

NASA/TM—20230013162

Single-Event Effects Test Report Linux
Operating System Configurations on
TUL PYNQ-Z2

Seth S. Roffe

September 2023

NASA STI Program Report Series

The NASA STI Program collects, organizes,
provides for archiving, and disseminates NASA’s
STI. The NASA STI program provides access to
the NTRS Registered and its public interface, the
NASA Technical Reports Server, thus providing
one of the largest collections of aeronautical and
space science STI in the world. Results are
published in both non-NASA channels and by
NASA in the NASA STI Report Series, which
includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant
phase of research that present the results of
NASA Programs and include extensive data
or theoretical analysis. Includes compila-
tions of significant scientific and technical
data and information deemed to be of
continuing reference value. NASA counter-
part of peer-reviewed formal professional
papers but has less stringent limitations on
manuscript length and extent of graphic
presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.

Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and
feeds, providing information desk and personal
search support, and enabling data exchange
services.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page

at http://www.sti.nasa.gov

• Help desk contact information:

https://www.sti.nasa.gov/sti-contact-form/
and select the “General” help request type.

NASA/TM—20230013162

Single-Event Effects Test Report Linux
Operating System Configurations on
TUL PYNQ-Z2

Seth S. Roffe
Goddard Space Flight Center, Greenbelt, MD

Test Date: 8/19/2023
Report Date: 9/8/2023

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, MD 20771

September 2023

Acknowledgments (optional)

This work was sponsored by the NASA Electronic Parts and Packaging (NEPP) Program.

This report is available in electronic form at
https://nepp.nasa.gov/

Trade names and trademarks are used in this report for identification only. Their
usage does not constitute an official endorsement, either expressed or implied,
by the National Aeronautics and Space Administration.

Level of Review: This material has been technically reviewed by technical
management.

Available from

NASA STI Program
Mail Stop 148
NASA’s Langley Research Center
Hampton, VA 23681-2199

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
703-605-6000

2

1. Introduction and Purpose
This study was undertaken to determine the single-event functional interrupt (SEFI)
susceptibility on different Linux operating system configurations. The device-under-test (DUT)
was the Xilinx Zynq-7020 SoC on the TUL PYNQ-Z2 board. The device was monitored for
kernel panics or hangs, classified as SEFIs, to observe any differences in the SEFI cross
sections between operating system configurations. The primary purpose of this experiment was
to observe if the number of drivers installed in a Linux system affects its overall execution
reliability.

The operating system configurations included all possible iterations of four binary variables:
whether the L2 cache (with parity detection) is on or off, whether the system was performing
matrix multiplication (MM) or sitting idle, whether there were a large number of drivers installed
in the kernel or a small number of drivers installed, and whether those drivers were loaded into
the current shell or not loaded into the current shell. These four variables created 16 different
configurations, shown in Table 1.

Table 1: Operating System Configurations

L2 Cache Operation Num. Drivers Loaded State
ON MM LARGE LOADED
ON MM LARGE UNLOADED
ON MM SMALL LOADED
ON MM SMALL UNLOADED
ON IDLE LARGE LOADED
ON IDLE LARGE UNLOADED
ON IDLE SMALL LOADED
ON IDLE SMALL UNLOADED
OFF MM LARGE LOADED
OFF MM LARGE UNLOADED
OFF MM SMALL LOADED
OFF MM SMALL UNLOADED
OFF IDLE LARGE LOADED
OFF IDLE LARGE UNLOADED
OFF IDLE SMALL LOADED
OFF IDLE SMALL UNLOADED

2. Test Result Summary

On such as complex system such as the Zynq-7020 SoC, SEFIs and system crashes were
prevalent, though no destructive single-event effects were observed during 200 MeV proton
testing. This experiment primarily looked at any significant differences in the cross sections and
the mean fluence to failure (MFTF) between any of the major OS configurations. Vulnerability
tended to be higher when the L2 cache was on, as expected due to the larger memory space
under irradiation. Additionally, when the L2 cache was on, the differences in the other
configurations were more apparent. Namely, the IDLE configuration tended to be significantly
more vulnerable to SEFIs than when matrix multiplication was happening. Similarly, the system
was more vulnerable to SEFIs when the drivers were loaded than when they were installed but

3

not loaded into the kernel. No significant differences were observed between the LARGE and
SMALL configurations.

