

NASA + Advanced Air Mobility (AAM) National Campaign (NC) Tech Talk: Integrated Data Product

NIASA

Timothy Bagnall and Ledger West | ATI Data Services Team NASA Aeronautics Research Mission Directorate | Sep 29 2023

www.nasa.gov

NASA AAM NC Technical Talks

- Purpose of these Tech Talks is to engage with the community on NASA technologies
- Ground rules:
 - Answers to questions you have may be in upcoming slides
 - It is okay to ask an important question on a slide, but please wait until the end, if possible
 - Mute your mic unless you need to talk
 - NASA will keep a questions parking lot to keep the Tech Talk on point and on time
- NASA is recording this Tech Talk for future viewing

Agenda

- National Campaign Overview (Nicole)
- Integrated Data Product Overview (Tim)
- Partner Tailoring (Tim)
- Access for Analysts (Tim)
- Technology Focus (Ledger)
 - Detailed description
 - Architecture
 - Technical tools / Stack
 - Data flow
 - Design pattern / Under the hood
 - Applications
 - Try it at home (three simple postflight data files)

National Campaign Overview

NASA's AAM vision:

- Safe, sustainable, accessible, and affordable aviation for transformational local and intraregional missions.
- Transportation of passengers and cargo as well as aerial work missions, such as infrastructure inspection or search and rescue operations.
- Local operations of about 50-mile radius in rural or urban areas, and intraregional operations of up to a few hundred miles that occur between urban areas, between rural areas, or between rural and urban areas.

The AAM National Campaign (NC) is designed to:

- Promote public confidence in AAM safety.
- Give prospective vehicle manufacturers and operators, as well as prospective airspace service providers, insights into the evolving regulatory and operational environment.
- Facilitate community-wide learning while capturing the public's imagination.

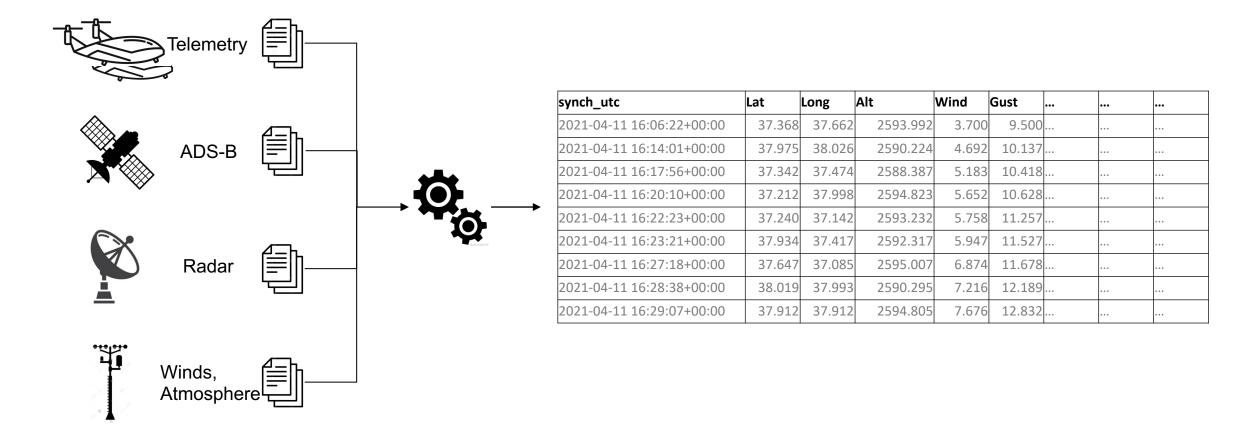
NC has already participated in over a dozen state-of-the-art flight tests!

