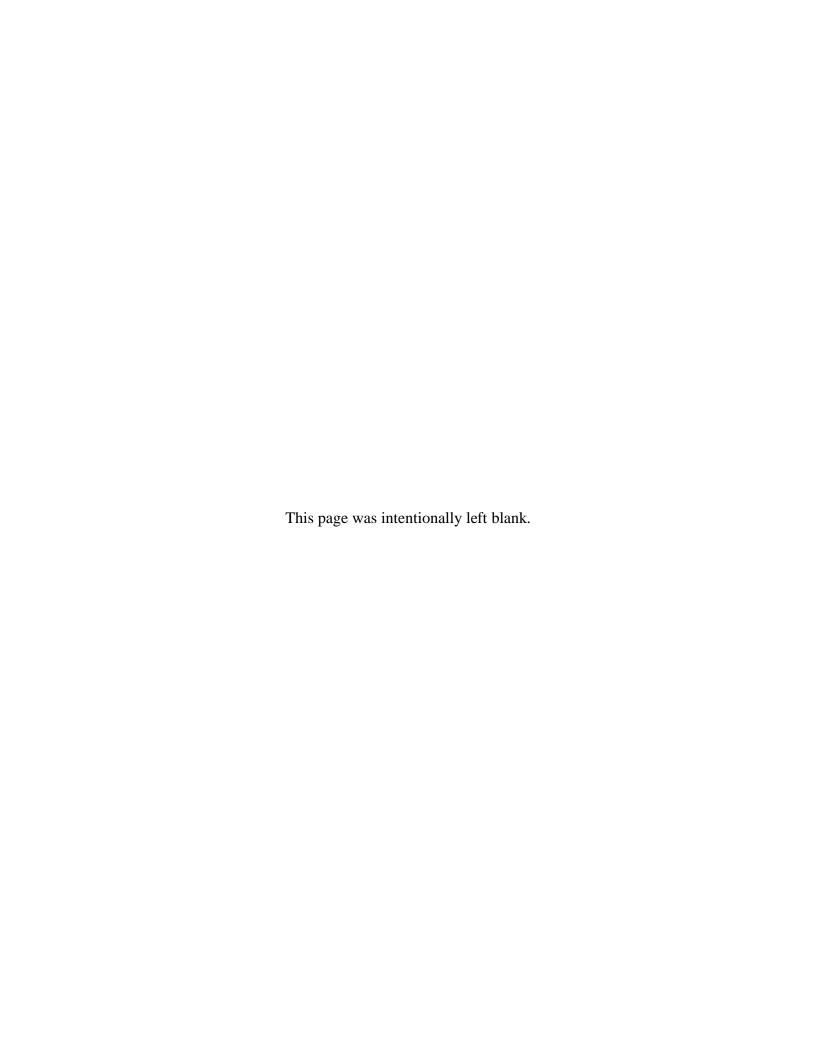
2021-2022 LONG-TERM GROUNDWATER MONITORING REPORT INDUSTRIAL AREA KENNEDY SPACE CENTER, FLORIDA

Prepared for:



Environmental Assurance Branch National Aeronautics and Space Administration Kennedy Space Center, Florida 32899

> A-E Contract 80KSC019D0010 Task Order 80KSC019F0071

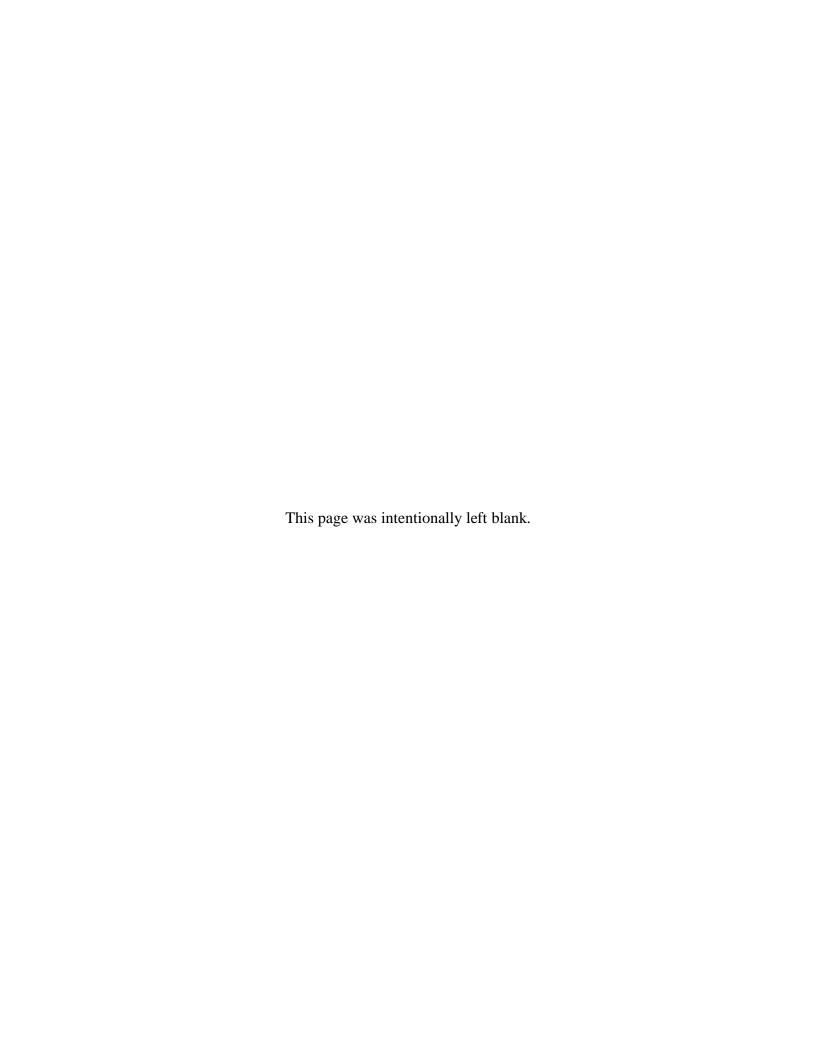
> > October 2023 Revision 0

Prepared by:
AECOM Technical Services, Inc.
150 North Orange Avenue, Suite 200
Orlando, Florida 32801
407-843-6552

2021-2022 LONG-TERM GROUNDWATER MONITORING REPORT INDUSTRIAL AREA KENNEDY SPACE CENTER, FLORIDA

October 2023 Revision 0

Prepared for:


Environmental Assurance Branch
National Aeronautics and Space Administration
Kennedy Space Center, Florida 32899
A-E Contract 80KSC019D0010
Task Order 80KSC019F0071

Prepared by:
AECOM Technical Services, Inc.
150 North Orange Avenue, Suite 200
Orlando, Florida 32801
407-843-6552

In accordance with the provisions of Florida Statutes, Chapter 471, this Long-Term Groundwater Monitoring Report for the Kennedy Space Center Industrial Area located in Merritt Island, Florida, has been prepared under the direct supervision of a Professional Engineer registered in the State of Florida. This work was performed in accordance with generally accepted professional engineering practices under Chapter 471 of the Florida Statutes. The data, findings, recommendations, specifications, or professional opinions were prepared solely for the use of the National Aeronautics and Space Administration and the Florida Department of Environmental Protection. AECOM makes no other warranty, either expressed or implied, and is not responsible for the interpretation by others of these data.

This item has been digitally signed and sealed by:

Jennifer Gootee, P.E. Date
Program Manager
Florida License No. 57964
Engineering Business No. 8115
Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

TABLE OF CONTENTS

TA	ΓABLES	V
FI	FIGURES	vi
ΑF	APPENDICES	viii
ΑĒ	ABBREVIATIONS, ACRONYMS, AND SYMBOLS	ix
EX	EXECUTIVE SUMMARY	xii
1.		
	1.1 Project Background	
	1.2 Facility Locations1.3 Climate	
	1.4 Purpose	
	1.5 Field Sampling Activities	
2.	2. RANSOM ROAD LANDFILL	2-1
	2.1 Site Description and History	
	2.2 Field Activities	
	2.3 Water Level Collection and Groundwater Flow Direction	
	2.4 Analytical Results	
	2.4.1 Groundwater Analytical Results – Monitoring W	
	2.4.2 Groundwater Analytical Results – DPT	
	2.6 Conclusion and Recommendation	
3.	3. ORSINO STORAGE YARD	3-1
	3.1 Site Description and History	
4.	BUILDING M7-0505 TREATMENT TANK AREA	4-1
	4.1 Site Description and History	4-1
	4.2 Field Activities	4-2
	4.3 Water Level Collection and Groundwater Flow Direction	
	4.4 Analytical Results	
	4.5 Trend Analysis	
	4.6 Conclusion and Recommendation	4-5
5.		
	STAGING AREA	
	5.1 Site Description and History	
	5.2 Field Activities	
	5.3 Water Level Collection and Groundwater Flow Directio5.4 Analytical Results	on

	5.5	Trend Analysis	5-4
	5.6	Conclusion and Recommendation	5-4
6.	OPEF	RATIONS AND CHECKOUT BUILDING	6-1
	6.1	Site Description and History	6-1
	6.2	Field Activities	
	6.3	Water Level Collection and Groundwater Flow Direction	6-2
	6.4	Analytical Results	6-2
	6.5	Trend Analysis	6-2
	6.6	Conclusion and Recommendation	6-3
7.	VER	ΓICAL PROCESSING FACILITY	7-1
	7.1	Site Description and History	7-1
	7.2	Field Activities	
	7.3	Water Level Collection and Groundwater Flow Direction	7-3
	7.4	Analytical Results	7-4
	7.5	Trend Analysis	
	7.6	Conclusion and Recommendation	
8.	ENV	IRONMENTAL HEALTH FACILITY	8-1
	8.1	Site Description and History	8-1
	8.2	Field Activities	
	8.3	Water Level Collection and Groundwater Flow Direction	8-2
	8.4	Analytical Results	8-2
		8.4.1 Groundwater Analytical Results – Monitoring Wells	
		8.4.2 Groundwater Analytical Results – DPT	
	8.5	Trend Analysis	
	8.6	Conclusion and Recommendation	
9.	KEN	NEDY ATHLETIC, RECREATION, AND SOCIAL PARK 1	9-1
	9.1	Site Description and History	
	9.2	Field Activities	
	9.3	Water Level Collection and Groundwater Flow Direction	9-2
	9.4	Analytical Results	
	9.5	Trend Analysis.	
	9.6	Conclusion and Recommendation	9-3
10.	ENG	INEERING DEVELOPMENT LABORATORY	10-1
	10.1	Site Description and History	
	10.2	Field Activities	
	10.3	Water Level Collection and Groundwater Flow Direction	
	10.4	Analytical Results	
		10.4.1 Groundwater Analytical Results – Monitoring Wells	
		10.4.2 Groundwater Analytical Results – DPT	

