Mechanical Characterization of As-built and Post-processed In-situ Alloyed Additively Manufactured GRCop-42

Jackson Smith^{1,2}, David S. Scannapieco¹, David L. Ellis³, John. J. Lewandowski¹

¹Case Western Reserve University, Cleveland, OH ²Kennedy Space Center, Merritt Island, FL ³Glenn Research Center, Cleveland, OH

Acknowledgements

Support is provided by NASA Grant NASA-80NSSC19K1736 'In-situ alloying of GRCop-42'

Additionally, this work would not be possible without our collaborators:

NASA GRC

Dereck Johnson Aaron Thompson Wayne Jennings Joy Buehler Laura Evans Pete Bonacuse Cheryl Bowman Richard Rogers Sidney Santos Richard Martin

NASA MSFC

Paul Gradl Chris Protz John Fikes Parker Shane Tim Poe **CWRU** David Scannapieco Rich Tomazin

> **OSU** Cameron Gygi

CASE WESTERN RESERVE

Overview

- Background and Motivation
- Sample Manufacturing
- Chemical Composition
- Porosity Analysis
- Mechanical Characterization
 - Tensile testing
 - Creep testing
- Fractography
- Conclusions

Background: GRCop

- GRCop are a family of Cu-Cr-Nb alloys
 - Cu matrix and Cr2Nb dispersoids
 - GRCop-42 is 4 at% Cr and 2 at% Nb
- These alloys were developed for:
 - High temperature mechanical properties
 - High Thermal conductivity

Gradl, P. R. et. al. NASA TM-20190033380, 2019

Background: In-Situ Alloying during AM

- Current Literature:
 - Binary or ternary intermetallics
 - All elements participate in the reaction
 - Post-processing can be used to complete alloying reaction
- This work:
 - Dispersion strengthened alloy
 - Only minor alloying elements reacting

Sample Manufacturing

- Material was manufactured with EOS M290 LPBF system
- Two different builds
 - B \rightarrow single low energy laser scan
 - D \rightarrow double low energy laser scan
- Hot Isostatic Pressing done at MSFC
 - 954°C at 150 Mpa
- As built samples \rightarrow AB
- Hot Isostatic Presses samples \rightarrow HIP

В	Single laser scan
D	Double laser scan
AB	As-built
HIP	Hot isostatic pressed

Chemical Characterization

- Inductively Coupled Plasma –Optical Emission Spectroscopy (ICP-OES) unit used to determine metals between H an<u>d U</u>
- Cr and Nb content low
- Al content higher than allowed
- Incorrect Cr and Nb content
 Determined to be from

¹Gradl, P. R. et. al. NASA TM-20190030461, 2019

Specification ¹		In-Situ AM GRCop-42			
	GRCop-42	B-AB	B-HIP	D-AB	D-HIP
Element	Wt%	Wt%	Wt%	Wt%	Wt%
Cr	3.1 - 3.4	2.06	1.7	1.75	1.73
Nb	2.7 - 3.0	2.09	1.81	1.77	1.71
Fe	<50 ppm	42 ppm	35 ppm	36 ppm	36 ppm
0	<400 ppm	413 ppm	385 ppm	338 ppm	327 ppm
Al	<50 ppm	111 ppm	73 ppm	86 ppm	72 ppm
Si	<50 ppm	10 ppm	20 ppm	10 ppm	10 ppm
Cu	Balance	Balance	Balance	Balance	Balance
Cr:Nb	1.12 - 1.15	0.99	0.94	0.99	1.01

Porosity Measurements

- Porosity was measured using metallographic images through sample
 - Automated using RoboMet system from UES
- Sample was cut from a printed cylinder to be approx. 3mm tall
- Approximately 63um of material were removed between each image

Comparison of Porosity

- Comparison of different samples porosity
- D samples have higher porosity than B samples
- B samples have more variation throughout