3. Device Description

The TUL PYNQ-Z2 board is a development board with a Xilinx Zynq-7020 SoC. The Zynq-7020
contains an Artix-7 Field-Programmable Gate Array (FPGA) fabric as programmable logic (PL),
as well as a dual-core ARM Cortex-A9 processing system (PS). For the purposes of this
experiment, only the ARM A9 processing core was used. Therefore, this test was only looking at
the Zynq-7020 from a fixed-logic processor perspective.

Table 2: Device-Under-Test Description

SoC ZYNQ XC7Z020-1CLG400C
Processor (PS) ARM 650MHz dual-core Cortex-A9

FPGA (PL) Artix-7
Manufacturer TUL

Memory Controller 512 MB DDR3; 16-bit bus @ 1050 Mbps
SPI Flash 16MB
REAG ID 20-004

Figure 1: PYNQ-Z2 in the proton beam path

4

4. Test Setup
The experimental setup used USB connections for serial communication with the device-under-
test (DUT) and ethernet for Trivial-File Transfer Protocol Boot (TFTPBoot) transfers. TFTPBoot
was used to load each operating system configuration during boot-up of the DUT. Additionally,
the current and voltage input to the DUT was monitored with a Phidget 30 Amp Current sensor
and a Phidget Precision Voltage Sensor, respectively. To provide USB connections into the beam
room, a USB-to-Ethernet extender was used, along with 100 ft ethernet cables connecting the
transceiver and receivers. A web-powered power switch was used to remotely control the DUT
and provide power cycles as needed. All commands were sent from and data was collected on a
Laptop running Ubuntu 22.04 outside of the beam cave.

Figure 2: Experimental Setup Diagram

5. Test Facility

Facility: Massachusetts General Hospital, Proton Therapy Clinic

Type of Radiation: Proton

Facility Configuration: 200 MeV tune

Flux:
∼ 108

𝑝𝑝+

𝑐𝑐𝑚𝑚2𝑠𝑠

Fluence: Testing was conducted to the first SEFI for each run

6. Test Conditions

In-Air or Vacuum: In-air

Supply Voltages: 12V

5

7. Test Methods and Procedures
This section describes the methodology used in the experiment. The procedure for a run is
defined and how data was collected is specified. The configuration setup is also discussed
herein.

7.1. Linux Kernel Setup
Each configuration is composed of a Linux kernel image that was generated using Buildroot and
a device tree defining the hardware interfaces. The L2-Cache ON configuration uses the default
device tree for the PYNQ-Z2. For the Cache OFF configuration, the L2 Cache was disabled by
removing the memory interface for the cache in the device tree. When this modified device tree
was used to boot the DUT, finding the interface on boot would fail, thus disabling the L2 cache,
which could additionally be verified via the difference in execution time of any matrix operations
between the OFF and ON configurations.

The MM configuration’s main process was a 500 × 500 matrix multiplication kernel. This
application kernel was chosen as it is a common application used in machine-learning and
image-processing applications. After each matrix multiplication, the DUT would send a
heartbeat signal to the host to acknowledge completion of proper operations, and then it would
restart the application. The IDLE configuration would simply idle the system using the sleep
command for 10 seconds, send the heartbeat signal, and then return to idling for another 10
seconds. Both of these configurations were set to run indefinitely on boot via initialization
scripts.

The LARGE configuration was created by selecting several random built-in drivers from
Buildroot to compile into the kernel, even if the supporting hardware for those drivers was not
available. This configuration had a uImage size of 8.3 MB. Conversely, the SMALL configuration
only used the minimum number of drivers necessary to compile Linux for the PYNQ-Z2 with a
uImage size of 5.1 MB. Overall, the LARGE configuration contained 256 modules that were
built-in to the kernel, and 170 modules that could be loaded in externally via the insmod
command. Meanwhile, the SMALL configuration had 126 built-in kernel modules, and 10
modules that could be loaded externally. These equate to 66.4% and 7.9% of loaded drivers for
each configuration, respectively.

The LOADED configuration found all possibly loaded drivers via modprobe, and loaded those
drivers with insmod on boot to make them active, prior to running the process defined for the
current MM/IDLE configuration. Due to differences in hardware and the lack of specific device
tree entries for certain drivers, not all drivers found with modprobe could be loaded into the
kernel. Overall, the LARGE configuration had 160 drivers loaded into the kernel to make the,
and the SMALL configuration had 7 loaded (94.1% and 70% of the total possible drivers to
externally load in each configuration, respectively). The UNLOADED configuration simply
skipped loading any drivers with insmod and thus had zero drivers loaded. In this configuration,
each driver was installed, but not actively loaded into the kernel.