	10.5	Trend Analysis	. 10-2
	10.6	Conclusion and Recommendation	. 10-3
11.	LAUI	NCH EQUIPMENT TEST FACILITY	. 11-1
	11.1	Site Description and History	
	11.2	Field Activities	
	11.3	Water Level Collection and Groundwater Flow Direction	. 11-2
	11.4	Analytical Results	. 11-3
	11.5	Trend Analysis	11-3
	11.6	Conclusion and Recommendation	. 11-3
12.	MOB	IL SERVICE STATION	. 12-1
	12.1	Site Description and History	. 12-1
	12.2	Field Activities	12-2
	12.3	Water Level Collection and Groundwater Flow Direction	12-3
	12.4	Analytical Results	12-3
	12.5	Trend Analysis	12-3
	12.6	Conclusion and Recommendation	12-4
13.	GENI	ERAL SERVICES ADMINISTRATION SEIZED PROPERTY	. 13-1
	13.1	Site Description and History	13-1
	13.2	Field Activities	. 13-2
	13.3	Water Level Collection and Groundwater Flow Direction	13-3
	13.4	Analytical Results	
	13.5	Trend Analysis	
	13.6	Conclusion and Recommendation	13-6
14.	SPAC	CE STATION PROCESSING FACILITY	. 14-1
	14.1	Site Description and History	14-1
	14.2	Field Activities	
	14.3	Water Level Collection and Groundwater Flow Direction	
	14.4	Analytical Results	
	14.5	· · · · · · · · · · · · · · · · · · ·	
	14.6	Conclusion and Recommendation	14-3
15.	FUEL	L STORAGE AREA #1 UNDERGROUND STORAGE TANK (BUILDING	
	1044)		
	15.1	Site Description and History	
	15.2	Field Activities	
	15.3	Water Level Collection and Groundwater Flow Direction	
	15.4	Analytical Results	
	15.5	Trend Analysis	
	15.6	Conclusion and Recommendation	15-7

16.	CON	CLUSIONS AND RECOMMENDATIONS	. 16-1
	16.1	Ransom Road Landfill	. 16-1
	16.2	Orsino Storage Yard	. 16-1
	16.3	Building M7-0505 Treatment Tank Area	. 16-1
	16.4	Hypergol Maintenance Facility Hazardous Waste South Staging Area	. 16-2
	16.5	Operations and Checkout Building	. 16-2
	16.6	Vertical Processing Facility	. 16-2
	16.7	Environmental Health Facility	. 16-3
	16.8	Kennedy Athletic, Recreation, and Social Park I	. 16-3
	16.9	Engineering Development Laboratory	. 16-3
		Launch Equipment Test Facility	
	16.11	Mobil Service Station	. 16-4
	16.12	General Services Administration Seized Property	. 16-4
	16.13	Space Station Processing Facility	. 16-5
	16.14	Fuel Storage Area #1 Underground Storage Tank (Building 1044)	. 16-5
17.	REFE	ERENCES	. 17-1

TABLES

Table 2-1	RRLF Monitoring Well Groundwater Elevations
Table 2-2	RRLF Groundwater Sampling Analytical Results
Table 2-3	RRLF DPT Sampling Analytical Results
Table 4-1	M505 Monitoring Well Groundwater Elevations
Table 4-2	M505 Groundwater Sampling Analytical Results
Table 5-1	HMF South Top of Casing Elevation Survey
Table 5-2	HMF South Monitoring Well Groundwater Elevations
Table 5-3	HMF South Groundwater Sampling Analytical Results
Table 6-1	O&C Monitoring Well Groundwater Elevations
Table 6-2	O&C Groundwater Sampling Analytical Results
Table 7-1	VPF Monitoring Well Groundwater Elevations
Table 7-2	VPF Groundwater Sampling Analytical Results
Table 8-1	EHF Monitoring Well Groundwater Elevations
Table 8-2	EHF Groundwater Sampling Analytical Results
Table 8-3	EHF DPT Sampling Analytical Results
Table 9-1	KARS Park 1 LOC 9 Monitoring Well Groundwater Elevations
Table 9-2	KARS Park 1 LOC 9 Groundwater Sampling Analytical Results
Table 10-1	EDL Monitoring Well Groundwater Elevations
Table 10-2	EDL Groundwater Sampling Analytical Results
Table 10-3	EDL DPT Sampling Analytical Results
Table 11-1	LETF Monitoring Well Groundwater Elevations
Table 11-2	LETF Groundwater Sampling Analytical Results
Table 12-1	MOBIL Monitoring Well Groundwater Elevations
Table 12-2	MOBIL Groundwater Sampling Analytical Results
Table 13-1	GSSP Monitoring Well Groundwater Elevations
Table 13-2	GSSP Groundwater Sampling Analytical Results
Table 14-1	SSPF Monitoring Well Groundwater Elevations
Table 14-2	SSPF Groundwater Sampling Analytical Results
Table 15-1	FSA1 Monitoring Well Groundwater Elevations
Table 15-2	FSA1 Groundwater Sampling Analytical Results
Table 16-1	IA LTM Recommendations
Table 16-2	IA LTM 2023/2024+ Program Monitoring Schedule

FIGURES

Figure 1	IA LTM Site Locations
Figure 2	RRLF Site Map
Figure 2-1	RRLF Shallow Zone Groundwater Elevation Map – May 2022
Figure 2-2	RRLF Intermediate Zone Groundwater Elevation Map – May 2022
Figure 2-3	RRLF Groundwater Sampling Analytical Results
Figure 2-4	RRLF DPT Sampling Analytical Results
Figure 3	ORSY Site Map
Figure 4	M505 Site Map
Figure 4-1	M505 Shallow Zone Groundwater Elevation Map – May 2022
Figure 4-2	M505 Intermediate Zone Groundwater Elevation Map – May 2022
Figure 4-3	M505 Groundwater Sampling Analytical Results
Figure 5	HMF South Site Map
Figure 5-1	HMF South Groundwater Elevation Map – September 2021
Figure 5-2	HMF South Groundwater Elevation Map – November 2022
Figure 5-3	HMF South Groundwater Sampling Analytical Results
Figure 6	O&C Site Map
Figure 6-1	O&C Groundwater Elevation Map – May 2022
Figure 6-2	O&C Groundwater Sampling Analytical Results
Figure 7	VPF Site Map
Figure 7-1	VPF Shallow Zone Groundwater Elevation Map – May 2022
Figure 7-2	VPF Intermediate Zone Groundwater Elevation Map – May 2022
Figure 7-3	VPF Deep Zone Groundwater Elevation Map – May 2022
Figure 7-4	VPF Groundwater Sampling Analytical Results
Figure 8	EHF Site Map
Figure 8-1	EHF Groundwater Elevation Map – November 2022
Figure 8-2	EHF Groundwater Sampling Analytical Results
Figure 8-3	EHF DPT Sampling Analytical Results
Figure 9	KARS Park 1 Site Map
Figure 9-1	KARS Park 1 LOC 9 Groundwater Elevation Map – September 2021
Figure 9-2	KARS Park 1 LOC 9 Groundwater Sampling Analytical Results

Figure 10	EDL Site Map
Figure 10-1	EDL Groundwater Elevation Map – November 2022
Figure 10-2	EDL Groundwater Sampling Analytical Results
Figure 10-3	EDL DPT Sampling Analytical Results
Figure 11	LETF Site Map
Figure 11-1	LETF Groundwater Elevation Map – November 2021
Figure 11-2	LETF Groundwater Sampling Analytical Results
Figure 12	MOBIL Site Map
Figure 12-1	MOBIL Groundwater Elevation Map – May 2022
Figure 12-2	MOBIL Groundwater Sampling Analytical Results
Figure 13	GSSP Site Map
Figure 13-1	GSSP Shallow Zone Groundwater Elevation Map – November 2021
Figure 13-2	GSSP Shallow-Intermediate Zone Groundwater Elevation Map – November 2021
Figure 13-3	GSSP Intermediate Zone Groundwater Elevation Map – November 2021
Figure 13-4	GSSP Shallow Zone Groundwater Elevation Map – November 2022
Figure 13-5	GSSP Shallow-Intermediate Zone Groundwater Elevation Map – November 2022
Figure 13-6	GSSP Intermediate Zone Groundwater Elevation Map – November 2022
Figure 13-7	GSSP Groundwater Sampling Analytical Results
Figure 14	SSPF Site Map
Figure 14-1	SSPF Groundwater Elevation Map – May 2022
Figure 14-2	SSPF Groundwater Sampling Analytical Results
Figure 15	FSA1 Site Map
Figure 15-1	FSA1 Shallow Zone Groundwater Elevation Map – November 2021
Figure 15-2	FSA1 Intermediate Zone Groundwater Elevation Map – November 2021
Figure 15-3	FSA1 Shallow Zone Groundwater Elevation Map – May 2022
Figure 15-4	FSA1 Intermediate Zone Groundwater Elevation Map – May 2022
Figure 15-5	FSA1 Groundwater Sampling Analytical Results

APPENDICES

Kennedy Space Center Remediation Team Meeting Minutes
Daily Field Activity Logs
Groundwater Sampling Logs
RIS Completion Tickets
Laboratory Analytical Data
IDW Inventory Logs
Mann-Kendall Analyses
ORSY Letter Report - 2023
M505 Analytical Cross-Section Documents
HMF South Historical TCFM Groundwater Data Table
HMF South 95% UCL Analysis
HMF South Professional Survey Data
MOBIL Vertical Delineation Documents
GSSP Downgradient Delineation Documents
FSA1 Vertical Delineation Documents

ABBREVIATIONS, ACRONYMS, AND SYMBOLS

ADP Advanced Data Package

AECOM Technical Services, Inc.

ARCADIS Arcadis U.S., Inc.

AS air sparge

AST aboveground storage tank

BKG background

bls below land surface

CCF Components Cleaning Facility

CCSFS Cape Canaveral Space Force Station

CGO Citgo Service Station cis-1,2-DCE cis-1,2-dichloroethene

CMS Corrective Measures Study

COC contaminant of concern

CVOC chlorinated volatile organic compound

DCB dichlorobenzene

DPT direct push technology

EDL Engineering Development Laboratory

EHF Environmental Health Facility

ENCO Environmental Conservation Laboratories, Inc.

ERD enhanced reductive dechlorination

Eurofins Eurofins Environment Testing Southeast, LLC

FAC Florida Administrative Code

FDEP Florida Department of Environmental Protection

FSA1 Fuel Storage Area #1 Underground Storage Tank (Building 1044)

ft foot/feet

GCTL Groundwater Cleanup Target Level

GSSP General Services Administration Seized Property

HMF South Hypergol Maintenance Facility Hazardous Waste South Staging Area

HSW Engineering

IA Industrial Area
ID Identification

IDW investigation-derived waste

IM interim measure

in inches

IW investigation wellJ estimated valueJP jet propellant

KARS Park 1 Kennedy Athletic, Recreation, and Social Park 1
KEDD Kennedy Space Center Electronic Data Deliverable

KSC Kennedy Space Center

KSCRT Kennedy Space Center Remediation Team

LETF Launch Equipment Test Facility

LFR Levine Fricke Recon, Inc.