Sample	B_AB	D_AB	B_HIP	D_HIP
Avg % Porosity	7.6	10.5	3.2	9.9

В	Single laser scan
D	Double laser scan
AB	As-built
HIP	Hot isostatic pressed

Materials Science and Technology Conference, October 2023

9

Tensile Testing

- Samples machined into ASTM E8-style round tensile specimens
- Tested in displacement control at crosshead rate of 0.635 mm/min
- Tested at temperatures of 25°C, 200°C, 400°C, and 600°C

Tensile Properties Results for B Samples

В	Single laser scan	
D	Double laser scan	
AB	As-built	
HIP	Hot isostatic pressed	

- UTS and YS increase with temperature up to 400°C then decreases
- B-AB had higher YS and UTS than B-HIP but lower % area reduction

Tensile Properties Results for D Samples

SE WESTERN RESERVE

В	Single laser scan
D	Double laser scan
AB	As-built
HIP	Hot isostatic pressed

- More limited data due to limited material available
- D-HIP had higher UTS and YS at room temperature than D-AB

Comparison of Tensile Properties to Literature

- UTS lower than literature
- Yield • Comparable
- **Elongation lower** •

Sample geometry from literature identical to testing done in this work

Gradl, P. R. et. al. NASA TM-20190030461, 2019

В

D

AB

HIP

Single laser scan

Double laser scan

Hot isostatic pressed

As-built

Tensile Test Fractography

- Fracture surfaces from all temperatures
 - Ductile fracture
 - High porosity
 - Unmelted powder/lack of fusion
- D samples show more porosity and defects

CASE WESTERN RESERVE

Materials Science and Technology Conference, October 2023

Tensile Test Fractography

- No significant difference in fracture surfaces for asbuilt and HIPed material
 - Printing parameters for both B and D were not optimal leading to significant defects in both

Materials Science and Technology Conference, October 2023

В

D

AB

HIP

Single laser scan

Double laser scan

Hot isostatic pressed

As-built

В	Single laser scan
D	Double laser scan
AB	As-built
HIP	Hot isostatic pressed

Vacuum Creep Testing

- Only completed testing of B-HIP material
- Sample dimensions the same as for tensile testing
- Tested at temperatures of 500°C, 650 °C, and 800 °C
- Displacement measured two ways
 - Movement of the load train
 - Camera system to measure the distance between two fiduciary marks

 Creep life higher for B-HIP than extruded conventionally manufactured GRCop-42

Extruded material data provided by David L. Ellis Materials Science and Technology Conference, October 2023

В	Single laser scan
D	Double laser scan
AB	As-built
HIP	Hot isostatic pressed

Conclusions

- Both B-HIP and D-HIP compositions are outside alloy specification
- HIP did not close-up all porosity as it was too large
 - Porosity may contain trapped gas
- Creep lives for B-HIP were better than extruded GRCop-42
- In-situ alloying was demonstrated to produce GRCop with acceptable mechanical properties but needs additional work to overcome noted deficiencies

Future Work

- Complete additional creep testing on material
- Test fatigue properties
- Look at grain structure and crystallographic texture

Acknowledgements

Support is provided by NASA Grant NASA-80NSSC19K1736 'In-situ alloying of GRCop-42'

Additionally, this work would not be possible without our collaborators:

NASA GRC

Dereck Johnson Aaron Thompson Wayne Jennings Joy Buehler Laura Evans Pete Bonacuse Cheryl Bowman Richard Rogers Sidney Santos Richard Martin

NASA MSFC

Paul Gradl Chris Protz John Fikes Parker Shane Tim Poe **CWRU** David Scannapieco Rich Tomazin

> **OSU** Cameron Gygi

CASE WESTERN RESERVE

Questions?

ICP Details

- Ametek Arcos Inductively Coupled Plasma –Optical Emission Spectroscopy (ICP-OES) unit used to determine metals between H and U
 - Necessary for discovery of unknown trace elements
 - Analyzes spectra between 130 nm and 770 nm wavelengths
- LECO 844 Series Combustion Analyzer used for C and S detection
- LECO 736 Series Inert Gas Fusion unit used for N and O detection
 - C, S, and O detected with non-dispersive infrared (NDIR) cells
 - N detected by the change in thermal conductivity of the gas relative to the carrier gas

Additional Creep Data