National Campaign Overview

www.nasa.gov | 5

NASA NC Partners have included:

wish

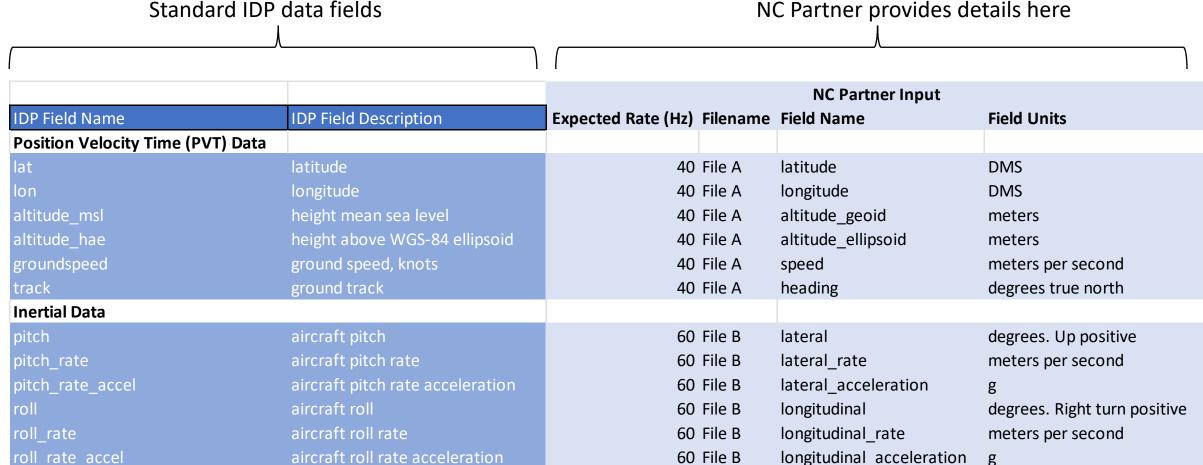

IDP Overview

- The AAM NC Integrated Data Product (IDP) is a suite of software and infrastructure that combines data produced by disparate flight test instruments, both ground-based and airborne, into a single, analysis-ready product.
- IDP processing:
 - Creates consistent time synchronization across all data sources
 - Detects and addresses missing or invalid data
 - Enforces naming conventions and unit consistency
 - Has a flexible workflow that is configuration driven
 - Is tailorable for each flight test activity
 - Is additive new capabilities developed for one activity are available to future tests
- IDP infrastructure enforces data protection for NASA and partners
- IDP furthers AAM/AMP research objectives by providing a single, easily usable source of vehicle(s), airspace, and environmental data for any desired analyses.

"You cannot have information without data." — Daniel Keys Moran

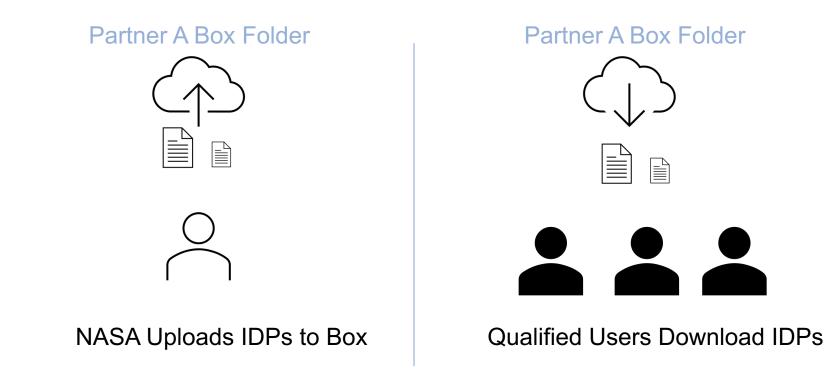
An IDP results from processing of all flight test data sources into single, tabular, time series product.

- Below is an abbreviated, sample IDP having only nine fields
- IDPs typically having well over 100 fields, based on the goals and constraints of a flight test event and the host test range.
- For consistency, IDP fields have a standard naming conventions and units of measure
 - E.g., Latitude is always "Lat" and in decimal degrees; "altitude_msl" is feet above mean sea level
- IDPs often include multiple sources of the same datum (e.g., multiple sources for 3D position as illustrated by Source1 and Source2 below)


synch_utc	Lat [Source1]		Lon [Source1]			altitude_msl [Source2]	•	Hwindspeed [Source4]
2021-04-11 16:06:22	37.368	37.662	77.947	77.986	2593.992	2593.981	7.392	7.380
2021-04-11 16:06:23	37.975	38.026	78.035	78.001	2590.224	2590.315	7.392	7.352
2021-04-11 16:06:24	37.342	37.474	77.965	77.969	2588.387	2588.347	8.734	8.934
2021-04-11 16:06:25	37.212	37.998	77.997	77.959	2594.823	2594.885	6.720	6.094
2021-04-11 16:06:26	37.240	37.142	78.007	78.042	2593.232	2593.234	6.048	6.435

