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Nomenclature
2D: 2 dimensional
4D: 4 dimensional

ADS-B:  Automatic Dependence Surveillance Broadcast

BOD: Bottom-Of-Descent
CAS: Calibrated Airspeed
DTG: Distance-To-Go

FAF: Final Approach Fix
LDR: Linear Deceleration Rate
MSL: Mean Sea Level

RF: Radius-to-Fix

STAR: Standard Terminal Arrival Routes

TAS: True Airspeed

TCP: Trajectory Change Point
TOD: Top-Of-Descent

TTG: Time-To-Go

VTCP: Vertical Trajectory Change Point

Subscripts

Subscripts associated with waypoints and TCPs, e.g., TCP., denote the location of the waypoint or TCP in
the TCP list. Larger numbers denote locations closer to the end of the list, with the end of the list being the

runway threshold. Subscripts in variables indicate that the variable is associated with the TCP with that
subscript, e.g., Altitude; is the altitude value associated with TCP,.
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Units and Dimensions

Unless specifically defined otherwise, units (dimensions) are as follows:
time: seconds

position:  degrees, + north and + east

altitude: feet, above MSL

distance:  nautical miles

speed: knots

track: degrees, true, beginning at north, positive clockwise
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Abstract

This document describes an algorithm for the generation of a four
dimensional trajectory. Input data for this algorithm are similar to an
augmented Standard Terminal Arrival (STAR) with the augmentation in
the form of altitude or speed crossing restrictions at waypoints on the
route. The algorithm calculates the altitude, speed, along path distance,
and along path time for each of these waypoints. Wind data at each of
these waypoints are also used for the calculation of ground speed and turn
radius. This revision of the algorithm now accommodates linear
decelerations between two speed-constrained waypoints. While this
modification may appear trivial, the calculation of the deceleration rate
cannot be accomplished using a closed-form solution. An iterative solution
was developed that allowed for the variability of path distance due to
speed influence on turn radii, Mach-CAS transition altitude, and the
impact of wind on ground speed in calculating an accurate deceleration
value.

Introduction

Concepts for self-spacing of aircraft operating into airport terminal areas have been under development
since the 1970's (refs. 1-30). Interest in these concepts has recently been renewed due to a combination of
emerging, enabling technology (Automatic Dependent Surveillance Broadcast data link, ADS-B) and the
continued growth in air traffic with the ever increasing demand on airport (and runway) throughput.
Terminal area self-spacing has the potential to provide an increase in the accuracy of runway threshold
crossing times, which can lead to a decrease of the variability of the runway threshold crossing times. This
decrease of the variability of the runway threshold crossing times can then lead to an increase in runway
capacity through a reduction of the spacing buffers needed to assure safe separation during landing
operations. Current concepts use a trajectory based technique that allows for the extension of self-spacing
capabilities beyond the terminal area to a point prior to the top of the en route descent.

The overall NASA Langley concept for a trajectory-based solution for en route and terminal area self-
spacing is fairly simple and is documented in references 31-33. By assuming a 4D trajectory for an aircraft
and knowing that aircraft’s position, it is possible to determine where that aircraft is on its trajectory.
Knowing the position on the trajectory, the aircraft’s estimated time-to-go (TTG) to a point can then be
determined. To apply this to a self-spacing concept, a TTG is calculated for a leading aircraft and for the
ownship. Note that the trajectories do not need to be the same. The nominal spacing time and spacing error
can then be computed as:

nominal spacing time = planned spacing time interval + traffic TTG.

spacing error = ownship TTG — nominal spacing time.

The foundation of this spacing concept is the ability to generate a 4D trajectory. The algorithm presented
in this paper uses as input a simple, augmented 2D path definition along with a forecast wind speed profile
for each waypoint. This augmented 2D path definition would include horizontal waypoint information with
relevant speed and altitude crossing constraints, with each speed or altitude constraint including the rate
value required to meet the constraint. The algorithm then computes a full 4D trajectory defined by a series
of trajectory change points (TCPs). The input speed (Mach or Calibrated Airspeed (CAS)) or altitude
crossing constraint includes the deceleration rate or vertical angle value required to meet the constraint. The
TCPs are computed such that speed values, Mach or CAS, and altitudes change linearly between them.
TCPs also define the beginning and ending segments of turns, with the midpoint defined as a fly-by
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waypoint. The algorithm also uses the waypoint forecast wind speed profile in a linear interpolation to
calculate the wind speed at the altitude the computed trajectory crosses the waypoint. Wind speed values
are then used to calculate the ground speeds along the path.

The major complexity in computing a 4D trajectory involves the interrelationship of ground speed with
the path distance around turns. In a turn, the length of the estimated ground path and the associated turn
radius will interact with the waypoint winds and with any change in the specified speed during the turn,
i.e., a speed crossing-restriction at the waypoint. Either of these conditions will cause a change in the
estimated turn radius. The change in the turn radius will affect the length of the ground path, which can
then interact with the distance to the deceleration point, which thereby affects the turn radius calculation.
To accommodate these interactions, the algorithm uses a multi-pass technique in generating the 4D path,
with the ground path estimation from the previous calculation used as the starting condition for the current
calculation. In a similar manner, this revision of the trajectory algorithm includes the ability to calculate the
deceleration value to obtain a linear deceleration between two speed-constrained waypoints.

Algorithm Overview

The basic functions for this trajectory algorithm are shown in figure 1. Figure 1 also contains logic and
some simple calculations that are not included in the body of this document, e.g., "restore the crossing
angles." Also, note that waypoints are considered to be TCPs but not all TCPs are waypoints.

For the 2D input, the first and last waypoints must be fully constrained, i.e., have both a speed and altitude
constraint defined. With the exception of the first waypoint, which is the waypoint farthest from the runway
threshold, constraints must also include a variable that defines the means for meeting that constraint. For
altitude constraints, this is the inertial descent angle; for speed constraints, it is the CAS deceleration rate.
A separate, single Mach-to-CAS transition speed (CAS) value may also be input for profiles that involve a
constant Mach / CAS descent segment. Additionally, an altitude / CAS restriction (e.g., in the U.S., the
10,000 ft / 250 kt restriction) may also be entered.

The algorithm computes the altitude and speed for each waypoint. It also calculates every point along
the path where an altitude or speed transition occurs. These points are considered vertical TCPs (VTCPs).
TCPs also define the beginning and ending segments of turns, with the midpoint defined as a fly-by
waypoint. Turn data are generated by dividing the turn into two parts (from the beginning of the turn to the
midpoint and from the midpoint to the end of the turn) to provide better ground speed (and resulting turn
radius) data relative to a single segment estimation. A fixed, average bank angle value is used in the turn
radius calculation. The algorithm also uses the forecast wind speed profile for a waypoint in a linear
interpolation to calculate the wind speed at the altitude the computed trajectory crosses the waypoint (if the
crossing altitude is not at a forecast altitude). For non-waypoint TCPs, the generator uses the forecast wind
speed profile from the two waypoints on either side of the TCP in a double linear interpolation based on
altitude and distance (to each waypoint). Of significant importance for the use of the data generated by this
algorithm is that altitude and speeds (Mach or CAS) change linearly between the TCPs, thus allowing later
calculations of DTG or TTG for any point on the path to be easily performed.



Trajectory calculation:
2D input data, crossing data,
and wind forecast data

v

Preprocess RF legs: For each waypoint identified as an RF turn initiation point, generate
one or two pseudo fly-by waypoints for the center of the turn.

2

Preprocess Linear Deceleration Data: For each waypoint identified as a linear
deceleration waypoint, set the initial deceleration to the maximum deceleration
allowable value.

v

Save selected input data: Save the altitude crossing angles for each waypoint, the Mach
for the first waypoint, the descent Mach, and descent CAS values. These values may be
overwritten and will need to be reset to their original values for each iterative loop.

v

Convert to MSL altitudes: For altitudes above the barometric altitude transition altitude
(nominally 18,000), convert the altitude to an actual, above ground level altitude.

v

Generate the initial tracks and distances: Using great-circle calculations, determine the
distances and ground tracks between waypoints. Calculate the DTG for each waypoint.

v

Initialize the waypoint turn data: Waypoints that have more than a 3 degree change in
ground track from the previous waypoint are considered turn-waypoints. Mark each as a
turn-waypoint and insert a turn-entry and turn-exit TCP on each side of this waypoint.

|-

if repeating to calculate a
linear speed segment or not past the end of
normal looping

else

else if at or past end of normal

looping

v

Determine linear deceleration requirements: Determine if additional loops are required
to accurately calculate linear deceleration rates.

»
»

A

Reset the descent speed values: Restore the descent Mach and descent CAS values to
their original values and reset various descent speed flags.

v

Compute the TCP altitudes: Beginning at the runway (the last waypoint) work backwards
and compute the altitude at each prior TCP. If an altitude is computed to be reached prior
to the previous TCP, insert a new altitude TCP.

v

Copy crossing angles: Beginning at the runway, for TCPs that do not have crossing
angles, copy the downstream angle into this TCP.

v

[ continued ]

Figure 1. Basic functions.




[ continued ]

v

if the route contains both Mach else

and CAS defined waypoints

4

Evaluate the descent Mach/CAS: If the Mach/CAS transition altitude, based on the
Mach/CAS transition speeds, is above the cruise altitude, remove the Mach/CAS
transition speed requirement if a transition to CAS is required at the TOD.

v

Meet cruise CAS restriction: If a cruise CAS waypoint restriction exists, do the following:
Change the descent Mach if the computed crossing speed is below the required crossing
speed. Change the transition CAS if the computed crossing speed is above the required
crossing speed. Determine if a transition to CAS is required at the TOD.

v

else

if a cruise CAS waypoint

requires a TOD deceleration

v

Add TOD deceleration waypoint: If required for the special case of a deceleration to the
descent CAS at the TOD, add the TOD deceleration TCP.

v

Change TOD Mach value: If the TOD Mach value cannot be met, change the TOD Mach
to meet the crossing restriction.

v

Compute the Mach-to-CAS TCP: If required, compute the Mach-to-CAS transition
altitude. Compute the DTG to this altitude and insert the Mach-to-CAS TCP.

»
»

<
«
Y

¥

if the flag for an altitude / CAS restriction, else

based on prior computations, is true

Compute an altitude / CAS restriction TCP: In the U.S., this would be the 10,000ft / 250kt
speed restriction. If the speed crossing the trajectory at the specific altitude is greater than
the CAS restriction (from the test on the first iteration), place a speed restriction at this
point on the profile.

&
<
4

if the route contains a else

CAS segment

[ continued ]

Figure 1 (continued). Basic functions.




[ continued ] @
v C

Add final deceleration: If a deceleration to the final approach speed needs to be reached
prior to the runway, insert the appropriate speed TCP.

v

Add waypoint at 6.25 nmi: If required, add a waypoint at 6.25 nmi from the runway
threshold.

&
w
A

A

Compute the TCP speeds: Beginning at the runway (the last waypoint) work backwards
and compute the speed at each prior TCP. If a speed is computed to be reached before the
next previous TCP, insert a new speed TCP.

v

Compute secondary speeds for each TCP: Compute the Mach (for a CAS TCP) or CAS
(for a Mach TCP) and ground speed for each TCP.

if repeating to calculate a
linear speed segment or not at the end of
normal looping

else

Compute turn data: For each turn waypoint, use the new speed values to compute the turn
radii. Update the data for the turn waypoint, turn-entry, and turn-exit TCPs.

v

else

if this is the first time through

Test for the need for an altitude / CAS restriction: In the U.S., this would be the 10,0001t
/ 250kt speed restriction. If the speed crossing the trajectory at the specific altitude is
greater than the CAS restriction, set a flag for this requirement to true and reset the loop
counter to its initial value (i.e., start over).

>y

Update the DTG data: Beginning at the runway, work backwards and compute the DTG
for each TCP, adjusting for the turn distances. Set the flag to only do error testing to false.

else if the loop counter is not its

initial value

Find linear deceleration segment DTG: For the next unresolved linear deceleration
segment, find the DTG to the upstream waypoint with a speed constraint and the DTG to
the first upstream TCP at this same speed.

» A4
»

A4

D
continued

Figure 1 (continued). Basic functions.




[ continued ]

v

from

Delete VICPs: Delete the VTCPs. Remove all special vertical flags.

v

Check turn validity: Check that each turn is completed prior to the next waypoint or the
start of the next turn.

v

Restore the crossing angles: Restore the altitude crossing angles to their original values.

<
4

A

Calculate linear deceleration rate: If there is an unresolved linear deceleration segment,
identify the current linear deceleration waypoint and then recalculate the deceleration rate
using an iterative solution.

v

Increment the loop counter.

from

v

Update the DTG data: Beginning at the runway, work backwards and compute the DTG
for each TCP, adjusting for the turn distances. Set the flag to only do error testing to false.

v

Recover the initial Mach segments: If the initial segments should be Mach but have been
internally converted to CAS, attempt to recover the Mach portion.

v

Insert CAS descent VICPs: Insert vertical TCPs between long constant CAS descent
waypoints to aid in overcoming the TAS estimation error between the waypoints.

v

Compute the TCP times: Beginning at the runway (the last waypoint) work backwards
and compute the TTG to each TCP.

v

Compute TCP latitude and longitude data: Compute the altitude and longitude data for
the altitude, speed, and Mach / CAS TCPs.

v

terminate

Figure 1 (concluded). Basic functions.




Algorithm Iteration Overview

As noted previously, the major complexity in computing a 4D trajectory involves the interrelationship
of ground speed with the path distance around turns. This interrelationship led to an iterative approach in
solving for the trajectory speed values. In this implementation, a four-pass iteration was used to calculate
the basic, nominal speed values. This latest revision of the algorithm now also accommodates the automatic
calculation of the deceleration value to obtain a linear deceleration between two speed-constrained
waypoints. To support this latest revision, an extension of the prior iterative technique was developed. For
this revision, the following sequence occurs. First, the input data are examined and for all linear
deceleration waypoints that are identified, their initial deceleration values are set to the maximum
deceleration value allowed by the algorithm, e.g., 5 kt/sec. The trajectory is then calculated using the basic,
four-pass iteration loop. The data from these calculations then provide the initial conditions for the
calculations for each of the identified linear deceleration waypoint pairs. For each of these waypoint pairs,
the calculated distance required to achieve the speed change is compared with the calculated distance
between the two waypoints. The deceleration value is then adjusted as necessary to reduce the discrepancy
between the two distance calculations. The trajectory is then recalculated until either the discrepancy
between the two distance calculations is relatively small or the number of trajectory calculations for that
waypoint pair exceeds some maximum number, e.g., 4 iterations. For this latter case, the trajectory
calculation would be considered to have failed.

Algorithm Input Data

The algorithm takes as input a list of waypoints, their trajectory-specific data, and associated wind profile
data. The list order must begin with the first waypoint on the trajectory and end with the runway threshold
waypoint. The trajectory-specific data includes: the waypoint's name and latitude / longitude data, e.g.,
Latitude; and Longitude; with the "2" subscript denoting that this is for the second waypoint; an altitude
crossing restriction, if one exists, and its associated crossing angle, e.g., Crossing Altitude; and Crossing
Angles; and a speed crossing restriction (Mach or CAS), if one exists, and its associated CAS rate, e.g.,
Crossing CAS» and Crossing Rate;. A value of zero as an input for an altitude or speed crossing constraint
denotes that there is no constraint at this point. A special value for the crossing angle, AUTO DESCENT
ANGLE, denotes that a linear crossing angle is to be calculated internally by the algorithm. Similarly, if
the CAS crossing rate is denoted by the special value of AUTO CAS RATE, then the algorithm is designed
to calculate a linear deceleration value. Additionally, a Crossing Mach may not occur after any non-zero
Crossing CAS input. The units for Crossing Rate are knots per second.

In this algorithm, a radius-to-fix (RF) segment is indicated by the addition of a center-of-turn position,
e.g., Center of Turn Latitude; and Center of Turn Longitude,, for the input waypoint at the initiation of the
turn. Additional requirements for the RF segment are provided in a subsequent section.

To accommodate a descent from the cruise altitude, a Mach value, Mach Descent Mach, may be specified
that is different from the cruise Mach value. A CAS value may also be specified for the Mach-to-CAS
transition speed, Mach Transition CAS, during the descent. Additionally, a CAS speed limit at a defined
altitude may also be included. In the U.S., this would typically be set to 250 kt at 10,000 ft.

For routes that terminate at the runway threshold, an input variable, Final Deceleration Type, is used to
accommodate three different means to achieve the speed at the threshold: RUNWAY, where the final
approach speed is met at the runway threshold; STABLE XXXX, where the final approach speed is met at
a trajectory altitude value defined in the XXXX variable; and AT FAF, where the final deceleration begins
at the final approach fix. To support unusual approach geometries where the final approach fix (FAF) is not
the waypoint immediately prior to the runway, the FAF name may be input. Also for routes that terminate
at the runway threshold, the input variable AddMopsRWY625 may be used to invoke the generation of a
special waypoint at 6.25 nmi before the landing threshold of the runway. This latter capability to support
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this special waypoint at 6.25 nmi before the threshold, along with associated crossing altitude and speed
conditions, is a requirement of the RTCA Minimum Operational Performance Standards (MOPS) for
Flight-deck Interval Management (FIM) (ref. 34).

For the wind forecast, a minimum of two altitude reports (altitude, wind speed, and wind direction)

should be provided at each waypoint. The altitudes should span the estimated altitude crossing at the
associated waypoint. The algorithm assumes that the input data are valid.

Internal Algorithm Variables
The significant variables computed by this algorithm are as follows:
Data related to the overall path include:
Mach Transition Altitude the computed altitude where the transition from Mach to CAS occurs
NmiToFeet 6076.115486
Data specific to the algorithm control logic include:

LDR Mode a flag denoting that linear deceleration rate (LDR) calculations are
to be performed

LDR Pending a flag denoting that linear deceleration rate (LDR) calculations are
to be performed on the next iteration of the algorithm

Loop Number the current algorithm iteration loop number

Data specific to each TCP include:

Altitude the computed altitude at the TCP

CAS the computed CAS at the TCP

DTG the computed, cumulative distance from the last TCP to the TCP
Ground Speed the computed ground speed at the TCP

Ground Track the computed ground track at the TCP

Mach the computed Mach at the TCP

TG the computed, cumulative time from the last TCP to the TCP

The algorithm is initiated with only the input waypoints populating the TCP data. There are also several
identification variables used by this algorithm for each TCP. These identification variables are noted in the
following subsections.



TCPs are denoted in the algorithm in accordance with how they are generated and are marked accordingly
in the TCP variable TcpType. There are four types of TcpType identifiers:

BEGIN TURN

END TURN

INPUT

VTCP

denotes the beginning point of a turn
denotes the end point of a turn
denotes a waypoint from the input data

denotes a vertical TCP type, VSegType, generated due to a change in
the altitude or speed profile

TCPs are denoted in the algorithm in regard to horizontal path change requirements and are marked
accordingly in the TCP variable TurnType. There are four types of TurnType identifiers:

NO TURN

RF TURN CENTER

TURN END

TURN START

the TCP default value
denotes a radius-to fix (RF) center of turn TCP
denotes the end of a turn

denotes the start of a turn

TCPs may also be marked with a vertical identifier, V'SegType, denoting one of the following:

ALTITUDE

ALTITUDE CAS

FINAL SPEED

MACH CAS
NO TYPE

RUNWAY625

SPEED

TAS ADJUSTMENT

TOD ACCELERATION

TOD DECELERATION

TOD ALTITUDE

denotes a change in the descent angle

denotes a speed change due to a speed restriction at a RESTRICTION
specific altitude, e.g., 250 kt at 10,000’

the point where the final approach speed deceleration begins

the Mach-to-CAS transition point
the initial VTCP value for a newly created TCP

the special waypoint at 6.25 nmi before the landing threshold
denotes a change in the CAS or Mach
an added CAS TCP

the point where an acceleration to the descent Mach at the
top-of-descent occurs

the point where an early transition out of the Mach regime and a
deceleration to meet the CAS crossing restriction occurs

denotes the top-of-descent TCP

TCPs are also denoted relative to the associated primary speed value, i.e., the crossing speed is Mach or

CAS derived.



Additionally, each TCP include data variables required for the calculation of the linear deceleration
rate (LDR). These data variables include:

LDR Base Distance the distance to the LDR waypoint

LDR Finished a flag denoting that the deceleration estimation has been completed

LDR Flag a flag denoting that the waypoint crossing speed is using a linear
deceleration

LDR Last Rate the previously calculated deceleration value

LDR Last Ratio a distance ratio value

LDR Obtained Distance the distance to the previous, upstream, speed-constrained waypoint

LDR Pass Count the number of calculation iterations completed in the estimation

There are also several input variables that may become overwritten within the algorithm that are required
to be restored for subsequent calculation cycles within the algorithm. These variables include the following:

o Saved Altitude Crossing Angle, which is the saved input value of Crossing Angle for each of the TCP's.
o Saved Mach Descent Mach, which is the saved input value of Mach Descent Mach.
o Saved Mach Transition CAS, which is the saved input value of Mach Transition CAS.

o Saved Mach at First TCP, which is the saved input Mach value for the first waypoint, i.e., Crossing
Machys tcp, assuming that one exists.

Errors in the Trajectory

The algorithm saves error information related to the ability to generate a valid trajectory. For example,
if the deceleration value, Crossing Rate, was insufficient to meet the previous speed constraint at waypoint
i, then an error condition at waypoint ; would set, i.e., Error;, noting this error situation. There is also an
overall error condition, Fatal Error, which is set for errors that are typically uncorrectable by a
recalculation. In the iteration logic for this algorithm, the error values are reset to a no-error condition at
the beginning of each iteration cycle, with the expectation that errors will occur during the refinement of
the trajectory values and are only significant at the completion of the iteration cycles. The data logic for
error manipulation is not explicitly provided in this documentation, however these error situations will be
identified in the text, e.g., "mark this as an error condition."

Mach-to-CAS Transitions

General

A significant portion of this algorithm development was devoted to various situations involving the
Mach-to-CAS transition. In this regard, the algorithm was designed to accommodate various off nominal,
Mach-to-CAS scenarios without the requirement for rigorous, a priori input data development to account
for these off-nominal conditions.
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Basic Descent Scenario

In the most basic descent scenario for a high performance aircraft, the aircraft would begin the descent
at its cruise Mach, descend at that Mach, and then transition to a predetermined CAS at the altitude where
the descent Mach and the predetermined CAS represent the same true airspeed value (TAS). The altitude
value where this speed equivalence occurs is referred to as the crossover altitude. An example of a basic
descent Mach-to-CAS transition is shown in figure 2a, with a cruise and descent Mach values of 0.82 and
a transition CAS of 300 kt. The Mach-to-CAS transition altitude in this example occurs at approximately
31,837 ft. Figure 2b portrays the same example with an assumed cruise altitude of 35,000 ft. In figure 2b,
the altitude and true airspeed values are plotted with the speed segments labeled appropriately. Figure 2¢
shows the cruise Mach, descent Mach, and transition CAS segments superimposed over the altitude
profile for this scenario.