LOC Location of Concern
LTM Long-Term Monitoring

LUC Land Use Control

M505 Building M7-0505 Treatment Tank Area

mg/kg milligrams per kilogram

MNA monitored natural attenuation

MOBIL Mobil Service Station

MTBE methyl tert-butyl ether

MW monitoring well NA Not Analyzed

NADC Natural Attenuation Default Concentration

NASA National Aeronautics and Space Administration

NAVD88 North American Vertical Datum of 1988

NFA No Further Action

NWS National Weather Service

O&C Operations and Checkout Building

ORP oxidation-reduction potential

ORSY Orsino Storage Yard

PAH polynuclear aromatic hydrocarbon

PCB polychlorinated biphenyl

PCE tetrachloroethene

PRL potential release location

RCRA Resource Conservation and Recovery Act

RFI Resource Conservation and Recovery Act Facility Investigation

RIS Remediation Information System

ROB range of background RP rocket propellant

RRLF Ransom Road Landfill

SAP Sampling and Analysis Plan SCTL soil cleanup target level

SSPF Space Station Processing Facility

SVE soil vapor extraction

SWMU Solid Waste Management Unit

TCB trichlorobenzene
TCE trichloroethene

TCFM trichlorofluoromethane

TMB trimethylbenzene
TOC top of casing

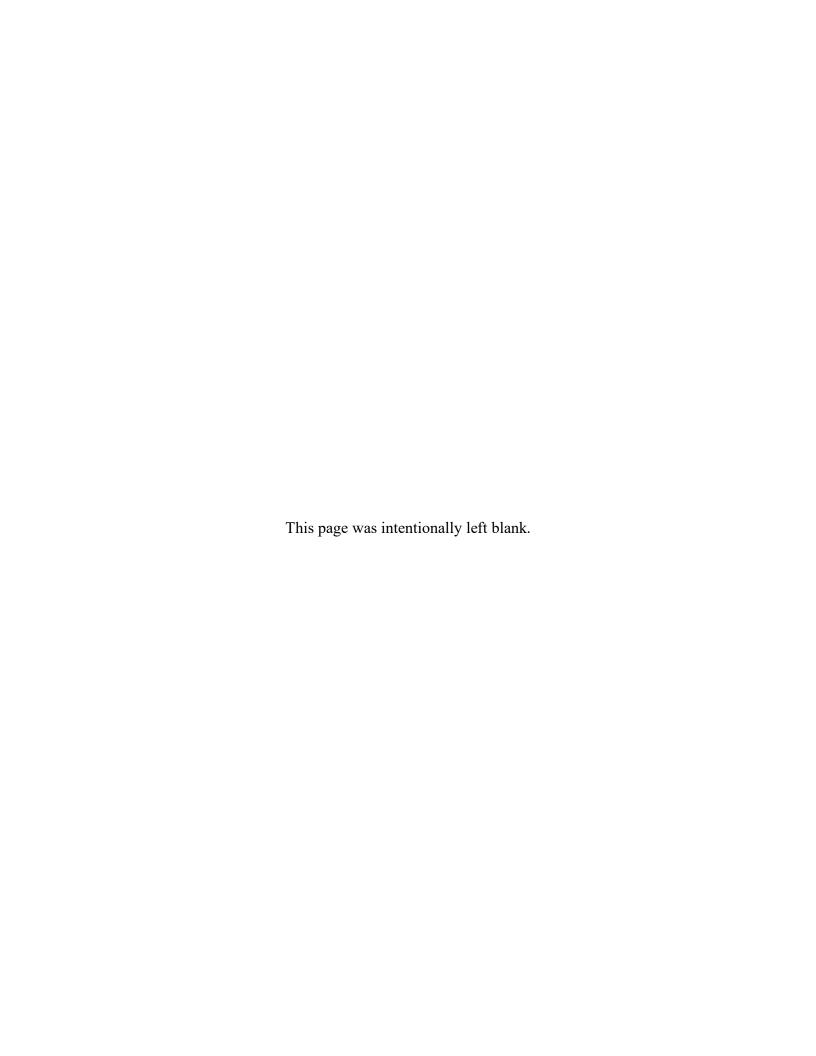
trans-1,2-DCE trans-1,2-dichloroethene

TPH total petroleum hydrocarbons

U analyte not detected UCL upper confidence limit

USEPA United States Environmental Protection Agency

UST underground storage tank


V analyte found in associated method blank

VC vinyl chloride

VOC volatile organic compound VPF Vertical Processing Facility

WL water level

μg/L micrograms per liter

EXECUTIVE SUMMARY

This report presents the groundwater sampling results from the National Aeronautics and Space Administration (NASA) Industrial Area (IA) 2021-2022 Long-Term Monitoring (LTM) activities and results of the 2023 DPT activities at three of the sites. The NASA IA LTM Program includes the following 14 sites:

- Ransom Road Landfill (RRLF) Solid Waste Management Unit (SWMU) 003
- Orsino Storage Yard (ORSY) SWMU 004
- Building M7-0505 Treatment Tank Area (M505) SWMU 039
- Hypergol Maintenance Facility Hazardous Waste South Staging Area (HMF South) SWMU 070
- Operations and Checkout Building (O&C) SWMU 076
- Vertical Processing Facility (VPF) SWMU 077
- Environmental Health Facility (EHF) SWMU 079
- Kennedy Athletic, Recreation, and Social Park 1 (KARS Park 1) SWMU 084
- Engineering Development Laboratory (EDL) SWMU 085
- Launch Equipment Test Facility (LETF) SWMU 091
- Mobil Service Station (MOBIL) SWMU 093
- General Services Administration Seized Property (GSSP) SWMU 095
- Space Station Processing Facility (SSPF) SWMU 098
- Fuel Storage Area #1 Underground Storage Tank (UST) [Building 1044] (FSA1) Potential Release Location (PRL) 157

Groundwater levels were gauged at each site during the 2021 and 2022 LTM field activities. Sampling events for the IA LTM Program are conducted seasonally during the dry and wet seasons, which occur in May and November, respectively. The sites in the NASA IA LTM Program are sampled on annual, biennial, or 5-year sampling frequencies based on historical trends. Due to contract transitions and monitoring well installations, 2021 dry season activities were conducted during September 2021, while dry season activities for 2022 resumed in May 2022.

The sampling frequencies for the 2021 and 2022 period for NASA IA LTM sites are as follows:

- FSA1 is sampled annually, alternating between wet and dry seasons.
- GSSP is sampled annually during the wet season.
- Nine sites are sampled biennially, alternating between the wet and dry seasons (RRLF, ORSY, M505, HMF South, O&C, VPF, LETF, MOBIL, and SSPF).
- EHF and EDL are sampled biennially during the wet season.
- KARS Park 1 is sampled once every 5 years.

Based on the results of the 2021-2022 NASA IA LTM sampling activities and 2023 direct push technology (DPT) activities at RRLF, EHF, and EDL, the following recommendations are for the 2023-2024 NASA IA LTM Program:

RANSOM ROAD LANDFILL

A new downgradient stick-up monitoring well, RRLF-MW0043, is recommended at the location of RRLF-DPT0024 to serve as a horizontal point of compliance well. The screen interval for RRLF-MW0043 will be 15 feet (ft) below land surface (bls) to 25 ft bls to capture the aquifer conditions within and below the 4 ft screen interval of RRLF-DPT0024 that slightly exceeded the vinyl chloride (VC) Florida Department of Environmental Protection (FDEP) groundwater cleanup target level (GCTL).

The biennial LTM sampling frequency in alternating wet/dry seasons is recommended to continue at RRLF at monitoring wells RRLF-MW0033, RRLF-MW0038I, RRLF-MW0039I, RRLF-MW0040I, and new monitoring well RRLF-MW0043 for VC analysis by United States Environmental Protection Agency (USEPA) Method 8260 (herein referred to as Method 8260). Groundwater levels are recommended to be measured at 16 monitoring wells, assuming that RRLF-MW0015 is found and RRLF-MW0043 is installed. Monitoring well RRLF-MW0015 has not been located since 2018. A historical review is recommended to determine the location of RRLF-MW0015. The next sampling event at RRLF is scheduled for November 2024.

ORSINO STORAGE YARD

The September 2021 ORSY sampling data indicated volatile organic compound (VOC) concentrations remained below GCTLs, marking the second consecutive sampling event with results below GCTLs. Long-term groundwater monitoring at ORSY is recommended to discontinue. The land use control for soil will remain in place at the site. A letter report detailing the ORSY site history and September 2021 sampling activities was submitted to FDEP on July 10, 2023.

BUILDING M7-0505 TREATMENT TANK AREA

Biennial LTM sampling is recommended to continue at M505 in alternating wet/dry seasons. Downgradient monitoring well M505-MW0029 is recommended to be added to the sample schedule to maintain horizontal delineation along the southern boundary of the site. M505-MW0029 is downgradient of M505-MW0055 at the same screen interval (22.5 ft bls to 27.5 ft bls). Groundwater levels are recommended to be measured at 35 monitoring wells and samples collected from nine monitoring wells for select VOCs (trichloroethene [TCE], cis-1,2-dichloroethene [cis-1,2-DCE], and VC). The next sampling event at M505 is scheduled for November 2024.

HYPERGOL MAINTENANCE FACILITY HAZARDOUS WASTE SOUTH STAGING AREA

TCFM concentrations continue to be non-detect at the downgradient monitoring well HMF-MW0006IR, and have historically been below GCTLs at the remaining HMF South monitoring wells. Therefore, long-term groundwater monitoring at HMF South is recommended to discontinue. The LUC for groundwater is recommended to be removed, and a Site Rehabilitation Completion Report is recommended to be completed for NFA without controls.

With FDEP agreement during the April 2023 KSCRT meeting (**Appendix A**), the HMF South monitoring well network was abandoned in May 2023 (HydroGeoLogic 2023) to support construction activities at the site.

OPERATIONS AND CHECKOUT BUILDING

Biennial sampling in alternating wet/dry seasons is recommended to continue at O&C with the addition of monitoring well O_C-MW0006I for VC analysis by Method 8260 and water level collections to verify downgradient delineation. Groundwater levels are recommended to be measured at five monitoring wells and samples collected from three monitoring wells. The next sampling event at O&C is scheduled for November 2024.

VERTICAL PROCESSING FACILITY

A new flush-mount shallow monitoring well, screened 3 ft bls to 13 ft bls, is recommended to be installed adjacent to VPF-MW0023 to verify horizontal delineation in the shallow zone downgradient of VPF-MW0022. Monitoring well VPF-MW0010I is recommended to be added into the sampling schedule to verify horizontal delineation in the intermediate zone downgradient of VPF-MW0018I. Monitoring well VPF-MW0008D is recommended to be added into the sampling schedule to verify vertical delineation around VPF-MW0008I.

Biennial LTM sampling is recommended to continue at VPF with 35 groundwater level measurements and nine monitoring wells sampled for select VOCs (TCE, cis-1,2-DCE, and VC). The next sampling event at VPF is scheduled for November 2024.

ENVIRONMENTAL HEALTH FACILITY

A new upgradient flush-mount monitoring well, EHF-MW0009, is recommended at the location of EHF-DPT0005 to serve as a horizontal point of compliance well. The screen interval for EHF-MW0009 will be 15 ft bls to 25 ft bls to capture the aquifer conditions across both the intervals of EHF-DPT0005 that exceeded the VC GCTL.

The biennial sampling frequency is recommended to continue at monitoring wells EHF-MW0001, EHF-MW0004, EHF-MW0005, and new monitoring well EHF-MW0009 for VC analysis. Groundwater levels are recommended to be measured at seven monitoring wells. The next sampling event at EHF is scheduled for November 2024.

KENNEDY ATHLETIC, RECREATION, AND SOCIAL PARK 1

Monitoring wells KP1-MW0003 and KP1-MW0035 are recommended to be removed from the sampling schedule because concentrations of total lead in these two monitoring wells have been below the GCTL for the last two consecutive sampling events. The 5-year LTM frequency is recommended to be accelerated to May 2023 at LOC 9 with 16 monitoring wells used for groundwater level measurements and a groundwater sample collected from KP1-MW0022. Pending continued analytical data below the GCTL in May 2023, long-term groundwater monitoring at KARS Park 1 LOC 9 is recommended to discontinue and the LUC is recommended to be removed.

ENGINEERING DEVELOPMENT LABORATORY

The biennial LTM frequency is recommended to continue at monitoring wells EDL-MW0004 and EDL-MW0006R for VC analysis by Method 8260. Groundwater level measurements are recommended to continue at four monitoring wells. The next sampling event at EDL is scheduled for November 2024.

LAUNCH EQUIPMENT TEST FACILITY

The biennial LTM sampling network is recommended to be reduced to two monitoring wells (LETF-MW0001 and downgradient LETF-PSB-MW0001) for VC analysis. Groundwater levels are recommended to continue to be measured at 14 monitoring wells. The next sampling event at LETF is scheduled for May 2023.

