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Material Informatics

Material Informatics – application of informatics (statistics, data science, machine learning, AI, etc.) 
to materials science and engineering to improve the understanding, development, and 
discovery of materials.

It takes 20 years to go from material discovery to commercial use 1,2

1 Faster: Accelerating the transition from materials discovery to commercial deployment. Alexander H. King. https://www.osti.gov/pages/servlets/purl/1556925
2 T.W. Eagar, Technology Review, 98, 43 (1995)

Materials Genome Initiative– is a federal initiative for discovering, manufacturing, and deploying 
advanced materials twice as fast and at a fraction of the cost compared to traditional 
methods. Announced by Obama in 2011. Thanks Obama!
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• Continuous features
o Ni %
o Ti %
o Element 3 %
o Element 4 %
o Heat treat 1 time
o Heat treat 1 temp
o Heat treat 2 time
o Heat treat 2 temp
o Heat treat 3 time
o Heat treat 3 temp
o Lower Cycle Temperature 
o Higher Cycle Temperature
o Austenite Start temp
o Austenite finish temp
o Martensite start temp
o Martensite finish temp

• Categorical features
o Element 3
o Element 4
o Test type
o Processing method

Martensite Finish Temperature

R2 = 0.987

Predictive Models

Shape Memory Alloys
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Properties → Processing
Processing → Properties

y = F(x)

yx

processing: x* = argmax(F(x))

Data

→ → →

ML Model Optimizer Processing

Inverse Design
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Sequential Learning
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Processing → Structure → Properties

y = F(x,z)

yx z

Microstructure
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Conv 1 Filters

Max pool

Max pool

Conv 2 Filters

Input image Encoder

- Dog

- Cat

… … …

…

- Plane

Dataset

Learn filters To predict classLearn filters

Encoder Decoder

Transfer learning

Input image Segmented image

Extracted features
Extracted features

Feature vector

Classifier

Requires a lot of training data

Computer Vision
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Conv 1 Filters

Max pool

Max pool

Conv 2 Filters

Input image Encoder

- Material 1

- Material 2

… … …

…

- Material n

Learn filters To predict classLearn filters

Extracted features
Extracted features

Better feature representation

ClassifierMicroNet

Computer Vision
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Conv 1 Filters

Max pool

Max pool

Conv 2 Filters

Input image Encoder

- Material 1

- Material 2

… … …

…

- Material n

Learn filters To predict classLearn filters

Encoder Decoder

Transfer learning

Input image Segmented image

Extracted features
Extracted features

Feature vector

ClassifierMicroNet

Computer Vision
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Automatic Microstructure Analysis
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Automatic Microstructure Analysis
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Automatic Microstructure Analysis
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Automatic Microstructure Analysis
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MicroNet

ODS Alloys Wind tunnel Icing Composite Fibers

Automatic image analysis of 
melt pool geometry

Direct regression and interpretability

SLS Core Stage Welds

Ni-Superalloys

GRCop

MicroNet
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Surrogate Modeling

Modeling reduces the need 
for expensive physical 
experiments

Machine Learning reduces 
the need for expensive
modeling
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Macroscale
Classical Lamination Theory (CLT)

ϵ

strain increment (ϵ), 
homogenized stiffness (C)

global stress,
local strain (ε)

Inputs:

Outputs:

Microscale
Generalized Method of Cells (GMC)

Fiber

Matrix

local strain (ε)
Material properties (m)
Damage (dn)

homogenized stiffness (C)
Updated damage (dn+1)

Inputs:

Outputs:

ε, m

Cy

Surrogate Modeling



October 1st, 2019  |  Columbus, OHjoshua.stuckner@nasa.gov September 12, 2023 18CWRU

Ply
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Macroscale
Classical Lamination Theory (CLT)

ϵ

Fiber

Matrix

Microscale
Neural Network Surrogate

strain increment (ϵ), 
homogenized stiffness (C)

global stress,
local strain (ε)

Inputs:

Outputs:

Inputs:

Outputs:

y

local strain (ε)
Material properties (m)
Damage (dn)

homogenized stiffness (C)
Updated damage (dn+1)

ε, m

C

Surrogate Modeling
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Homogenized 

Stiffness

Strain tensor

Material

Properties

Surrogate Modeling
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Fiber Matrix

E 75 GPa 4 GPa

ν 0.25 0.35

UTS 3,500 MPa 60 MPa

Laminate ConfigurationMaterial Properties

MAE R2

Global Stress 8.6 MPa 0.96

Homogenized C 0.4 MPa 0.999997

Accuracy Results

Surrogate Modeling
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JARIMIS

“Just A Rather Intelligent Materials Interrogation System”

JARIMIS Framework

• A methodology and software framework that combines 
tools to efficiently apply materials informatics to more 
projects. 

• Tools being applied to improve SLS weld quality.

Automatic Data Ingestion

Space-filling DOE to 
capture non-linear effects PSP Models
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Conclusion

Most technology is limited by available materials
Batteries, jet engines, spaceships, processers, wind turbines, iron man suits

Accelerating materials development accelerates the future

Materials Informatics is accelerating materials development