35000 ~
0.82M line /
33000 -
S
3
E 300kt CAS line ~__
= 31000 J 0.82M / 300 kt transition point
29000 . . ; ; ; .
450 460 470 480 490 500 510
TAS (kt)
Figure 2a. Example of a basic Mach-to-CAS transition.
35000 - 490
Altitude line
Top of descent - 480
— — a——
- 470
33000 -
_ ~ 460 _
Ra) 0.82M descent segment =
3 - 450 9
2 0.82M cruise segment =
= - 440
< 31000 -
- 430
0.82M / 300 kt transition point
- 420
300 kt CAS segment
29000 . . . . . . 410
0 5 10 15 20 25 30 35

Arbitrary distance (nmi)

Figure 2b. Mach-to-CAS descent with true airspeed segments.
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35000

Top of descent 0.82M / 300 kt transition point

33000 1 0.82M cruise segment

5
e 0.82M descent segment
E
< 31000 -
300 kt CAS segment
29000 T T T T T r )
0 5 10 15 20 25 30 35

Arbitrary distance (nmi)

Figure 2¢. Speed segments overlaying the altitude profile.

Mach-to-CAS Transition Altitude Above Top of Descent Altitude

The algorithm supports the possibility that the descent Mach and Mach-to-CAS values that were input
into the algorithm may result in a Mach-to-CAS transition altitude that is above the cruise altitude. An
example of this scenario would be a cruise altitude of 35,000 ft, cruise and descent Mach values of 0.82,
and a transition CAS of 270 kt. The Mach-to-CAS transition altitude in this example occurs at
approximately 36,503 ft (fig. 3a), 1,503 ft above the top of descent altitude. At the top of descent, the CAS
at 0.82M at 35,000 ft is approximately 279 kt. In this scenario, the Mach-to-CAS transition would occur at
the top of descent, immediately followed by a deceleration from the 0.82M, 279 kt CAS to the 270 kt CAS

descent speed (fig. 3b).

39000 -
& 35000 -
= 270 kt CAS li
_q-; ine \
Z 33000 -

0.82M / 270 kt transition point
31000 -
29000 T T T T T r )
420 430 440 450 460 470 480 490

TAS (kt)
Figure 3a. 0.82 Mach and 270 CAS values.
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35000
0.82M cruise segment Altitude line
Top of descent L 480
33000 - CAS segment
feury 460 <
S TAS line \ g
2 %)
2 <
= Deceleration to 270 kt CAS ~ L 440 F
< 31000 -
F 420
270 kt CAS segment
29000 T T T . . : 400
0 5 10 15 20 25 30 35

Arbitrary distance (nmi)

Figure 3b. Mach and CAS segments overlaying the altitude profile.

Descent Mach Greater Than Cruise Mach

The algorithm allows for a descent Mach value that is greater than the cruise Mach, i.e., an acceleration
during the initial descent. An example of this scenario would be a cruise altitude of 35,000 ft, a cruise Mach
values 0f 0.80, a descent Mach value of 0.82, and a transition CAS of 300 kt. In this scenario, an acceleration
from Mach 0.80 to 0.82 would occur at the top of descent, the acceleration would be completed at
approximately 34,588 ft, and the Mach-to-CAS transition altitude would be at approximately 31,837 ft (fig.

4).
35000 o - 490
&— Altitude line
0.80M cruise segment
0.82M / 300kt transition
Top of descent L 480
33000 - Mach descent segment 300 kt CAS
P \ segment =
& : / =
3 Acceleration to L 470 @~
El Mach 0.82 \ <
i 0.82M segment
31000 -
— c— — L 460
TAS line CAS segment
29000 T T T T T r 450
0 5 10 15 20 25 30 35
Arbitrary distance (nmi)
Figure 4. 0.80 Mach cruise, 0.82 Mach descent, and CAS segments overlaying the altitude profile.
Change of Descent CAS to meet a Crossing Restriction

The calculated speed profile may not reach the transition CAS value if attaining that speed would
preclude meeting a crossing speed restriction. An example of this scenario is shown in figure 5a. The data
for this plot included a cruise altitude of 35,000 ft, a cruise and descent Mach of 0.80M, a planned transition
CAS of 300 kt, and a 280 kt CAS constrained waypoint at 29,000 ft. In this scenario, the trajectory would
not be able to meet the 300 kt transition speed and then decelerate to the 280 kt crossing speed at the planned
deceleration value. In this example, the CAS transition occurs at 31,722 ft and 291 kt and then immediately

begins to slow to 280 kt.
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35000 - iti
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- —\ 290
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0 10 20 30 40 50
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Figure 5a. Descent with CAS speed restriction overlaying the altitude profile.

Another scenario where the calculated speed profile may not reach the transition CAS value due to a
crossing speed restriction is shown in figure 5b. The data for this plot included a cruise altitude of 32,000
ft, a cruise and descent Mach of 0.80M, a planned transition CAS of 300 kt, and a 270 kt CAS constrained
waypoint at 27,500 ft. In this example, because of the descent angle and the planned deceleration value, the
deceleration to meet the crossing restriction occurs at the cruise altitude.

32000 r 500
CAS segment
— — c—
- 450
30000 - 7~
0.80M segment ) _
g TAS line — -~ 400 g
g =
E 28000 Mach-to-CAS transition / §
5 Altitude line L350 ©
CAS line .
26000 - CAS deceleration segment
- o - - - - - 300
24000 T : . . 250
0 10 20 30 40 50

Arbitrary distance (nmi)

Figure 5b. CAS transition at cruise altitude example.

Description of Major Functions

The functions shown in figure 1 are described in detail in this section. The functions are presented in the
order as shown in figure 1. Secondary functions are described in a subsequent section. In these descriptions,
the waypoints, which are from the input data and are fixed geographic points, are considered to be TCPs
but not all TCPs are waypoints. Nesting levels in the pseudo-code description are denoted by the level of
indentation of the document formatting. Additionally, long sections of logic may end with end of statements
to enhance the legibility of the text.
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Preprocess RF Legs

A radius-to-fix (RF) turn segment is a constant radius turn between two waypoints, with lines tangent to
the arc around a center of turn point (fig. 6). This function determines if a valid RF turn exists and if so,
calculates a pseudo-waypoint relative to the center-of-turn point and inserts it into the waypoint list. The
calculated pseudo-waypoint then allows the remainder of the turn calculations performed by this algorithm
to be processed as a standard turn. This function is performed in the following manner:

‘/TCPE- (turn entry)
-~ Pseudo-waypoint

TCP; .. ; (turn exit)
Center of turn point —%>

W 7CP;

Figure 6. Example of an RF turn.
error = false
Big Turn Error = false
A set of RF turn waypoints is identified by the inclusion of a non-zero value for the latitude and
longitude for the center of turn point in the data for the RF turn initiation waypoint. Because three
waypoints are needed in an RF turn calculation, two each for the determination of the inbound and
outbound track angles, testing is only performed to the next to the last TCP.

for (i = index number of the first TCP + 1; i <index number of the last TCP - 1;i=1i+ 1)

Determine if this is an RF turn waypoint via the inclusion of the turn center's latitude and
longitude data.

if ((Center Of Turn Latitude; # 0) and (Center Of Turn Longitude; # 0)) then
Determine the turn direction.

a; = arctangent2(sine(Longitude; - Longitude;.;) * cosine(Latitude;), cosine(Latitude;.;) *
sine(Latitude;) - sine(Latitude,.;) * cosine(Latitude;) * cosine(Longitude; - Longitude;.;))

as = arctangent2(sine(Longitude;+; - Longitude;) * cosine(Latitude;+;), cosine(Latitude;) *
sine(Latitude;+;) - sine(Latitude;) * cosine(Latitude;+;) * cosine(Longitude;+; -
Longitude;))
deltax = DeltaAngle(a,, as3)

where the secondary function DeltadAngle is described in a subsequent section.

If deltax is positive, this is a right-hand turn.
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if (deltax > 0) TurnSign = 1

else TurnSign = -1

Calculate the instantaneous angle at the ending waypoint.

a; = arctangent2(sine(Longitude;+; - Center Of Turn Longitude;) * cosine(Latitude;-),
cosine(Center Of Turn Latitude;) * sine(Latitude;+;) - sine(Center Of Turn Latitude;) *

cosine(Latitude;+;) * cosine(Longitude;+; - Center Of Turn Longitude;)) +

TurnSign * 90°

Adjust a; such that 0° > a, > 360°.

AdjustAngle(az)

deltaa = DeltaAngle(a,, as)

Correct the deltaa value if it is in the wrong direction.

if ((TurnSign > 0) and (deltaa < 0°)) then
deltaa = deltaa + 360°

else if ((TurnSign < 0) and (deltaa > 0°)) then

deltaa = deltaa - 360°

If the turn is greater than 170°, break it into two parts so that the standard turn calculations
can be performed.

if (|deltaa| > 170°) BigTurn = true
If the turn is less than 3° or more than 260°, it is in error.
if ((|deltaa| < 3°) or (|deltaa| > 260°)) error = true
Perform a center-of-turn test.
if (error = false) then

The radius for point 1 must equal the radius for point 2.

r; = arccosine(sine(Center Of Turn Latitude;) * sine(Latitude;) +

cosine(Center Of Latitude;) * cosine(Latitude;) * cosine(Center Of Turn Longitude; -
Longitude;))
r2 = arccosine(sine(Center Of Turn Latitude;) * sine(Latitude;+;) +

cosine(Center Of Turn Latitude;) * cosine(Latitude;;) *
cosine(Center Of Turn Longitude; - Longitude;+;))
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The radii are considered not equal if the difference is greater than 200 ft. The overall RF
leg is considered in error if the turn radius is greater than 10 nmi.

if (Ir1 - r2| > (200 / NmiToFeet)) or (r; > 10)) error = true
if (error = false) then

If the turn is greater than 170°, generate two waypoints, otherwise, just generate one
waypoint.

if (BigTurn) n =2
elsen =1
a = TurnSign * 90°
for k=1 k<n k=k+1)
Calculate the pseudo-RF waypoint.
The following is the angle from the turn center toward the pseudo waypoint.
as=aj-a
Adjust a3 such that 0° > a3 > 360°.
AdjustAngle(as)
if (BigTurn) then
if(k=1) amn=as+ 0.25 *deltaa
elsean =az + 0.75 * deltaa
else
There is just one new waypoint, split the turn in half.
amp =as + 0.5 *deltaa
Adjust a; such that 0° > a;, > 360°.
AdjustAngle(a;s)
if (k=1) then
RadialRadiallntercept(Latitude;, Longitude;, a;,
Center Of Turn Latitude;, Center Of Turn Longitude;, a»,
Latitude,; Longitude,),

noting that Latitude,s and Longitude,s are returned values.
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else
RadialRadiallntercept(Latitude;+;, Longitude;+;, a: + 180°,
Center Of Turn Latitude;.;, Center Of Turn Longitude;.;, a,

Latitude,;, Longitude,),
The new waypoint is inserted at location i+/ in the waypoint list. This inserted
waypoint will appear as an input waypoint to the remainder of the algorithm. The
waypoint is inserted between waypoint; and waypoint;+; from the original list. The
function InsertTcp should be appropriate for the actual data structure implementation
of this function.
InsertTep(i + 1)
Note that TCP;-; is the newly created waypoint.
Mark TCPj+; as though it was an input waypoint.
TepTypeir; = INPUT
Give TCP;+; a unique name.
Also mark this waypoint as a special, RF turn center TCP. This special marking is
used in subsequent sections to denote that the center-of-turn point has already been
calculated.
TurnTypei+1 = RF TURN CENTER
Latitude;+; = Latitude,s

Longitude;+; = Longitude,s

Copy the wind data from TCP;, the RF initiation waypoint, to TCP;+,, the pseudo-
waypoint.

Save the center of turn data. The Turn Data values are associated with each waypoint
or TCP record and contain, if appropriate, data relating to turn conditions for that
TCP.

Turn Data Center Latitude;+; = Center Of Turn Latitude;

Turn Data Center Longitude;+; = Center Of Turn Longitude;

Increment i because a TCP was added and the new TCP at i + / should not be
processed again.

i=i+1
endoffor (k=1 k<n k=k+1)

end of if (error = false)
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end of if ((Center Of Turn Latitude; #+ 0) and (Center Of Turn Longitude; # 0))
end of for (i = index number of the first TCP + 1 ...)
Preprocess Linear Deceleration Data

This is an initialization function that for each waypoint identified as a linear deceleration waypoint, marks
it as such and sets the initial deceleration to the maximum deceleration allowable value. The function is
performed in the following manner:

for (i = index number of the first TCP; i <index number of the last TCP; i =i+ 1)

If the input value for the CAS crossing rate is set to the special value of AUTO CAS RATE, then
the algorithm is expected to calculate a linear deceleration value between the two speed
constrained waypoints. By design, other trajectory calculations are performed prior to these
specific calculations, where these other trajectory calculations require some relatively valid speed
calculations. The support these other calculations, the CAS crossing rates for these AUTO CAS
RATE segments is initially set to the maximum CAS rate allowed by the algorithm. In this
regard, the following calculations are performed:

if (Crossing Cas; = AUTO CAS RATE) then
LDR Flag; = true

Set the initial CAS crossing rate to the maximum allowable CAS crossing rate. For this
implementation, the maximum allowable CAS crossing rate is 5 kt/sec.

Crossing Rate; = Maximim Crossing Rate

The following distance variables are used in the iterative calculation for the CAS crossing
rate and are initialized to an invalid distance.

LDR Base Distance; = -1
LDR Obtained Distance; = -1
else

LDR Flag; = false

Save Selected Input Data
This is an initialization function that saves the original input values for the altitude crossing angle of each

waypoint, the Mach for the first TCP, the descent Mach, and descent CAS. These values are saved because
the input values may be overwritten internal to the algorithm and will need to be reset to their original

values for each iterative loop. The function is performed in the following manner:

for (i = index number of the first TCP; i < index number of the last TCP; i =i + 1)
Saved Altitude Crossing Angle; = Crossing Angle;

Saved Mach Descent Mach = Mach Descent Mach
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Saved Mach Transition CAS = Mach Transition CAS

Saved Mach at First TCP = Crossing Machyrs: rcp

Convert to MSL Altitudes
This is an initialization function that converts altitudes above the barometric transition altitude

(nominally 18,000’), to an actual, above ground level (above mean sea level) altitude using the waypoint
barometric setting from the input data. The function is performed in the following manner:

Initialize the value Last Altitude to a very large number.

Last Altitude = -99999

for (i = index number of the last TCP; i > index number of the first TCP; i =i- 1)

Calculate the indicated altitude only if the waypoint has an altitude constraint.

if (i = index number of the first TCP) or (i = index number of the last TCP) or
(Crossing Angle; > 0°) or (Crossing Anglei = AUTO DESCENT ANGLE)) then

if (Crossing Altitude; > barometric transition altitude) then
Crossing Altitude; =
ConvertPressureTolndicatedAltitude(Crossing Altitude;, barometric setting;),

where ConvertPressureTolndicatedAltitude 1s a standard aeronautical function to convert
pressure altitude to indicated altitude.

if (Crossing Altitude; < barometric transition altitude)
Crossing Altitude; = barometric transition altitude

if (Crossing Altitude; < LastAlt) Crossing Altitude; = LastAlt
LastAlt = Crossing Altitude;
Generate Initial Tracks and Distances
This is an initialization function that initializes the Mach Segment flag, denoting that the speed in this
segment is based on Mach, and calculates the point-to-point distances and ground tracks between input
waypoints. Great circle equations are used for these calculations, noting that the various dimensional

conversions, e.g., degrees to radians, are not shown in the following text.

Generate the initial distances, the center-to-center distances, and ground tracks between input
waypoints

Sfor (i = index number of the first TCP; i < index number of the last TCP; i =i + 1)
Start with setting the Mach segments flags to false.

Mach Segment; = false
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Compute the waypoint-center to waypoint-center distances.
if (i = index number of the first TCP) Center to Center Distance; = 0
else
Center to Center Distance; =
arccosine(sine(Latitude;.;) * sine(Latitude;) + cosine(Latitude;.;) * cosine(Latitude;) *
cosine(Longitude;. - Longitude;))
Ground Tracki.; =
arctangent2(sine(Longitude; - Longitude;.;) * cosine(Latitude;), cosine(Latitude;.;) *
sine(Latitude;) - sine(Latitude;.;) * cosine(Latitude;) * cosine(Longitude; -
Longitudei.;))
end of for (i = index number of the first TCP; i <index number of the last TCP; i =i + 1)
Now set the runway's ground track.
Ground Trackias rcp = Ground Trackias: tcp- 1
The cumulative distance, DTG, is computed as follows:
DTGlast TCP = 0
for (i = index number of the last TCP; i > index number of the first TCP; i =i- 1)
DTG.; = DTG; + Center to Center Distance;
Initialize Waypoint Turn Data
The Initialize Waypoint Turn Data function is used to determine if a turn exists at a waypoint and if so,
inserts turn-entry and turn-exit TCPs. Waypoints that have more than a 3 degree change in ground track

between the previous waypoint and the next waypoint are considered turn-waypoints. The function is
performed in the following manner:

i = index number of the first TCP + 1
Last Track = Ground Trackys: rcp
Note that the first and last TCPs cannot be turns.
while (i < index number of the last TCP)
Track Angle After = Ground Track;
a = DeltaAngle(Last Track, Track Angle After)
Check for a turn that is greater than 170 degrees.

if (la| > 170°) then
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Set an error and ignore the turn.
Mark this as a fatal error condition.
a=0°
If the turn is more than 3-degrees, compute the turn data.
if (|a| > 3°) then
halfturn =a /2
Track Angle Center = Last Track + half turn
This is the center of the turn, e.g., the original input waypoint.
Ground Track; = Track Angle Center
Turn Data Trackl; = Last Track
Turn Data Track2; = Track Angle After
If this is not an RF turn, then the turn radius needs to be calculated.
if (TurnType; # RF TURN CENTER) Turn Data Turn Radius; = 0
Turn Data Path Distance; = 0
Insert a new TCP at the end of the turn.
The new TCP is inserted at location i+/ in the TCP list. The TCP is inserted between TCP;
and TCP;+; from the original list. The function /nsertTcp should be appropriate for the actual
data structure implementation of this function.
InsertTep(i + 1)
Note that 7CP;+, is the new TCP.
TepTypeir; = END TURN
DTG i+1 = DTG ;
Ground Track i+; = Track Angle After
The start of the turn TCP is as follows,
InsertTcp(i)
TepType; = BEGIN TURN

Note that the original TCP is now at index i + 1.
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DTG; = DTG+,
Ground Track; = Last Track
Last Track = Track Angle After
i=i+2
end of if (la| > 3°)
else Last Track = Ground Track;
i=i+1
end of while (i < index number of the last TCP)
Effectively, this function:

- Marks each turn-waypoint and sets its ground track angle to the computed angle at the midpoint of
the turn.

- Inserts a co-distance turn-entry TCP before this turn-waypoint with the ground track angle for this
turn-entry TCP set to the value of the inbound ground track angle.

- Inserts a co-distance turn-exit TCP after this turn-waypoint with the ground track angle for this
turn-exit TCP set to the value of the outbound ground track angle.

An example illustrating the inserted turn-start and turn-end TCPs is shown in figure 7.
Figure 7. Initialized turn waypoint.

Turn waypoint, Ground Track; = 105°

( |
Ground Track;_ = 90°

& Turn-exit, Ground Track; j = 120°

Turn-entry, Ground Track;_; = 909

DTG, ; = DTG, ; = DIG;
Ground Track;y > = 120°

Determine Linear Deceleration Requirements

This routine is used in the linear deceleration rate calculations to determine if additional passes are

needed to accommodate linear deceleration rate calculations. External variables used by this routine
include the current algorithm iteration loop number, Loop Number, the LDR mode flag, LDR Mode, and
the flag denoting that LDR calculations are pending, LDRPending.

On the first call to this routine, determine if any LDR waypoints exist, and, if so, set the LDR Pending
flag to true.

if (Loop Number == basic, four-pass iteration loop value)
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Determine if any LDR waypoints exist, and if so, set the LDR Pending flag to true. This
determination uses the secondary function FindNextLDRWaypoint, described in a subsequent
section.

if (FindNextLDRWaypoint() > 0) LDR Pending = true

else

Find the next linear deceleration rate waypoint whose speed has not been calculated using the
secondary function FindNextLDRWaypoint.

idx = FindNextLDRWaypoint()
Check for errors using the function LDRRateCheck, which will return a value of true for the
variable LdrRateError if the current linear deceleration segment is not valid and will return a
value of true for the variable OtherError if a valid speed could not be calculated for any segment.
Note that the variable LdrRateError is not used in Determine Linear Deceleration Requirements
but is used in other functions.
OtherError = true
if (idx > -1) LDRRateCheck(idx, LDR Pending, LdrRateError, OtherError)
if ((idx > -1) and (OtherError = false)) then
if (LDR Pending)
Change the values of the LDR Pending and LDR Mode.
LDR Pending = false
LDR Mode = true
else
The LDR Mode is no longer valid.
LDR Pending = false
LDR Mode = false
Reset the Descent Speed Values
The Reset the Descent Speed Values function simply replaces the current values for Mach Descent
Mach, Mach Transition CAS, and Crossing Machys rcp with the values that were saved in the function

Save Selected Input Data and reset the descent speed flags MachCasAtTod and AllowTodDeceleration to
false.
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Compute TCP Altitudes

Beginning with the last waypoint, the Compute TCP Altitudes function computes the altitudes at each
previous TCP and inserts any additional altitude TCPs that may be required to denote a change in the
altitude profile. The function uses the current altitude constraint (7CP; in fig. 8), searches backward for the
previous constraint (7CP;; in fig. 8), and then computes the distance required to meet this previous
constraint. The altitudes for all of the TCPs within this distance are computed and added to the data for the
TCPs. If the along-path distance to meet the previous constraint is not at a TCP, a new altitude VTCP is
inserted at this distance. An example of this is shown in figure 9. In addition, if the Crossing Angle for a
waypoint is set to -99, this denotes that the algorithm is to internally compute the Crossing Angle between
this and the next higher, altitude constrained waypoint, noting that this option should only be used in
situations where the relevant waypoint pairs are known to procedurally have a fixed angle between them.