- All NC partner and NASA flight test events are different!
- IDP content and composition varies by flight test event by adapting to research goals, installed instrumentation, and other limitations or constraints.
- IDPs are tailored in close coordination with NC partners
- The partnership defines the data to be collected during a flight test event, including such details as:
 - Data sources
 - Data source file names
 - Data fields
 - Data reporting frequencies
 - Units of measure

- NC Partners define fields targeted for collection during a flight test
- Note how source file names and source field names may differ •



NC Partner provides details here

IDP Access for Analysts

- Once an IDP has been produced, NASA uploads the files in csv and parquet formats to a secure and carefully controlled and administered Box folder
- Box is a cloud-based file sharing system
- Box is FIPS 140-2 certified, and every file is encrypted using AES 256-bit encryption at rest and in transit
- NASA's AAM NC data control team administers Box, vetting and qualifying all users

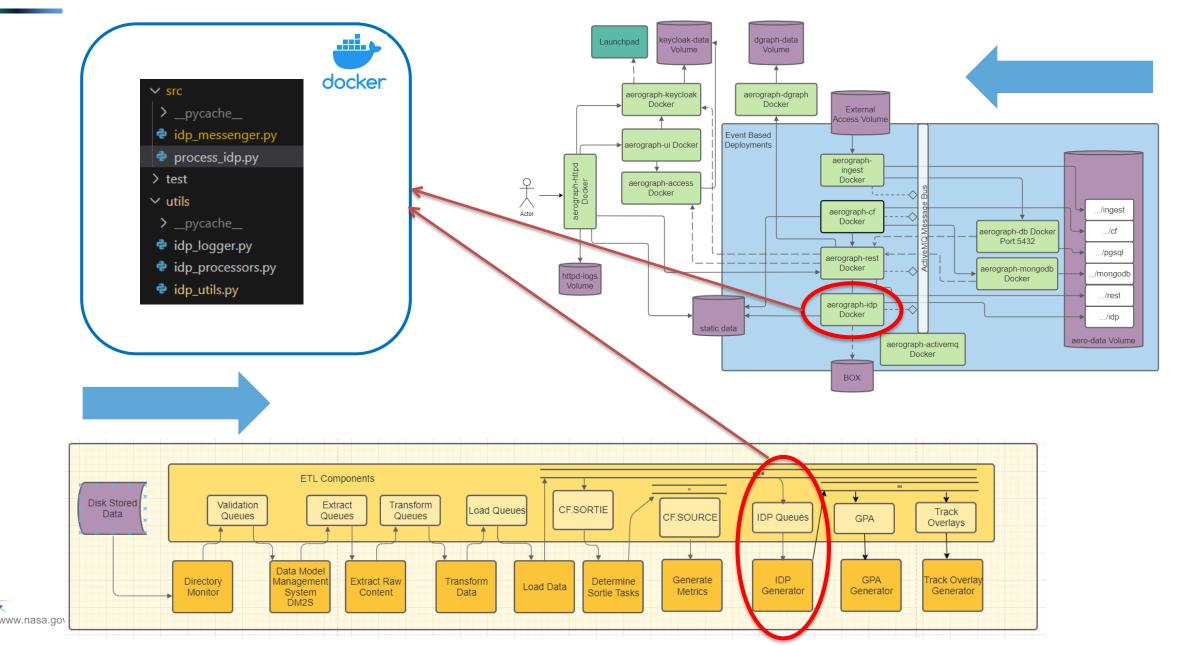
IDP Detailed Description

 \checkmark IDP is a time-series dataset

- ✓ Term "IDP" also refers to ETL Pipeline that generates IDP
- ✓ Each IDP is event-based
 - ✓ Different sets of data
 - ✓ Custom transformations
 - ✓ Largely defined and governed by an Event Config file
 - ✓ Each event can yield multiple IDPs (across days and sorties)

✓ Maintains a concept of state

- $\checkmark\,$ No assumptions about the order of receipt of input datasets
- ✓ But within some events, some operations depend on certain datasets being present
- $\checkmark\,$ A) process data as best it can as it arrives, and
- ✓ B) make available "best effort" IDP versions without having to wait for all data


✓ IDP easily extends to new Events. Analyst will:

- ✓ Create an Event Config file
- ✓ Define computational functions (CF) for any new data sources
- Add columns to a master Columns file
- Add output column names and units of measure to an Output file
- ✓ Use the naming convention for incoming datasets

6/30/2022	PARQUET File	10,128 KB
6/30/2022	PARQUET File	4,890 KB
6/30/2022	PARQUET File	10,052 KB
3/10/2023	PARQUET File	267 KB
9/29/2022	PARQUET File	697 KB
8/1/2023 1	PARQUET File	65,222 KB
6/30/2022	PARQUET File	21,931 KB
6/30/2022	PARQUET File	24,660 KB
6/30/2022	PARQUET File	14,407 KB
6/30/2022	PARQUET File	12,422 KB
6/30/2022	PARQUET File	12,155 KB
	6/30/2022 6/30/2022 3/10/2023 9/29/2022 8/1/2023 1 6/30/2022 6/30/2022 6/30/2022	6/30/2022 PARQUET File 6/30/2022 PARQUET File 3/10/2023 PARQUET File 9/29/2022 PARQUET File 8/1/2023 1 PARQUET File 6/30/2022 PARQUET File

IDP Architecture

IDP Technical Tools / Stack

Language

• Python

Data Manipulation

- Pandas
- Numpy

Geospatial Data Handling

Data Output Format

- Parquet
- CSV

Interact with ActiveMQ Messages

• STOMP (protocol and python library)

IDP Data Flow

Code

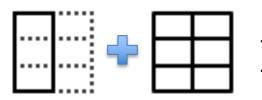
✓ DGPS\20210312\raw

NC1-DT1-BuildupRun2--DGPS--Sortie_1--20210312.csv

idp_messenger.py

process_idp.py

ROCESSORS = +


'ias': idp processors.process ias, 'rr': idp processors.process rr, 'wisk': idp processors.process wisk, 'wisk dgps': idp processors.process wisk dgps, 'wisk_surface_weather': idp_processors.process_wisk_surface_weather, 'wisk weather': idp processors.process wisk weather, 'joby': idp processors.process joby, 'iads': idp_processors.process_iads, 'dgps': idp_processors.process_dgps, 'sbsm': idp processors.process sbsm, 'adsb': idp processors.process adsb, 'fiapa': idp_processors.process_fiapa, 'weather_sodar': idp_processors.process_sodar, 'weather surface station': idp processors.process surfaceWx, 'distances': idp processors.process distances

Data


....

- **Time-Series Only**
 - Fixed intervals according to config

Insert New Data (Processed)

- Merge on timestamps
- Yields last known value from new dataset (forward filling)

Repeat for each data source

	idp_utc_time	ias_bssrolldeg	ias_bsspitchdeg	ias_bsstrueheadingdeg
72886	2023-06-27 16:45:25.500000+00:00	12.767732	3.498820	281.311401
33109	2023-06-27 16:12:16.650000+00:00	0.077970	2.156518	91.859535
29026	2023-06-27 16:08:52.500000+00:00	-0.024397	1.145478	171.397247
22050	2023-06-27 16:03:03.700000+00:00	-0.576566	2.484171	102.739548
24357	2023-06-27 16:04:59.050000+00:00	3.841762	3.219630	79.937714

	synchronized_utc	roll_bss	pitch_bss	true_heading_bss	pitch_rate_bss	roll_rate_bss
36240	2023-06-27 16:14:53.20000+00:00	25.799538	1.695812	195.005524	2.311327	-0.554954
	2023-06-27 16:32:49+00:00	-1.088634	6.017719	208.707825	0.180103	-0.652093
112594	2023-06-27 17:18:30.900000+00:00	13.208816	1.603979	75.139229	0.753909	-2.573450
	2023-06-27 15:58:26.850000+00:00	1.446432		139.449417	-0.015381	-0.187245
106278	2023-06-27 17:13:15.100000+00:00	14.167637	2.256191	229.014053	1.073866	-3.661975

Process of extending IDP to handle new event involves defining or modifying:

- File naming convention
- Config File
- IDP Processors
- IDP Utils
- State Tracker / File
- Internal to External Mapper (field names and units of measure)

