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1. Introduction and Purpose 
This study was undertaken to determine the single-event functional interrupt (SEFI) 
susceptibility on different Linux operating system configurations. The device-under-test (DUT) 
was the Xilinx Zynq-7020 SoC on the TUL PYNQ-Z2 board. The device was monitored for 
kernel panics or hangs, classified as SEFIs, to observe any differences in the SEFI cross 
sections between operating system configurations. The primary purpose of this experiment was 
to observe if the number of drivers installed in a Linux system affects its overall execution 
reliability. 

The operating system configurations included all possible iterations of four binary variables: 
whether the L2 cache (with parity detection) is on or off, whether the system was performing 
matrix multiplication (MM) or sitting idle, whether there were a large number of drivers installed 
in the kernel or a small number of drivers installed, and whether those drivers were loaded into 
the current shell or not loaded into the current shell. These four variables created 16 different 
configurations, shown in Table 1. 

Table 1: Operating System Configurations 

L2 Cache Operation Num. Drivers Loaded State 
ON MM LARGE LOADED 
ON MM LARGE UNLOADED 
ON MM SMALL LOADED 
ON MM SMALL UNLOADED 
ON IDLE LARGE LOADED 
ON IDLE LARGE UNLOADED 
ON IDLE SMALL LOADED 
ON IDLE SMALL UNLOADED 
OFF MM LARGE LOADED 
OFF MM LARGE UNLOADED 
OFF MM SMALL LOADED 
OFF MM SMALL UNLOADED 
OFF IDLE LARGE LOADED 
OFF IDLE LARGE UNLOADED 
OFF IDLE SMALL LOADED 
OFF IDLE SMALL UNLOADED 

 

2. Test Result Summary 
 
On such as complex system such as the Zynq-7020 SoC, SEFIs and system crashes were 
prevalent, though no destructive single-event effects were observed during 200 MeV proton 
testing. This experiment primarily looked at any significant differences in the cross sections and 
the mean fluence to failure (MFTF) between any of the major OS configurations. Vulnerability 
tended to be higher when the L2 cache was on, as expected due to the larger memory space 
under irradiation. Additionally, when the L2 cache was on, the differences in the other 
configurations were more apparent. Namely, the IDLE configuration tended to be significantly 
more vulnerable to SEFIs than when matrix multiplication was happening. Similarly, the system 
was more vulnerable to SEFIs when the drivers were loaded than when they were installed but 
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not loaded into the kernel. No significant differences were observed between the LARGE and 
SMALL configurations. 
 

3. Device Description 
 

The TUL PYNQ-Z2 board is a development board with a Xilinx Zynq-7020 SoC. The Zynq-7020 
contains an Artix-7 Field-Programmable Gate Array (FPGA) fabric as programmable logic (PL), 
as well as a dual-core ARM Cortex-A9 processing system (PS). For the purposes of this 
experiment, only the ARM A9 processing core was used. Therefore, this test was only looking at 
the Zynq-7020 from a fixed-logic processor perspective. 

 
Table 2: Device-Under-Test Description 

SoC ZYNQ XC7Z020-1CLG400C 
Processor (PS) ARM 650MHz dual-core Cortex-A9 

FPGA (PL) Artix-7 
Manufacturer TUL 

Memory Controller 512 MB DDR3; 16-bit bus @ 1050 Mbps 
SPI Flash 16MB 
REAG ID 20-004 

 

 
Figure 1: PYNQ-Z2 in the proton beam path 
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4. Test Setup 
The experimental setup used USB connections for serial communication with the device-under-
test (DUT) and ethernet for Trivial-File Transfer Protocol Boot (TFTPBoot) transfers. TFTPBoot 
was used to load each operating system configuration during boot-up of the DUT. Additionally, 
the current and voltage input to the DUT was monitored with a Phidget 30 Amp Current sensor 
and a Phidget Precision Voltage Sensor, respectively. To provide USB connections into the beam 
room, a USB-to-Ethernet extender was used, along with 100 ft ethernet cables connecting the 
transceiver and receivers. A web-powered power switch was used to remotely control the DUT 
and provide power cycles as needed. All commands were sent from and data was collected on a 
Laptop running Ubuntu 22.04 outside of the beam cave.  

 

 
Figure 2: Experimental Setup Diagram 

5. Test Facility  
 

Facility: Massachusetts General Hospital, Proton Therapy Clinic 

Type of Radiation: Proton 

Facility Configuration: 200 MeV tune 

Flux: 
∼ 108

𝑝𝑝+

𝑐𝑐𝑚𝑚2𝑠𝑠
 

Fluence: Testing was conducted to the first SEFI for each run 

6. Test Conditions 
 

In-Air or Vacuum: In-air 

Supply Voltages: 12V 
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7. Test Methods and Procedures 
This section describes the methodology used in the experiment. The procedure for a run is 
defined and how data was collected is specified. The configuration setup is also discussed 
herein. 

7.1. Linux Kernel Setup 
Each configuration is composed of a Linux kernel image that was generated using Buildroot and 
a device tree defining the hardware interfaces. The L2-Cache ON configuration uses the default 
device tree for the PYNQ-Z2. For the Cache OFF configuration, the L2 Cache was disabled by 
removing the memory interface for the cache in the device tree. When this modified device tree 
was used to boot the DUT, finding the interface on boot would fail, thus disabling the L2 cache, 
which could additionally be verified via the difference in execution time of any matrix operations 
between the OFF and ON configurations. 