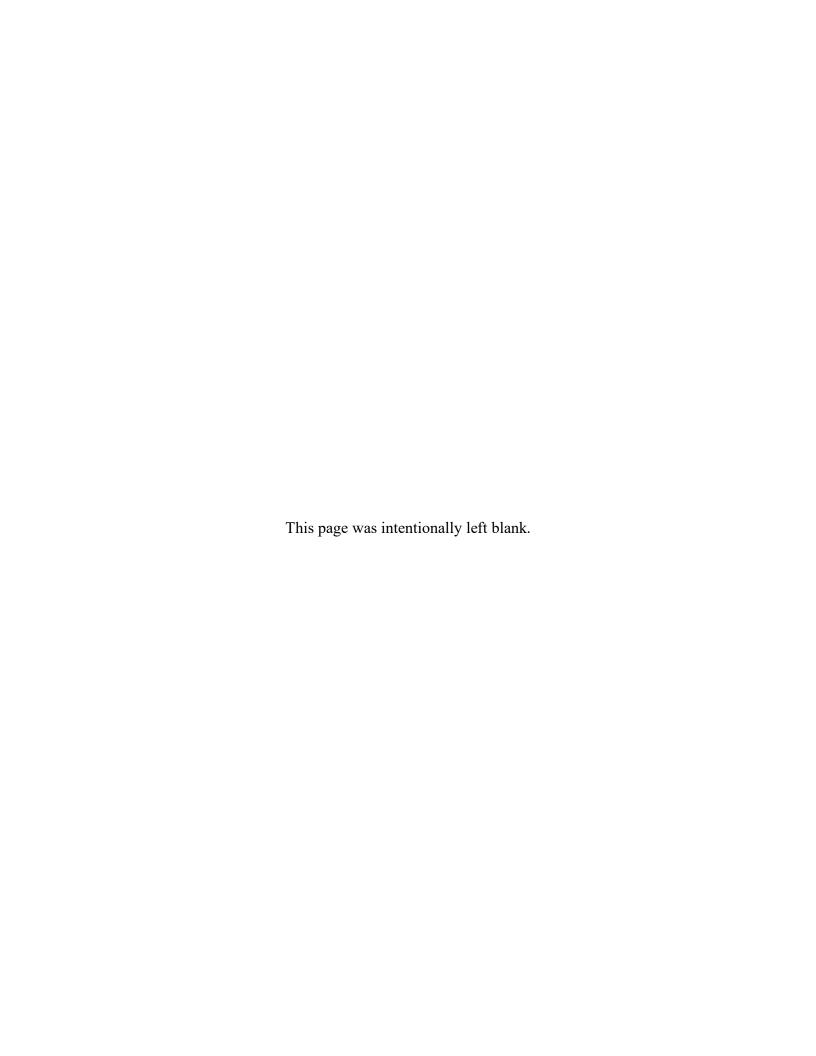
MOBIL SERVICE STATION

Eight historically clean monitoring wells are recommended to be abandoned. During assessment and early LTM activities, these eight monitoring wells were installed before the plume was determined to be isolated in the intermediate zone at this site. The eight monitoring wells proposed for abandonment, located around the perimeter of the site, are screened above or below the monitored plume, and not used for plume delineation.

The biennial LTM sampling frequency is recommended to continue at MOBIL with monitoring wells CGO-MW0005, CGO-MW0023, and CGO-MW0024 added into the sampling program to verify downgradient VOC concentrations. Six monitoring wells are recommended to be analyzed for select VOCs (benzene, 1,2,4-trimethylbenzene, xylenes, and methyl tert-butyl ether) and monitoring well CGO-MW0006 is also recommended to be analyzed for select polynuclear aromatic hydrocarbons (PAHs) (naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene). Groundwater levels are recommended to continue to be measured at nine monitoring wells. The next sampling event at MOBIL is scheduled for November 2024.

GENERAL SERVICES ADMINISTRATION SEIZED PROPERTY

Site contaminants of concern (COCs) are recommended to be reduced to VC only by Method 8260 for each sampled monitoring well and retain naphthalene analysis by Method 8270 at monitoring wells GSSP-MW0024R, GSSP-MW0035, and GSSP-MW0053. Select VOC concentrations other than VC have not exceeded GCTLs in the past four annual sampling events.


The annual LTM sampling frequency is recommended to continue with an expanded sampling event every five years (the next expanded event to be scheduled for November 2024). The next sampling event, scheduled for November 2023, will include water level measurements at 33 monitoring wells and groundwater samples from 14 monitoring wells.

SPACE STATION PROCESSING FACILITY

Biennial sampling in alternating wet/dry seasons is recommended to continue at SSPF. Groundwater levels are recommended to be collected at 15 monitoring wells and five monitoring wells sampled for ammonia. The next sampling event at SSPF is scheduled for November 2024.

FUEL STORAGE AREA #1 UNDERGROUND STORAGE TANK (BUILDING 1044)

LTM sampling is recommended to continue on an annual frequency alternating between wet and dry seasons. Naphthalene and total petroleum hydrocarbons are recommended to be removed from the site COCs following two or more consecutive events below GCTLs. Groundwater levels are recommended to be measured in 18 monitoring wells and groundwater samples collected at 10 monitoring wells for isopropylbenzene and select PAHs (1-methylnaphthalene and 2-methylnaphthalene). The next sampling event at FSA1 is scheduled for November 2023.

1. INTRODUCTION

The National Aeronautics and Space Administration (NASA), through its Environmental Assurance Branch, is managing the cleanup of 14 sites in the Industrial Area (IA) of Kennedy Space Center (KSC), Florida, through a Long-Term Monitoring (LTM) Program. Groundwater sampling was conducted in 2021 and 2022 by AECOM Technical Services, Inc. (AECOM) under Contract 80KSC019D0010, Task Order 80KSC019F0071. This report presents the activities, findings, and recommendations from the 2021-2022 IA LTM Program. The 14 sites included in the 2021-2022 IA LTM Program consist of one potential release location (PRL) and 13 Solid Waste Management Units (SWMUs):

- Ransom Road Landfill (RRLF) SWMU 003
- Orsino Storage Yard (ORSY) SWMU 004
- Building M7-0505 Treatment Tank Area (M505) SWMU 039
- Hypergol Maintenance Facility Hazardous Waste South Staging Area (HMF South) SWMU 070
- Operations and Checkout Building (O&C) SWMU 076
- Vertical Processing Facility (VPF) SWMU 077
- Environmental Health Facility (EHF) SWMU 079
- Kennedy, Athletic, Recreation, and Social Park 1 (KARS Park 1) SWMU 084
- Engineering Development Laboratory (EDL) SWMU 085
- Launch Equipment Test Facility (LETF) SWMU 091
- Mobil Service Station (MOBIL) SWMU 093
- General Services Administration Seized Property (GSSP) SWMU 095
- Space Station Processing Facility (SSPF) SWMU 098
- Fuel Storage Area #1 Underground Storage Tank (UST) [Building 1044] (FSA1) PRL 157

The locations of the sites included in the NASA IA LTM Program are depicted on **Figure 1**. Sampling activities, findings, and recommendations for the individual IA sites sampled in 2021 and 2022 are included as **Section 2** through **Section 15**.

1.1 PROJECT BACKGROUND

Long-term groundwater monitoring has been approved by Florida Department of Environmental Protection (FDEP) for the sites included in the NASA IA LTM Program. The primary objective of the IA LTM Program is to provide NASA with the necessary information to monitor progress and inform decisions toward cleanup goals for each site, and provide analytical results to the FDEP as required by KSC's Corrective Action Management Plan (NASA 2006). The 2021-2022 IA LTM Program work was conducted in accordance with the 2019-2020 IA LTM Report (AECOM 2021). The 2021-2022 program also incorporated KSC Remediation Team (KSCRT) decisions from its February 2021 and March 2022 meetings (**Appendix A**).

NASA IA LTM sites generally fall under two site types:

- Mature sites, which have been under LTM for five or more years, that are approved for biennial groundwater sampling
- Sites that recently completed active remediation and are monitoring the potential for contaminant rebound through annual sampling

1.2 FACILITY LOCATIONS

KSC is located on the northern portion of Merritt Island, between the Indian River to the west and the Banana River to the east. The IA LTM program sites, depicted on **Figure 1**, are located on KSC, except for FSA1, which is located to the east at Cape Canaveral Space Force Station (CCSFS). At KSC, the sites are spread out with seven sites (M505, ORSY, O&C, EDL, LETF, SSPF, and MOBIL) located within the IA, one site (EHF) located north of the IA, two sites (RRLF and GSSP) located west of the IA, and two sites (HMF South and VPF) located southeast of the IA. KARS Park 1 is located approximately 5 miles south of the KSC boundary and east of State Road 3 on Merritt Island.

1.3 CLIMATE

The climate at KSC is typically pleasant with high temperatures in the range of 70 degrees Fahrenheit to 85 degrees Fahrenheit for 7 months out of the year. July is the hottest month with an average high temperature of 90.5 degrees Fahrenheit. The highest humidity occurs in July and August. The annual mean precipitation along the east coast of Central Florida in Brevard County is 54.65 inches (in.) based on precipitation records (2000-2022) maintained by the National Weather Service (NWS). Precipitation varies seasonally with the wet season occurring between May and October and the rest of year being relatively dry. In 2021, a lower than average total of 47.53 in. of rainfall was recorded, while in 2022, a slightly higher than average total of 62.01 in. of rainfall was recorded (National Oceanic and Atmospheric Administration, NWS Forecast Office, Melbourne, Florida).

1.4 PURPOSE

This report presents the 2021-2022 analytical results from the 14 IA LTM sites. Based on these analytical results, conclusions, and recommendations for future IA LTM activities are included for each monitoring site.

Recommendations for the 2023-2024 IA LTM Program were presented to the KSCRT in March 2022, April 2023, and June 2023. Minutes from the KSCRT meetings are included in **Appendix A**.

1.5 FIELD SAMPLING ACTIVITIES

Performance of routine prescribed LTM sampling at the IA LTM sites provides the data necessary to evaluate the status of contaminants of concern (COCs) at each site. Groundwater sampling activities conducted in 2021 and 2022 followed the KSC Sampling and Analysis Plan (SAP) (Geosyntec 2017), the 2019-2020 LTM Report, and KSCRT decisions during the March 2022 meeting. Additional field work was conducted in 2022 utilizing survey equipment at HMF South and in 2023 using direct push technology (DPT) at RRLF, EHF, and EDL. The DPT groundwater sampling activities are detailed for RRLF in **Section 2**, EHF in **Section 8**, and EDL in **Section 10**.