This function is performed in the following steps:

Crossing Altitude;_3 = 11000 fi

Crossing Altitude; = 5300 fi
Crossing Angle; = 2.3°

Crossing Altitude;_3 = 11000 ft

TCP;;

TCP;_;

Figure 8. Input altitude crossing constraints.
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TCP;_,

TCPJ-_]
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Figure 9. Computed altitude profile with TCP added.

Set the current constraint index number, cc, equal to the index number of the last TCP,

cc = index number of the last TCP

Set the altitude of this waypoint to its crossing altitude,

Altitude.. = Crossing Altitude..

Set a flag denoting that the TOD point has not been identified.

Have TOD = false
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While (cc > index number of the first TCP)

If this is the TOD, mark this point.

if ((Have TOD = false) and (Altitude.. > Altitude;)) then
Mark this as the TOD point.
Have TOD = true
VSegType.. = TOD ALTITUDE

Determine if the previous constraint cannot be met.

If (Altitude.. > Crossing Altitude..) then
The constraint has not been made.
If this is the last pass through the algorithm, mark this as a fatal error condition.
Altitude.. = Crossing Altitude..

Find the prior waypoint index number pc that has an altitude constraint, e.g., a crossing altitude
(Crossing Altitudepc # 0). This may not always be the previous (i.e., cc - 1) waypoint.

Initial condition is the previous TCP.
pc=cc-1

while ((pc > index number of the first TCP) and ((TcpTypep. # INPUT) or
(Crossing Altitude p. = 0))) pc = pc - 1

Save the previous crossing altitude,

Prior Altitude = Crossing Altitude,.

Save the current crossing altitude (7est Altitude) at TCP.. and the descent angle (Test Angle)
noting that the first and last waypoints always have altitude constraints and except for the first
TCP, all constrained altitude points must have descent angles.

Test Altitude = Crossing Altitude..

Test Angle = Crossing Angle.

If the Test Angle value, i.e., AUTO DESCENT ANGLE, denotes that this is angle is to be
computed internally as a linear descent between the two altitude constrained waypoints then the
following calculations are performed:

if (Test Angle = AUTO DESCENT ANGLE) then

dx = DTGpe - DTG,
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dy = Prior Altitude - Test Altitude

Test Angle = arctangent2 (dy, NmiToFeet * dx)

Crossing Angle.. = Test Angle

Test for an extreme angle, e.g., 7.5°.

if (Test Angle > maximum allowable descent angle) mark this as a fatal error condition.
Compute all of the TCP altitudes between the current TCP and the previous crossing waypoint.
k=cc
while (k > pc)

If the previous altitude has already been reached, set the remaining TCP altitudes to the
previous altitude.

if (Prior Altitude < Test Altitude) then
for (k=k-1; k> pc, k=k- 1) Altituder = Test Altitude
Set the altitude at the last test point.
Altitude,. = Test Altitude
else
Compute the distance from TCP; to the Prior Altitude using the altitude difference between
the Test Altitude and the Prior Altitude with the Test Angle. If there is no point at this
distance, add a TCP at that distance.
Compute the distance dx to make the altitude.
if (Test Angle <) dx = 0
else dx = (Prior Altitude - Test Altitude) / (NmiToFeet * tangent(Test Angle))
Compute the altitude z at the previous TCP.

z = (DTG - DTGy) * NmiToFeet) * tangent(Test Angle) + Test Altitude

If there is a TCP prior to this distance or if z is very close to the Prior Altitude, compute
and insert its altitude.

if (DTGr.1 < (DTG + dx)) or (|z - Prior Altitude| < some small value)) then
if (|z - Prior Altitude| < some small value) Altitude ., = Prior Altitude

else Altitude ,.; = z
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Check to see if the constraint has been reached with a 100 ft tolerance; if not, set an
error condition.

if ((k-1) = pc) then
if (|Altitude,. - Crossing Altitude,.| > 100ft) mark this as a fatal error condition
Always set the crossing exactly to the crossing value.
Altitude,. = Crossing Altitudey.
Update the Test Altitude.
Test Altitude = Altitude i.;
Decrement the counter to set it to the prior TCP.
k=k-1
end of if (DTGr.; < (DTGy + dx)) or (|z - Prior Altitude| < some small value))
else

The altitude constraint is reached prior to the TCP, a new VTCP will need to be
inserted at that point. The distance to the new TCP is,

d = DTGy + dx

Compute the ground track at distance d along the trajectory and save it as Saved
Ground Track.

Saved Ground Track = GetTrajGndTrk(d)

Insert a new VTCP at location & in the TCP list. The VTCP is inserted between
TCPr.; and TCPy from the original list. The function /nsertTcp should be appropriate
for the actual data structure implementation of this function.

InsertTcep(k)

Update the data for the new VTCP which is now TCP;.

TepTyper = VICP

if (VSegTyper = NO TYPE) VSegTyper = ALTITUDE

DTGy =d

Altitude, = Prior Altitude

if ((Have TOD = false) and (Altitudey > Altitudeysi rcp)) then
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Have TOD = true

VSegTyper = TOD ALTITUDE
Add the ground track data which must be computed if the new VTCP occurs within a
turn. The functions WptlnTurn and ComputeGndTrk are described in subsequent
sections.
if (WptInTurn(k)) Ground Track, = ComputeGndTrk(k, d)
else Ground Tracky = Saved Ground Track
Compute and add the wind data at distance d along the path to the data of TCPx.
GenerateWptWindProfile(d, TCPy)

Test Altitude = Prior Altitude

Since TCP;, has now been added prior to pc, the current constraint counter cc needs
to be incremented by 1 to maintain its correct position in the list.

cc=cc+1
end of else
end of else if (Prior Altitude < Test Altitude)

The function loops back to while (k > pc).

end of while (k > pc)
Now go to the next altitude change segment on the profile.
cc=k
The function loops back to while cc > index number of the first TCP.
end of while (cc > index number of the first TCP).

Copy Crossing Angles

The Copy Crossing Angles is a simple function that starts with the next to last TCP and copies the
subsequent crossing angle if the current TCP does not have a crossing angle. E.g.,

for (i = index number of the last TCP - 1, i > index number of the first TCP; i =i- 1)
if (Crossing Angle; = 0) Crossing Angle; = Crossing Angle;+;
Evaluate the Descent Mach/CAS

The Evaluate the Descent Mach/CAS function evaluates the validity of the Mach/CAS transition speed
requirement. If the Mach/CAS transition altitude, based on the Mach/CAS transition speeds, is above the
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cruise altitude, this function will remove the Mach/CAS transition speed requirement since a transition to
CAS is required at the TOD.

Only perform this evaluation if the path begins with a Mach defined waypoint and a Mach-to-CAS
transition speed exists.

if ((Crossing Mach g rcp # 0) and (Mach Transition CAS # 0)) then
Find the top of descent.
FoundTod = false
il = index number of the first TCP
m = Crossing Mach fis rcp
while ((FoundTod = false) and (il < index number of the last TCP))
if (VSegTypei; = TOD ALTITUDE) FoundTod = true
elseil =il +1
Find the last Mach before the TOD.
FoundLastMach = false
i2=0
while ((FoundLastMach = false) and (i2 <il))
if (Crossing Mach;; > 0) then
FoundLastMach = true
m = Crossing Mach;;
elsei2 =i2 + 1
Determine if there is a Mach crossing waypoint after the TOD.
FoundLaterMach = false
i3=i2+1
while ((FoundLaterMach = false) and (i3 < index number of the last TCP))
if (Crossing Mach;z > 0) FoundLaterMach = true

elsei3 =i3+1
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If the speeds are valid, calculate the Mach/CAS transition altitude and compare it against the TOD
altitude.

if (FoundTod and FoundLastMach and (FoundLaterMach = false)) then
Get the slowest, valid Mach value from the input data.
if (Mach Descent Mach > 0) and (Mach Descent Mach < m)) m = Mach Descent Mach

Invoke the secondary function FindMachCasTransitionAltitude which calculates the altitude
where the Mach and CAS are equal.

z = FindMachCasTransitionAltitude(Mach Transition CAS, m)
if (z >= (Altitudei; - 1ft)) then
AllowTodDeceleration = true
Mach Descent Mach = 0
end of if (FoundTod and FoundLastMach and (FoundLaterMach = false))
end of if ((Crossing Mach g rcp # 0) and (Mach Transition CAS # 0))
Meet Cruise CAS Restriction

The Meet Cruise CAS Restriction function changes, if required, the descent Mach if there is a high
altitude, CAS restricted waypoint and the computed speed is above the required crossing speed for that
CAS waypoint.

The calling function provides as input and retains the subsequent outputs for the following variables:
Todld, TodMach, TodMachRate, MachCasAtTod, and AllowTodDeceleration. The variable Todld is the
name of the top-of-descent waypoint (TOD) and is initialized as an empty string by the calling program.
This Meet Cruise CAS Restriction function may modify the Mach and speed change rate that occurs at the
TOD, TodMach and TodMachRate, respectively, and these values are then passed to subsequent functions
that require these data. The variable MachCasAtTod is a flag that if true, indicates that the Mach-to-CAS
transition occurs at the TOD point. This variable is used by the functions Change TOD Mach Value and
Compute Mach-to-CAS TCP.

If the input Mach value for the first TCP is not valid, i.e., the path does not start with a Mach segment,
the function terminates with MachCasAtTod set to false. Otherwise, the following is performed.

if (Crossing Mach gy rcp = 0) terminate this function. Otherwise,
Set the initial values.

MachCasAtTod = false

MachCasModified = false

CasIndex = index number of the first TCP
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Todlndex = index number of the first TCP
AltAtMach = 0.

LastMach = 0

z=0

done = false

If the TOD Mach data have been modified in a previous invocation of Change TOD Mach Value,
indicated by a non-empty value for 7odld, reset their values.

if (Todld + empty) then
fini = false
i = index number of the first TCP
Find the waypoint with the name defined in 7Todld.
while ((i < (index number of the last TCP)) and (fini = false))
if (Id; = Todld) then
fini = true
Crossing Mach; = TodMach
Crossing CAS; = 0
Crossing Rate; = TodMachRate
Todld = empty string
i=i+1
end of if (Todld + empty)
Find the first CAS waypoint.
fini = false
i = index number of the first TCP
while ((i < index number of the last TCP) and (fini = false))
if (Crossing CAS; > 0) then

Caslndex = i
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fini = true
i=i+1

Determine if the trajectory is already at the CAS altitude, i.e., the initial altitude is the CAS
altitude, and if so, start in a CAS mode, not Mach.

if (Crossing Altitudeps rcp = Altitudecasindes) then
done = true
for (k = index number of the first TCP; k < Caslndex; k =k + 1)
if (Crossing Machy > 0) then
Change the route data so that the trajectory is starting in a CAS mode.

Invoke the secondary function MachToCas. This function is described in a subsequent
section.

Crossing CASy = MachToCas(Crossing Machy, Altitudecasinde:)
Crossing Mach, = 0
Mach Segment;. = false
end of if (Crossing Machi > 0)
if (done = false) then
Find the last Mach value.
fini = false
i = index number of the first TCP
while ((i < index number of the last TCP) and (fini = false))
if (Crossing CAS;> 0) fini = true
else if (Crossing Mach; > 0) LastMach = Crossing Mach,;
i=i+1
Determine the descent Mach value.
if (Mach Descent Mach # () DescentMach = Mach Descent Mach
else DescentMach = LastMach

Determine the Mach-to-CAS transition CAS value.
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if (Mach Transition CAS > 0) then
MachCas = Mach Transition CAS
if (Mach Transition CAS < Crossing CAScasindex) MachCas = Crossing CAScusindex
else MachCas = Crossing CAScasindex
Find the last Mach altitude.
fini = false
i = index number of the first TCP
while ((i < index number of the last TCP) and (fini = false))
if (Crossing CAS; > 0) fini = true
else if (Crossing Altitude; > 0) AltAtMach = Crossing Altitude;
i=i+1
Determine if the Mach is slower than the descent CAS. This is a special case.
DoCasDecel = false
No Mach segments or a different descent Mach?
if (AllowTodDeceleration) then
Initially assume that the TOD altitude is the initial altitude.
TodCas = MachToCas(LastMach, Altitudersaray)
if (TodCas > MachTransitionCas) DoCasDecel = true
else WptRecords->AllowTodDeceleration = false
MachCasAtTod = true

Invoke the secondary function FindMachCasTransitionAltitude which calculates the altitude
where the Mach and CAS are equal. This function is described in a subsequent section.

z = FindMachCasTransitionAltitude(MachCas, DescentMach)
if (z > Crossing Altitudesrs: rcp) and (DoCasDecel = false)) then

The path is already below the transition altitude, change the route data so it starts in a CAS
mode.

for (k = index number of the first TCP; k < index number of the last TCP; k=k + 1)
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done = true
if (Crossing Machy > 0) then
Crossing CAS, = MachCas
Crossing Machi = 0
Mach Segmenty. = false
end of if ((z > Crossing Altitudesrs rcp) and (DoCasDecel = false))
end of if (done = false)
if (done = false) then

If the path still starts with a Mach segment, which may have already been modified in this
function, test for other special cases.

If required, handle the special case of an accelerated descent.

if (DescentMach > LastMach) then
Invoke the secondary function ComputeDescentAccelDecel. This function handles the special
case of a Mach acceleration in the descent where the first CAS crossing restriction cannot be
met. This function is described in a subsequent section. This function may modify the

waypoint data.

ComputeDescentAccelDecel(CasIndex, LastMach, MachCasModified, DescentMach,
MachCas)

If the descent data are changed, recalculate z.
if (MachCasModified) then
z = FindMachCasTransitionAltitude (MachCas, DescentMach)
Next, update the waypoint data.
Mach Descent Mach = DescentMach
Mach Transition CAS = MachCas
end of if (DescentMach > LastMach)
if (z < Crossing Altitudecasides) then
At this point, the descent CAS or Mach needs to be changed.

If the descent CAS is faster than the crossing CAS, determine if changing the descent CAS
corrects the problem.
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fini = false
if (MachCas > Crossing CAScasindex) then
s = MachToCas(DescentMach, Altitudecasidex)
if (s >= Crossing CAScasidex) then
MachCas = s
Mach Transition CAS = s
fini = true
m = CasToMach(MachCas, Altitudecaside)
if ((fini = false) and (m > DescentMach)) then
s = MachToCas(DescentMach, Altitudecasimdes)
if (s >= Crossing CAScasindex) then
Change to descent CAS.
MachCas = s
Mach Transition CAS = s
else
Change the descent Mach.
if (MachCas < Crossing CAScasindes)
DescentMach = CasToMach(MachCas, Altitudecasinde:)
else DescentMach = CasToMach(Crossing CAScasinder, Altitude casinde)
else if (fini = false)
DescentMach = CasToMach(MachCas, Altitudecasindex)
Mach Descent Mach = DescentMach
z = Altitude casindex

Perform an extreme limits test, assuming that a valid Mach value will be between 0.6 and 0.9
Mach.

if ((DescentMach > 0.9) or (DescentMach < 0.6)) mark this as a fatal error condition
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end of if ((fini = false) and (m > DescentMach))

Make sure that there is sufficient distance to slow from the Mach-to-CAS transition speed to
make the crossing CAS.

if ((z = Altitudecasindgex) and (MachCas > Crossing CAScasindex) and (Crossing Ratecasimdex > 0) and
(MachCasModified = false)) then

Find the distance at z. This is an iterative solution.
i = Caslndex - 1

fini = false

Jj = index number of the first TCP

Calculate the headwind at the end point. This calculation uses the secondary function
InterpolateWindWptAltitude, described in a subsequent section.

InterpolateWindWptAltitude(Wind Profilecasindex, Altitudecasingex, Ws, Wd, Td)
HeadWind = Ws * cosine(Wd - GndTrack casindes)

CurrentGs = ComputeGndSpeedUsingTrack(Crossing CAScasindex, GndTrackcasimdex,
Altitudecasinaex, Ws, Wd, Td)

Iterate = false
OnePass = true
MachCasHold = MachCas
LastCut =0
while (fini = false)
i = Caslndex - 1
while ((i > index number of the first TCP) and (Altitude ; < z)) i =1i- 1
if ((Altitude; - Altitude;+;) <0) a =0
else a = (z - Altitude;+;) / (Altitude; - Altitude;+ ;)
Calculate the distance, dx, required to reach the altitude.
dx = a * (DIG; - DIGi+1) + DTGi+1 - DTGCcasindex
InterpolateWindWptAltitude(Wind Profilecasides, z, Ws2, Wd2, Td2)

Hw2 = Ws2 * cosine(Wd2 - GndTrack;)

37



AvgHw = (HeadWind + Hw2) / 2

Invoke the secondary function EstimateNextCas. EstimateNextCas is an iterative function
to estimate the CAS value at the next waypoint.

CasTest =EstimateNextCas(Crossing CAScasindgex, CurrentGs, true, MachCasHold,
AvgHw, z, dx, Crossing Ratecasindex, 1d)

If it is required, set up the iteration values, where these values are in CAS.
if (OnePass = true) then
if (CasTest < MachCas) Iterate = true
else fini = true
OnePass = false
Calculate the iteration step size.
LastCut = |MachCas - CasTest|
Limit the step size to no smaller than 2 kt.
if (LastCut < 2) LastCut =2
if (Iterate) then
if (MachCas > CasTest) s = MachCas - LastCut
else s = MachCas + LastCut
LastCut = 0.5 * LastCut
if (s > MachCasHold) s = MachCasHold
Determine if the Mach-to-CAS estimate is valid.
if (((s + 0.05) > MachCas) and (|s - MachCas| < 0.1)) then
fini = true
Calculate the Mach-to-CAS altitude for the current estimate.
z = FindMachCasTransitionAltitude (MachCas, DescentMach)
Determine if a deceleration is needed prior to the TOD. Add a 50 ft buffer value.
if (z > (AltAtMach + 50 ft)) then

Find the TOD waypoint.
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fini2 = false
J = index number of the first TCP
while ((j < index number of the last TCP) and (fini2 = false))
if (Waypoint; is marked as the TOD point) fini2 = true
elsej=j+1
The altitude index for the test is the TOD altitude point.
if (fini2 and (i = j)) then
Mach Descent Mach = CasToMach(Mach Transition CAS, AltAtMach)
MachCasAtTod = true
end of if (z > (AltAtMach + 50))
end of if ((s + 0.05) > MachCas) and (|s - MachCas| < 0.1))
else
Mach Transition CAS = s
MachCas = s
z = FindMachCasTransitionAltitude(MachCas, DescentMach)
if (z > Altitude;) z = Altitude;
j=i+1
Add a test to limit the number of iterations to 10.
if = 10) fini = true
end of if (Iterate)
end of while (fini = false)
end of if (done = false)
Add TOD Deceleration TCP
This function handles the special case where meeting a CAS restriction at a downstream waypoint
requires an early transition out of the Mach regime and a deceleration at or near the top of descent to meet
the CAS crossing restriction. This function computes the distance required to meet the CAS crossing

restriction and the related speed and altitude values at the distance. A TCP at that distance is then inserted
into the trajectory to identify the start of the deceleration segment. This function is only performed if the
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input data starts with a Mach Crossing Speed for the first TCP and the prior determination that a cruise
CAS waypoint requires a TOD deceleration.

The following variables are initialized:
(MachAtTOD)LastMach = Crossing Machys rcp
fini = false
(TodIndex) TestIndex = index number of the first TCP
i = index number of the first TCP
Find the TOD waypoint.
while ((i < index number of the last TCP) and (fini = false))
if (Crossing Mach; > 0) LastMach = Crossing Mach,;
if ((Altitude; < Altitudeyssi rcp) or (Crossing CAS; > 0))
if (Altitude; # Altitudesisi rcp) TestIndex =i - 1
else TestIndex = i
fini = true
i=i+1
end of while ((i < index number of the last TCP) and (fini = false))

Make an 1nitial estimate of the distance to the deceleration CAS value. The function
TodDecelerationDistance returns the values Valid, k, and dx.

TodDecelerationDistance(Testldx, LastMach, Mach Transition CAS, Valid, k, dx)

Since the normal descent Mach-to-CAS transition will not occur, the start of deceleration TCP is
added here.

InsertTcp(TestIndex +1)

Update the data for the new TCP which is now TCPrestndex+1.
Copy all of the data from TCPrestindex into TCPrestindex +1

Now set the data in TCPregumaer +1 to the updated values.
VSegTypertesiindex +1 = MACH CAS

Crossing Machtesindex +1 = LastMach
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Crossing CAStesindex +1 = MachToCas(LastMach, Altituderesindex)
Machi.; = LastMach
CASi+1 = Crossing CAStestindex +1
Use a default crossing rate.
Crossing Rateresundex +1 = 0.25 kt/sec
Mach Transition Altitude = Altituderesimdex +1
if (Valid = true) then

Add a TCP for the end of the TOD acceleration.

d = DT Grestindex - dx

Find the ground track at this distance.

OldGndTrk = GetTrajGndTrk(d)

Save the wind data at this distance.

GenerateWptWindProfile(d, TemporaryWindProfile)

Find the position in the trajectory to insert the new TCP.

k = Testindex + 1

fini = false

while (fini = false)

if ((k > index number of the first TCP) or (DTG < d)) fini = true
elsek=Fk+ 1

InsertTcp(k)

TepTyper = VTCP

VSegTyper = TOD DECELERATION

TurnTyper = NO TURN

DTGy =d

Altitudey = Altituderesimaex - (NmiToFeet * dx) * tangent(Altitude Crossing Anglei+1)

Altitude Crossing Angler = Altitude Crossing Angley+;
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CASk = Mach Transition CAS
Crossing CASy = Mach Transition CAS
Mach Segment, = false
Use the default CAS rate.
Crossing Rater, = 0.25 kt/sec
if (WptInTurn(k)) Ground Track, = ComputeGndTrk(k, d)
else Ground Tracky = OldGndTrk
Add the wind data to this new TCP.
Copy the wind data from TemporaryWindProfile to the wind data of TCPy
end of if (Valid = true)
else mark this as a fatal error condition
Change TOD Mach Value

The Change TOD Mach Value function changes the TOD Mach value if the descent Mach, Mach Descent
Mach, is different from the TOD Mach. This function is only invoked if the variable MachCasAtTod is
false. The function also will add any required, additional TCPs.