The MM configuration’s main process was a 500 × 500 matrix multiplication kernel. This 
application kernel was chosen as it is a common application used in machine-learning and 
image-processing applications. After each matrix multiplication, the DUT would send a 
heartbeat signal to the host to acknowledge completion of proper operations, and then it would 
restart the application. The IDLE configuration would simply idle the system using the sleep 
command for 10 seconds, send the heartbeat signal, and then return to idling for another 10 
seconds. Both of these configurations were set to run indefinitely on boot via initialization 
scripts. 

The LARGE configuration was created by selecting several random built-in drivers from 
Buildroot to compile into the kernel, even if the supporting hardware for those drivers was not 
available. This configuration had a uImage size of 8.3 MB. Conversely, the SMALL configuration 
only used the minimum number of drivers necessary to compile Linux for the PYNQ-Z2 with a 
uImage size of 5.1 MB. Overall, the LARGE configuration contained 256 modules that were 
built-in to the kernel, and 170 modules that could be loaded in externally via the insmod 
command. Meanwhile, the SMALL configuration had 126 built-in kernel modules, and 10 
modules that could be loaded externally.  These equate to 66.4% and 7.9% of loaded drivers for 
each configuration, respectively.  

The LOADED configuration found all possibly loaded drivers via modprobe, and loaded those 
drivers with insmod on boot to make them active, prior to running the process defined for the 
current MM/IDLE configuration. Due to differences in hardware and the lack of specific device 
tree entries for certain drivers, not all drivers found with modprobe could be loaded into the 
kernel. Overall, the LARGE configuration had 160 drivers loaded into the kernel to make the, 
and the SMALL configuration had 7 loaded (94.1% and 70% of the total possible drivers to 
externally load in each configuration, respectively). The UNLOADED configuration simply 
skipped loading any drivers with insmod and thus had zero drivers loaded. In this configuration, 
each driver was installed, but not actively loaded into the kernel. 
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7.2. Proton Test 
To select a configuration, a pre-compiled Linux uImage was selected and place in a TFTP server 
directory to be pulled for the boot process. Once power was enabled to the DUT using the web-
powered power switch, the system would pull the current configuration’s uImage and respective 
device tree. 

The DUT was booted and put into a stable state performing the configurations operations, whether 
that be matrix multiplication (MM) or idling via the sleep command (IDLE). Once the operations 
began, as noted by the test operator, the beam was turned on. The beam consisted of 200 MeV 
protons tuned to a flux of approximately 108 𝑝𝑝+

𝑐𝑐𝑚𝑚2𝑠𝑠
. Once a SEFI was encountered, either by a 

kernel panic or a system hang event with a timeout set at 1 minute, the beam was turned off, the 
fluence was recorded, and the cross section (akin to mean fluence to failure in this study) was 
calculated. This process was then repeated for several runs. 

8. Test Results 
Each configuration was run 15 times during the allotted beam time. The histograms of cross 
sections for each configuration is shown in Figure 3. Each distribution is approximately a Poisson 
distribution, as was expected with collecting data across more than 10 runs per configuration. 
Each cross section was defined with an event-quantity of 1 since a SEFI would shut down the 
system and end the run. 
 

 
Figure 3: Cross Section Histograms for Each Configuration 

 



7 
 

However, it is easier to analyze a metric that is not bound between 0 and 1, therefore the mean 
fluence to failure (MFTF) was used. MFTF is defined, in this case, as the inverse of the cross 
section since the event-quantity was 1 for each run. The MFTFs for all the L2-Cache ON 
configurations can be seen in Figure 4. 
 

 
Figure 4: MFTF for L2-Cache ON Configuration 

 

When the L2 Cache is ON, the MFTF is significantly worse for the IDLE configurations 
compared to the MM configurations. This is most likely due to the critical data retrieval 
processes of the DUT.  When matrix multiplication is processing, critical kernel data is being 
flushed out of the cache to make room for the matrix data. If the system is idling, then that 
critical data never gets flushed out of the cache and thus has a higher chance of corruption, 
especially since the DDR3 SDRAM chip was not under irradiation. Additionally, the UNLOADED 
configurations were significantly better than the LOADED configurations. This implies that the 
drivers being loaded and active in the kernel do affect the reliability of the system. This is 
expected since the drivers have memory access to kernel space, even when they aren’t actively 
being used. However, the number of drivers installed and loaded do not seem to have a 
significant effect on MFTF. We surmise that this could be because there wasn’t enough of a 
significant difference in the number of drivers between the configurations, or because the 
drivers were not being actively used on real hardware devices. 
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The MFTF for each of the L2-Cache OFF configurations can be seen in Figure 5. 

 
Figure 5: MFTF for Each L2-Cache OFF Configuration 

 

For the L2-Cache OFF configurations, it is more difficult to discern any obvious patterns. This 
lack of crucial information could be because, without the L2 cache, there is not enough memory 
to hold much critical information in the 32 KB of both of the L1 data and instruction caches. 
Therefore, most of the critical data is held in the DDR3 SDRAM which was not under irradiation 
for this test.  

9. Conclusion 
This test was the first step in understanding how the configuration of the operating system 
affects the reliability of a system-on-chip (SoC) devices. Knowing which configurations drive 
worst-case and best-case radiation performance permits a more streamlined approach to 
characterizing these complex devices using well defined test corners. This understanding will 
lead to better testing methodologies on SoCs, and lead to a standardization of how these 
complex devices are evaluated. Finally, in knowing how different OS configurations affect the 
reliability of a system, mission designers can take proper precautions to ensure the highest 
availability of their software. 
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