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Abstract

This work presents a solution to the two-point Hermite interpolation problem
using Bernstein polynomials. The Hermite interpolation problem is of particular
interest in aerospace applications where boundary conditions for trajectories often
specify derivative constraints. In the examples shown, a trajectory will be generated
between an initial condition and a final condition. For example, a trajectory is
generated that connects an aircraft’s current position and velocity with a point on
the runway at a desired landing velocity. The numerical stability of the proposed
algorithms is analyzed empirically.
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1 Introduction

One goal of trajectory generation is to connect the initial and final state of an object with a
trajectory that satisfies a set of constraints. In general, creating a trajectory that satisfies arbitrary
constraints, e.g., obstacle avoidance, dynamic feasibility, or energy usage, is difficult and requires
significant computational effort. However, certain trajectory representations, and their associated
algorithms, are more naturally suited to guaranteeing that specific constraints are satisfied.

Bernstein polynomials, or Bézier curves, are a popular choice for trajectory generation because
their properties make it simple to guarantee that spatial and dynamic constraints are satisfied
for the entire curve [1]. These guarantees make the curves attractive for aeronautics applications,
such as those in Refs. [2–4]. Furthermore, by the nature of their construction, the start and end
points of the Bernstein polynomial curve are explicitly defined as the first and last parameters
of the curve. A growing body of literature, including Refs. [5–9], underscores their utility in
optimal motion planning. These polynomials have been demonstrated in several applications,
such as target monitoring [10], search and rescue operations [11], and mine counter-measures [12],
among others. Researchers in Refs. [13] and [14] propose the use of these polynomials to discretize
optimal control problems, specifically for differentially flat systems and more general non-linear
systems, respectively. By recasting the motion planning problem as an optimal control problem,
the algorithm gains flexibility, allowing for the integration of various costs and constraints tailored to
the specific scenario. Additionally, the work in Ref. [15] offers a software implementation leveraging
Bernstein polynomial properties for motion planning.

If the only constraints on the terminal condition of the trajectory are spatial, then Bernstein
polynomials are a natural choice. However, in many applications, the terminal condition also
includes derivative specifications. To satisfy this terminal condition, an optimization procedure
would be needed to drive free coefficients of the polynomial to values that satisfy this terminal
constraint.

The Hermite interpolation problem, as outlined in Ref. [16], is solved by a parametric curve
that satisfies initial and final conditions that specify start and end locations along with n-th order
derivative constraints at both of these points. This problem can be solved with a polynomial
equation where the parameters of the polynomial are chosen to meet these constraints.

In this work, we wish to retain the benefits of representing trajectories with Bernstein poly-
nomials while initially specifying the curve in terms of the boundary conditions on both positions
and derivatives. To this end, we use the properties of Bernstein polynomials to define a linear
map between the coefficients of Bernstein polynomials and the boundary conditions of the curve.
By inverting this map, we produce a solution to the two-point Hermite interpolation problem in
Bernstein polynomial form.

Previous work considering Bernstein polynomial solutions to the Hermite interpolation problem
can be found in Refs. [17–19]. These papers are expressly concerned with optimal trajectory
generation for dynamical systems and their connection to Bernstein polynomials. While these
papers consider the mapping from control points to terminal constraints, they do not make explicit
the reverse mapping. The presented work focuses on this reverse mapping: taking a set of terminal
constraints and computing the control points necessary for the curve to meet the given constraints.
Furthermore, we present example results to demonstrate applicability to trajectory generation
problems and experimental analysis of the stability of the mapping using the condition number,
which captures the sensitivity of algorithms to small numeric errors in the algorithm input.

The necessary background for the procedure is provided in Section 2. The interpolation equa-
tions are derived in Section 3. Section 4 demonstrates the interpolation method for motion planning
problems. Finally, the conclusions are presented in Section 5.
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2 Background

This section provides an overview of Bernstein polynomials, their definition, and selected prop-
erties. It also covers some concepts in numerical stability.