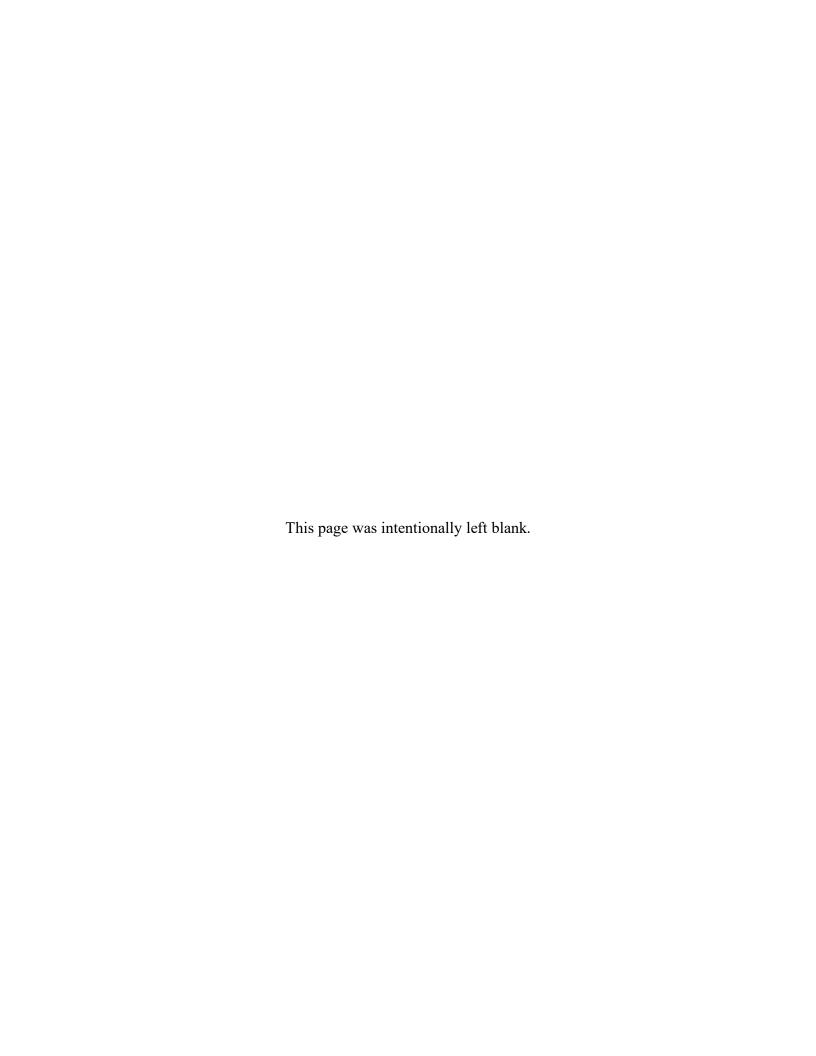
At the onset of each scheduled LTM sampling event and prior to collection of samples, predetermined monitoring wells were vented to allow for atmospheric equilibration. Once stabilized, depth to water levels were measured and groundwater elevations calculated in site monitoring wells to determine the groundwater gradient and flow direction of the various site aquifers. Water levels in each monitoring well were measured to the nearest 0.01 foot (ft) using an electronic water level meter. Measurements were recorded from a permanent point identified on the top of each monitoring well casing, typically the northernmost point, for consistency. Groundwater elevations are calculated by subtracting the measured depth to water from the surveyed top of casing (TOC) elevation relative to the North American Vertical Datum of 1988 (NAVD88). Additionally, observations of the condition of the monitoring wells, surrounding vegetation, and biological hazards were noted.

Site-specific laboratory kits for LTM, including coolers and sample bottleware, were provided by Environmental Conservation Laboratories, Inc. (ENCO) and Eurofins Environment Testing Southeast, LLC (Eurofins). Immediately following bottleware labeling, sample collection, and logging on the chain-of-custody, each sample was placed on ice. Samples were delivered to the ENCO and Eurofins directly by AECOM field staff or transported from KSC via a laboratory courier. Before transporting samples from KSC to ENCO or Eurofins, sample coolers were packed with fresh ice. If the samples were relinquished to a laboratory courier, the exchange was noted on the chain-of-custody and the coolers were custody-sealed in order to maintain sample integrity during transit.

During purging of monitoring wells, geochemical parameters consisting of pH, specific conductivity, turbidity, dissolved oxygen, temperature, oxidation-reduction potential (ORP), and salinity were monitored and recorded. Samples were collected once the geochemical parameters reached stabilization in accordance with FDEP Standard Operating Procedures (FDEP 2017) and the SAP. Daily field activity logs are included in **Appendix B**. Groundwater sampling logs, which include the geochemical data, are included in **Appendix C**.

Each IA LTM site sampled in 2021 and 2022 was sampled using low-flow sampling techniques, where each monitoring well was purged and sampled with a peristaltic pump and high-density

polyethylene tubing. The sample tubing was placed within the top 1 ft of the water column at each shallow monitoring well and at the mid-point of the monitoring well screen at each intermediate and deep monitoring well to obtain a representative groundwater sample of aquifer conditions.


The KSCRT created the KSC Remediation Information System (RIS) so that contractors gathering environmental data could upload their data to the Electronic Data Exchange. Contractors are responsible for creating KSC Electronic Data Deliverables (KEDDs). A completion ticket is issued to the contractor after a successful KEDD upload. Upon receipt and validation of the 2021 and 2022 analytical data from the laboratory, data were formatted and uploaded into RIS. Once the KEDD site-specific fields were populated, these records were uploaded into the RIS database. RIS completion tickets for 2021 and 2022 groundwater sampling activities are included in **Appendix D**. Laboratory analytical data from these events can be found in **Appendix E** (electronic copies only).

Purge water generated during sampling was containerized in 55-gallon steel drums staged on spill containment pallets at the Components Cleaning Facility (CCF). The storage drums of purge water were sampled at the end of each LTM sampling event and characterized for disposal. Upon receipt, analytical data were provided to the NASA Remediation Project Manager along with an inventory of the drums for disposal. Investigation-derived waste (IDW) inventory logs are provided as **Appendix F**.

Analytes detected in groundwater at each site were compared to the FDEP Groundwater Cleanup Target Levels (GCTLs) and Natural Attenuation Default Concentration (NADC) levels established by Chapter 62-777, Florida Administrative Code (FAC). Mann-Kendall trend analyses were completed for GSSP, and the reports are provided in **Appendix G**. Data analysis and recommendations for each site are detailed in site-specific sections of this report.

Date Saved: 8/9/2023 1:52:07 PM Document Path: M:\Gisprojects\Projects\NASA\K

2. RANSOM ROAD LANDFILL

This section summarizes the field activities and provides a summary of the RRLF site (SWMU 003). Refer to **Figure 2** for a site map.

2.1 SITE DESCRIPTION AND HISTORY

The RRLF is located south of Ransom Road and west of Space Commerce Way, adjacent to the large facilities operated by Blue Origin. The landfill was actively used between 1964 and 1970. During its operation, RRLF received general types of wastes during the initial construction of facilities at KSC. As a former trench and fill landfill, wastes were placed in unlined trenches and filled with soils excavated from the site (NASA 2004a).

In 1991, a landfill cover was constructed over the buried wastes at RRLF. In 1997, a Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) and risk evaluation were completed (Geosyntec 2003a). Results from the RFI identified several volatile organic compounds (VOCs) present in groundwater at concentrations exceeding their respective GCTLs. The risk evaluation determined that these VOCs would pose an unacceptable human health risk if groundwater was to be used as a drinking water source. Between 1999 and 2000, interim groundwater monitoring was performed at RRLF. Following the interim monitoring period, it was determined additional groundwater assessment was warranted in the wooded area on the southern portion of the site. In 2003, a supplemental assessment delineated most of the VOC groundwater contamination in the wooded area south of the landfill (Geosyntec 2003a). To address contaminant concentrations that exceeded GCTLs, monitored natural attenuation (MNA) of groundwater was selected to reduce VOC concentrations (NASA 2004b). Annual LTM of groundwater commenced at RRLF in 2004. In 2012, the sampling program was reduced to what is now the current biennial groundwater sampling schedule.

2.2 FIELD ACTIVITIES

Monitoring well sampling was performed at RRLF in May 2022. Groundwater levels were measured at 14 monitoring wells, and samples from four monitoring wells were collected. Monitoring well RRLF-MW0015 was not located during this sampling event. Monitoring well RRLF-MW0039I was added back into the sampling schedule in 2022 based on recommendations from the 2019-2020 IA LTM report to verify downgradient delineation. The following table shows the network of monitoring wells used for groundwater level measurements and sampling at RRLF.

Well ID	Screen Interval (ft bls)	Analysis
RRLF-MW0012	4-9	WL Only
RRLF-MW0015	19.5-24.5	WL Only (not located)
RRLF-MW0029	25-30	WL Only
RRLF-MW0030	1-11	WL Only
RRLF-MW0031	25-30	WL Only

Well ID	Screen Interval (ft bls)	Analysis
RRLF-MW0033	25-30	WL + VC
RRLF-MW0034	1-11	WL Only
RRLF-MW0036	0.5-10.5	WL Only
RRLF-MW0037	0.5-10.5	WL Only
RRLF-MW0038S	1-11	WL Only
RRLF-MW0038I	22-27	WL + VC
RRLF-MW0039S	1-11	WL Only
RRLF-MW0039I	22-27	WL + VC
RRLF-MW0040I	22-27	WL + VC
RRLF-MW0042I	22-27	WL Only

ID = identification MW = monitoring well

VC = vinyl chloride analysis by Method 8260

WL = water level measurement

DPT groundwater sampling was performed at three locations in January 2023 and two step-out locations in March 2023. The January 2023 DPT locations were chosen to complete a horizontal delineation of the vinyl chloride (VC) plume at RRLF. The first location, RRLF-DPT0020, was placed southeast of the plume, where there has been a lack of historical groundwater data. RRLF-DPT0021 and RRLF-DPT0022 were placed near previous DPT locations RRLF-DPT0013R and RRLF-DPT0012, respectively, to determine whether the plume had attenuated in those areas. The two step-out locations were performed downgradient (west) of RRLF-DPT0022 at approximately 100-ft steps. A third side-gradient step-out location south of RRLF-DPT0022 was not able to be performed due to standing water in the seasonally flooded hammock.

Groundwater samples collected during the May 2022 LTM event and the January and March 2023 DPT events were analyzed for VC by USEPA Method 8260. Below are the respective GCTL and NADC for the COC present at RRLF.

COC	GCTL (µg/L)	NADC (μg/L)
VC	1	100

 $\mu g/L = micrograms per liter$

2.3 WATER LEVEL COLLECTION AND GROUNDWATER FLOW DIRECTION

Prior to sampling, groundwater levels from 14 on-site monitoring wells were recorded. **Table 2-1** presents the groundwater levels collected during the May 2022 sampling event. Groundwater levels collected during this event were used to calculate groundwater elevations and determine the contours and flow direction for the shallow (0.5 feet below land surface [ft bls] to 11ft bls) and intermediate (22 ft bls to 30 ft bls) aquifer zones shown on **Figure 2-1** and **Figure 2-2**, respectively. Shallow aquifer zone groundwater flow was to the west-southwest and intermediate aquifer zone groundwater flow was to the west in May 2022. Historical shallow aquifer groundwater observations have ranged from between west to east-southeast, and intermediate aquifer groundwater observations have been predominantly southwest. Seasonal fluctuation of precipitation largely influences these variations in groundwater flow.

2.4 ANALYTICAL RESULTS

2.4.1 Groundwater Analytical Results – Monitoring Wells

VC was detected at concentrations above the GCTL in three sampled monitoring wells: RRLF-MW0033 (8.9 micrograms per liter [μ g/L]), RRLF-MW0038I (7.7 μ g/L), and RRLF-MW0040I (3.4 μ g/L). Monitoring well RRLF-MW0039I was reinstated in the LTM schedule in 2022, yet VC concentrations were not detected during analysis. Current and historical analytical results are summarized in **Table 2-2**. Analytical results are depicted on **Figure 2-3**.

2.4.2 Groundwater Analytical Results – DPT

Groundwater samples were collected from the center of a temporary four ft screen at the following depths: 8, 18, 28, 38, and 48 ft bls. The depth intervals were kept similar to past RRLF site assessments to analyze COC concentrations above and below the present contaminated zone.

Concentrations of VC were detected at the following locations and depths:

VC Analysis (μg/L)					
DDT Leastion	Screen Interval (ft bls)				
DPT Location	(6-10)	(16-20)	(26-30)	(36-40)	(46-50)
RRLF-DPT0020	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U
RRLF-DPT0021	0.81 I	0.71 U	0.71 U	0.71 U	0.71 U
RRLF-DPT0022	14	13	8.6	0.71 U	0.71 U
RRLF-DPT0023	8.2	5.8	6.7	0.71 U	0.71 U
RRLF-DPT0024	0.71 U	2.3	0.71 U	0.71 U	0.71 U

I = Result is greater than or equal to the method detection limit but less than the practical quantitation limit U = Result was below laboratory method detection limit

Bold results indicate the presence of an analyte at the specified concentration

Red font indicates an exceedance of FDEP GCTLs

VC concentrations were limited to the shallow and intermediate intervals. No VC concentrations were detected during the January and March 2023 DPT assessment below 30 ft bls. A summary of the analytical results is presented in **Table 2-3**. **Figure 2-4** depicts the analytical results of the groundwater samples collected from each DPT location.

