stress, local strain (ε) Material properties (m) Damage (d_n)

Outputs: homogenized stiffness (C) Updated damage (d_{n+1})

JARIMIS

"Just A Rather Intelligent Materials Interrogation System"

- A methodology and software framework that combines tools to efficiently apply materials informatics to more projects.
- Tools being applied to improve SLS weld quality.

JARIMIS Framework

joshua.stuckner@nasa.gov

CWRU

Most technology is limited by available materials

Batteries, jet engines, spaceships, processers, wind turbines, iron man suits

Accelerating materials development accelerates the future

Materials Informatics is accelerating materials development