2.1 Bernstein Polynomials

Bernstein polynomials (or Bézier curves) are parametric polynomial curves and are defined on
a closed interval, ζ ∈ [0, 1] by the equation

B(ζ) =
n∑

k=0

bnk(ζ)pk, (1)

where n is the degree of the polynomial, pk is the kth polynomial coefficient, called a control point,
and bnk is a Bernstein basis polynomial given by the equation

bnk(ζ) =

(
n

k

)
(1− ζ)n−kζk. (2)

An example polynomial is shown in Figure 1. The curve, evaluated along the interval, is shown as
the black line. The black diamonds are the polynomial control points, which are associated with
specific locations in the parameter space.

There are several properties that make Bernstein polynomials conducive to both the trajectory
generation problem and the two-point Hermite interpolation problem. A more complete list of
properties can be found in Ref. [20].

Figure 1: Bernstein polynomial: Evaluated
curve and control points as the solid line and
diamonds respectively.

The first property considered is the affine change
of the independent variable. While this property is
often overlooked in the creation of spatial curves, the
duration of the curve immediately affects the end-
point derivatives. This scaling property will allow us
to capture these changes for the true duration of the
curve. Note that the Bernstein basis functions can
be defined on an arbitrary interval, t ∈ [t0, t1] → ζ,
with an affine change to the parameter:

ζ(t) = (t− t0)/(t1 − t0). (3)

Substituting into the basis functions, we arrive at

b̄nk(t) =

(
n

k

)
(t1 − t)n−k(t− t0)

k/(t1 − t0)
n, (4)

where the bar represents that the function is defined
on an arbitrary interval. Furthermore, the polyno-
mial interpolates between the initial and final con-
trol points. From Equation 1, we can verify that
B(0) = p0 and B(1) = pn.

Finally, the Bernstein polynomial structure is preserved under differentiation. The derivative
of a Bernstein polynomial is given by the equation:

d

dζ
B(ζ) = n

n−1∑
k=0

bn−1
k (ζ)(pk+1 − pk). (5)
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This property creates a natural connection between the Hermite interpolation problem, which has
derivative constraints, and Bernstein polynomials, which will be used to find a solution.

2.2 Finite Differences

The solution to the two-point Hermite interpolation problem will require derivatives of order
greater than one. To find these derivatives, it is convenient to define the forward and backwards
difference operators, which are used to compute repeated differences. Difference operators and
their inverses are discussed further in Ref. [21]. The matrix forms for these operations are briefly
discussed in Appendix A. The forward difference operator, ∆j(xi), is defined recursively as

∆j(xi) = ∆j−1(xi+1)−∆j−1(xi), j = 1, 2, . . .

∆0(xi) = xi, (6)

where xi is the i-th element of an input vector X and j is the number of forward differences to
take. The backwards difference operator is defined recursively as

∇j(xi) = ∇j−1(xi)−∇j−1(xi−1), j = 1, 2, . . .

∇0(xi) = xi. (7)

The difference operators depend on both the element of the vector and the number of differences
applied. However, for a vector of length n, only certain vector elements are defined up to j = n−1.
The forward difference operation is applied to the first element of the vector, x0, and the backwards
difference operation is applied to the final element of the vector, xn. These are the only elements
for which all differences, j = 0, 1, . . . , n − 1, are well defined. Therefore, the inverse operations
are provided only for the associated element of the array. The inverse operation for the forward
difference operator, the anti-difference operator, can be defined recursively as follows:

∆−j(yi) = ∆j+1(yi+1) + ∆j+1(yi), j = 1, 2, . . . , n− 1

∆0(y0) = y0, (8)

for the input vector y. Note that the negative superscript indicates that summation is performed.
The backwards difference operator is self inverse for the final element in the array, so we can
recursively compute the initial array from the result of the backwards difference operation, in
Equation 7, denoted with the vector y:

∇j(yi) = ∇j−1(yi)−∇j−1(yi−1), j = 1, 2, . . . , n− 1

∇0(yn) = yn. (9)