2.5 TREND ANALYSIS

VC concentrations have shown no clear trends at RRLF-MW0033, RRLF-MW0038I, or RRLF-MW0040I in the past 10 years of sampling. Since the previous 2020 sampling event, VC concentrations in RRLF-MW0033 and RRLF-MW0040I increased, while RRLF-MW0038I decreased slightly. Overall, the VC concentration in each of the three monitoring wells has reduced since monitoring began in 2004. As shown in the following chart, RRLF-MW0033, RRLF-MW0038I, and RRLF-MW0040I had VC concentrations exceeding the GCTL of 1 $\mu g/L$ in 2022.

2.6 CONCLUSION AND RECOMMENDATION

VC persists at concentrations above the GCTL in monitoring wells RRLF-MW0033, RRLF-MW0038I, and RRLF-MW0040I. VC concentrations were also detected above the GCTL at DPT locations RRLF-DPT0022, RRLF-DPT0023, and RRLF-DPT0024.

A new downgradient stick-up monitoring well, RRLF-MW0043, is recommended at the location of RRLF-DPT0024 to serve as a horizontal point of compliance well. VC concentrations were found to be decreasing in each step-out location from RRLF-DPT0022, where RRLF-DPT0024 had a VC detection slightly above the GCTL (2.3 μ g/L) at 18 ft bls. The recommended screen interval for RRLF-MW0043 is 15 ft bls to 25 ft bls to capture the aquifer conditions within and below the four ft screen interval that exceeded the VC GCTL at RRLF-DPT0024.

The biennial LTM sampling frequency is recommended to continue at monitoring wells RRLF-MW0033, RRLF-MW0038I, RRLF-MW0039I, RRLF-MW0040I, and new monitoring well RRLF-MW0043 for VC analysis. Groundwater levels are recommended to be measured at 16 monitoring wells, assuming that RRLF-MW0015 will be located and RRLF-MW0043 is installed. Monitoring well RRLF-MW0015 has not been located since 2018. A historical review is recommended to determine the location of RRLF-MW0015. The following table shows the recommended network of monitoring wells for groundwater level measurements and groundwater sampling for the next sampling event at RRLF scheduled for November 2024.

Well ID	Screen Interval (ft bls)	Analysis
RRLF-MW0012	4-9	WL Only
RRLF-MW0015	19.5-24.5	WL Only
RRLF-MW0029	25-30	WL Only
RRLF-MW0030	1-11	WL Only
RRLF-MW0031	25-30	WL Only

Well ID	Screen Interval (ft bls)	Analysis
RRLF-MW0033	25-30	WL + VC
RRLF-MW0034	1-11	WL Only
RRLF-MW0036	0.5-10.5	WL Only
RRLF-MW0037	0.5-10.5	WL Only
RRLF-MW0038S	1-11	WL Only
RRLF-MW0038I	22-27	WL + VC
RRLF-MW0039S	1-11	WL Only
RRLF-MW0039I	22-27	WL + VC
RRLF-MW0040I	22-27	WL + VC
RRLF-MW0042I	22-27	WL Only
RRLF-MW0043 ^a	15-25	WL + VC

ID = identification

MW = monitoring well

 $VC = vinyl \ chloride \ analysis \ by \ Method \ 8260$ $WL = water \ level \ measurement$

^a proposed monitoring well

Table 2-1 Ransom Road Landfill - Long Term Monitoring (LTM) Monitoring Well Groundwater Elevations

SHALLOW WELL ID:	RRLF-MW0012		RRLF-MW0030		RRLF-MW0034	
Screen Interval (ft bls):	4 -	- 9	1 - 11		1 - 11	
TOC Elevation (ft NAVD88):	2.	31	4.42		4.31	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
May 2014	3.79	-1.48	6.15	-1.73	6.10	-1.79
November 2016	Not Measured		3.73	0.69	4.01	0.30
March 2018	2.23	0.08	4.51	-0.09	4.33	-0.02
November 2020	0.99	1.32	3.46	0.96	3.15	1.16
May 2022	2.10	0.21	4.48	-0.06	4.89	-0.58

SHALLOW WELL ID:	RRLF-MW0036		RRLF-MW0037		RRLF-MW0038S	
Screen Interval (ft bls):	0.5 -	10.5	0.5 - 10.5		1 - 11	
TOC Elevation (ft NAVD88):	4.75		4.85		4.67	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
May 2014	6.52	-1.77	6.54	-1.69	6.67	-2.00
November 2016	4.35	0.40	4.42	0.43	4.42	0.25
March 2018	4.66	0.09	4.79	0.06	4.84	-0.17
November 2020	3.72	1.03	3.78	1.07	3.99	0.68
May 2022	5.30	-0.55	5.12	-0.27	5.00	-0.33

SHALLOW WELL ID:	RRLF-MW0039S		
Screen Interval (ft bls):	1 - 11		
TOC Elevation (ft NAVD88):	4.69		
	Depth to Water	Water Elevation	
Date	(ft BTOC)	(ft NAVD88)	
May 2014	6.72	-2.03	
November 2016	4.17	0.52	
March 2018	4.90	-0.21	
November 2020	3.91	0.78	
May 2022	4.92	-0.23	

INTERMEDIATE WELL ID:	RRLF-MW0015		RRLF-MW0029		RRLF-MW0031	
Screen Interval (ft bls):	19.5	- 24.5	25 - 30		25 - 30	
TOC Elevation (ft NAVD88):	2.	81	4.45		4.27	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
May 2014	4.43	-1.62	6.16	-1.71	6.00	-1.73
November 2016	1.30	1.51	3.63	0.82	4.82	-0.55
March 2018	2.67	0.14	4.52	-0.07	4.33	-0.06
November 2020	Not Measured		3.46	0.99	3.18	1.09
May 2022	Not Measured		4.40	0.05	4.52	-0.25

INTERMEDIATE WELL ID:	RRLF-MW0033		RRLF-MW0038I		RRLF-MW0039I	
Screen Interval (ft bls):	25	- 30	22 - 27		22 - 27	
TOC Elevation (ft NAVD88):	4.30		5.07		4.61	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
May 2014	6.10	-1.80	7.04	-1.97	6.65	-2.04
November 2016	3.96	0.34	4.79	0.28	4.32	0.29
March 2018	3.36	0.94	5.24	-0.17	4.81	-0.20
November 2020	3.20	1.10	4.33	0.74	3.87	0.74
May 2022	4.81	-0.51	5.34	-0.27	4.80	-0.19

INTERMEDIATE WELL ID:	RRLF-M	IW0040I	RRLF-MW0042I		
Screen Interval (ft bls):	22 -	- 27	22 - 27		
TOC Elevation (ft NAVD88):	4.61		3.99		
Date	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)	
May 2014	6.65	-2.04	6.15	-2.16	
November 2016	4.54	0.07	4.06	-0.07	
March 2018	4.84	-0.23	4.58	-0.59	
November 2020	3.86	0.75	3.07	0.92	
May 2022	5.30	-0.69	5.03	-1.04	

Notes:

bls = below land surface BTOC = below top of casing

ft = feet

MW = monitoring well

NAVD88 = North American Vertical Datum of 1988

 $RRLF = Ransom \ Road \ Land fill$

TOC = top of casing

Table 2-2
Ransom Road Landfill - Long Term Monitoring (LTM)
Groundwater Sampling Analytical Results

		Category	Volatile Organic Compounds (VOC) by Method 8260
		Analyte	VINYL CHLORIDE
	F	DEP GCTLs (µg/L)	1
		DEP NADCs (µg/L)	100
		Screened Interval	
Location ID	Sample Date	(ft bls)	
RRLF-MW0033	2/1/1995	25 - 30	12
	7/1/1995	25 - 30	14
	3/12/2001	25 - 30	18.9
	1/3/2002	25 - 30	12
	7/12/2002	25 - 30	11.7
	12/11/2002	25 - 30	10.6
	4/7/2004	25 - 30	12
	10/26/2004	25 - 30	7.8
	6/6/2005	25 - 30	2.3
	11/15/2005	25 - 30	0.43 U
	5/25/2006	25 - 30	1.7
	11/9/2006	25 - 30	1.4
	5/8/2007	25 - 30	11
	11/5/2007	25 - 30	6.4
	5/5/2008	25 - 30	10
	11/5/2008	25 - 30	10
	5/13/2009	25 - 30	0.25 U
	11/11/2009	25 - 30	8.7
	5/20/2010	25 - 30	1.1
	5/5/2011	25 - 30	6.91
	11/30/2012	25 - 30	7.4
	5/16/2014	25 - 30	3.6
	11/18/2016	25 - 30	6.3
	3/23/2018	25 - 30	5.3
	11/20/2020	25 - 30	0.80 I
	5/10/2022	25 - 30	8.9
RRLF-MW0038I	9/8/2003	22 - 27	32
	4/7/2004	22 - 27	38
	10/26/2004	22 - 27	27
	11/10/2006	22 - 27	80
	11/5/2007	22 - 27	67
	11/11/2009	22 - 27	43
	5/20/2010	22 - 27	27
	5/5/2011	22 - 27	2.85
	11/30/2012	22 - 27	2.0
	5/16/2014	22 - 27	0.71 U
	11/18/2016	22 - 27	1.8
	3/23/2018	22 - 27	1.8
	11/20/2020	22 - 27	11.8
DD1 D 1 22220000	5/10/2022	22 - 27	7.7
RRLF-MW0039I	9/8/2003	22 - 27	0.14 U
	5/10/2022	22 - 27	0.71 U

Table 2-2
Ransom Road Landfill - Long Term Monitoring (LTM)
Groundwater Sampling Analytical Results

		Volatile Organic Compounds (VOC) by Method 8260	
		Analyte	VINYL CHLORIDE
	F	DEP GCTLs (µg/L)	1
	F	DEP NADCs (µg/L)	100
		Screened Interval	
Location ID	Sample Date	(ft bls)	
RRLF-MW0040I	9/8/2003	22 - 27	13
	4/7/2004	22 - 27	15
	10/26/2004	22 - 27	10
	11/10/2006	22 - 27	1.0
	11/5/2007	22 - 27	7.4
	11/11/2009	22 - 27	5.6
	5/20/2010	22 - 27	6.8
	5/5/2011	22 - 27	4.24
	11/30/2012	22 - 27	3.9
	5/16/2014	22 - 27	1.0
	11/18/2016	22 - 27	6.2
	3/23/2018	22 - 27	0.71 U
	11/20/2020	22 - 27	2.9
	5/10/2022	22 - 27	3.4

Notes:

FDEP GCTLs = Florida Department of Environmental Protection Groundwater Cleanup Target Levels, Chapter 62-777 Florida Administrative Code, Table 1 (2005)

FDEP NADCs = Natural Attenuation Default Concentration, Chapter 62-777 Florida Administrative Code, Table V (2005)

ft bls = feet below land surface

RRLF = Ransom Road Landfill

MW = monitoring well

Results and screening criteria presented in $\mu g/L$ (micrograms per liter)

Bolded results indicate the presence of an analyte at the specified concentration

Red font indicates an exceedance of FDEP GCTLs

 $I = Analyte \ greater \ than \ or \ equal \ to \ the \ method \ detection \ limit, \ but \ less \ than \ the \ practical \ quantitation \ limit \ U = Analyte \ not \ detected$