✓ DGPS\20210312\raw

- III NC1-DT1-BuildupRun2--DGPS--Sortie_1--20210312.csv
- III NC1-DT1-BuildupRun2--DGPS--Sortie_2--20210312.csv
- > FIAPA
- > IADS
- > IAS
- > IMU
- ✓ JOBY
- ✓ 20210312\raw

✓ NC1-DT1-BuildupRun2--JOBY--Sortie_2--20210312

- DataSpecification.csv
- eAirDataSensorMessage.csv
- eBatteryStateEstimationInputMessage.csv

File Name Convention

Event--Source--Sortie_N--YYYYMMDD
File name OR Folder name

name': 'NC1-DT1-BuildupRun2', 'start': '2021-03-05T00:00:00Z', 'end': '2021-03-26T00:00:00Z', 'freq': '10', 'flight src': 'IADS', 'src alt': 'iads over port alt f', 'src dist cols': ['iads latitude','iads longitude', 'weather': 'WEATHER SODAR', 'weather prefix': 'sodar', 'surface weather': 'WEATHER SURFACE STATION', 'surface weather prefix': 'surfacewx', 'output_sources': ['iads','dgps','sodar','sbsm','ad 'mag declination': 12.59, # IF East then positi 'ref pt': (0.0, 0.0, 0.0), 'targ pt': (8.0, 0.0, 0.0), calc dist': True

Event Config

- Simple JSON / Key-Value Object
- In a .py file

<pre>'SURFACE_WEATHER_path': []}, '20230627_': {'sorties_present': ['1'], 'have_WEATHER': False, 'WEATHER_path': '', 'have_SURFACE_WEATHER': False, 'SURFACE_WEATHER_path': []}, '20230628_': {'sorties_present': [], 'have_WEATHER': False.</pre>	 State Tracker JSON file for each Event Tracks state for each day of event Sorties, Weather, etc
<pre>6 'sodar_tempc', 7 'sodar_rh', 8 'sodar_pressure', 9 'sodar_ws3',</pre>	Columns File Simple .txt file with list of all column names across all data sources

- Curren
- Currently over 1100 items

Old Field T	New Field T	Reported Units	Desired Units
sodar_sdwd30	std_wind_hdirect	mn_degrees	tn_degrees
sodar_sdwd35	std_wind_hdirect	mn_degrees	tn_degrees
sodar_sdwd40	std_wind_hdirect	mn_degrees	tn_degrees
sodar_sdwd45	std_wind_hdirect	mn_degrees	tn_degrees
sodar_sdwd50	std_wind_hdirect	mn_degrees	tn_degrees
sodar_sdwd55	std_wind_hdirect	mn_degrees	tn_degrees

'sodar_ws20',
'sodar_ws25',
'sodar_ws30',

Mapping File

- Simple .csv file
- Internal name and unit >> Output name and unit

Clean and prep Reliable Robotics data. Save clean version. Insert clean version to IDP file or table.

df = idp_utils.prep_rr(path, ts_df)

save cleaned data source idp_utils.idp_save(df, src.lower(), date, sortie, icao)

trim ts_df to df time_range

start = pd.to_datetime(df.head(1).rr_idp_utc_time.values[0], utc=True)
end = pd.to_datetime(df.tail(1).rr_idp_utc_time.values[0], utc=True)
ts_df = ts_df.query('(idp_utc_time >= @start) and (idp_utc_time <= @end)')</pre>

Merge onto event timeseries and backfill
df = pd.merge_asof(
 ts_df,
 df,
 left_on='idp_utc_time',
 right_on='rr_idp_utc_time',
 direction='backward'
))

.drop(columns=['rr_idp_utc_time'])

IDP Processor Function

- Processes new data source
- Merges onto IDP time-series
- Sometimes performs additional tasks depending on Data Source
- Returns result to main process_idp.py process for insert into IDP