2.3 Numerical Stability

The numerical stability of this transformation at higher orders is of particular importance for
aerospace applications, as these problems often require boundary conditions that define initial
and final derivative values. For example, a vehicle attempting a landing must move from their
current location to the runway while also slowing down from their cruise speed to an appropriate
landing speed. With each additional derivative boundary condition that is defined, the order of
the polynomial is increased by two to accommodate this constraint. For example, if the initial and
final constraints up to the tenth derivative are given, the resulting polynomial will have an order
of twenty-one.
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To quantify the sensitivity of the proposed interpolation method to small numeric errors in
the input, we use the condition number, computed using the ratio of the maximum and minimum
singular values of a square matrix, A:

κ(A) =
σmax(A)

σmin(A)
. (10)

The condition number is used to capture the numerical stability of the Hermite interpolation
solution, and will be computed based on a matrix-based implementation of the algorithm. However,
the actual numerical stability and condition depend heavily on the implementation details of the
algorithm.

Bernstein polynomials are well conditioned for a very large number of parameters, see Ref. [20].
However, the Hermite interpolation solution is expected to be sensitive to input perturbations,
since a small change in a high-order derivative, allowed to integrate over a long time period, will
lead to a large change in the position of the curve.

3 Two-Point Hermite Interpolation

The objective of the two-point Hermite interpolation problem is to generate a curve that inter-
polates between two points while meeting derivative constraints at the start and end points. We
further require that the interpolating curve be parameterized as a Bernstein polynomial. Therefore,
the derivative information at two locations, x0, x1 ∈ R, must be converted into a set of Bernstein
polynomial control points, P ∈ Rn. The boundary constraints are collected in the vector

H =
[
H0 | H1

]⊤
=

[
x0 x

(1)
0 x

(2)
0 . . . x

(m)
0 | x1 x

(1)
1 x

(2)
1 . . . x

(m)
1

]⊤
, (11)

where the superscript onH indicates the boundary index and the parenthetical superscript indicates
the order of the derivative constraint at the associated boundary condition. Restated, we wish to
find the following mapping, f : H ∈ Rn → P ∈ Rn, where n = 2(m + 1), solving the two-point
Hermite interpolation problem for m-th order derivative constraints.

3.1 Derivation

From the definition of the Bernstein polynomial, and its derivatives, we can create a mapping
from the set of control points to the boundary conditions of the curve. We demonstrate a method
for inverting this mapping to solve for the control points, given the boundary conditions, solving
the two-point Hermite interpolation problem.

Recall that the derivative of a Bernstein polynomial is given by:

d

dζ
B(ζ) = n

n−1∑
k=0

bn−1
k (ζ)(pk+1 − pk).

Since the derivative of the curve is again a Bernstein polynomial one can show that the jth derivative
of the curve is given by the equation

dj

dζj
B(ζ) =

n!

(n− j)!

n−j∑
k=0

bn−j
k (ζ)∆j(pk). (12)
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To compute the derivative over an arbitrary parameter interval, Equation 12 can be rewritten
as

dj

dtj
B(t) =

1

(t1 − t0)j
n!

(n− j)!

n−j∑
k=0

b̄n−j
k (t)∆j(pk), (13)

with a scaling factor based on the duration of the parameter interval.
The derivative equations provide a closed form relationship between the Bernstein parameters

and the derivatives of the curve. This relationship can be used to define the initial elements of H
in terms of Bernstein control points:

H0 = [x0 x
(1)
0 . . . x

(m)
0 ]⊤ = [p0 n

∆1(p0)

(t1 − t0)
. . .

n!

(n−m)!

∆m(p0)

(t1 − t0)m
]⊤. (14)

The final elements of H require more work to construct since they are defined in terms of the final
control point in the series, requiring the backwards difference operator. Then the final values of H
can be computed as

H1 = [x1 x
(1)
1 . . . x

(m)
1 ]⊤ = [pn n

∇1(pn)

(t1 − t0)
. . .

n!

(n−m)!