The calling program provides as input and retains the subsequent outputs for the following variables:
Todld, TodMach, and TodMachRate. The variable Todld is the name of the top-of-descent waypoint and is
initialized as a null string by the calling program. Since this function may overwrite the Mach and speed
change rate for an input waypoint, these variables allow the function to retain the original values for Mach
and speed change rate and to then reset these variables to their original values prior to recalculating new

values.

If the Mach value for the first TCP is not set, i.¢., the path does not start with a Mach segment, or there
1s no defined descent Mach, i.e., Mach Descent Mach = 0, the function terminates. Otherwise,

If the previous TOD data for an input waypoint have been changed, these data are restored to their
original values.

i = index number of the first TCP

The last designated Mach waypoint,
LastMachindex = index number of the first TCP
The first designated CAS waypoint,

FirstCaslndex = index number of the first TCP

42



TodIndex = index number of the first TCP
Find the Mach and CAS waypoints.
fini = false
i = index number of the first TCP
while ((i < index number of the last TCP) and (fini = false))
if (Crossing Mach; > 0) LastMachlndex = i
else if (Crossing CAS; > 0) then
FirstCaslndex = i
fini = true
i=i+1
Find the TOD waypoint and Mach.
fini = false
i = index number of the first TCP
while ((i <index number of the last TCP) and (fini = false))
if ((Altitude; < Altitudes,s: rcp) or (Crossing CAS; > 0)) then
if (Altitude; # Altitudessi rcp) TodlIndex =i - 1
else TodIndex =i
fini = true
else if (Crossing Mach; > 0) MachAtTod = Crossing Mach,;
i=i+1
If the vertical segment type has not been defined, mark this as the TOD.
if ((TodIndex > index number of the first TCP) and (VSegTyperoaax = NO TYPE))
VSegTyperoaar = TOD ALTITUDE

Check for errors. There cannot be a programmed descent Mach if there is a downstream Mach
restriction.

if ((LastMachlndex > Todlndex) or (FirstCaslndex < Todlndex)) mark this as a fatal error condition
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else

Save the Mach values for all input waypoints so that they may be reset on subsequent passes back
to their original input values.

if (TepTyperodmde: = INPUT) then
Todld = Idredimdex
TodMach = Crossing Machrodindex
TodMachRate = Crossing Raterodmdex
if (TepTypertoamdex = INPUT) and (Crossing Ratetodimdex > 0))
CAS Rate = Crossing Raterodimdex
else CAS Rate = 0.75 kt / sec (a default value)
The following is added to force a subsequent speed calculation.
Crossing Rateroamaex = CAS Rate
If the aircraft will slow during the descent, do the following:
if (MachAtTod > Mach Descent Mach) then
Overwrite the TOD Mach value.
Crossing Machtodmdex = Mach Descent Mach
else
This is a special case where the aircraft is accelerating to the descent Mach.

Invoke the secondary function DoTodAcceleration. This function is described in a subsequent
section.

DoTodAcceleration(Todldx, MachAtTod)
Crossing Machteamaex = MachAtTod
end of if (MachAtTod > Mach Descent Mach)
Compute Mach-to-CAS TCP

If a Mach-to-CAS transition is required, this function computes the Mach-to-CAS altitude and inserts a
Mach-to-CAS TCP. This function is only performed if the input data starts with a Mach Crossing Speed
for the first TCP. The function determines the appropriate Mach and CAS values, calculates the altitude
that these values are equal, and then determines the along-path distance where this altitude occurs on the
profile. Input into this function includes the variable MachCasAtTod. This variable is set in the function
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Meet Cruise CAS Restriction and indicates that, if true, the Mach-to-CAS transitions occurs at the TOD
point.

The following variables are initialized:
Mach Transition Altitude = 0
where this variable a part of the global path data.
The Mach Segment for each TCP is initialized to false.
for (i = index number of the first TCP; i <index number of the last TCP; i =i + 1)
Mach Segment; = false

Other local variables are initialized.

fini = false
First CAS =0
Last Mach = 0

CAS Constraint Flag = true

Mach Index = 0, where this variable is used to designate the last Mach waypoint.
Cas Index = -1, where this variable is used to designate the first CAS waypoint.
CAS Constraint Flag = true

If this is the special case where the TOD is the Mach-to-CAS transition point, insert the TCP here. This
special case is determined in the function Meet Cruise CAS Restriction.

if (MachCasAtTod) then

Find the TOD.

i = index number of the first TCP

while ((i < index number of the last TCP) and (fini = false))
if (VSegType; = TOD ALTITUDE) fini = true
elsei=1i+1

InsertTep(i+1)

Copy all of the data from TCP; into TCPi+;

Now set the data in TCP;:; to the updated values.
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VSegTypeir1 = MACH CAS
Crossing Machi+; = Mach Descent Mach
Crossing CASi+1 = Mach Transition CAS
Machi+; = Mach Descent Mach
CASi+1 = Mach Transition CAS
Use the default CAS rate if the current rate is 0.
if (Crossing Rate;+; = 0) Crossing Ratei+; = 0.25 kt/sec
Mach Transition Altitude = Altitude;+,
Set the Mach flag to true up to and including this point.
for (j = index number of the first TCP; j <=i+1; j++) Mach Segment; = true
end of if (MachCasAtTod)
else if (Crossing Machys; rcp > 0) then
Perform the standard test for the Mach / CAS transition point.
CAS Constraint Flag = false
i = index number of the first TCP
while ((i <= index number of the last TCP) and (fini = false))
if (Crossing Mach; > 0) then
Last Mach = Crossing Mach,;
Mach Index = i
else if (Crossing CAS; > 0) then
First CAS = Crossing CAS;
CAS Rate = Crossing Rate;
CAS Index =i
CAS Constraint Flag = true
fini = true
i=i+1
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end of while
if (Mach Transition CAS > 0) First CAS = Mach Transition CAS
if (CAS Constraint Flag) then

z = FindMachCasTransitionAltitude(First CAS, Last Mach)

Determine if the very first TCP is already below the Mach-to-CAS transition altitude and z is
greater or equal to 28,000 ft.

if ((Mach Index = 0) and (z > Altitudejs: rcp) and (z >= 28000 ft)) then
Change the first TCP to CAS, using the descent CAS value if it is valid.
if (Mach Transition CAS > 0.) Crossing CASprs: rcr = Mach Transition CAS
else Crossing CASjirsi rcp = First CAS
Set the entire speed profile to CAS.
fini = false
i = index number of the first TCP
while ((fini = false) and (i < (index number of the last TCP - 1)))
if (Crossing Mach; > 0) Crossing Mach; = 0
if (Crossing CAS; # 0) fini = true
Mach Transition Altitude = z
Mach Transition CAS = 0
Mach Transition Mach = 0
end of if ((Mach Index = 0)...
Otherwise, determine if there is a Mach / CAS transition error.
else if ((z > Altitudenach index) o (z < 18000 ft)) then
skip = false
Determine if the trajectory is already at a level altitude.
J = Mach Index

while ((j > index number of the first TCP) and (TcpType; # INPUT)) j =j - 1
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if (Altitude; = Altitudecas mdex) then
spd = MachToCas(Crossing Machwach index, Altitude;)
if (spd > Crossing CAScas index) then
Convert the Mach to a CAS crossing.
Crossing Mach; = Crossing Machuuch imdex
Crossing CAS; = spd
Crossing Rate; = Crossing Ratecus idex
Crossing Altitude; = Altitudecas index
if (Crossing Angle; = 0) then
if (Crossing Anglecus mdex # 0) Crossing Angle; = Crossing Anglecas mdex
else if (Crossing Anglewach mdex # 0) Crossing Angle; = Crossing Angleyach mdex
else Crossing Angle; = 2.4 degrees
end if (Crossing Angle; = 0)
VSegType; = MACH CAS
Mach; = Last Mach
CAS; = spd
Mach Transition Altitude = Altitude;
Mach Transition CAS = spd
for (k = index number of the last TCP; k <j; k++) Mach Segment, = true
skip = true
end of if (spd >= Crossing CAScas index)
end of if (Altitudej = Altitudecas mdex)
if (skip = false) Set an error indicating a bad Mach-to-CAS transition.
end of else if ((z > Altitudewmacn idex). ..
else

i = index of the first TCP + 1
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fini = false
while ((i < index of the last TCP) and (fini = false))

if (Altitude; > z) i =i + 1

else fini = true
Calculate the distance to Altitude;.
z2 = Altitude;.; - Altitude;
if(z2<=0)rz=20
else rz = (z - Altitude;) / z2
d =rz *(DTG:.; - DTG) + DTG;
GndTrk = GetTrajGndTrk(d)
Add the new TCP.
InsertTcp(i)
TepType; = VICP
VSegType; = MACH CAS
TurnType; = NO TURN
Crossing Mach; = Last Mach
Crossing CAS; = First CAS
Crossing Rate; = CAS Rate
DTG, =d
Altitude; = z
Crossing Angle; =Altitude Crossing Angle;+;
Ground Track; = GndTrk
Mach; = Last Mach
CAS; = First CAS
Mach Transition Altitude = z

Mach Transition CAS = First CAS
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Compute and add the wind data at distance d along the path to the data of TCP..
GenerateWptWindProfile(DTG;, TCP))
Set the Mach flag for these TCPs.
for (j = index number of the first TCP; j < i; j++) Mach Segment; = true
end of else
end of if (CAS Constraint Flag)
else
There are only Mach segments, set the Mach flags to true.

for (j = index number of the first TCP; j < index number of the last TCP; j++)
Mach Segment; = true

if (Mach Transition Mach = 0) and (Crossing Machiss: rcp > 0))
Mach Transition Mach = Crossing Machi.s rcp
end of else if (Crossing Machys; rcp > 0)
Compute Altitude / CAS Restriction TCP
If an altitude / CAS restriction is required, the Compute Altitude / CAS Restriction TCP function
computes the altitude / CAS restriction point and inserts an altitude / CAS TCP. This is the (U.S.) point
where the trajectory transitions through 10,000 ft and a 250 kt restriction is required. This function is only
performed if the previously computed flag NeedlOKRestriction is true. The function determines the along-
path distance where this altitude / CAS restriction occurs on the profile. A TCP is then inserted into the
TCP list at this point. The restriction values are Descent Crossing Altitude and Descent Crossing CAS.
Find the first TCP that is below the Descent Crossing Altitude in the list.
i = index number of the first TCP
k=i
fini = false
while ((i <index number of the last TCP) and (fini = false))
if (Altitude; < Descent Crossing Altitude) then
k=i
fini = true

i=i+1
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Find the last CAS restriction prior to the first TCP below Descent Crossing Altitude.
i=k-1
fini = false
Last CAS =0
while ((i > index number of the first TCP) and (fini = false))
if (Crossing CAS; > 0) then
Last CAS = Crossing CAS;
fini = true
i=i-1
Determine if an altitude or CAS TCP is required. If it is, add it.
if ((Mach Segment, = true) and (Last CAS > Descent Crossing CAS)) then
A crossing restriction needs to be added.
i=k
Find the distance to this altitude.
x = Altitude,.; - Altitude;
if (x <0) ratio =0
else ratio = (Descent Crossing Altitude - Altitude;) / x
d = ratio * (DTG, - DTG;) + DTG;
Compute the ground track at distance d along the trajectory and save it as Saved Ground Track.
Saved Ground Track = GetTrajGndTrk(d)
Insert a new TCP at location 7 in the TCP list. The TCP is inserted between TCP;; and TCP; from
the original list. The function InsertTcp should be appropriate for the actual data structure
implementation of this function.
InsertTcp(i)
Mark this TCP as the altitude / CAS restriction TCP.
TepType; = VICP

if (VSegType; = no type) VSegType; = ALTITUDE CAS RESTRICTION
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TurnType; = NO TURN

Add the data for this new TCP.

Crossing Mach; = 0

Crossing CAS; = Descent Crossing CAS

Use a high value, arbitrary CAS rate.

CAS Rate; = 0.75 kt / sec

DTG =d

Altitude; = Descent Crossing Altitude

Crossing Angle; = Crossing Anglei+;

Set the Mach flag for TCP; to false

Ground Track; = Saved Ground Track

Mach; =0

CAS; = Descent Crossing CAS

Compute and add the wind data at distance d along the path to the data of T7CP;.

GenerateWptWindProfile(DTG;, TCP))
Add Final Deceleration

The Add Final deceleration function generates the appropriate speed TCP's for the case where either
the deceleration to the final approach speed is to begin at the Final Approach Fix or the deceleration is to
end at a specific altitude, Stable Altitude. This latter option is to support the case, which is typical for air
transport operations, where a stable approach is required at and below a specific altitude. This function
may only be invoked if the last TCP is the runway threshold and the input crossing speed is a valid CAS
value.
if ((Final Deceleration Option = AT FAF) or (Final Deceleration Option = STABLE)) then
The runway waypoint.

RunwayWpt = index number of the last TCP

The speed specified at the last TCP, which must be the runways, is the target speed for these options.
This speed should be the corrected final approach speed, CFAS.

CFAS = Crossing CASjasi rcp
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Find the waypoint index number for the waypoint used as the FAF. The default value is the input
waypoint just before the last TCP. If there exists a FAF waypoint named in the input data,
NamedFaf, then use that waypoint.
FafWpt = RunwayWpt - 1
if (NamedFaf) then
Find this waypoint by name.
found = false
k = FafWpt
while ((found = false) and (k > index number of the first TCP))
if (NamedFaf = Idy) found = true
elsek=Fk-1
if (found) FafWpt = k
The following is for the deceleration at the FAF.
if (Final Deceleration Option = AT FAF) then
delta = Crossing CASpapwp - CFAS
Find the time required to reach the final speed.
t = delta / Crossing Raterunwaywp: / (3600 sec/hr)
Find the FAF altitude.
if (Crossing Altituderamp > 0)
AltitudeFaf = Crossing Altituder.wy
else if (Crossing Anglerumvaywpe < 0)
There is no way to accurately calculate the altitude, use the runway altitude.
AltitudeFaf = Crossing Altituderumvaywpi
else

AltitudeFaf = Crossing Altituderumwaywp: +
(DTGrawp * NmiToFeet) * tangent(Crossing Anglerunwaywpy)

Calculate the ground speed at the runway.

InterpolateWindWptAltitude(Wind Profilerunwaywp, Altituderumwaymp, Ws, Wd, Td)
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GsRny = ComputeGndSpeedUsingTrack (Crossing CASrunwaywpi, GndTrackrunwaywps
AltitudeRunwaprt, WS; Wd) Td)

Calculate the ground speed at the FAF.
InterpolateWindWptAltitude(Wind Profilerqwpy, Altituderamwp, Ws, Wd, Td)

GsFaf = ComputeGndSpeedUsingTrack (Crossing CASrapmp, GndTrackramwpr,
Altituderamp, Ws, Wd, Td)

Calculate the distance from the FAF toward the runway where the final speed will be
reached.

x = (GsFaf + GsRny) /2 *t

Calculate the distance from the runway.

dtg = DTGrapwp: - x

Now find this distance in the TCP's.

TmpWpt = RunwayWpt

while (DTGrmpwp: < dtg) and (TmpWpt > index number of the first TCP))
TmpWpt = TmpWpt - 1

Now find the next downstream input waypoint.

while ((TcpTypermpwp: # INPUT) and (TmpWpt < RunwayWpt))
TmpWpt = TmpWpt + 1

GndTrk2 = GndTrackrmpwp

Using the just computed estimates, recalculate the DTG.

if (Crossing Anglerunwaywn < 0) Delta Z = 0

else Delta Z = (x * NmiToFeet) * tangent(Crossing Anglerumwaywp)

Altitude? = AltitudeFaf - Delta Z

Find the wind value between the two points.

InterpolateWindWptAltitude(Wind Profilerqwy, Altitude2, Spd0, Dir0, TDev0)

InterpolateWindWptAltitude(Wind Profilermpwp, Altitude2, Spdl, Dirl, TDevl)

if (dtg > 0) InterpolateWindAtRange(dtg, DTGrywp, Spd0, Dir0, TDev0,
0, Spdl, Dirl, TDevli, WindSpd, WindDir, TempDev)
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else
WindSpd = Spdl
WindDir = Dirl
TempDev = TDevl
Calculate the ground speed at the deceleration point.

DecelGs = ComputeGndSpeedUsingTrack(CFAS, GndTrk2, Altitude2, WindSpd,
WindDir, TempDev)

Calculate the average ground speed.
AvgGs = (GsFaf + DecelGs) / 2
Calculate the distance for the speed change.
x =AvgGs *t
Calculate the distance from the runway for this speed point.
dtg = DTGrapwp: - x
end of if (Final Deceleration Option = AT FAF)
else
Calculate the data for the stabilized altitude option.
StableAlt = Crossing Altituderunwaywp: + Stable Altitude
dtg = (Stable Altitude / NmiToFeet) / tangent(Crossing Altituderunwaywpr)
Find the waypoint prior to the stable altitude.
TmpWpt = RunwayWpt
while (DTG rumpwp: < dtg) and (TmpWpt > index number of the first TCP))
TmpWpt = TmpWpt - 1
Save the ground track at this point.
GndTrk2 = Ground Trackpmpwy:
Calculate the wind data at the two positions.
InterpolateWindWptAltitude(Wind Profilerarwy, StableAlt, Spd0, Dir0, TDev()

InterpolateWindWptAltitude(Wind Profilermywpy, StableAlt, Spdl, Dirl, TDevl)
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Interpolate the winds between the two waypoints.

if (dtg > 0) InterpolateWindAtRange(dtg, DTGrywp, Spd0, Dir0, TDev0,
0, Spdl, Dirl, TDevl, WindSpd, WindDir, TempDev)

else
WindSpd = Spd1
WindDir = Dirl
TempDev = TDevl
Calculate the ground speed at the deceleration point.

DecelGs = ComputeGndSpeedUsingTrack(CFAS, GndTrk2, StableAlt, WindSpd,
WindDir, TempDev)

end of else { Calculate the data for the stabilized altitude option }

Add the appropriate speed TCP if its position is between the FAF and the runway and the CFAS is
slower than the speed at the FAF.

if ((dtg > 0) and (dtg < DTGrywp) and (Crossing CASrawp: > CFAS)) then
Save the original ground track value at this distance.
GndTrk = GetTrajGndTrk(dtg)
Find the position in the TCP list to insert this waypoint.
i = RunwayWpt
while ((DTG; < dtg) and (i > index number of the first TCP)) i =i - 1
Define the correct insertion point.
i=i+1
InsertTcp(i)
TepType; = VICP
if (VSegType; = NO TYPE) VSegType: = FINAL SPEED
TurnType; = NO TURN
Crossing Mach; = 0.

Crossing CAS; = Crossing CASrunwaywp
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Crossing Rate; = Crossing Raterunwaywp:
DTG; = dtg
Calculate the altitude at this point.
if (DTG - DTGi+)) <0)x =0
elsex = (DTG; - DTGi+1) / (DTG;-1 - DTG+ 1)
Altitude; = x * Altitude;.; + (1 - x) * Altitude; + |
Mach Segment; = false
Crossing Angle; = Crossing Angle; + |
Ground Track; = GndTrk
Ground Speed; = DecelGs
Mach; =0
CAS; = Crossing CAS;
Compute and add the wind data at the new TCP's DTG.
GenerateWptWindProfile(DTG;, TCP))
end of adding the TCP
else mark this as a fatal error condition
end of if ((Final Deceleration Option = AT FAF) or (Final Deceleration Option = STABLE))
Add Waypoint at 6.25 nmi
The Add Waypoint at 6.25 nmi function generates a special waypoint at 6.25 nmi before the landing
threshold of the runway. This function is invoked if the input variable AddMopsRWY625 is true. This
capability to support this special waypoint at 6.25 nmi before the threshold, along with associated
crossing altitude and speed conditions, is a requirement of the RTCA Minimum Operational Performance
Standards (MOPS) for Flight-deck Interval Management (FIM) (ref. 34). This function may only be
invoked if the last TCP is the runway threshold and the input crossing speed is a valid CAS value.
if (AddMopsRWY625 and (Crossing CASys rcp > 0)) then
error = false
LastNum = index number of the last TCP

Determine where the 6.25 nmi needs to be placed in the TCP list.

found = false
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il = LastNum

while ((found = false) and (il > index number of the first TCP))
Find the named waypoint at-or-before 6.25 nm in the TCP records.
if (TepTypei- 1 = INPUT) and (DTG, ; > 6.25 nmi)) found = true
il =il -1

if (found = false) error = true

Find the upstream waypoint with a speed constraint.

j=il

found?2 = false

while ((found?2 = false) and (j > index number of the first TCP))
if ((TepType; = INPUT) and (Crossing CAS; > 0)) found?2 = true
elsej=j-1

if (found2 = false) error = true

spd = Crossing CAS;

The MOPS requires that the crossing speed cannot be faster than 170 kt.

if spd > 170 kt) spd = 170 kt

Find the downstream CAS rate.

j=il +1

found?2 = false

while ((found2 = false) and (j < index number of the last TCP))
if (TepType; = INPUT) and (Crossing CAS; > 0)) found?2 = true
elsej=j+1

if (found?2 = false) error = true

spdrate = Crossing Rate;

Set the rate to a minimum of 0.75 kt / sec.

if (spdrate < 0.75 kt /sec) spdrate = 0.75 kt / sec
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Find the downstream descent data.
j=il +1
found? = false
while ((found2 = false) and (j < index number of the last TCP))
if (TepType; = INPUT) and (Crossing Altitude; > 0)) found2 = true
elsej=j+1
if (found2 = false) error = true
This point needs to be crossed at an altitude of at least 2000 ft above the runway altitude.
alt = Crossing Altitudeias: rcp + 2000 ft
if (alt < Crossing Altitude)) then
alt = Crossing Altitude;
angle = Crossing Angle;
else
angle = Crossing Angle;
if (angle < Crossing Angleis rcp) angle = Crossing Angleius rcp
Check the actual calculated altitude.
z = alt - Crossing Altitude;
if (z> 0) then
d = 6.25 nmi - DTG,
if (d > 0) then
a = arctangent(z, NmiToFeet * d)
if (a > angle) angle = a
Find the waypoint after this in the input waypoint data.
found?2 = false
j1 = index number of the last TCP

while ((found = false) and (j1 > index number of the first TCP))
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if (Id;; = Id;;) found2 = true
elsejl =jl-1
if (found = false) error = true
Find the next named waypoint after 6.25 nm in the input data.
jo=jl
found?2 = false
i0 = index number of the last TCP
while ((found2 = false) and (i0 > index number of the first TCP))
if (TepTypein = INPUT) and (Idjy = Idig)) found?2 = true
elseil =i0- 1
if (found?2 = false) error = true
If there are no errors, insert the 6.25 nmi point.
if (error= false) then
GndTrk = GetTrajGndTrk(6.25 nmi)
Find the position to insert this waypoint.
i = index number of the last TCP
while (DTG; < 6.25 nmi) and (i > index number of the first TCP)) i =i - 1
The correct insertion point is the next downstream point.
i=i+1
InsertTcp(i)
TepType; = VICP
VSegType; = RUNWAY625
TurnType; = NO TURN
Crossing Mach; = 0
Crossing CAS; = spd