The numeric value presented for non-detects is the sample-specific reporting detection limit

Table 2-3
Ransom Road Landfill - Long Term Monitoring (LTM)
DPT Sampling Analytical Results

			Volatile Organic Compounds (VOC)
		Category	by Method 8260
		Analyte	VINYL CHLORIDE
	F	DEP GCTLs (µg/L)	1
		DEP NADCs (µg/L)	100
Screened Interval			
Location ID	Sample Date	(ft bls)	
RRLF-DPT0020	1/11/2023	6 - 10	0.71 U
	1/11/2023	16 - 20	0.71 U
	1/11/2023	26 - 30	0.71 U
	1/12/2023	36 - 40	0.71 U
	1/12/2023	46 - 50	0.71 U
RRLF-DPT0021	1/11/2023	6 - 10	0.81 I
	1/11/2023	16 - 20	0.71 U
	1/11/2023	26 - 30	0.71 U
	1/11/2023	36 - 40	0.71 U
	1/11/2023	46 - 50	0.71 U
RRLF-DPT0022	1/12/2023	6 - 10	14
	1/12/2023	16 - 20	13
	1/12/2023	26 - 30	8.6
	1/12/2023	36 - 40	0.71 U
	1/12/2023	46 - 50	0.71 U
RRLF-DPT0023	3/28/2023	6 - 10	8.2
	3/28/2023	16 - 20	5.8
	3/28/2023	26 - 30	6.7
	3/28/2023	36 - 40	0.71 U
	3/28/2023	46 - 50	0.71 U
RRLF-DPT0024	3/28/2023	6 - 10	0.71 U
	3/28/2023	16 - 20	2.3
	3/28/2023	26 - 30	0.71 U
	3/28/2023	36 - 40	0.71 U
	3/28/2023	46 - 50	0.71 U

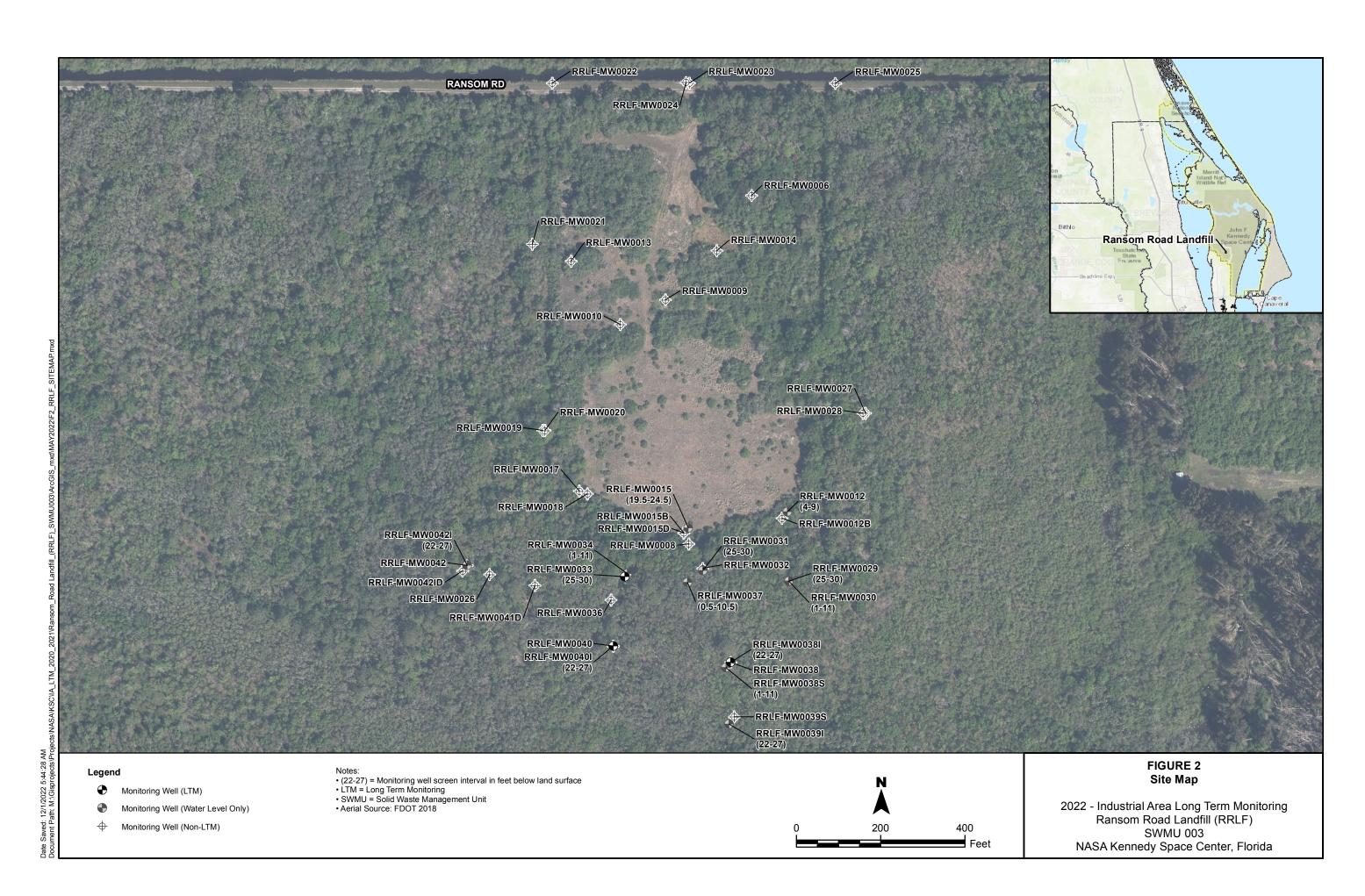
FDEP GCTLs = Florida Department of Environmental Protection Groundwater Cleanup Target Levels, Chapter 62-777 Florida Administrative Code, Table 1 (2005)

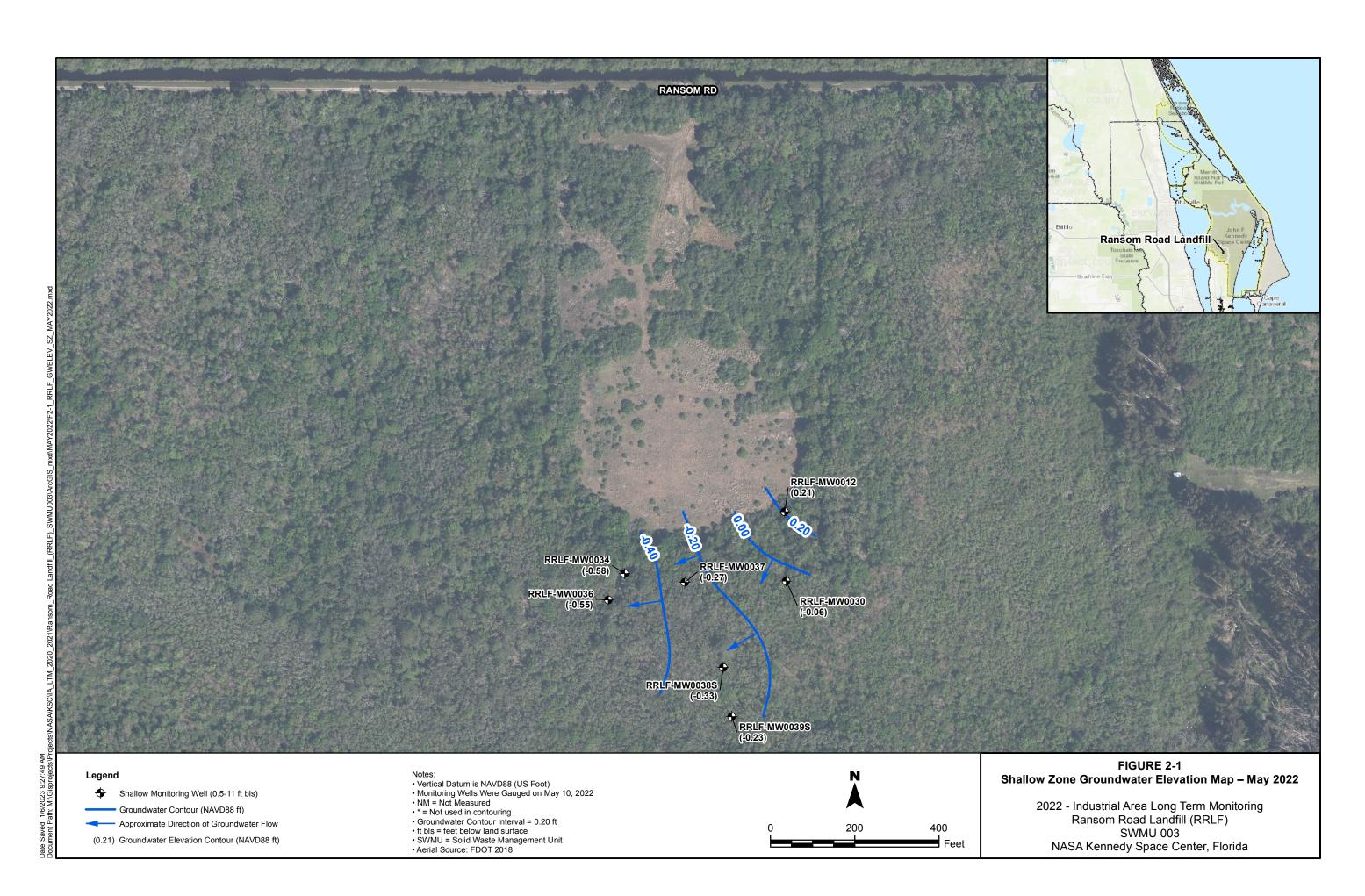
FDEP NADCs = Natural Attenuation Default Concentration, Chapter 62-777 Florida Administrative Code, Table V (2005)

