

LS-DYNA User-Defined Internal Ballistic Modeling

Sirri Oğuz

Pyrotechnics System Manager – Commercial Crew Program

NASA/JSC - Propulsion and Power Division, Houston, TX

2024 CAD/PAD Technical Exchange Workshop, August 13-15, 2024

Disribution A : Approved for Public Release, Distribution Unlimited.

- LS-DYNA Explicit Finite Element Analysis software and CADPROG Internal Ballistic Analysis code are integrated as a single modeling tool to analyze pyro-mechanical devices.
- Coupling these two codes allows the ballistic calculations to be performed without modeling the propellant in an FEA mesh. At each LS-DYNA time step, CADPROG is run analytically using the kinematic data (stroke, velocity, chamber volume) fed back from the LS-DYNA simulation. The calculated pressure is then applied to a piston or any applicable surface mesh in LS-DYNA model interactively.
- All external loads such as friction, damping loads, assisting/resisting loads, locking/unlocking loads are modeled in LS-DYNA and coupled with pressure loads from CADPROG to create a fully defined equation of motion
- Both codes are written in Fortran 77. CADPROG is integrated in the LS-DYNA source code as a user-defined subroutine and recompiled to generate a custom executable.

- Developed by Livermore Software Technology Corp (LSTC), LS-DYNA is a physics-based explicit FEA code that uses time integration to solve short duration transient and highly nonlinear dynamic problems
 - Extensive material model and Equation-of-State library, highly accurate contact algorithm and ability for Fluid-Structure Interaction (FSI) make LS-DYNA an excellent tool for evaluating complex mechanical and structural systems.
- Widely used for detonation problems using built-in JWL equation of state.
- While modeling the deflagration of a solid propellant with LS-DYNA is possible, it is very limited and mostly applicable to airbag systems that use gaseous nitrogen generated by burning of sodium azide.
- Allows users to define their own custom material models, equations of state and loading models through user-defined subroutines.

- CADPROG is a one-dimensional internal ballistic code developed by NSWC Indian Head Division and is widely used to analyze CAD/PAD devices and ejection seat catapults
 - Differential Equations of State and Energy are solved using 4th Order Runge-Kutta Method
- Capable of modeling solid propellants with many geometries, such as multi-perforated cylindrical grains, spherical ball powders, flakes, slabs.
- Single and Hi-Lo dual chamber CAD/PAD devices can be modeled with a mixture of up to three propellant types.
- NASA/JSC made various updates to the source code over the years to improve its capabilities: s
 - Improved heat-loss module for during and post-burnout heat loss
 - Added stroke-dependent external load capability

Internal Ballistics - Governing Equations

Conservation of Energy

$$c_{v} \frac{d(m_{p}T)}{dt} = c_{v}T_{0} \frac{dm_{p}}{dt} - A_{P}P_{C} \frac{dx}{dt} - \frac{d(E_{HL})}{dt}$$

• Noble-Abel Equation of State

 $m\frac{d^{-}x}{dx^{2}} = P_{c}A_{P} - F_{f} - F_{R} - F_{ext}$

$$P_c[V_c + A_p x - \frac{C - m_p}{\rho} - \eta m_p] = m_p F \frac{T}{T_0}$$

Equation of Motion

Conservation of Mass

 $\frac{dm_p}{dt} = \rho.S.r$

Propellant Burn Rate

 $r = BP_c^n$

With LS-DYNA/CADPROG feedback method, Acceleration is calculated by LS-DYNA using the CADPROG pressure and LS-DYNA Modeled Loads (friction, crush resistance, external aero, etc.)

- Fortran source code that contains a collection of subroutines is required to create a custom LS-DYNA executable.
 - The Fortran file dyn21.f can be obtained from LSTC.
 - dyn21.f is modified by the user to integrate the user-defined loading, in this case the entire CADPROG code.
 - dyn21.f must be compiled by using the latest version of Intel® Visual Fortran Compiler.
 - Running the *makefile* supplied by LSTC compiles the file and links with the object files that are also provided.
 - The new LSDYNA.EXE file should be selected as the solver when running LS-DYNA.
 - Subroutine receives TIME, TIMESTEP, elemental X and V input and initial conditions from the LS-DYNA run, and outputs calculated pressure curve, udL(i), interactively for each element "i" on selected pressure surface.

 User-defined loading is invoked in LS-DYNA keyword file (input deck) with following keyword commands:

*USER_LOADING_SET

	Card 1	1	2	3	4	5	6	7	8	
	Variable	SID	LTYPE	LCID	CID	SF1	SF2	SF3	IDULS	
EL	EMENT S	ET id	Load Type "PRESSS"							

*USER_LOADING

Card 1	1	2	3	4	5	6	7	8
Variable	PARM1	PARM2	PARM3	PARM4	PARM5	PARM6	PARM7	PARM8

PARMi : CADPROG input parameters

User-Defined Mods to dyna21.f

subroutine loadsetud(time,lft,llt,crv,iduls,parm,nod,nnml)

Simplified Pyro Thruster Example

- Flexible Housing and Rigid Piston
- Piston pushes a 190 lbs mass
- FEA Model contains 26,256 solid elements
- Housing constrained at one end
- 10 inches of stroke
- Propellant: 7-perforated HES5808 grains
- Igniter: BKNO₃

- Contact with static and dynamic friction coeff.
 *CONTACT_SURFACE_TO_SURFACE
- Various external assisting and resisting loads applied to piston end as nodal force.

CHAMBER PRESSURE vs TIME

Disribution A : Approved for Public Release, Distribution Unlimited.

Piston Velocity

VELOCITY vs TIME

Disribution A : Approved for Public Release, Distribution Unlimited.

Post-Process Contours

End-of-Stroke Impact

Post impact bounce off

- In our current model, pressure is applied only on pre-selected mesh surfaces such as the piston area and initial volume walls.
- Adding capability to update pressure application mesh surface (inner walls of gas chamber) as the volume expands will allow full structural analysis (stress, strain) in real time.
 - Euler mesh inside chamber volume with user-defined CADPROG EOS could be an option
- Hi-Lo chamber ballistic capability can be added to model the gas flow from highpressure chamber to low-pressure chamber by using unique LS-DYNA solvers such as ICFD for incompressible and CESE for compressible flows.

Questions?

Disribution A : Approved for Public Release, Distribution Unlimited.

[1] Oguz, S and Salazar, F, "Orion Parachute Riser Cutter Development", 47th AIAA Joint Propulsion Conference, San Diego, CA, August 1-3, 2011.

[2] LS-DYNA Keyword User's Manual, Version R13, Livermore Software Technology Corporation.

[3] Holter, W.H., Simplified Solutions to the Interior Ballistic Problems of Cartridge Actuated Devices, U.S. Naval Weapons Laboratory, Report No. 1752, May 1962.

[4] Adoum, M., "Examples Manual for *USER_LOADING Option", 4th European LS-DYNA Users Conference

Nomenclature

 A_{p} =piston area

B = burn rate coefficient

- C=propellant mass
- c_v =specific heat at constant volume

 E_{HL} =heat loss

F=impetus

 F_{EXT} =external force

 F_f =friction force

m=imparted mass

 m_p =mass of propellant gas produced

n=burn rate exponent

 P_C =chamber pressure

r=propellant burn rate

S=propellant surface area

T=gas temperature

 T_o =isochoric flame temperature

 V_C =initial chamber volume

x=stroke

V=velocity

 ρ =propellant mass density

 η =co-volume

CAD/PAD = Cartridge/Propellant Actuated Device JWL = Johns-Wilkins-Lee Equation of State