Crossing Rate; = spdrate
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DTG; = 6.25 nmi

Altitude; = alt

Crossing Altitude; = alt

Mach Segment; = false

Crossing Angle; = angle

Ground Track; = GndTrk

Mach; =0

CAS; = Crossing CAS;

Add the wind data at this distance.
GenerateWptWindProfile(DTG,, TCP;)
InterpolateWindWptAltitude(Wind Profile;, Crossing Altitude,, WindSpd, WindDir, TempDev)

Ground Speed; = ComputeGndSpeedUsingTrack(Crossing CAS;, Ground Track;
Crossing Altitude;, WindSpd, WindDir, TempDev)

If there is a programmed deceleration at the original FAF and the FAF is farther from the
runway than 6.25 nmi, remove the previously computed final deceleration point.

if ((Final Deceleration Option = AT FAF) or (Final Deceleration Option = STABLE)) then

Find the index number for the FAF. Initialize the index to an invalid number, -1.
FafWptNum = -1
Is this the special case with a named FAF, NamedFaf, in the input?
if (NamedFaf) then

Find this waypoint by name.

found = false

k = index number of the last TCP

while ((found = false) and (k > index number of the first TCP))

if (NamedFaf = Idy) then
found = true

FafWptNum = k
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elsek=Fk-1
else
FafWptNum = index number of the last TCP - 1

while ((FafWptNum > index number of the first TCP) and
(TepTyperamwpivum # INPUT))

FafWptNum = FafWptNum - 1
found? = false
i = index number of the last TCP

while ((found2 = false) and (FafWptNum > index number of the first TCP) and
(i > index number of the first TCP))

if (VSegType; = FINAL SPEED) found?2 = true
elsei=i-1
if ((found?2 = true) and (DTGrywpvum > 6.25 nmi)) RemoveWaypoint(i)

where the RemoveWaypoint function simply deletes the TCP at the index i.

end of if (error= false)

else mark this as a fatal error condition

Compute TCP Speeds

The Compute TCP Speeds function is similar to Compute TCP Altitudes in its design. Beginning with
the last waypoint, this function computes the Mach or CAS at each previous TCP and inserts any additional
speed TCPs that may be required to denote a change in the speed profile. The function uses the current
speed constraint, searches backward for the previous constraint, and then computes the distance required to
meet this previous constraint. The speeds for all of the TCPs within this distance are computed and added
to the data for the TCPs. If the along-path distance to meet the previous constraint is not at a TCP, a new
speed VTCP is inserted at this distance. This function invokes two secondary functions, described in the
subsequent text, with the invocation dependent on the constraint speed, whether it is a Mach or a CAS

value. This function is performed in the following steps:

The speed of the first TCP is set to its crossing speed.

if (Crossing Machgrs rcp > 0) then

else

Mach givsi rcp = Crossing Machys rcp

CASﬁm Tcp = MachToCas(Machﬁm CcP, Altitudeﬁrs, TCP)
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CAS first rcp = Crossing CASprse Tcp
MaChﬁ"S’ TCP = CaSTOMaCAh(CASﬁrst CPs Altl.tude_ﬁm, TCP)

Set the current constraint index number, cc, equal to the index number of the last TCP, which is typically
the runway threshold,

cc = index number of the last TCP
A flag signifying that Mach segment computation has begun is initially set to false,
Doing Mach = false
Check for special case where there are no CAS segments.
if ((Crossing CASc. = 0) and (Crossing Mach.. > 0.0)) then
CAScc = MachToCas(Crossing Mache., Crossing Altitude..)
Mach.. = Crossing Mache.
DoingMach = true
else CAS.. = Crossing CAS,.
while (cc > index number of the first TCP)
Set the Mach flag if the current TCP is the Mach-to-CAS transition point.
if (TCP.. = Mach Transition CAS) Doing Mach = true
if (Doing Mach) ComputeTcpMach(cc)
else ComputeTcpCas(cc)
end of while cc > index number of the first TCP
Compute Secondary Speeds

The Compute Secondary Speeds function adds the Mach values to CAS TCPs, the CAS values to Mach
TCPs, and the ground speed values to all TCPs. This function is performed in the following steps:

Doing Mach = false
If the last TCP input speed is defined as Mach, set the Mach flag to true.
if (Crossing Machius: rcp > 0) DoingMach = true

Working backwards from the runway, compute the relevant speeds.
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for (i = index number of the last TCP; i > index number of the first TCP; i =i- 1)
Set the flag if the current TCP is the Mach-to-CAS transition point.
if (VSegType; = MACH CAS) Doing Mach = true
if (Doing Mach) Cas; = MachToCas(Mach, Altitude;)
else Mach; = CasToMach(Cas,;, Altitude;)
Compute the ground track.
if (i = index number of the first TCP) track = Ground Track;
else if (WptInTurn(i) or (TcpType; = END TURN)) track = Ground Track;
else track = Ground Tracki.
Compute the ground speed. This also requires the computation of the wind at this point.

InterpolateWindWptAltitude(Wind Profile;, Altitude;, Wind Speed, Wind Direction,
Temperature Deviation)

Ground Speed; = ComputeGndSpeedUsingTrack (Cas,, track, Altitude;, Wind Speed,
Wind Direction, Temperature Deviation)

end of for (i = index number of the last TCP; i > index number of the first TCP; i =i- 1)
Compute Turn Data

The Compute Turn Data function computes the turn data for each turn waypoint and modifies the
associated waypoint's turn data sub-record. This function performs as follows:

KtsToFps = 1.69

Nominal Bank Angle = 22°

index = index number of the first TCP + 1

while (index < index number of the last TCP)
Find the next input waypoint with a turn.

while ((index < index number of the last TCP) and ((TcpTypeiniex # INPUT) or (WptInTurn(index)
= false))) index = index + 1

If there are no errors and there is a turn of more than 3-degrees, compute the turn data.
if (index < index number of the last TCP) then

Find the start of the turn.
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i =index -1

while (TepTypei # BEGIN TURN) i =i - 1

start =i

The following are all approximations and are based on a general, constant radius turn.

The start of turn to the midpoint data is as follows, noting that the ground speeds for all points
must be valid at this point.

The overall distance d for this part of the turn is,

d = DTGyare - DTGindex

The special case with 0 distance between the points is,

if (d < 0) AvgGsFirstHalf = (Ground Speedsa: + Ground Speedinde) / 2
else

The overall average ground speed is computed as follows, noting that it is the sum of
segment distance / overall distance * average segment ground speed.

AvgGsFirstHalf = 0
Jor (j = start; j < (index - 1); j =j + 1)
dx = DTG; - DTGj+;

AvgGsFirstHalf = AvgGsFirstHalf + (dx / d)
* (Ground Speed; + Ground Speed;+;) / 2

Now, find the end of the turn.

i =index + 1

while (TcpTypei # END TURN) i =i + 1

end =i

Now, find the midpoint to the end of the turn.

The overall distance for this part of the turn is,

d = DTGindex - DTGena

Test for the special case, 0 distance between the points.

if (d < 0) AvgGsLastHalf = (Ground Speedingex + Ground Speedenq) / 2
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else

Compute the overall average ground speed noting that it is the sum of the segment
distances / overall distance * average segment ground speed.

AvgGsLastHalf = 0
for (j =index;j<(end-1);j=j+1)
dx =DTGj - DTGj+;
AvgGsLastHalf = AvgGsLastHalf + (dx / d) * (Ground Speed; + Ground Speed;+;) / 2
end of for (j = index; j <(end-1);j=j+ 1)
end of else if (d < 0)
Sfull turn = DeltaAngle(Ground Tracksar, Ground Tracken)
half turn = full turn /2
Compute the outputs from the average ground speed values.
Average Ground Speed = (AvgGsFirstHalf + AvgGsLastHalf) / 2
Save the ground speed data in the turn data for this waypoint.
Turn Data Average Ground Speediniex = Average Ground Speed

Compute the turn radius and associated data. This set of calculations is not performed if the
waypoint is a special, RF center-of-turn turn waypoint.

if (TurnType; # RF TURN CENTER) then

The general equation is turn rate = ¢ tan(bank angle) / v. If the bank angle is a constant,
turn rate = c0 / v. The Nominal Bank Angle = 22 degrees.

c0 =573 *32.2/KtsToFps * tangent(Nominal Bank Angle)
Test for a negative ground speed.
if (Average Ground Speed < ()) then
Turn Data Turn Timeingex = 0
Turn Data Turn RadiuSingex = 0
else

w = c0/ Average Ground Speed
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The time to make the turn is,
Turn Data Turn Timeingex = |full turn| / w
The turn radius is,

Turn Data Turn RadiuSinge: =
(57.3 * KtsToFps * Average Ground Speed) / (NmiToFeet * w)

The along-path distance for the turn is,
Turn Data Path Distanceindex = |full turn| * Turn Data Turn Radiusindex / 57.3
end of if (TurnType; # RF TURN CENTER)
else
These are the data for an RF turn. The along-path distance for the turn is,
Turn Data Path Distanceindex = |full turn| * Turn Data Turn RadiuSindex / 57.3
Calculate the time to make the turn.
Test for a negative ground speed.
if (Average Ground Speed < 0) Turn Data Turn Timeipgex = = 0
else

Turn Data Turn Timeingex =
(3600 sec/hr) * Turn Data Path Distanceinge. / Average Ground Speed

end of else if (TurnType; # RF TURN CENTER)

Save the turn data for the first half of the turn, denoted by the "1" in the variable name.
Turn Data Cas ingex = CASsiart

Turn Data Average Ground Speedliniex = AvgGsFirstHalf

Turn Data Tracklingex = Ground Tracksar

The Straight Distance values are the distances from the turn-entry TCP to the waypoint and
from the waypoint to the turn-exit TCP. See the example in figure 10.

Turn Data Straight Distancel ingex = Turn Data Turn Radius index * tangent(|half turn|)
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ICPy Straight Distancel;

v

T'CP; (input waypoint)

Path Distance?2,

TCP;_; (tun entry) "

Path Distancel, Straight Distance2;

half turn TCP; . (turn exit)

Center of turn, TCPl-"""

TCP; . 5
Turn Radlius;

Figure 10. Turn distances for waypoint;.

The Path Distance values are the along-the-path distances from the turn-entry TCP to a point

one-half way along the turn and from this point to the turn-exit TCP. See the example in

figure 10.

Turn Data Path Distancel jngex = |half turn| * Turn Data Turn RadiuSindex/ 57.3

Compute the midpoint waypoint data. This set of calculations is not performed if the
waypoint is a special, RF center-of-turn waypoint.

if (TurnType; # RF TURN CENTER) then
Test for a negative ground speed.
if (AvgGsFirstHalf < 0) Turn Data Turn Timelipgex = 0
else
w = c0/ AvgGsFirstHalf
Turn Data Turn Timel ingex = |half turn| / w
else
These are the data for an RF turn.

Turn Data Turn Timelngex = Turn Data Path Distancel ingex / AvgGsFirstHalf * (3600
sec/hr)

The data for the midpoint to the end of the turn, denoted by the "2" in the variable name, are
as follows:

Turn Data Cas2ingex = CASena
Turn Data Average Ground Speed2iniex = AvgGsLastHalf

Turn Data Track2ipgex = Ground Trackena
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The distances for the second half of the turn are the same as for the first, but their calculations
are recomputed here for clarity.

Turn Data Straight Distance2ingex = Turn Data Turn Radius index * tangent(|half turn|)
Turn Data Path Distance2ingex = |half turn| * Turn Data Turn Radiusindex / 57.3

Compute the data for the last half of the turn. Again, this set of calculations is not performed
if the waypoint is a special, RF center-of-turn waypoint.

if (TurnType; # RF TURN CENTER) then
Test for a negative ground speed.
if (AvgGsFirstHalf < 0) Turn Data Turn Time2ipgex = 0
else
w = c0/ AvgGsLastHalf
Turn Data Turn Time2ingex = |half turn| / w
else
These are the data for an RF turn.

Turn Data Turn Time2igex = Turn Data Path Distance2ingex / AvgGsLastHalf * (3600
sec/hr)

The DTG values are as follows:
DTGgars = DTGingex + Turn Data Path Distancel ingex
DTGeona = DT Gingex - Turn Data Path Distance2ngex

Since the turn waypoints have been moved, the wind data need to be updated for the new
locations.

if (TepTypesiars # INPUT) GenerateWptWindProfile(DTGyiar, TCPiiary)
if (TepTypeena # INPUT) GenerateWptWindProfile(DTGena, TCPeng)
end of if (index < index number of the last TCP)
index = index + 1
end of while (index < index number of the last TCP)
Test for Altitude / CAS Restriction Requirement

The Test for Altitude / CAS Restriction Requirement function determines if the addition of an altitude /
CAS restriction point is required. This is the (U.S.) point where the trajectory transitions through 10,000 ft
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and a 250 kt restriction is required. This function determines the value of the Needl0KRestriction flag. The
function can only be called after an initial, preliminary trajectory has been generated. The restriction values
are Descent Crossing Altitude and Descent Crossing CAS. If this function determines that the restriction is
required, then the function Compute Altitude / CAS Restriction TCP will generate the restriction TCP.

Needl0KRestriction = false
if ((Descent Crossing Altitude > 0) and (Descent Crossing CAS > 0)) ok = true
else ok = false
If the path does not start above 10,0001t, skip this routine.
if (ok and (Altitudeys: rcp > Descent Crossing Altitude)) then
Find the first point below Descent Crossing Altitude
fini = false
i = index number of the first TCP
while ((i <index number of the last TCP) and (fini = false))
if (Altitude; < Crossing Altitude) then
Find the distance to this altitude.
x = Altitude;.; - Altitude;
if (x <0) ratio =0
else ratio = (Descent Crossing Altitude - Altitude;) / x
s =ratio * (CASi.; - CAS;) + CAS;

if (s > (Descent Crossing Cas + 2 kt)) NeedlOKRestriction = true

fini = true
i=i+1
Update DTG Data

The Update DTG Data function is performed after the turn data have been updated and the VTCPs have
been deleted. Only input, turn-entry, and turn-exit TCPs should be in the list at this time. If the input test
flag, TestOnly, is true, then only the testing portions of this function are used.

if (TestOnly = false) DTGt rcp = 0

i = index number of the last TCP
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while (i > index number of the first TCP)
Determine if there is a turn at either end and adjust accordingly.
if (WptInTurn(i))
if (TestOnly = false) DTG;.; = DTG; + Turn Data Path Distancel;

The following is the difference between going directly from the waypoint to going along the
curved path.

PriorDistanceOffset = Turn Data Straight Distancel; - Turn Data Path Distancel;
else PriorDistanceOffset = 0
Find the next input waypoint.
n=i-1
while (TcpType, # INPUT) n = n - 1
if (WptInTurn(n))

The following is the difference between going directly from the waypoint to going along the
curved path.

DistanceOlffset = Turn Data Straight Distance2, - TurnData.PathDistance2,
The DTG to the input waypoint is then:

if (TestOnly = false) DTG, = Center to Center Distance; - PriorDistanceOffset -
DistanceOffset + DTG;

If the DistanceOffset is greater than Center to Center Distance;, then the turn is too big.
if (DistanceOlffset > Center to Center Distance;) mark this as a fatal error condition
The turn-exit DTG is then,
if (TestOnly = false) DTG,+; = DTG, - Turn Data Path Distance2,

else if (TestOnly = false) then
The next waypoint is not in a turn.
DTG, = Center to Center Distance; - PriorDistanceOffset + DTG;

i=n

end of while (i > index number of the first TCP)
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Find Linear Deceleration Segment DTG

This routine is used in the linear deceleration rate calculations to find the prior waypoint with a speed
constraint and, if the current trajectory is valid, find the DTG to this waypoint.

Find the next linear deceleration rate waypoint whose speed has not been calculated using the secondary
function FindNextLDRWaypoint, described in a subsequent section.

idx = FindNextLDRWaypoint()
if (idx > -1) then
LDR Obtained Distanceia = -1

Find the previous speed constraint using the secondary function LDRFindLastSpeedConstraint,
described in a subsequent section.

lastidx = LDRFindLastSpeedConstraint(idx)
LDR Base Distanceiq. = DTGlastia.
if ((Mach Segmentiq. = false) and (Mach Segmentiusiax = true)) then
fini = false
j=idx
while ((j > index number of first TCP) and (fini = false))
if (Mach Segment; = true) fini = true
elsej=j-1
lastspd = Cas;
else if (Mach Segmentidx = true) lastspd = Machiagiax
else lastspd = Casiasiiax
Now find where the previous speed constraint is obtained.
idx2 = LDRFindAcquiredSpeed(idx,lastspd)
LDR Obtained Distanceis: = DTGiax>

Delete VT CPs

The Delete VTCPs function deletes the altitude, speed, and Mach-to-CAS TCPs. The remaining TCPs
will only consist of input waypoints, turn-entry, and turn-exit TCPS. This function also removes any flags

that associate any remaining TCPs with a speed or altitude change, e.g., a waypoint marked as the 10,000
ft, 250 kt restriction.
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Check Turn Validity
The Check Turn Validity function is performed after the turn data have been updated and the VTCPs

have been deleted. Only input, turn-entry, and turn-exit TCPs should be in the list at this time. The function
simple checks that there are no turns within turns by examining the DTG wvalues. If the input flag,
LinearDecelerationFlag, is true, then a small overlap error of 200 ft is allowed. The variable
LinearDecelerationFlag is used to denote that speed calculations now include linear deceleration rate
estimations.

if (LinearDecelerationFlag = true) offset = 200/ NmiToFeet

else offset = 0

for (i = index number of the first TCP; i < index number of the last TCP; i =i + 1)

if (DTG, + offset) < DTGi+;) mark this as a fatal error condition

Restore the Crossing Angles

The Restore the Crossing Angles function simply replaces the current value for each waypoint's
crossing angle with the value that was saved in the function Save Selected Input Data.

Calculate Linear Deceleration Rates
This routine is used in the linear deceleration rate calculations to identify the current linear deceleration
waypoint and then apply the appropriate change to that waypoint's deceleration rate. Inputs into this routine

include the variable LDRPending, denoting the initial calculation for each linear deceleration segment.

Find the next linear deceleration rate waypoint whose speed has not been calculated using the secondary
function FindNextLDRWaypoint, described in a subsequent section.

idx = FindNextLDRWaypoint()

Determine if there is an error at this linear deceleration waypoint.

LdrRateError = false

OtherError = false

if (idx > -1)
The secondary function LDRRateCheck will return a value of true for the variable LdrRateError if
the current linear deceleration segment is not valid and will return a value of true for the variable
OtherError if a valid speed could not be calculated for any segment.

LDRRateCheck(idx, LDRPending, LdrRateError, OtherError)

If an incomplete or invalid calculation for a linear deceleration has been found and there are no other
speed calculation errors, calculate a new deceleration value.

if ((idx > 0) and (OtherError = false)) then

73



If in the previous calculation the linear deceleration speed adjustment is too small, try a larger
deceleration value.

if (LdrRateError) LDRAddRate(idx)

Otherwise, try a smaller deceleration value.

else LDRReduceRate(idx)
Recover the Initial Mach Segments

This function, Recover the Initial Mach Segments, attempts to recover the Mach portion of the trajectory

if the initial segments should be Mach but have been internally converted to CAS in the function Meet
Cruise CAS Restriction. This function uses the Mach value that was saved at the start of this program from
the first waypoint of the original route. This saved Mach value, First TCP Mach, is compared to the Mach
equivalent value of the CAS at the initial waypoints and if these Mach values are the same, these waypoints

are marked as Mach segments instead of CAS segments.

Only perform this function if the calculated trajectory does not start with a Mach segment but the
original route does start with a Mach value.

if ((Mach Segment;rs: rcp = false) and (First TCP Mach # 0)) then
if (Crossing CASpirsi rcp = 0) Mach = Crossing Machys rcp
else Mach = CasToMach(Crossing CASpirs rcp, Altitude firsi Tcp)

Determine if this value is close to the original Mach or if there is a different but valid cruise
Mach.

DoTest = false
if (Mach = First TCP Mach) DoTest = true
else if ((Mach >= 0.80 Mach) and (Altitudess; rcp >= 29000 ft)) then
Find the TOD, the speed needs to be the same as the starting speed.
fini = false
i = index number of the first TCP + 1
while ((i < (index number of the last TCP - 1)) and (fini = false))
DoTest = true
if (Altitude; # Altitudeyss: rcp) fini = true
else if (CAS; # CASjirsi Tcp) then

fini = true
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DoTest = false
i=i+1
end of else if ((Mach >= 0.80 Mach)...
if (DoTest) then
fini = false
i = index number of the first TCP
First Cas = Crossing CASprsi rcp
If there is no Mach transition altitude set, set the transition values.
if (Mach Transition Altitude = 0) then
Mach Descent Mach = First TCP Mach
Mach Transition Cas = First Cas
Mach Transition Altitude = Altitudesis: rcp
while ((i < (index number of the last TCP - 1)) and (fini = false))
Test that the CAS computed for the waypoint is the same as the First Cas, that except for
the first TCP that there is not speed crossing condition at the waypoint, and that the
altitude computed for the waypoint is the same as the altitude for the first TCP.
if ((Cas; = First Cas) and ((i = index number of the last TCP) or
((Crossing Mach; = 0) and (Crossing CAS; = 0))) and
(Altitude; = Crossing Altitudes,s: rcp)) then
If the previous conditions are true, set this waypoint as a Mach segment.
Mach Segment; = true
Change the speed crossing values for the first TCP.
if (Crossing CAS; > 0) then
Crossing CAS; = 0
Crossing Mach; = First TCP Mach
end of if (Cas; = First Cas)...)

else

fini = true
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if ((i > index number of the first TCP) and (VSegTypei.; = SPEED))
VSegTypei.r = MACH CAS
i=i+1
end of while ((i < (index number of the last TCP - 1)) and (fini = false))
end of if (DoTest)
end of if (Mach Segmenty,s: rcp = false) and (First TCP Mach # 0))

else if ((Mach Segment.g rcp = true) and (Mach Transition Mach == 0) and
(Mach Crossias: rcp > 0))

There are only Mach segments, make sure the transition Mach is valid.
Mach Transition Mach = Mach Crossius rcp
Insert CAS Descent VTCPs

This function inserts vertical TCPs between constant CAS descent waypoints to improve the TAS
estimation when using the data provided by this algorithm. This updating occurs at 3,000 ft intervals.