6

7.2. Proton Test
To select a configuration, a pre-compiled Linux uImage was selected and place in a TFTP server
directory to be pulled for the boot process. Once power was enabled to the DUT using the web-
powered power switch, the system would pull the current configuration’s uImage and respective
device tree.

The DUT was booted and put into a stable state performing the configurations operations, whether
that be matrix multiplication (MM) or idling via the sleep command (IDLE). Once the operations
began, as noted by the test operator, the beam was turned on. The beam consisted of 200 MeV
protons tuned to a flux of approximately 108 𝑝𝑝+

𝑐𝑐𝑚𝑚2𝑠𝑠
. Once a SEFI was encountered, either by a

kernel panic or a system hang event with a timeout set at 1 minute, the beam was turned off, the
fluence was recorded, and the cross section (akin to mean fluence to failure in this study) was
calculated. This process was then repeated for several runs.

8. Test Results
Each configuration was run 15 times during the allotted beam time. The histograms of cross
sections for each configuration is shown in Figure 3. Each distribution is approximately a Poisson
distribution, as was expected with collecting data across more than 10 runs per configuration.
Each cross section was defined with an event-quantity of 1 since a SEFI would shut down the
system and end the run.

Figure 3: Cross Section Histograms for Each Configuration

7

However, it is easier to analyze a metric that is not bound between 0 and 1, therefore the mean
fluence to failure (MFTF) was used. MFTF is defined, in this case, as the inverse of the cross
section since the event-quantity was 1 for each run. The MFTFs for all the L2-Cache ON
configurations can be seen in Figure 4.

Figure 4: MFTF for L2-Cache ON Configuration

When the L2 Cache is ON, the MFTF is significantly worse for the IDLE configurations
compared to the MM configurations. This is most likely due to the critical data retrieval
processes of the DUT. When matrix multiplication is processing, critical kernel data is being
flushed out of the cache to make room for the matrix data. If the system is idling, then that
critical data never gets flushed out of the cache and thus has a higher chance of corruption,
especially since the DDR3 SDRAM chip was not under irradiation. Additionally, the UNLOADED
configurations were significantly better than the LOADED configurations. This implies that the
drivers being loaded and active in the kernel do affect the reliability of the system. This is
expected since the drivers have memory access to kernel space, even when they aren’t actively
being used. However, the number of drivers installed and loaded do not seem to have a
significant effect on MFTF. We surmise that this could be because there wasn’t enough of a
significant difference in the number of drivers between the configurations, or because the
drivers were not being actively used on real hardware devices.

8

The MFTF for each of the L2-Cache OFF configurations can be seen in Figure 5.

Figure 5: MFTF for Each L2-Cache OFF Configuration

For the L2-Cache OFF configurations, it is more difficult to discern any obvious patterns. This
lack of crucial information could be because, without the L2 cache, there is not enough memory
to hold much critical information in the 32 KB of both of the L1 data and instruction caches.
Therefore, most of the critical data is held in the DDR3 SDRAM which was not under irradiation
for this test.

9. Conclusion
This test was the first step in understanding how the configuration of the operating system
affects the reliability of a system-on-chip (SoC) devices. Knowing which configurations drive
worst-case and best-case radiation performance permits a more streamlined approach to
characterizing these complex devices using well defined test corners. This understanding will
lead to better testing methodologies on SoCs, and lead to a standardization of how these
complex devices are evaluated. Finally, in knowing how different OS configurations affect the
reliability of a system, mission designers can take proper precautions to ensure the highest
availability of their software.

	1. Introduction and Purpose
	2. Test Result Summary
	3. Device Description
	4. Test Setup
	5. Test Facility
	6. Test Conditions
	7. Test Methods and Procedures
	7.1. Linux Kernel Setup
	7.2. Proton Test

	8. Test Results
	9. Conclusion
	NASA Tech - last three pages.pdf
	1. Purpose
	2. Test Samples
	3. General
	4. Test Conditions and Error Modes
	5. Test Methods
	6. Radiation Test execution
	7. Data Logging
	8. Results
	9. Conclusion
	Report Template.pdf
	Blank Page

	Blank Page
	Blank Page