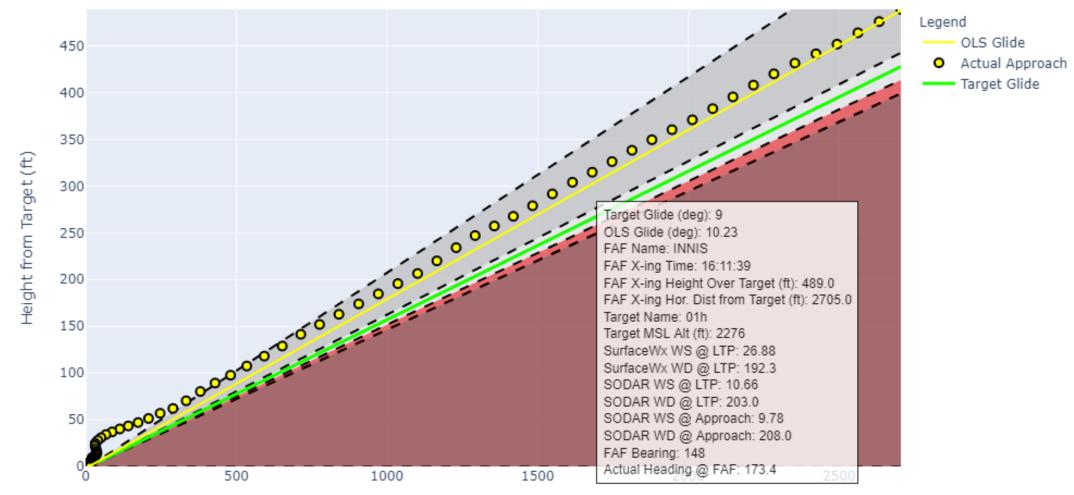
path (str): relative path to raw data file

return (Pandas DF): cleaned D

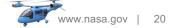
printlog('\n\tdGPS data read from {}'.format(path))

utc_date_cols = ['Lo', 'T', 'Lo.1', 'T.1', 'Lo.2']
utc_time_cols = ['GP', 'T.2', 'GP.1', 'T.3', 'GPSTime']
dgps_drop_cols = utc_date_cols + utc_time_cols + ['GPSTime.1', 'GPS_D', 'GPS_T']
dgps_m_to_f_cols = ['H_Ell', 'VEast', 'VWorth', 'VUp']
dgps_in_feet_cols = [c+'_ff for c in dgps_m_to_f_cols]
dgps_in_meters_cols = [c+'_m' for c in dgps_m_to_f_cols]

dgps_df = pd.read_csv(path, skiprows=5, delim_whitespace=True)\
 .assign(GPS_D=lambda df: df[utc_date_cols].apply(concat_cols, axis=1))\
 .assign(GPS_T=lambda df: df[utc_time_cols].apply(concat_cols, axis=1))\
 .assign(GPS_Time=lambda df: df.GPS_D + ' ' + df.GPS_T)\
 .drop(columns=dgps_drop_cols)\
 .assign(GPS_Time=lambda df: pd.to_datetime(df['GPS_Time']))\
 .rename(columns=(
 'UTC-corr'; 'UTCcorr',
 'uts_fl':'

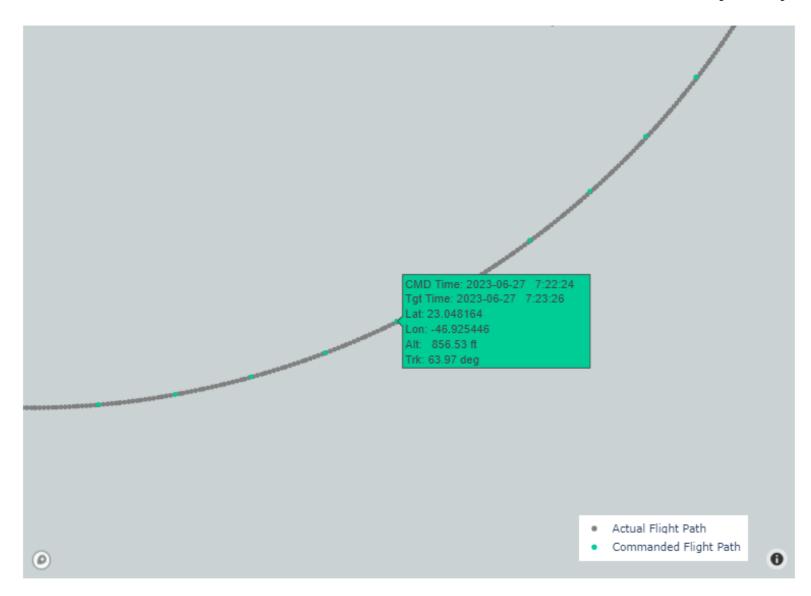

IDP Utils

- Contains custom prep_datasource functions for each data source
- Primary transformations on Data Source
- Returns results to idp_processor



IDP Applications

Glide Path Analysis: How well can an aircraft conform to an approach path?