Update Altitude = 3000
Find the first CAS point.
j=0

while ((Mach Segment; = true) and (VSegType; # MACH CAS) and
(j < index number of the last TCP)) j =j + 1

for (i =], i < (index number of the last TCP - 1); i =i+ 1)
DeltaZ = Altitude; - Altitude; + ;
Update at 3000 ft intervals but skip the update if the waypoint is within 500 ft of the test altitude.
if (DeltaZ > (Update Altitude + 500)) and (Cas; = Cas; + 1)) then
z = Altitude; - Update Altitude
dx = DTG; - DTG; +
a = arctangent?2 (DeltaZ, NmiToFeet * dx)
d = DTG; - Update Altitude / tan(a) / NmiToFeet

Compute the ground track at distance d along the trajectory and save it as Saved Ground
Track.
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Saved Ground Track = GetTrajGndTrk(d)

k=i+1

Insert a new VTCP at location k in the TCP list. The VTCP is inserted between TCPy.; and
TCPy from the original list. The function InsertTcp should be appropriate for the actual data
structure implementation of this function.

InsertTep(k)

Update the TCP-type data in the new TCP.

TepTyper = VICP

VSegTyper = TAS ADJUSTMENT

TurnTyper = NO TURN

Update the crossing data in the new waypoint.

Crossing Mach, = 0

Crossing CASy =0

Crossing Rater = 0

CASi = CASi+1

DTGy =d

Altitudey, = z

Mach, = CasToMach(CASy, Altitudey)

Mach Segmenty = false

Crossing Angley = Crossing Angley+;

Ground Track, = Saved Ground Track

Compute and add the wind data at this waypoint.
GenerateWptWindProfile(DTGy, TCPy)

Compute the wind at the waypoint altitude and then waypoint's ground speed.
InterpolateWindWptAltitude(Wind Profilei, Altituder, Ws, Wd, Td)

Ground Speed, = ComputeGndSpeedUsingTrack(CASy, Ground Tracky.;, Altituder, Ws, Wd,
Td)
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Compute TCP Times

The function Compute TCP Times calculates the time to each TCP. The calculations begin at the runway
(the last TCP), working backwards, and compute the TTG to each TCP.

TTGlast rcp = 0

for (i = index number of the last TCP; i > index number of the first TCP; i =i- 1)
Average Ground Speed = (Ground Speed;.;+ Ground Speed;) / 2
x = DTG, - DTG;

Test for an error condition where the distance is less than 0. This error only occurs if the segment
ends overlap.

if (x < 0) then

Find the previous input waypoint in case it is needed in a later test. Also determine if this
previous waypoint is an RF turn point.

PreviousIsRf = false
fini = false
j=i-1
while (fini = false)
if j < index number of the first TCP) fini = true
else if (TcpType; = INPUT) and (TurnType; = RF TURN CENTER)) then
PreviousIsRf = true
fini = true
else if (TepType; = INPUT) fini = true
j=i-1
end of while (fini = false)

If the distance is close to 0, e.g., within 500 ft for a normal segment pair, set the distance to
the previous distance value and ignore the error.

if (x> (-500 ft / NmiToFeet)) then
DTG, = DTG;‘.]

x=0
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Allow a larger margin of error of 1500 ft for the beginning of an RF turn.

else if ((x >-1500 ft / NmiToFeet) and (TurnType; = TURN START) and
(Center Of Turn Latitude; # 0)) then

DTG, :DTGH
x=0

Allow a larger margin of error of 1500 ft if the end of the previous segment is the end of an
RF turn and it overlaps the start of another turn.

else if ((x >-1500 ft / NmiToFeet) and (TurnType; = TURN START) and
(i > index number of the first TCP) and (TurnType;.; = turn-exit) and
PreviousIsRf) then
Overwrite the previous end of turn data with the subsequent start of turn data.
DTG:i.; = DTG
Altitude;.; = Altitude;
CAS;.1= CAS;
Ground Speed,;.; = Ground Speed,;
Ground Tracki.; = Ground Track;
Machi.; = Mach;
Mach Segment;.; = Mach Segment;
x=0
else mark this as a fatal error condition
end of if (x < 0)
Delta Time = (3600 sec/hr) * x / Average Ground Speed
TTG:.; = TTG; + Delta Time
Compute TCP Latitude and Longitude Data

With the exception of the input waypoints, the Compute TCP Latitude and Longitude Data function
computes the latitude and longitude data for all of the TCPs.

In Turn = false
Last Base = index number of the first TCP

Next Input = index number of the first TCP
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Turn Index = index number of the first TCP
Turn is Clockwise = true
Turn Adjustment = 0
Base Latitude = Latitudeyas Base
Base Longitude = Longituderas Base
for (i = index number of the first TCP; i <index number of the last TCP; i =i + 1)
if (TecpType; = BEGIN TURN) then
Turn Adjustment = 0
InTurn = true
Find the major waypoint for this turn.
Next Input =i + 1

while ((TcpTypenex: impw # INPUT) and (Next Input < index number of the last TCP))
Next Input = Next Input + 1

Turn Index = Next Input

a = DeltaAngle(Ground Track;, Ground Tracknex mpu)
x = Turn Data Turn Radiustum mdex / cosine(a)

if (a > 0°) Turn Clockwise =true

else Turn Clockwise = false

if (Turn Clockwise) al = Ground Trackrurm mdex + 90°
else al = Ground Trackrur idex - 90°

Now compute the relative latitude and longitude values. The function RelativeLatLon is
described in a subsequent section.

RelativeLatLong(Latitudetum mdex, Longituderim mdaex, al, x), returning Center Latitude and
Center Longitude

end of if (TcpType; = BEGIN TURN)
if (In Turn) then

Turn Adjustment = 0
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if (Turn Clockwise) al = Ground Track; - 90°

else al = Ground Track; + 90°

if (TepType; = INPUT) then
Turn Data Center Latitudei = Center Latitude
Turn Data Center Longitudei = Center Longitude

RelativeLatLong(Center Latitude, Center Longitude, al, Turn Data Turn Radiusturn index),
returning Turn Data Latitude; and Turn Data Longitude;

end of if (TcpType; = INPUT)

else RelativeLatLon(Center Latitude, Center Longitude, al, Turn Data Turn Radiusnex ipu),
returning Latitude; and Longitude;

if (TecpType; = END TURN) then

Turn Adjustment = Turn Data Straight Distance2uem mdex -
Turn Data Path Distance2tum imdex

In Turn = false
Last Base = Next Input
Base Latitude = Latituderas pase
Base Longitude = Longituder st pase
end of if (In Turn)
else
if (TepType; = INPUT) then
Turn Adjustment = 0
Last Base =i
Base Latitude = Latitudeyas ase
Base Longitude = Longituder st pase
else

RelativeLatLong(Base Latitude, Base Longitude, Ground Track:.;, DTGrasi ase - DTGi +
Turn Adjustment), returning Latitude; and Longitude;

end of for (i = index number of the first TCP; i <index number of the last TCP; i =i + 1)
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Description of Secondary Functions
The secondary functions are listed in alphabetical order. Note that standard aeronautical functions, such

as CAS to Mach conversions, CasToMach, are not expanded in this document but may be found numerous
references, e.g., reference 35. It may also be of interest to include atmospheric temperature or temperature
deviation in the wind data input and calculate the temperature at the TCP crossing altitudes to improve the
calculation of the various speed terms.
AdjustAngle
The function AdjustAngle adjusts the angle a such that 0° > a > 360°.

x=a/360

i = truncate x to an integer

X=x-1

x =360 *x

if(x<0)x=360+x

a=x
BodDecelerationDistance
The function BodDecelerationDistance estimates the distance required for the special case of a deceleration
to a CAS restricted waypoint from the Mach-to-CAS transition. This function is invoked from
ComputeDescentAccelDecel, which passes in the index number for the bottom-of-descent (TOD) waypoint,
BodlIndex, the Mach transition to CAS altitude, Mach Transition Altitude, and the CAS at the Mach
transition to CAS, TransitionCas. The function returns the distance from the index point of the deceleration,
Distance.

Estimate the distance to the new Mach value. Begin by finding the time to do the deceleration.

t = (TransitionCas - Crossing CASgoaiax) / Crossing Rategodrax

Compute the wind speed and direction at the current altitude.

InterpolateWindWptAltitude(Wind Profile goaras, Altitude goarar, Ws, Wd, Td)

Calculate the ground track at the current point.

if (WptlnTurn(Bodldx)) track = Ground Trackgodiax-1

else track = Ground Trackgoars

Calculate the ground speed over this segment.

BodGs = ComputeGndSpeedUsingTrack(Crossing CASpoaws, track, Altitudesoaiax, Ws, Wd, Td)
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DescentGs = ComputeGndSpeedUsingTrack(TransitionCas, track, Mach Transition Altitude,
Ws, Wd, Td)

Calculate the average groundspeed, 4vgGS.
AvgGs = (BodGs + DescentGs) / 2
The distance estimate is AvgGs * ¢ .
Distance = AvgGs * t /(3600 sec/hr)
ComputeTodAcceleration
The ComputeTodAcceleration is for the special case where the descent Mach is higher than the cruise
Mach> This function generates the waypoint speeds between the TOD TCP and the VTCP where the
descent Mach is achieved. Inputs into this function include the TCP index value, Todldx, for the TOD TCP
and the TCP index value, Accelldx, for the VTCP that ends the descent acceleration.
Save the relevant speeds and deceleration value.
PriorSpd = Machroaiax
TestSpd = Crossing Machucceiix
TestRate = - CasToMach(Crossing CASroarax, Altitude scceirax)
k = Accelldx
while (k> (Todldx + 1))
Make an estimate of the distance required to meet the speed change.
Calculate the time to do the deceleration.
t = (PriorSpd - TestSpd) / TestRate
Compute the wind speed and direction at the current altitude.
InterpolateWindWptAltitude(Wind Profilei, Altituder, Ws, Wd, Td)
Save the groundtrack value.
if (WptInTurn(k)) track = Ground Track
else track = Ground Track.;
CurrentGs = ComputeGndSpeedUsingMachAndTrack(TestSpd, track, Altituder, Ws, Wd, Td)

Compute the wind speed and direction at the prior altitude.

InterpolateWindWptAltitude(Wind Profiler.., Altituder.;, Ws, Wd, Td)

83



Compute the groundspeed at the prior point.

PriorGs = ComputeGndSpeedUsingMachAndTrack(PriorSpd, Ground Track.1, Altitudey.;, W,
wd, Td)

Calculate the average groundspeed
AvgGs = (PriorGs + CurrentGs) / 2
The distance estimate (dx) is AvgGs * T.
dx = AvgGs * t /(3600 sec/hr)

Now recompute the distance required to meet the speed using the estimated distance dx from the
previous calculation. Begin by computing the altitude, 4/¢tD, at distance dx.

if (Altitudex > Altituder.;) AltD = Altitudey
else
AltD = dx * tan(Crossing Angley) + Altitudey
if (AltD > Altitudey.;) AltD = Altitudex
Calculate the deceleration value.
MRatel = - CasToMach(Crossing Rateacceiar, Altitudey)
MRate2 = - CasToMach(Crossing Ratecceiax, AltD)
TestRate = (MRatel + MRate2) /2
t = (PriorSpd - TestSpd) / TestRate
ift<0)t=20
dx = AvgGs * t /(3600 sec/hr)
Note that the previous time 't' for Cas is still valid.
x =DTGy + dx
Compute the winds at AltitudeD and at distance x.
GetWindAtAltitudeDistance(AltD, x, Ws2, Wd2, Td2)
Compute the track angle.
track2 = GetTrajGndTrk(x)

Compute the groundspeed at AltD.
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PriorGs = ComputeGndSpeedUsingMachAndTrack( PriorSpd, track2, AltD, Ws2, Wd2, Td2)
Calculate the average groundspeed, AvgGS.
AvgGs = (PriorGs + CurrentGs) / 2
The distance estimate, dx, is AvgGs * t.
dx = AvgGs * t /(3600 sec/hr)
If a waypoint exists prior to this distance, compute and insert its speed and calculate again.
if (DTGr1 < (DTG + dx)) then
Compute the speed at the waypoint using v*2 = v0"2 + 2ax to get v.
Begin by calculating the headwinds at the end point.
HeadWind2 = Ws2 * cos(Wd2 - Ground Trackx-1)
dx = DTGy, - DTGy
MRatel = CasToMach(Crossing Rateacceiia, Altituder)
MRate2 = CasToMach(Crossing Ratecceiiax, Altitudey.;)
TestRate = -(MRatel + MRate2) / 2

Mach.; = EstimateNextMach(TestSpd, CurrentGS, PriorSpd, HeadWind2, Altitude, dx,
TestRate, Td)

if (Machi-; < PriorSpd) Machy.; = PriorSpd
Check to determine if the constraint has been met.
if ((k-1) = Todldx) Machroaiax = Crossing Machrodras
TestSpd = Mach.
Mach Segmenty.; = true
Go to the next TCP.
k=k-1
end of if (DTGy.1 < (DTG + dx))
ComputeGndSpeedUsingMachAndTrack
The ComputeGndSpeedUsingMachAndTrack function computes a ground speed from track angle (versus

heading), track, Mach, Mach, altitude, Altitude, and wind data, Wind Speed, Wind Direction, and
Temperature Deviation.
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CAS = MachToCas(Mach, Altitude)

Ground Speed = ComputeGndSpeedUsingTrack(CAS, track, Altitude, Wind Speed, Wind Direction,
Temperature Deviation)

return Ground Speed

ComputeGndSpeedUsingTrack
The ComputeGndSpeedUsingTrack function computes a ground speed from track angle (versus

heading), track, CAS, CAS, altitude, Altitude, and wind data, Wind Speed, Wind Direction, and
Temperature.

b = DeltaAngle(track, Wind Direction)

if (CAS<0)r=0

else r = (Wind Speed / CasToTas Conversion(CAS, Altitude, Temperature)) * sine(b),

where CasToTas Conversion is a standard conversion routine from CAS to TAS. If no temperature
value is utilized in the input, then a standard temperature is assumed.

Limit the correction to something reasonable.

if(lr] > 0.8) r=0.38 *r/|r|

heading = track + arcsine(r)

a = DeltaAngle(heading, Wind Direction)

TAS = CasToTas Conversion(CAS, Altitude, Temperature)

Ground Speed = (Wind Speed’+ TAS” - 2 * Wind Speed * TAS * cosine(a))™’
ComputeGndTrk

The ComputeGndTrk function computes the ground track at the along-path distance equal to distance,

where distance must lie between TCP;.; and TCP;+;. It is assumed that the value for Ground Track; is invalid.

The function uses a linear interpolation based on D7G;i.; and DTG+, with the index value i input into the
function and where the distance, distance, must lie between these points.

d=DITG ;- DTG+
if (d <0) Ground Track = Ground Tracki.,
else
a = (1 - (distance - DTG+;) / d) * DeltaAngle(Ground Track..;, Ground Tracki+;)

Ground Track = Ground Track.; + a
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ComputeTcpCas

The index variable cc is passed into and out of the ComputeTcpCas function. Beginning with the last
waypoint, this function computes the CAS at each previous TCP and inserts any additional speed TCPs that
may be required to denote a change in the speed profile. The function uses the current speed constraint,
searches backward for the previous constraint, and then computes the distance required to meet this
previous constraint. The speeds for all of the TCPs within this distance are computed and added to the data
for the TCPs. If the along-path distance to meet the previous constraint is not at a TCP, a new speed VTCP
is inserted at this distance. Because there is no general closed form solution to compute distances to meet
the deceleration constraints, an iterative technique is used in this function. This function is performed in the
following steps:

While ((cc > index number of the first TCP) and (VSegType.c # MACH CAS))
Determine if the previous constraint cannot be met.
If (CAS.. > Crossing CAS..) then
If this is the last pass through the algorithm, mark this as a fatal error condition
CAS.. = Crossing CAS,.

Find the prior waypoint index number pc that has a CAS constraint, e.g., a crossing CAS
(Crossing CASpc # 0). This may not always be the previous (i.e., cc - 1) waypoint.

The initial condition is the previous TCP.
pc=cc-1
fini - false
while ((fini = false) and (pc > index number of the first TCP))
if (VSegType,. = MACH CAS) or (Crossing CASp. = 0) or
((pc > (index number of the last TCP - 1)) and
(VSegTypeye+1 = TOD DECELERATION))) fini = true
elsepc =pc-1

Save the previous crossing speed. Determine if there is no prior CAS crossing constraint because
it is a Mach segment.

if ((Crossing CASpe = 0) and (Crossing Machy. > 0))
PriorSpd = MachToCas(Crossing Machy., Altitudep.)
else Prior Speed = Crossing CASy.
Save the current crossing speed (7est Speed) at TCP,. and the deceleration rate (Test Rate) noting
that the first and last waypoints always have speed constraints and except for the first TCP, all

constrained speed points must have deceleration rates.

Test Speed = Crossing CAS..
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Test Rate = Crossing Ratec.

Compute all of the TCP speeds between the current TCP and the previous crossing waypoint.
k=cc

while (k > pc)

If the previous speed has already been reached, set the remaining TCP speeds to the previous
speed.

if (Prior Speed < Test Speed) then
for(k=k-1; k>pc,k=k-1)
CASi = Test Speed
Machi, = CasToMach(CAS, Altitudey)
Set the speeds at the last test point.
CASpe = Test Speed
if (Mach,. = 0) Machy,. = CasToMach(CAS)., Altitude,.)
else

Estimate the distance required to meet the crossing restriction using the winds at the
current altitude. This is a first-estimation.

Compute the time to do the deceleration.
t = (Prior Speed - Test Speed) / Test Rate
Compute the wind speed and direction at the current altitude.

InterpolateWindWptAltitude(Wind Profilex, Altituder, Wind Speedl, Wind Directionl,
Temperature Deviationl)

The ground track at the current point is,
if (WptinTurn(k)) Track = Ground Trackx
else Track = Ground Tracki.;

Current Ground Speed = ComputeGndSpeedUsingTrack(Test Speed, Track,
Altituder, Wind Speedl, Wind Directionl, Temperature Deviationl)

Compute the wind speed and direction at the prior altitude.
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InterpolateWindWptAltitude(Wind Profile.;, Altituder, Wind Speedl, Wind Directionl,
Temperature Deviationl)

The ground speed at the prior point.

Prior Ground Speed = ComputeGndSpeedUsingTrack(Prior Speed, GndTracki.1,
Altituder.;, Wind Speedl, Wind Directionl, Temperature Deviationl)

Average Ground Speed = (Prior Ground Speed + Current Ground Speed) / 2
The distance estimate, dx, is Average Ground Speed * t.
dx = Average Ground Speed * t / (3600 sec/hr)

Recalculate the distance required to meet the speed using the previous estimate distance
dx.

Begin by computing the altitude, A/tD, at distance dx.

if (Altitudey > Altitudey.;) AltD = Altitudey

else
AltD = (NmiToFeet * dx) * tangent(Crossing Angley) + Altitudex
if (AltD > Altituder.;) AltD = Altitudex

The new distance x is DTG; + dx.

x=DTGy+ dx

Compute the winds at 4/tD and distance x.

GetWindAtAltitudeDistance(AltD, x, Wind Speed?2, Wind Direction?2,
Temperature Deviation2)

The track angle at this point, with GetTrajGndTrk defined in this section:
Track2 = GetTrajGndTrk(x)
The ground speed at altitude 4/¢D is then,

Prior Ground Speed = ComputeGndSpeedUsing Track(Prior Speed, Track2, AltD,
Wind Speed2, Wind Direction2, Temperature Deviation2)

Average Ground Speed = (Prior Ground Speed + Current Ground Speed) / 2
dx = Average Ground Speed * t / (3600 sec/hr)
If there is a TCP prior to dx, compute and insert its speed.

If the distance is very close to the waypoint, just set the speed.
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if (DTG < (DTGy + dx)) then
Compute the speed at the waypoint using v = v¢* + 2ax to get v.
The headwind at the end point is,
HeadWind2 = Wind Speed?2 * cosine(Wind Direction2 - Ground Track-;)
dx = DTGy, - DTGy

The value of CASk.; is computed using function EstimateNextCas, described in this
section.

CASi.1 = EstimateNextCas(Test Speed, Current Ground Speed, false,
Prior Speed, Head Wind2, Altitudey, dx, Crossing Rate..,
Temperature Deviationl)

Determine if the constraint is met.

if (k-1) = pc) then

Determine the allowable crossing window, accounting for special conditions.

if (((pc + 1) < index number of the last TCP) and
(VSegType,. = MACH CAS))

CrossingWindow = 5
else CrossingWindow = 2

If this is the altitude CAS restriction and the calculated speed is below the
required crossing speed, then ignore this error.

if (VSegTypepc == ALTITUDE CAS RESTRICTION) and
(Caspe < Crossing CASpc))

ignore = true

else ignore = false

Was the crossing window speed met? If not, set this as an error.

if ((ignore = false) and (|CASyc - Crossing CASp| > CrossingWindow))
mark this as a fatal error condition

Always set the crossing exactly to the crossing speed.

CASpe = Crossing CASp.

Set the test speed to the computed speed.
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Test Speed = CASk.;
Back up the index counter to the next intermediate TCP.
k=k-1

end of if (DTG < (DTG + dx))

else

The constraint occurs between this TCP and the previous TCP. A new VTCP needs
to be added at this point.

The along path distance d where the VTCP is to be inserted is:

d =DTGy + dx

Save the ground track value at this distance.

Saved Ground Track = GetTrajGndTrk(d)

Insert a new VTCP at location & in the TCP list. The VTCP is inserted between
TCPr.; and TCPy from the original list. The function /nsertTcp should be appropriate
for the actual data structure implementation of this function.

InsertTcep(k)

Update the data for the new VTCP which is now TCP;.