∇m(pn)

(t1 − t0)m
]⊤. (15)

Taken together, these equations can be solved for the control points needed to solve the interpolation
problem. First, note the triangular structure of the problem. The value of x0 explicitly constrains

the value of p0. Then the only free variable in the equality x
(1)
0 = n∆1(p0) = n(p1 − p0) is p1.

These equations can be recursively solved in this manner using the inverse recursions established
in Section 2. That is, let

Q0 =
[
x0

t1−t0
n x

(1)
0 . . . (t1 − t0)

m (n−m)!
n! x

(m)
0

]⊤
, then[

p0 p1 . . . pm+1

]⊤
=

[
q00 ∆−1(q00) . . . ∆−m(q00)

]⊤
, (16)

where q00 is the first element of the vector Q0. The terminal control points are determined in a
similar fashion. Let

Q1 =
[
(t1 − t0)

m (n−m)!
n! x

(m)
1 . . . t1−t0

n x
(1)
1 x1

]⊤
, then[

pm+2 . . . p2m p2m+1

]⊤
=

[
∇m(q1n) . . . ∇1(q1n) (q1n)

]⊤
, (17)

where q1n is the last element of the vector Q1. Note that to satisfy the terminal conditions, the
control points are computed in reverse order. Instead of starting from a fixed point and computing
the sum to find the next point, we start from an ending point and work backwards, using the
backwards difference operator. Taken together, we have that

P =
[
p0 p1 . . . pm+1 | pm+2 . . . p2m p2m+1

]⊤
=

[
q00 ∆−1(q00) . . . ∆−m(q00) | ∇m(q1n) . . . ∇1(q1n) q1n

]⊤
. (18)

4 Trajectory Generation

This section presents the application of the interpolation solution to trajectory generation prob-
lems using a series of examples.
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Figure 2: Two interpolation problems with different duration but the same terminal constraints.
The black circles and squares in each plot show the position, velocity, and acceleration constraints,
left to right, respectively. The curves are the Bernstein polynomial evaluation at each time.

The first example is shown in Figure 2. Here, H = [0 0 0 | 1 1 0]⊤, indicating that the desired
polynomial should have zero initial position, velocity, and acceleration but a terminal position and
velocity of one, and acceleration of zero. These constraints are shown for two different durations
in Figure 2, with the circles indicating the constraints at a terminal time of one, and the squares
indicating the constraint at a terminal time of two. Using Equation (18), the Bernstein polynomial
meeting these constraints can be computed. The solution curves, evaluated over their duration,
are shown as black and dotted lines for their respective durations. The control point vector, from
Equation (18), defining the polynomial for the faster curve is [0 0 0 0.6 0.8 1]⊤, and the control
point vector for the slower curve is [0 0 0 0.2 0.6 1]⊤.

Figure 3: Two-dimensional curve, with
durations scaled by 0.2, 1, and 3 times
corresponding to the dashed, solid, and
dotted lines respectively.

Both curves meet their associated constraints but only
when connected to the duration of the underlying parame-
ter, t. This coupling arises from the derivative constraints
being a function of the duration given to satisfy the con-
straints. In this example, the lower duration curve must
have a faster average velocity to meet the position con-
straints and subsequently must have larger acceleration
(and deceleration) to realize that velocity change.

The duration dependence of the solution is further
demonstrated in Figure 3, where fixed terminal con-
straints but different times lead to very different spatial
behavior. In this figure, the two-dimensional curve is con-
strained with identical start and end speeds but different
directions. When the given duration is appropriately cho-
sen, the curve approximates a circular turn, given by the
solid black line. Reducing the duration leads to an almost
straight-line connection, shown as a dashed line, with high
velocities and accelerations needed to meet the temporal
constraint. Finally, the dotted line shows the effect of an
increased duration, the connecting curve loops away from

7



Figure 4: Landing example. The solid line is a runway. The dotted line is a trajectory that connects
a vehicle’s initial position, velocity, and acceleration, with a desired landing speed at the runway
threshold.

the terminal point.
In certain applications, the duration of desired trajectories is known beforehand. Consider the

landing maneuver shown in Figure 4. In this case, the terminal position is fixed as a point on the
runway, and terminal velocity is fixed at landing speed in the direction of the runway. The initial
condition is set as the vehicle’s current position and velocity for each dimension. The duration is
set to correspond to a standard-rate turn, for a duration of 1 minute for a 180◦ turn. Using the
interpolation solution immediately produces a Bernstein polynomial that creates a feasible landing
trajectory.