Horizontal Distance To Target (ft)

IDP Applications cont.

w.nasa.gov | 21

Charting 4DT Performance: How well can an aircraft conform to a four-dimensional trajectory

IDP Try it at Home

- Create a notional IDP at home using Python
- Code combines three csv files and creates a 2D chart
 - 1. Aircraft 1 (AC1.csv)
 - 2. Aircraft 2 (AC2.csv)
 - 3. Wind data (Wind.csv)
- Required Python packages:
 - Pandas
 - Plotly.express
- Four functions:
 - 1. main
 - 2. create_initial_df
 - 3. create_idp
 - 4. plot_flight_path

www.nasa.gov | 22

IDP Try it at Home

AC1.csv

- 30 minutes of data
- 3 fields
- 10 Hz

utc_timestamp	latitude_deg	longitude_deg	altitude_msl
2023-06-06 20:30:00.040000+00:00	32.33901982	-110.9581413	5715.138177
2023-06-06 20:30:00.140000+00:00	32.33906042	-110.9581073	5715.542063
2023-06-06 20:30:00.240000+00:00	32.33910101	-110.9580733	5714.797188
2023-06-06 20:59:59.980000+00:00	32.31180985	-110.9370047	5658.16578

AC2.csv

- 30 minutes of data
- 3 fields
- 10 Hz

utc_timestamp	latitude_deg	longitude_deg	altitude_msl
2023-06-06 20:30:00.070000+00:00	32.16469516	-110.9078251	6265.111541
2023-06-06 20:30:00.170000+00:00	32.16464474	-110.9077954	6264.688974
2023-06-06 20:30:00.270000+00:00	32.16459433	-110.9077657	6264.843051
		•••	
2023-06-06 20:59:59.960000+00:00	32.226841	-110.8565603	6800.424418

Wind.csv

- 30 minutes of data
- 2 fields
- 1/60 Hz

utc_timestamp	wind	windgust
2023-06-06 20:30.000000+00:00	5.865259	11.98399
2023-06-06 20:31.000000+00:00	4.255078	8.361136
2023-06-06 20:32.000000+00:00	5.247163	11.53886
2023-06-06 21:00.000000+00:00	5.447292	11.02237

1. main

the main entry point. Define start, send, idp time freq, input files, and output file name if __name__ == '__main__': start_time = "2023-06-06 20:30.000000+00:00" # the starting timestamp of your idp end_time = "2023-06-06 21:00.000000+00:00" # the ending timestamp of your idp idp_time_freq_hz = 10 # the number of timestamps per second of your idp input_files = ["AC1", "AC2", "Wind"] # your source input files

idp = create_idp(start_time, end_time, idp_time_freq_hz, input_files) # create an idp dataframe idp.to_csv("IDP_example.csv") # save the dataframe as a csv

plot_flight_path(idp) # create an interactive 2D chart



2. create_initial_df

Creates the initial dataframe with a single time field ranging from start to end at the specified frequency def create_initial_df(start_time, end_time, idp_time_freq_hz): seconds = (pd.to_datetime(end_time) - pd.to_datetime(start_time)).total_seconds() # number of total seconds periods = int(idp_time_freq_hz) * seconds # number of periods to generate freq = '{}ms'.format(int(1000 / int(idp_time_freq_hz))) # idp freq

dt_df = pd.DataFrame()
dt_df['utc_timestamp'] = pd.date_range(start_time, periods=periods, freq=freq)

return dt_df

3. create_idp

Creates the idp dataframe from merging input files into the initial dataframe def create_idp(start_time, end_time, idp_time_freq_hz, input_files): idp_df = create_initial_df(start_time, end_time, idp_time_freq_hz) #create the initial dataframe for in_file in input_files: # read all input files and merge with idp_df temp_df = pd.read_csv(in_file + ".csv") # read input file as temporary dataframe temp_df["utc_timestamp"] = pd.to_datetime(temp_df["utc_timestamp"]) # convert timestamp to proper datetime # append filename to column name temp_df = temp_df.rename(columns={c: c + "_" + in_file for c in temp_df.columns if c not in ['utc_timestamp']}) temp_df.sort_values(by='utc_timestamp', ascending=True, inplace=True) # sort the input file prior to merging # merge on utc_timestamp using a backward direction idp_df = pd.merge_asof(idp_df, temp_df, on="utc_timestamp", direction='backward')