TepTyper = VICP

if (VSegTyper = NO TYPE) VSegTyperx = SPEED

TurnTyper = NO TURN

DTGy =d

The altitude at this point is computed as follows, recalling that the new waypoint is
TCPx:

if (Altitudey+1 > Altitudey.;) Altituder = Altitudey.;

else Altitude, = (NmiToFeet * dx) * tangent(Crossing Anglei+;) + Altitudey+;

CASi = Prior Speed

Add the ground track data which must be computed if the new VTCP occurs within a
turn. The functions WptlnTurn and ComputeGndTrk are described in subsequent

sections.

if (WptInTurn(k)) Ground Track, = ComputeGndTrk(k, d)
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else Ground Track; = Saved Ground Track

Compute and add the wind data at distance d along the path to the data of TCP;.
GenerateWptWindProfile(d, TCPy)

Test Speed = Prior Speed

Since TCP, has now been added prior to pc, the current constraint counter cc needs
to be incremented by 1 to maintain its correct position in the list.

cc=cc+1
end of while k > pc.
Now go to the next altitude change segment on the profile.
cc=k
end of while cc > index number of the first TCP
ComputeTcpMach
The index variable cc is passed into and out of the ComputeTcpMach function. This function is similar
to ComputeTcpCas with the exception that the computed Mach rate will need to be recomputed with any
change of altitude. Beginning with the last Mach waypoint (the Mach waypoint that is closest to the runway
in terms of DTG), this function computes the Mach at each previous TCP and inserts any additional speed
TCPs that may be required to denote a change in the speed profile. The function uses the current speed
constraint, searches backward for the previous constraint, and then computes the distance required to meet
this previous constraint. The speeds for all of the TCPs within this distance are computed and added to the
data for the TCPs. If the along-path distance to meet the previous constraint is not at a TCP, a new speed
VTCEP is inserted at this distance. Because there is no general closed form solution to compute distances to
meet the deceleration constraints, an iterative technique is used in this function. This function is performed
in the following steps:
Initialize descent acceleration flag.
HadDescentAccelSegment = false
while (cc > index number of the first TCP)
Determine if the previous constraint cannot be met.
if (Mach.. > Crossing Mach.) then
Ignore some errors regarding the TOD speed.

if ((HadDescentAccelSegment = false) or (VSegTypec.. # TOD ALTITUDE)) then

mark this as a fatal error condition
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Insert a reasonable value for the Mach so that the calculations can continue.
Mach.. = Crossing Mache.
end of if (Mach.. > Crossing Mach.)

Find the prior waypoint index number pc that has a Mach constraint, e.g., a crossing Mach
(Crossing Machpc # 0). This may not always be the previous (i.e., cc - I) waypoint.

Initial condition is the previous TCP.

pc=cc-1

finished = false

if (VSegType,. = TOD ACCELERATION) Accelerating = true

else Accelerating = false

while ((fini = false) and (pc > index number of the first TCP))
if (VSegType,c = MACH CAS) fini = true

if ((pc > (index number of the last TCP - 1)) and
(VSegTypepe+1 = TOD DECELERATION) fini = true

if ((Accelerating - true) and (VSegType,. = TOD ALTITUDE)) fini = true
if (Crossing Ratey,. > 0) fini = true
if (fini = false) pc = pc - 1
end of while ((fini = false) and (pc > index number of the first TCP))
if (Accelerating = true)
ComputeTodAcceleration(pc, cc)
HadDescentAccelSegment = true
k =pc
If not accelerating, just perform the normal routine.
else
Save the previous crossing speed,
Prior Speed = Crossing Machy.

Handle the special case of a deceleration at the Mach /CAS transition.
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if ((AllowTodDeceleration = true) and (VSegType.. = MACH CAS) and
(Crossing Machc. = 0)) then

fini = false
k=cc-1
Test Speed = Mach
Find the last Mach value.
while ((fini = false) and (k > index number of the first TCP))
if (Crossing Machy > 0) then
fini = true
TestSpd = Machy
k=k-1
Crossing Mach.. = TestSpd

Set the deceleration value to a default rate of 0.25 kt/sec for a TOD deceleration to the
descent Mach.

TestRate = 0.25 kt/sec

end of if ((AllowTodDeceleration = true) and (VSegType.. = MACH CAS) and
(Crossing Machc. = 0)) then

else
if (VSegTypec.c = TOD ALTITUDE) and (Crossing Machs.. = 0)) TestSpd = Mach..
else TestSpd = Crossing Mache.
Convert the rate to a Mach value.
TestRate = CasToMach(Crossing Rate.., Altitude..)
k=cc
Compute all of the TCP speeds between the current TCP and the previous crossing waypoint.
k=cc
while (k > pc)

If the previous speed has already been reached, set the remaining TCP speeds to the
previous speed.
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if (Prior Speed < Test Speed) then
fork=k-1; k>pc, k=k-1)
Machy = Test Speed
CASy = MachToCas(Machy, Altitudey)
Mach Segmenty = true
Set the speeds at the last test point.
Mach,. = Test Speed
CAS,. = MachToCas(Mach,., Altitude,.)
end of if (Prior Speed < Test Speed) then
else

Estimate the distance required to meet the crossing restriction using the winds at the
current altitude. This is a first-estimation.

Compute the time to do the deceleration.
t = (Prior Speed - Test Speed) / Test Rate
Compute the wind speed and direction at the current altitude.

InterpolateWindWptAltitude(Wind Profilex, Altituder, Wind Speedl, Wind Directionl,
Temperature Deviationl)

The ground track at the current point is,
if (WptInTurn(k)) Track = Ground Tracki
else Track = Ground Tracki.;

Current Ground Speed = ComputeGndSpeedUsingMachAndTrack(Test Speed,
Track, Altituder, Wind Speedl, Wind Directionl, Temperature Deviationl)

Compute the wind speed and direction at the prior altitude.

InterpolateWindWptAltitude(Wind Profilex.., Altituder, Wind Speed|,
Wind Directionl, Temperature Deviationl)

The ground speed at the prior altitude and speed is,
Prior Ground Speed = ComputeGndSpeedUsingMachAndTrack(Prior Speed,

GndTrack.1, Altituder.;, Wind Speedl, Wind Directionl,
Temperature Deviationl)
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Average Ground Speed = (Prior Ground Speed + Current Ground Speed) / 2
The distance estimate, dx, is Average Ground Speed * t.
dx = Average Ground Speed * t / (3600 sec/hr)

Compute the distance required to meet the speed using the previous estimate distance
dx.

Begin by computing the altitude, A/tD, at distance dx.
if (Altitudey > Altitudey.;) AltD = Altitudey
else
AltD = (NmiToFeet * dx) * tangent(Crossing Angley) + Altitudex
Compute the average Mach rate.
MRatel = CasToMach(Crossing Rate.., Altitudey)
MRate2 = CasToMach(Crossing Rate.., AltD)
Test Rate = (MRatel + MRate2) /2
t = (Prior Speed - Test Speed) / Test Rate
The new distance x is DTG; + dx.
x =DTGy + dx
Compute the winds at 4/tD and distance x.

GetWindAtAltitudeDistance(AltD, x, Wind Speed?2, Wind Direction?2,
Temperature Deviation2)

The track angle at this point, with GetTrajGndTrk defined in this section, is:
Track2 = GetTrajGndTrk(x)
The ground speed at altitude A/¢D is then,

Prior Ground Speed = ComputeGndSpeedUsingMachAndTrack(Prior Speed,
Track2, AltD, Wind Speed2, Wind Direction2, Temperature Deviation2)

Average Ground Speed = (Prior Ground Speed + Current Ground Speed) / 2
dx = Average Ground Speed * t / (3600 sec/hr)

If there is a TCP prior to dx, compute and insert its speed.
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If the distance is very close to the waypoint, just set the speed.
if (DTG < (DTGy + dx)) then
Compute the speed at the waypoint using v> = vo? + 2ax to get v.
The headwind at the end point is,
HeadWind2 = Wind Speed?2 * cosine(Wind Direction2 - Ground Tracky.;)
dx = DTGy, - DTGy
Compute the average Mach rate.
MRatel = CasToMach(Crossing Rate.., Altitudey)
MRate2 = CasToMach(Crossing Rate.., Altitudey.;
Test Rate = (MRatel + MRate2) /2

The value of Machi; is computed using function EstimateNextMach, described in
this section.

Machi.; = EstimateNextMach(Test Speed, Current Ground Speed, Prior Speed,
Head Wind2, Altitude, dx, Test Rate)

Determine if the constraint is met.

if ((k-1) = pc) then
Was the crossing speed met within 0.002 Mach? If not, set this as an error.
if (IMachy. - Crossing Mach,.| > 0.002) mark this as a fatal error condition
Always set the crossing exactly to the crossing speed.
Mach,. = Crossing Machy.

Set the test speed to the computed speed.

Test Speed = Machy.

Mach Segmenty.; = true

Back up the index counter to the previous intermediate TCP.

k=k-1

end of if (DTGy.; < (DTG + dx))
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else

The constraint occurs between this TCP and the previous TCP. A new VTCP
needs to be added at this point.

The along path distance d where the VTCP is to be inserted is:

d = DTGy + dx

Save the ground track value at this distance.

Saved Ground Track = GetTrajGndTrk(d)

Insert a new VTCP at location & in the TCP list. The VTCP is inserted between
TCPr.; and TCP;. from the original list. The function InsertTcp should be
appropriate for the actual data structure implementation of this function.
InsertTcep(k)

Update the data for the new VTCP which is now TCP;.

TepTyper = VTCP

if (VSegTyperx = NO TYPE) VSegTyperx = SPEED

TurnTyper = NO TURN

DTGy =d

The altitude at this point is computed as follows, recalling that the new waypoint
is TCPy:

if (Altitudey+1 > Altitudey.;) Altituder = Altitudey.;

else Altitude, = (NmiToFeet * dx) * tangent(Crossing Angler+;) + Altitudey+,
Machi = Prior Speed

Mach Segmenty = true

Add the ground track data which must be computed if the new VTCP occurs

within a turn. The functions WptInTurn and ComputeGndTrk are described in
subsequent sections.

if (WptInTurn(k)) Ground Track, = ComputeGndTrk(k, d)

else Ground Tracky = Saved Ground Track

Compute and add the wind data at distance d along the path to the data of TCPx.

GenerateWptWindProfile(d, TCPy)
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Test Speed = Prior Speed

Since TCPy, has now been added prior to pc, the current constraint counter cc
needs to be incremented by 1 to maintain its correct position in the list.

cc=cc+ 1
end of while (k > pc)
end of else (not accelerating)
Now go to the next altitude change segment on the profile.
cc=k
end of while cc > index number of the first TCP.
Make sure that the waypoints get marked correctly if there are no CAS waypoints.
if ((begin > index number of the first TCP) and (cc = index number of the first TCP)) then
for (k = index number of the first TCP; k < begin; k++)
Mach Segmenty = true
DeltaAngle

The DeltaAngle function returns angle a, the difference between Anglel and Angle2. The returned value
may be negative, i.e., -180 degrees > DeltaAngle > 180 degrees.

a = Angle2 - Anglel

Adjust a such that 0° > a > 360°.

AdjustAngle(a)

if (a>180°) a =a- 360°

return a
DoTodAcceleration

The DoTodAcceleration function handles the special case when there is an acceleration to the descent

Mach at the top-of-descent. This function is invoked from Add Descent Mach Waypoint, which passes in
the index number for the TOD waypoint, Todlndex, and the Mach value at the TOD, MachAtTod. The
function will insert the Mach acceleration point into the waypoint list if a valid acceleration point can be

found.

Make an initial estimate of the distance to the new Mach value. The function
TodAccelerationDistance returns the values Valid, k, and dx.

TodAccelerationDistance(Todldx, MachAtTod, Mach Descent Mach, Valid, k, dx)
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if (Valid) then
Add the VTCP for the end of the TOD acceleration.
d = DTGroarax - dx
The original ground track will be needed for the new TCP, so save it.
OldGroundTrack = GetTrajGndTrk(d)
Save the wind data at this distance as a temporary TCP.
GenerateWptWindProfile(d, TemporaryTcp)
The new waypoint is downstream of the current value of 4.
k=k+1
InsertTcep(k)
Note that TCP; is the newly created TCP.
TepTyper = VTCP
TurnTyper = NO TURN

If the new waypoint is not already marked as a special vertical type, mark it as a top-of-descent
acceleration point.

if (VSegTyper = NONE) VSegTyper = TOD ACCELERATION

DIGr=d

Calculate the altitude for the new TCP.

Altitudey = Altituderoai - (NmiToFeet * dx) * tangent(Crossing Anglei+1)
Mach, = Mach Descent Mach

Mach Crossi = Mach Descent Mach

Mach Segment = true

Set the Crossing Rate to the default value of 0.75.

Crossing Rater, = 0.75 kt/sec

Add the appropriate ground track value.

if (WptinTurn(k)) Ground Tracky = ComputeGndTrk(k, d)

100



else Ground Track, = OldGroundTrack
Copy the wind data from TemporaryTcp into TCP,.
end of if (Valid)

else mark this as an error for being unable to accelerate to the descent Mach value. Note that this is
not a fatal error.

EstimateNextCas
EstimateNextCas is an iterative function to estimate the CAS value, CAS, at the next TCP. Note that there

is no closed-form solution for this calculation of CAS. The input variable names described in this function
are from the calling routine and are, in order, the target CAS value, Current CAS; the ground speed at the
estimation starting point, Current Ground Speed; an estimation limiting flag, No Limit Flag; the CAS at the
estimation starting point, Prior CAS; the head wind at the estimation starting point, Head Wind; the altitude
at the estimation starting point, Altitude; the distance from the estimation starting point to the point where
the CAS is to be estimated, Distance; the deceleration rate to be used in this estimation, CAS Rate; and the
temperature deviation at the end point, 7d. Also, the input deceleration value must be greater than 0, CAS
Rate > 0. The function returns the estimated CAS value.

Guess CAS = Current CAS

Set up a condition to get at least one pass.

d =-10 * Distance

size = 1.01 * (Prior CAS - Guess CAS)

count = ()

if (Distance > 0) and (CAS Rate > 0)) then

Iterate a solution. The counter count is used to terminate the iteration if the distance estimation
does reach a solution within 0.001 nmi.

while ((|Distance - d| > 0.001) and (count < 10))
if (Distance > d) Guess CAS = Guess CAS - size
else Guess CAS = Guess CAS + size
size = size /2
The estimated time t to reach this speed,
t = (Guess CAS - Current CAS) / CAS Rate
The new ground speed,

Gs2 = CasToTas Conversion(Guess CAS, Altitude, Td) - Head Wind
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d = ((Current Ground Speed + Gs2) /2) * (¢t / (3600 sec/hr))
count = count + 1
end of the while loop
Limit the computed CAS, if necessary.
if ((NoLimit = false) and (Guess CAS > Prior CAS)) Guess CAS = Prior CAS
return Guess CAS
EstimateNextMach
EstimateNextMach is an iterative function to estimate the Mach value, Mach, at the next TCP. Note that
there is no closed-form solution for this calculation of value. The input variable names described in this
function are from the calling routine and are, in order, the target Mach value, Current Mach; the ground
speed at the estimation starting point, Current Ground Speed; an estimation limiting flag, No Limit Flag;
the Mach at the estimation starting point, Prior Mach; the head wind at the estimation starting point, Head
Wind, the altitude at the estimation starting point, Altitude; the distance from the estimation starting point
to the point where the Mach is to be estimated, Distance; the deceleration rate, in Mach, to be used in this
estimation, Mach Rate; and the temperature deviation at the end point, 7d. Also, the input deceleration
value must be greater than 0, Mach Rate > 0. The function returns the estimated Mach value.
Mach = Current Mach
Set up a condition to get at least one pass.
d=-10*dx
size = 1.01 * (Prior Mach - Current Mach)
count = ()

if ((dx > 0) and (Mach Rate > ())) then

Iterate a solution. The counter count is used to terminate the iteration if the distance estimation
does reach a solution within 0.001 nmi.

while ((|d - dx| > 0.001) and (count < 10))
if (d > dx) Mach = Mach - size
else Mach = Mach + size
size = size /2
The estimated time t to reach this speed,

t = (Mach - Current Mach) / Mach Rate
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The new ground speed,
CAS = MachToCas(Mach, Altitude)
Gs2 = CasToTas Conversion(CAS, Altitude, Td) - Head Wind
d = ((Current Ground Speed + Gs2)/2) * (t / (3600 sec/hr))
count = count + 1
end of the while loop
Limit the computed Mach, if necessary.
if (Mach > Prior Mach) Mach = Prior Mach
return Mach
FindNextLDRWaypoint
This routine is used in the linear deceleration rate calculations to return the waypoint index number for
the first linear deceleration waypoint where the deceleration value has not been calculated. If no such
waypoint exists, the routine returns a value of -1.
index = -1
i = index number of first TCP
found = false
Find the index for the next linear deceleration value that hasn't been evaluated.
while ((i < index number of last TCP) and (found = false))
if (LDR Flag; = true) and (LDR Finished; = false) and (LDR Pass Count; < 4)) then
found = true
index =i
elsei=i+1
end of while ((i < index number of last TCP) and (found = false))
return index
GenerateWptWindProfile
The function GenerateWptWindProfile is used to compute new wind profile data. This function is a

double-linear interpolation using the wind data from the two bounding input waypoints to compute the wind
profile for a new VTCP, TCP;. The interpolations are between the wind altitudes from the input data and
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the ratio of the distance d at a point between TCP;.; and TCP; and the distance between TCP;.; and TCP;.
E.g.,

— Find the two bounding input waypoints, 7CP;.; and TCP;, between which d lies, e.g., TCP.; > d > TCP:.

— Using the altitudes from the wind profile of 7CP;, compute and temporarily save the wind data at these
altitudes using the wind data from TCP;; (e.g., Wind Speedremporary, ninder)-

— Compute the wind speed, wind direction, and temperature deviation for each altitude using the ratio
of the distances. Assuming that the difference between DTG;.; and DTG; # 0, and that DTG..; > DTG.:.

r=(DTG..;-d)/ (DTG, - DTG))

Iterate the following for each altitude in the profile.

Wind Speedy, anider = (1 - v) * Wind Speedremporary, ainder + v * Wind Speed; aniwder
a = DeltaAngle(Wind Directionremporary, aimder, Wind Direction; auinder)

Wind Direction, aider = Wind Direction, anituder + (v * @)

Temperature Deviation, aniuder =
(1 - r) * Temperature Deviationtemporary, Atiinuder + ¥ * Temperature Deviation;, uinder

Figure 11 is an example of the computation data for the wind computation at a 9,000 ft altitude. In this
example, TCP;; has wind data at 10,000 and 8,000 ft and TCP; has wind data at 9,000 ft.

Wind Data;_j, 1
10000 ft AN (1-r) *Wind Data;_j * Wind Dat
\‘ computed for 9000 fi it
4 T > e T Wind Data;
. 90001t
/
Wind Datal-_I,—-; DTGy g -d >
8000 ft DTG, ; - DTG;
¢
TCP;_; TCPy, TCP;

Figure 11. Example of computing a single wind data altitude.
GetTrajGndTrk

The GetTrajGndTrk function computes the ground track at the along-path distance, distance.

If the distance value is out of range of the trajectory, just return the ground track at the beginning or
end of the trajectory.

if (distance < 0) Ground Track = Ground Trackis rcp

else if (distance > DTGjrs 7cp) Ground Track = Ground Trackys: rcp
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else
Find where this distance is on the path.
i = index number of the last TCP
while (distance > DTG;) i =i -1
if (distance = DTG;) Ground Track = Ground Track;
else
x = DTGi - DTG+,
ifx<0)r=20
else r = (distance - DTGi+1) / x
ifr>0)r=1
dx = (I - r) * DeltaAngle(Ground Track;, Ground Tracki+)
Ground Track = Ground Track; + dx
return Ground Track
ComputeDescentAccelDecel
The function ComputeDescentAccelDecel is designed to handle the special case of a Mach acceleration
in the descent where the first CAS crossing restriction cannot be met. The calling program provides as
input and retains the subsequent outputs for the following variables: Casindex, CruiseMach,
MachCasModified, DescentMach, and MachCas. The variable Caslndex is the index value in the TCP list
for the first CAS constrained waypoint. The variable CruiseMach is the last Mach crossing restriction
value prior to the first CAS segment. The variable MachCasModified is a flag returned by this function if
the DescentMach or MachCas values are changed. The variables DescentMach and MachCas are the
planned descent Mach and planned Mach-to-CAS transition CAS, respectively, and these values may be

modified by this function.

Initialize variables.

i=0
z=10
fini = false

MachCasModified = false
Perform up to two iterations to calculate any required Mach or CAS change in the descent.

while ((fini = false) and (i < 2))
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Calculate z at the descent Mach and the Mach-to-CAS CAS.
z = FindMachCasTransitionAltitude(MachCas, DescentMach)
Determine if z is below the CAS crossing restriction.
if (z < Altitudecasides)
Set the CAS to the value at this altitude, knowing the crossing restriction can't be met.
MachCas = MachToCas(DescentMach, Altitudecasindes)
else if (z > Altitude Crossfist rcp)
Set the Mach to the descent CAS at the cruise altitude.
m = CasToMach(MachCas, Altitudefs rcp)
if (m > CruiseMach) DescentMach = m
if (MachCas <Crossing CAScasindex) then
MachCas = Crossing CAScasindex
i=i+1
else fini = true
end of while ((fini = false) and (i < 2))
Find the TOD TCP.
fini = false
TodIndex = 0
i = index number of the first TCP
while ((i < index number of the last TCP) and (fini = false))
if ((Altitude; < Altitudes,s: rcp) or (Crossing CAS; > 0)) then
if ((Altitude; # Altitudejrsi rcp)) TodIndex =i - 1
else TodIndex =i
fini = true
i=i+1
end of while ((i < index number of the last TCP) and (fini = false))
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Calculate the entire decent distance.

d = DTGrodmdex - DTG Casindex

Estimate the distance, Daccel, to the new Mach value.

TodAccelerationDistance(TodIndex, CruiseMach, MachDescentMach, Valid, Accellndex, Daccel)
Estimate the distance, Ddecel, to the CAS crossing speed.