Figure 5: Condition number vs number
of derivatives used to solve the Hermite
interpolation problem.

For many path planning applications, only a few
derivatives need to be constrained. However, it is im-
portant to consider the limits of the numerical stability
of the presented transform when a large number of deriva-
tives are needed. Figure 5 shows the condition number
of the matrix form of the presented transform, depend-
ing on the number of derivatives specified. As mentioned
previously, the condition number captures the sensitiv-
ity of the matrix transform output to small input errors.
From this figure, we see that the condition number grows
with the number of derivatives, implying that small input
errors would be scaled proportionally to increased condi-
tion number. These condition numbers are computed for
a unit parameter interval. Increasing or decreasing the
interval will have an impact on the condition number. It
is also important to note that this condition number does
not limit the number of control points used in subsequent
planning operations. While this work exactly solves for a
Bernstein polynomial that satisfies terminal constraints,
higher dimensional curves can also be used. To this end,
a Bernstein polynomial can be degree elevated, that is, the curve can be exactly represented by
a higher order curve with more control points. These additional control points can be added to
increase the degrees of freedom in subsequent optimization procedures.
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5 Conclusions

In this work, we present an explicit solution to the two-point Hermite interpolation problem us-
ing Bernstein polynomials. The Hermite interpolation problem is of particular interest in aerospace
applications where initial and terminal constraints often include derivative constraints. The Bern-
stein polynomial solution enables the generated parametric curve to be evaluated using a large
body of existing algorithms, to check constraints throughout the trajectory.

Future improvements will consider using degree elevated curves to increase the number degrees
of freedom for further trajectory optimization and will address partial constraints, where some time
and some terminal constraints may be left free.
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Appendix A

Matrix Forms

The matrix forms of the difference equations are used for condition number analysis and to
connect them to other linear operators. The algorithms used in this paper use the recursive forms
to avoid matrix multiplication. The forward difference operation as defined in Equation 6, and
computed for the first element is given by the equation:

Y F =



∆0(x0)
∆1(x0)
∆2(x0)
∆3(x0)

...
∆n(x0)


=



1 0 0 0 · · · 0
−1 1 0 0
1 −2 1 0
−1 3 −3 1
...

. . .

(−1)n 1





x0
x1
x2
x3
...
xn


, (A1)

where the superscript indicates the resulting vector is the output of the forward difference matrix.
The inverse operation, given in Equation 8, can then be represented in matrix form:

X =



x0
x1
x2
x3
...
xn


=



1 0 0 0 · · · 0
1 1 0 0
1 2 1 0
1 3 3 1
...

. . .

1 1





yF0
yF1
yF2
yF3
...
yFn


. (A2)

Notice the relationship to Pascal’s triangle of binomial coefficients. These matrices are called the
inverse binomial transform and binomial transform as defined in Ref. [22].

The backwards difference operation as defined in Equation 7, and computed for the last element
in a vector is given by the equation:

Y B =



∇0(xn)
∇1(xn)
∇2(xn)
∇3(xn)

...
∇n(xn)


=



1 0 0 0 · · · 0
1 −1 0 0
1 −2 1 0
1 −3 3 −1
...

. . .

1 (−1)n





xn
xn−1

xn−2

xn−3
...
x0


, (A3)

where the superscript indicates the resulting vector is the output of the backwards difference matrix.
This matrix operation may also be referred to as the binomial transform, or Euler Transform, and
is discussed in Ref. [23]. This transform is self inverse.
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