return idp_df

4. plot_flight_path

```
# create 2D flight path map of AC1 and AC2 with wind data in hover info
def plot flight path(idp df):
 fig = px.scatter mapbox(idp df, lat="latitude deg AC1", lon="longitude deg AC1", hover name="utc timestamp",
              hover data=["latitude deg AC1", "longitude deg AC1", "altitude msl AC1", "wind Wind",
                     "windgust Wind"]
              color discrete sequence=["fuchsia"], zoom=10, height=600)
 fig2 = px.scatter mapbox(idp df, lat="latitude deg AC2", lon="longitude deg AC2", hover name="utc timestamp",
              hover data=["latitude deg AC2", "longitude deg AC2", "altitude msl AC2", "wind Wind",
                    "windgust Wind"],
              color discrete sequence=["blue"], zoom=10, height=600)
 fig.add trace(fig2.data[0])
  fig.update_layout(
   mapbox style="white-bg",
   mapbox layers=
        "below": 'traces',
        "sourcetype": "raster",
        "sourceattribution": "United States Geological Survey",
        "source": ["https://basemap.nationalmap.gov/arcgis/rest/services/USGSImageryOnly/MapServer/tile/{z}/{y}/{x}"]
    1)
```

-

Produced IDP

utc_timestamp	latitude_deg_AC1	longitude_deg_AC1	altitude_msl_AC1	atitude_deg_AC2	longitude_deg_AC2	altitude_msl_AC2	wind_Wind	windgust_Wind
2023-06-06 20:30:00+00:00	32.33901982	-110.9581413	5715.138177	32.16469516	-110.9078251	6265.111541	5.865258982	11.98399338
2023-06-06 20:30:00.100000+00:00	32.33906042	-110.9581073	5715.542063	32.16469516	-110.9078251	6265.111541	5.865258982	11.98399338
2023-06-06 20:30:00.200000+00:00	32.33910101	-110.9580733	5714.797188	32.16464474	-110.9077954	6264.688974	5.865258982	11.98399338
2023-06-06 20:30:00.300000+00:00	32.3391416	-110.9580393	5714.953099	32.16459433	-110.9077657	6264.843051	5.865258982	11.98399338
2023-06-06 20:30:00.400000+00:00	32.33918218	-110.9580053	5715.281096	32.16454392	-110.907736	6264.740423	5.865258982	11.98399338
2023-06-06 20:30:00.500000+00:00	32.33922275	-110.9579713	5714.885721	32.16449351	-110.9077063	6264.538827	5.865258982	11.98399338
2023-06-06 20:30:00.600000+00:00	32.33926331	-110.9579372	5715.67714	32.1644431	-110.9076766	6265.179295	5.865258982	11.98399338
2023-06-06 20:30:00.700000+00:00	32.33930387	-110.9579032	5714.786375	32.16439269	-110.9076469	6265.119557	5.865258982	11.98399338
2023-06-06 20:59:59.400000+00:00	32.31209516	-110.9368824	5658.881337	32.22668636	-110.8562657	6803.44554	5.447292368	11.02236899
2023-06-06 20:59:59.500000+00:00	32.3120476	-110.9369028	5658.095025	32.22671204	-110.8563148	6802.779681	5.447292368	11.02236899
2023-06-06 20:59:59.600000+00:00	32.31200005	-110.9369233	5658.19658	32.2267376	-110.856364	6802.846551	5.447292368	11.02236899
2023-06-06 20:59:59.700000+00:00	32.31195251	-110.9369437	5658.534737	32.22676357	-110.8564133	6801.820085	5.447292368	11.02236899
2023-06-06 20:59:59.800000+00:00	32.31190496	-110.936964	5658.82289	32.22678926	-110.8564624	6801.421869	5.447292368	11.02236899
2023-06-06 20:59:59.900000+00:00	32.31185741	-110.9369844	5658.417046	32.22681518	-110.8565113	6800.932537	5.447292368	11.02236899

Produced Chart

www.nasa.gov | 29

?