BodDecelerationDistance(Casindex, z, Mach Transition CAS, Ddecel)

fini = false

m = DescentMach

The nominal speed values won't work, there is insufficient distance to obtain the acceleration and then
slow to the crossing speed. Iterate until a solution is found.

while ((fini = false) and (d < (Daccel + Ddecel)))
Iterate the solution.
Slightly change the Mach and then find the CAS.
m=m-0.002
if (m < Cruise Mach) then
m = Cruise Mach
fini = true
Estimate the distance to the new Mach value.
TodAccelerationDistance(TodIndex, Cruise Mach, m, Valid, Accellndex, Daccel)
Find the altitude where the acceleration ends.

z = Crossing Altitudeys.si rcp - (Daccel / d) * (Crossing Altitudess rcp -
Crossing Altitudecasides)

CAS = MachToCas(m, z)

Estimate the distance to the CAS crossing speed.
BodDecelerationDistance(Casindex, z, CAS, Ddecel)
if (d > (Daccel + Ddecel)) then

fini = true
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Modify the descent Mach and CAS values.
modified = true
DescentMach = m
Add a buffer to the CAS so that subsequent Mach-to-CAS calculation won't cause an error.
MachCas = CAS + 0.1
end of if (d > (Daccel + Ddecel))
GetWindAtAltitudeDistance
The function GetWindAtAltitudeDistance is used to compute the wind speed, wind direction, and
temperature deviation at an altitude, Altitude, for a specific distance, Distance, along the path. This
function is a linear interpolation using the wind data from the input waypoints that bound the along-path
distance.
Find the bounding input waypoints.
i0 = index number of the first TCP
J = index number of the first TCP
fini = false
if (Distance < 0) Distance = 0
while ((fini = false) and (j < index number of the last TCP))
if (TepType; = INPUT) and (DTG;> Distance)) i0 =
if (DTG; < Distance) fini = true
j=it
end of the while loop
il=i0+1
j=il
fini = false
while ((fini = false) and (j < index number of the last TCP))
if ((TepType; = INPUT) and (DTG < Distance)) then

il=j
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fini = true
end of if
j=i+1
end of the while loop
if (i1 > index number of the last TCP) il = index number of the last TCP
if (10 = il) InterpolateWindWptAltitude(TCPy, Altitude, Ws, Wd, Td)
else
Interpolate the winds at each waypoint.
InterpolateWindWptAltitude(TCP, Altitude, Spd0, Dir0, Td0)
InterpolateWindWptAltitude(TCP;, Altitude, Spdl, Dirl, Tdl)
Interpolate the winds between the two waypoints.

InterpolateWindAtRange(Distance, DTG, Spd0, Dir0, Td0, DTG, Spdl, Dirl, Tdl, Wind Speed,
Wind Speed, Temperature Deviation)

InterpolateWindAtRange
The function InterpolateWindAtRange is used to compute the wind speed, Wind Speed, wind direction,
Wind Direction, and temperature deviation, Temperature Deviation, at a distance along path, Distance,
between two sets of wind data sets, denoted by the subscripts / and 2, where DTG, > Distance > DTG..
This function is a linear interpolation using the wind data from the input.
if (DTG = DTG;) or ((Distance = DTG})) then
Wind Speed = WindSpd,
Wind Direction = WindDir,;
Temperature Deviation = TempDev;
else if (Distance = DTG>) then
Wind Speed = WindSpd:
Wind Direction = WindDir;
Temperature Deviation = TempDev;

else

Interpolate the values.
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r = (DTG - Distance) / (DTG, - DTG>)
Wind Speed = (1 - r) * WindSpd,) + (r * WindSpd>)
a = DeltaAngle(WindDir;, WindDir;)
Wind Direction = WindDir; + (r * a)
AdjustAngle(Wind Direction)
Temperature Deviation = ((I - r) * TempDev,) + (r * TempDev)
InterpolateWindWptAltitude
The function InterpolateWindWptAltitude is used to compute the wind speed, Wind Speed, wind
direction, Wind Direction, and temperature deviation, Temperature Deviation, at an altitude, Altitude, for
TCP;. This function is a linear interpolation using the wind data from the TPC;.
Find the index numbers, p0 and p 1, for the bounding altitudes.
p0=20
pl=0
for (k = 1; k < Number of Wind Altitudes;; k =k + 1)
if (Wind Altitude; < Altitude) p0 = k
if (Wind Altitude; > Altitude)and (p1 = 0)) pl =k
if (p1 = 0) pl = Number of Wind Altitudes;
if (p0 = pl) then
Wind Speed = Wind Speedy
Wind Direction = Wind Directionpg
Temperature Deviation = Temperature Deviationyg
else
if (Wind Altitude,; < Wind Altitudepy) r = 0
else r = (Altitude - Wind Altitude,) / (Wind Altitude,; - Wind Altitude,)
Wind Speed = ((1 - r) * Wind Speedyy) + (v * Wind Speed,;)
a = DeltaAngle(Wind Direction,y, Wind Direction,;)

Wind Direction = Wind Direction, + (r * a)
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AdjustAngle(Wind Direction)

Temperature Deviation = ((1 - r) * Temperature Deviationyg) + (v * Temperature Deviation,;)

FindAltitude

The function FindAltitude is used to compute the path altitude at a specific distance, Dzg, along the
trajectory.

alt =0
fini = false
found = false
done = false
i = index number of first TCP
while (fini = false)
if (DTG; == Dtg) then
alt = Altitude;
done = true
fini = true
else
if (DTG; > Dtg)i =i+ 1
else
fini = true
found = true
if (i = index number of last TCP) fini = true
end of while (fini = false)
if (done = false)
The distance is not at a TCP. Calculate the altitude along the segment.
if (found = false) alt = Altitudeas rcp-1
else

d:DTG,'.I -DTG,‘
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if (d <0.0) alt = Altitude;.
else
alt = (dtg - DTG;) / d * (Altitude;.; - Altitude;) + Altitude;
end of if (done = false)
return alt
FindMachCasTransitionAltitude

The function FindMachCasTransitionAltitude is used to compute the altitude where the input Mach,
Mach, and CAS, Cas, values would be equivalent.

z=(1-(((((0.2 * ((Cas/661.48)°) + 1)*) - 1) / (((0.2 * (Mach?) + 1)*°) - 1))***"*%)) / 0.00000687535
LDRAddRate
The function LDRAddRate is used in the linear deceleration rate calculations to estimate a new
deceleration rate for the case where the end speed is reached after the speed-restricted waypoint; i.e., a
higher deceleration is required. The waypoint index variable idx is used to identify the starting TCP number

in these determinations.

If the crossing rate is equal to or greater than a maximum crossing rate, 5 kt/sec in this implementation,
then no further rate calculations will be performed on this TCP.

if (Crossing Rateiax > 5 kt/sec) LDR Finished = true
else
Calculate a higher deceleration value.
delta = LDR Last Rateiq - Crossing Rateia
Crossing Rateis = Crossing Rateiq + 0.05 * delta
if (Crossing Rateia > 5 kt/sec) Crossing Rateis = 5 kt/sec
LDR Pass Countizs = LDR Pass Countigx + 1
LDRFindAcquiredSpeed
The function LDRFindAcquiredSpeed is used in the linear deceleration rate calculations to find the index
value for a prior waypoint with a speed value that is equal to or greater than Match Speed. In addition to
the Match Speed input value, the waypoint index variable idx is used to identify the starting waypoint
number in this search.

Find the previous speed in the TCP list.

ObtainedIndex = index number of first TCP
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i=idx-1
found = false
while ((i > index number of first TCP) and (found = false))
if ((Mach Segmentiax = false) and (Mach Segment; = true)) then
fini = false
j=idx
while ((j > index number of first TCP) and (fini = false))
if (Mach Segment; = true) fini = true
elsej=j-1
spd = CAS;
end of if ((Mach Segmentiu. = false) and (Mach Segment; = true))
else if (Mach Segmentiq. = true) spd = Mach;
else spd = CAS;
Determine if the current test speed matches or exceeds the value of Match Speed.
if (spd > MatchSpeed) then
found = true
ObtainedIndex = i
i=i-1
end of while ((i = index number of first TCP) and (found = false))
return the value of ObtainedIndex.
LDRFindLastSpeedConstraint
The function LDRFindLastSpeedConstraint is used in the linear deceleration rate calculations to find the
index value for the speed constraint prior to the waypoint with the planned linear deceleration. The waypoint
index variable idx is used to identify the starting waypoint number in this search.
LastIndex = index number of first TCP
i=idx-1

found = false
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while ((i = index number of first TCP) and (found = false))

if (TepType: = INPUT) and ((Cas Cross; > 0) or (Mach Cross; > (0))) then

LastIndex = i

found = true
i=i-1
return LastIndex

LDRRateCheck

The function LDRRateCheck is used in the linear deceleration rate calculations to determine if the
current, estimated deceleration rate is too small to meet the deceleration requirement. It also will report a
non-LDR speed error if one exists. This function will return a value of true for the variable LdrRateError
if the current linear deceleration segment is not valid and will return a value of true for the variable
OtherError if a valid speed could not be calculated for any segment. The waypoint index variable idx is
used to identify the starting TCP number in these determinations and the LDRPending flag is used to
identify the special case when the LDR calculations are being initialized.

LdrRateError = false
skip = false
Do not begin processing LDR waypoints if the basic trajectory is invalid.
if (LDRPending = true) and (Fatal Error = true)) skip = true,
referring to the section Errors in the Trajectory regarding marked error conditions.
if (skip = false) then
if (Fatal Error = true) then

Determine if the error is for the current deceleration point.

Find the begin-deceleration waypoint.

baseidx = index number of the first TCP

i = index number of the first TCP

found = false

while ((i < index number of the last TCP) and (found = false))

if (DTG = LDR Base Distanceis,) and (TcpType; = INPUT)) then

baseidx =i
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found = true
i=i+1
end of while ((i < index number of the last TCP) and (found = false))
Find the LDR waypoint with an error speed-related error.
i = index number of the first TCP
while ((i < index number of the last TCP) and (LdrRateError = false))
if (i > baseidx) and (i < idx) and (Error; = any speed error)) LdrRateError = true
i=i+1
end of if (Fatal Error = true) then
Now determine if there are other speed errors.
OtherError = false
i = index number of the first TCP
while ((i < index number of the last TCP) and (OtherError = false))
if (Error; = any speed error) OtherError = true
i=i+1
end of if (skip = false) then
else OtherError = true
LDReduceRate
The function LDReduceRate is used in the linear deceleration rate calculations to estimate a new
deceleration rate for the case where the end speed is reached before the speed-restricted waypoint; i.e., a
lower deceleration is required. The waypoint index variable idx is used to identify the starting TCP number
in these determinations.
Calculate the distance between the deceleration points.
d1 = LDR Base Distanceiaq: - DTGiqy
Calculate the distance to the current deceleration point.
d2 = LDR Obtained Distanceii - DTGiax
ifdl>0)d=1-d2/dl

elsed =1
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Set the finish flag to true if the calculated deceleration has resulted in a 'close enough' result. In this
implementation, 'close enough' is 500 ft, 0.0822909809 nmi.

if (((dI - d2) < 0.0822909809) or (d = 1)) LDR Finishedax = true
else
LDR Last Rateis = Crossing Rate;q
Crossing Rateiasc = Crossing Rateia - d * LDR Last Rateiax
Do not allow the deceleration rate to be less than 0.01 kt/sec.
if (Cross Rateiax < 0.01 kt/sec) Crossing Rateis = 0.01 kt/sec
LDR Last Ratioix = d
LDR Pass Countiex = LDR Pass Countigy + 1
RadialRadiallntercept
The function RadialRadiallntercept determines if two place-and-radial sets, each defined by latitude,
longitude, and a track angle, will intersect and if so, calculates the latitude and longitude of the intercept
point. Inputs are values of latitude, Latitude, longitude, Longitude, and angle, Angle; one set of each for the
two place-and-radial sets. If a valid intercept can be calculated, then the intercept point's latitude and
longitude are output, NewlLatitude and NewlLongitude, and the function returns a valid indication.
Otherwise, the function returns an invalid indication.

Calculate the distance and the track angle between the two input positions.

distance; > = arccosine(sine(Latitude;) * sine(Latitude;) + cosine(Latitude;) * cosine(Latitude;) *
cosine(Longitude; - Longitude))

track;, = arctangent2(sine(Longitude, - Longitude;) * cosine(Latitude;), cosine(Latitude;) *
sine(Latitude;) - sine(Latitude;) * cosine(Latitude;) * cosine(Longitude, - Longitude;))

Check for error in the intercept calculation.
error = false

track; = Angle; - track;, + 90°

Adjust track; such that 0° > track; > 360°.
AdjustAngle(track;)

track; = Angle; - track;, + 90°

Adjust track; such that 0° > track: > 360°.

AdjustAngle(track;)
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Determine the quadrant.
ang; = track, + 180°
Adjust ang; such that 0° > ang; > 360°.
AdjustAngle(ang;)
if (|DeltaAngle(trackl , track2)| < 2°) or (|DeltaAngle(trackl , angl)| < 2°)) then
Determine if the angles are really 180 degrees apart.
ang> = Angle; + 180°
Adjust ang; such that 0° > ang, > 360°.
AdjustAngle(ang>)
angs = DeltaAngle(Angle,;, angs)
angy = DeltaAngle(Angle,, track;, ;)
if (lang3| > 2°) or (lang4| > 2°)) error = true
if (error = false)
RelativeLatLong(Latitude;, Longitude,, track s, distance; >/ 2, NewLatitude, NewLongitude)
else
Determine the quadrant.
if (track; < 90°) quadrant] = 1
else if (track; < 180°) quadrant] = 2
else if (track; <270°) quadrant] = 3
else quadrantl = 4
if (track: < 90°) quadrant? = 1
else if (track, < 180°) quadrant?2 = 2
else if (track; < 270°) quadrant? = 3
else quadrant2 = 4
if (quadrantl = 1) then

if ((quadrant2 = 2) or (quadrant2 = 3)) error = true
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if ((quadrant2 = 1) and (chktkl < chktk2)) error = true
else if (quadrant] = 2) then

if ((quadrant2 = 1) or (quadrant2 = 4)) error = true

if ((quadrant2 = 2) and (chktkl > chktk2)) error = true
else if (quadrant] = 3) then

if ((quadrant2 = 1) or (quadrant2 = 2) or (quadrant2 = 4)) error = true

if (track; > tracks) error = true
else

if ((quadrant2 = 1) or (quadrant2 = 2) or (quadrant2 = 3)) error = true

if (track; < track;) error = true
if (error = false) then

trx; = |Angle; - track; ;|

Adjust trx; such that 0° > trx; > 360°

trx; = |Angle; - (track; > + 180°)|

Adjust trx; such that 0° > trx; > 360°

if (trx; > 180°) trx; = 360° - trx;

if (trxz; > 180°) trx; = 360° - trx;

angs = 180° - trx; - trx;

if ((angs = 0°) or ((angs-180°) = 0°) or (distance, > = 0)) error = true
if (error = false) then

distance; = distance; ; * sine(trx;) / sine(angs)

if (distance; < 0) distance; = - distance;

if (distance; > max_intercept range) error = true

else RelativeLatLong(Latitude;, Longitude;, Angle,, distance,, NewLatitude,
NewlLongitude)
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if (error) return false
else return true

RelativeLatLon

The function RelativeLatLon computes the latitude and longitude from input values of latitude, BaseLat,
longitude, BaseLon, angle, Angle, and range, Range.

DegreesToNmi = 60.0405
if (Angle = 180°) Latitude = -Range / DegreesToNmi + BaseLat
else Latitude = ((Range * cos(Angle)) / DegreesToNmi) + BaseLat
if ((BaseLat = 0) or (BaseLat = 180)) Longitude = BaseLon
else if (Angle = 90°) Longitude = BaseLon + Range / (DegreesToNmi * cos(BaseLat))
else if (Angle = 270°) Longitude = BaseLon - Range / (DegreesToNmi * cos(BaseLat))
else
rl = tangent(45° + 0.5 * Latitude)
r2 = tangent(4°5 + 0.5* BaselLat)
if (rl = 0) or (r2 = 0)) Longitude = 20, just some number, mark this as a fatal error condition.
else Longitude = BaseLon + (180° / pi *(tangent(Angle)* (log(rl) - log(r2))))
TodAccelerationDistance
The TodAccelerationDistance function estimates the distance required for the special case of an
acceleration from the top-of-descent Mach to the descent Mach at the top-of-descent. This function is
invoked from ComputeDescentAccelDecel and DoTodAcceleration, which passes in the index number for
the TOD waypoint, TodIndex, and the Mach value at the TOD, MachAtTod. The function returns a validity
flag to indicate if a TOD acceleration is valid, Valid, and if valid, the indices in the TCP list where the
acceleration occurs, Accellndex, and the distance from the index point of the acceleration, Distance.
Perform an initialization of flags and counters.
skip = true
k = TodIndex
Make an initial guess of the distance to the new Mach value using a 0.75 kt/sec acceleration value.

Mach Rate; = CasToMach(0.75 kt / sec, Altituderoamdex)

Compute the time required to do the deceleration.
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t = (Mach Descent Mach — MachAtTod) / Mach Rate;
Compute the wind speed and direction at the current altitude.

InterpolateWindWptAltitude(Wind Profilerodmdes, Altituderoamdes, Wind Speed, Wind Direction,
Temperature Deviation)

Get the ground track at the current point.
if (WptInTurn(Waypointrodmde)) track = Ground Trackrodindex + 1
else track = Ground Trackrodindex

TOD Ground Speed = ComputeGndSpeedUsingMachAndTrack(MachAtTod, track, Altituderoamdex,
Wind Speed, Wind Direction, Temperature Deviation)

Descent Ground Speed = ComputeGndSpeedUsingMachAndTrack(Mach Descent Mach, track,
Altituderodmaer, Wind Speed, Wind Direction, Temperature Deviation)

The average ground speed is as follows:
Average Ground Speed = (TOD Ground Speed + Descent Ground Speed) / 2
The distance estimate, dx, is Average Ground Speed * ¢ with a conversion to nmi.
dx = Average Ground Speed * t / (3600 sec/hr)
Now compute better estimates, doing this twice to refine the estimation.
for(i=1;i<2;i=i+1)
skip = false
Determine if this distance is beyond the next downstream waypoint.
k = Todlndex
d = DTGrodindex - dx
while ((k < (index number of the last TCP — 1)) and (DTG+1 > d))
if ((k # TodIndex) and (Crossing Rate, > 0)) skip = true
k=k+1
Compute the wind speed and direction at the new altitude.

InterpolateWindWptAltitude(Waypointy, Altituder, Wind Speed, Wind Direction,
Temperature Deviation)

The ground speed at this point is:
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Descent Ground Speed = ComputeGndSpeedUsingMachAndTrack(Mach Descent Mach, Ground
Tracky, Altituder, Wind Speed, Wind Direction, Temperature Deviation)

The average ground speed is:
Average Ground Speed = (TOD Ground Speed + Descent Ground Speed) / 2
The distance, dx, is:
dx = Average Ground Speed * t / (3600 sec/hr)
endoffor(i=1;i<2;i=i+1)
If there is a valid deceleration point, add it.
if (skip = false) Valid = true
else Valid = false
Accellndex = k
Distance = dx
TodDecelerationDistance
The TodDecelerationDistance function estimates the distance required for the special case of n
deceleration from the top-of-descent Mach to the descent CAS at the top-of-descent. This function is
invoked from Add TOD Deceleration TCP, which passes in the index number for the TOD waypoint,
TodIndex, the Mach value at the TOD, MachAtTod, and the descent CAS, DescentCas. The function returns
a validity flag to indicate if a TOD deceleration is valid, Valid, and if valid, the indices in the TCP list where

the deceleration occurs, Decellndex, and the distance from the index point of the deceleration, Distance.

Perform an initialization of flags and counters.

skip = true
k = TodIndex
dx =10

Estimate the distance to the new CAS value.
TodCas = MachToCas(MachAtTod, Altituderodra)
if (TodCas > DescentCas) then

Calculate the time to do the deceleration using the default Mach-to-CAS deceleration of
0.25 kt/sec.

t = (TodCas - DescentCas) / 0.25 kt/sec

Compute the wind speed, direction, and temperature deviation at the current altitude.
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InterpolateWindWptAltitude(Todldx, Altituderoaia, Ws, Wd, TempDev)
Save the ground track value at the current point.

if (WptInTurn(Todldx)) track = Ground Trackroarax+

else track = Ground Trackroarax

TodGs = ComputeGndSpeedUsingMachAndTrack(MachAtTod, track, Altituderodaia, Ws, Wd,
TempDev)

The altitude for the deceleration endpoint is unknown; estimate the ground speed using the TOD
altitude.

DescentGs = ComputeGndSpeedUsingTrack(DescentCas, track, Altituderoara, Ws, Wd, Td)
Calculated the average groundspeed AvgGs.
AvgGs = (TodGs + DescentGs) / 2
The distance estimate, dx, is AvgGs * 1.
dx = AvgGs * t /(3600 sec/hr)
Now compute better estimates, doing this twice to refine the estimation.
for(i=1;i<2;i=i+1)
skip = false
Determine if this distance is beyond the next downstream TCP.
k = Todldx
d = DTGroarax - dx
alt = FindAltitude(d)
track = GetTrajGndTrk(d)

Using a temporary wind profile data set, p, generate the wind speed, Ws, direction, Wd, and
temperature deviation, TempDev, at this altitude.

GenerateWptWindProfile(d, p)
InterpolateWindWptAltitude(p, alt, Ws, Wd, TempDev)
Calculate the groundspeed at this point.

DescentGs = ComputeGndSpeedUsingTrack(DescentCas, track, alt, Ws, Wd, TempDev)
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Again, calculated the average groundspeed AvgGs.
AvgGs = (TodGs + DescentGs) / 2
Again, the distance estimate, dx, is AvgGs * .
dx = AvgGs * t/ (3600 sec/hr)
endoffor i=1;i<2;i=i+1)

end of if (TodCas > DescentCas)

if (skip = false) Valid = true

else Valid = false

Decellndex = k

Distance = dx

WptinTurn

The WptInTurn function simply determines if the waypoint is between a turn-entry TCP and a turn-exit
TCP. If this is true, then the function returns a value of true, otherwise, it returns a value of false.

fini = false
within = false
j=i+1
while ((fini = false) and (j < (index number of the last TCP)))
if (TurnType; = TURN START) fini = true
else if (TurnType; = TURN END)
fini = true
within = true
J=ji+1

return within
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Summary

The algorithm described in this document takes as input a list of waypoints, their trajectory-specific data,
and associated wind profile data. This algorithm calculates the altitude, speed, along path distance, and
along path time for each waypoint and every point along the path where the speed, altitude, or ground track
changes. A full 4D trajectory can then be generated by the techniques described. This documentation was

based on an operational software prototype.
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