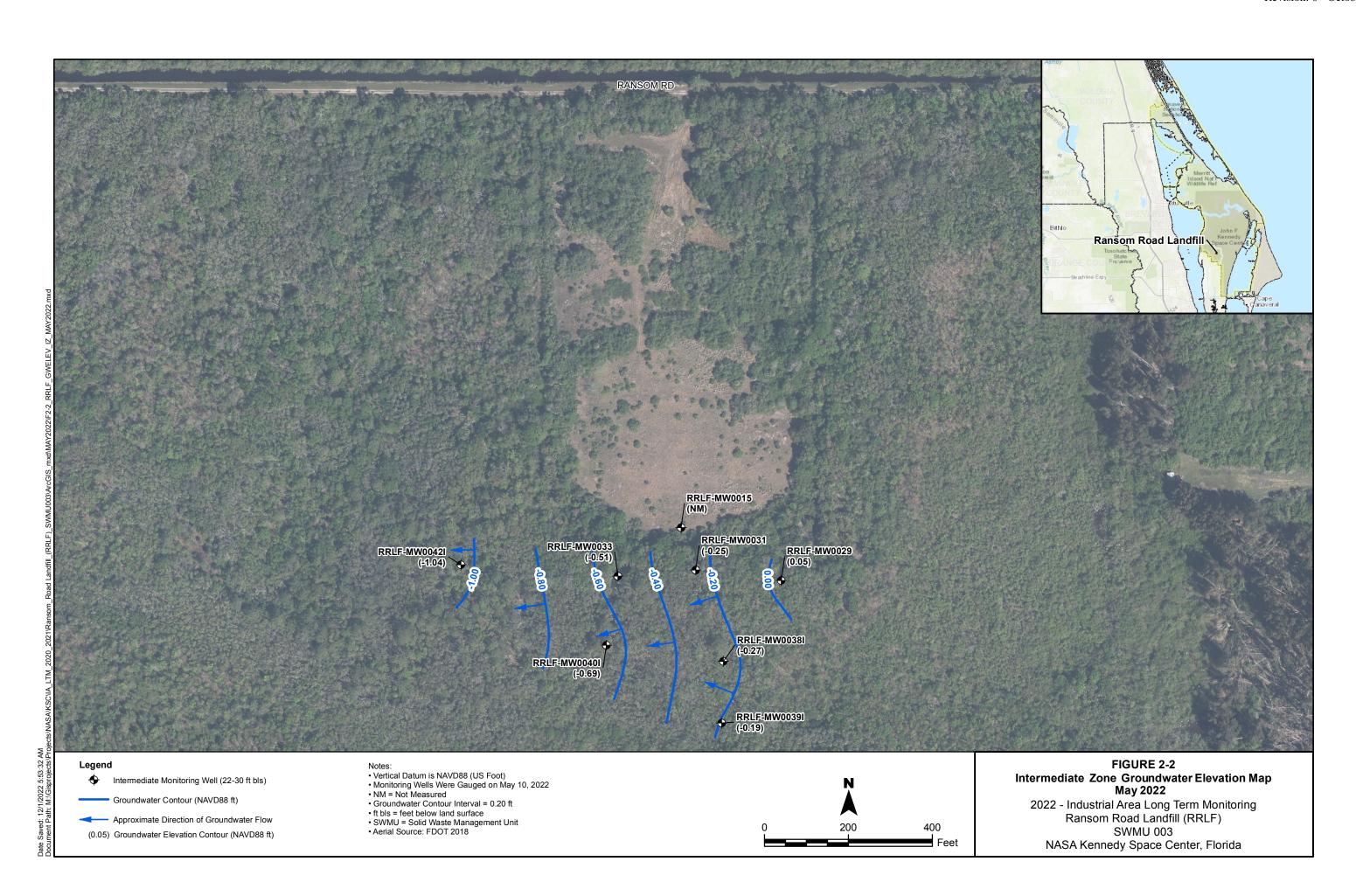
ft bls = feet below land surface

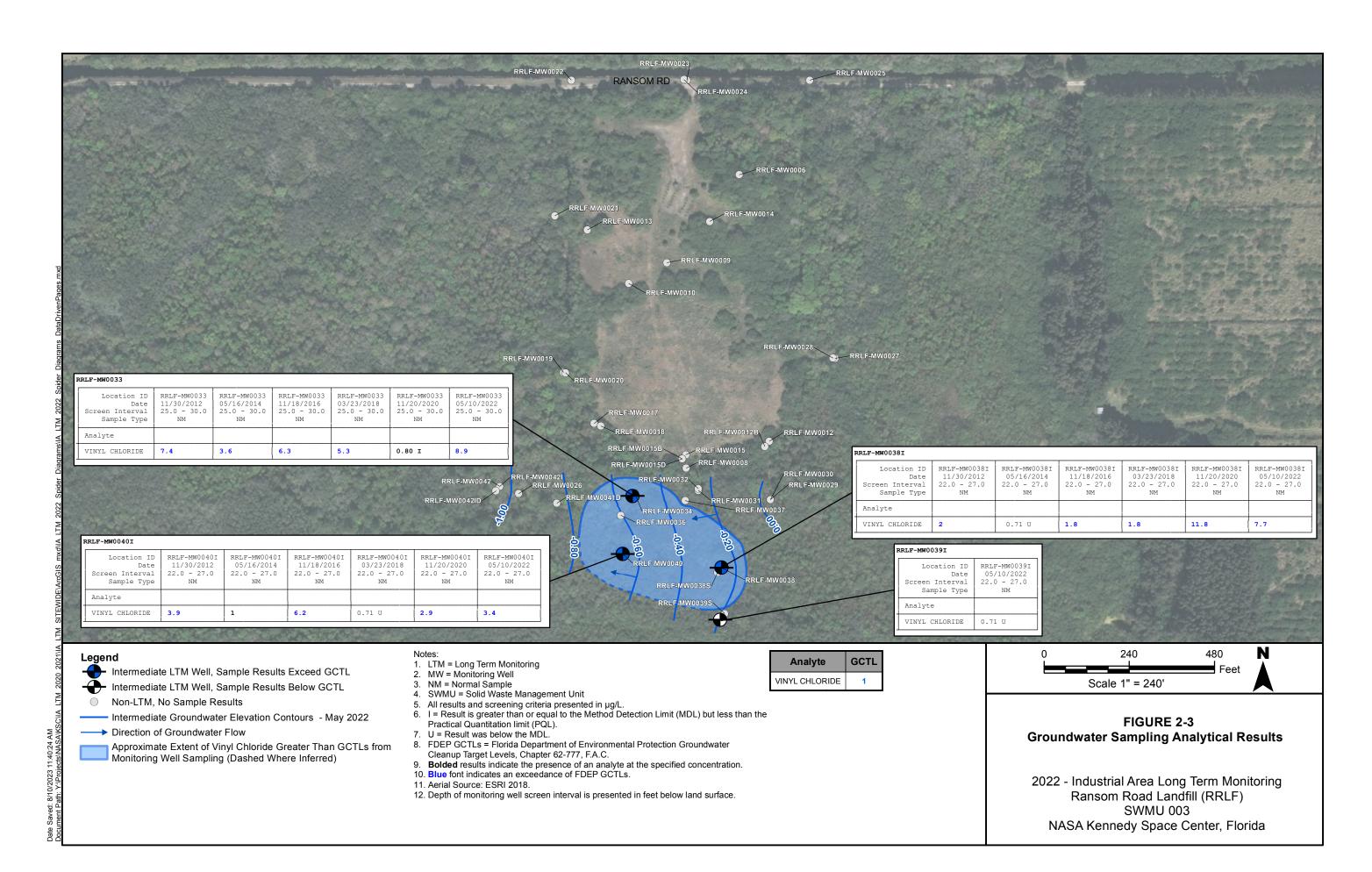
RRLF = Ransom Road Landfill

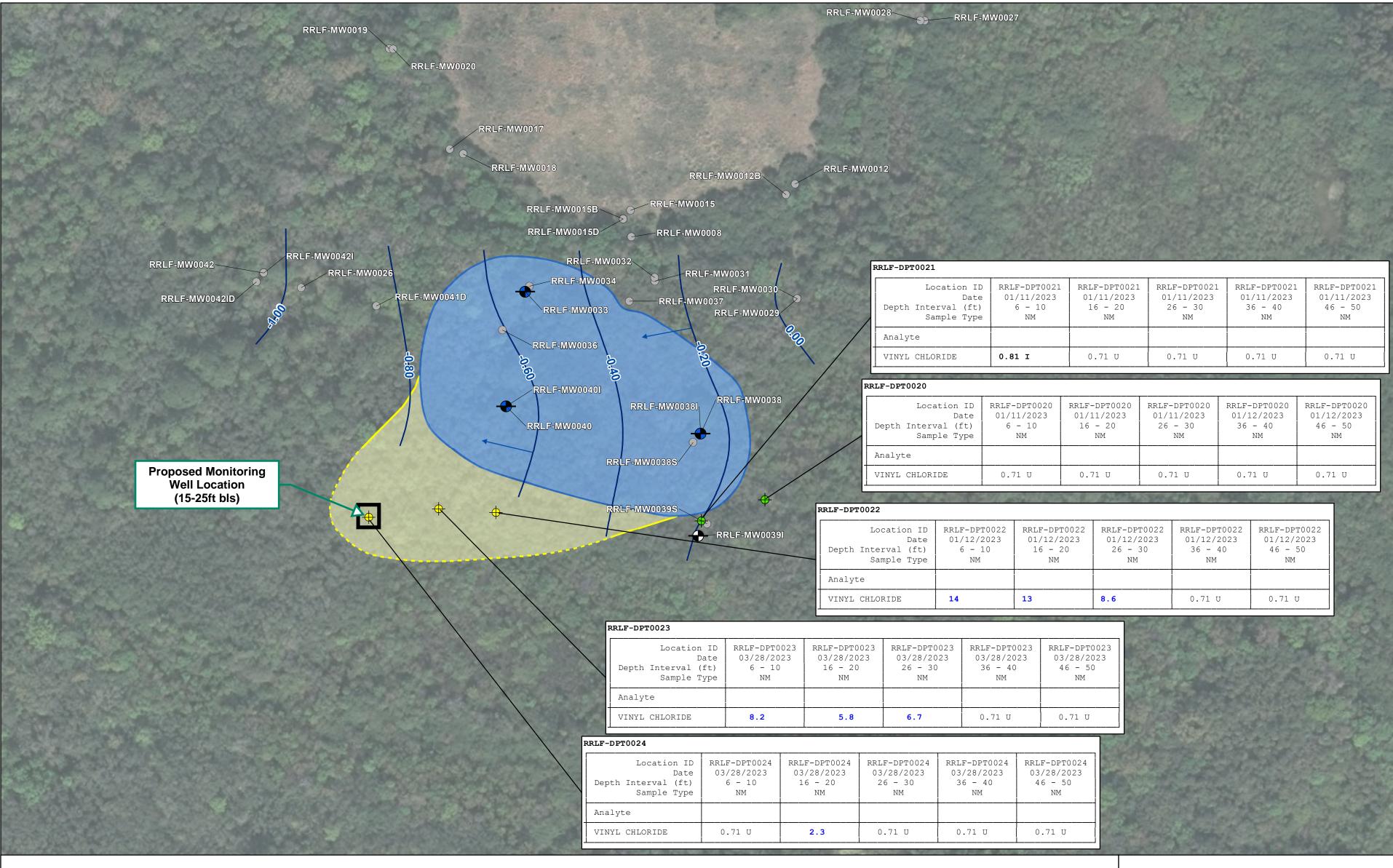
MW = monitoring well

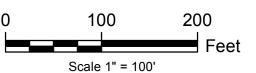

Results and screening criteria presented in µg/L (micrograms per liter)


Bolded results indicate the presence of an analyte at the specified concentration


Red font indicates an exceedance of FDEP GCTLs


I = Analyte greater than or equal to the method detection limit, but less than the practical quantitation limit U = Analyte not detected


The numeric value presented for non-detects is the sample-specific reporting detection limit


Legend

- DPT Location, Sample Results Below GCTL
- DPT Location, Sample Results Exceed GCTL
- Intermediate, LTM Well, Sample Result Exceeds GCTL Intermediate, LTM Well, Sample Results Below GCTL
- Non-LTM Well, No Sample Results
- —— Intermediate Groundwater Elevation Contours May 2022
- → Direction of Groundwater Flow
- Approximate Extent of Vinyl Chloride Greater Than GCTLs from Monitoring Well Sampling
- Approximate Extent of Vinyl Chloride Greater Than GCTLs from DPT Sampling (Dashed Where Inferred)

Notes:

- DPT = Direct Push Technology
- 2. LTM = Long Term Monitoring
- 3. MW = Monitoring Well
- 4. NM = Normal Sample
- 5. SWMU = Solid Waste Management Unit
- 6. All results and screening criteria presented in µg/L.
- 7. I = Result is greater than or equal to the Method Detection Limit (MDL) but less than the Practical Quantitation Limit (PQL).
- 8. U = Result was below the MDL.
- FDEP GCTLs = Florida Department of Environmental Protection Groundwater Cleanup Target Levels, Chapter 62-777, F.A.C.
- 10. **Bolded** results indicate the presence of an analyte at the specified concentration.
- 11. Blue font indicates an exceedance of FDEP GCTLs.
- 12. Aerial Source: FDOT 2018.
- 13. Depth is presented in feet below land surface.14. Depth of screen interval is presented in feet below land surface.

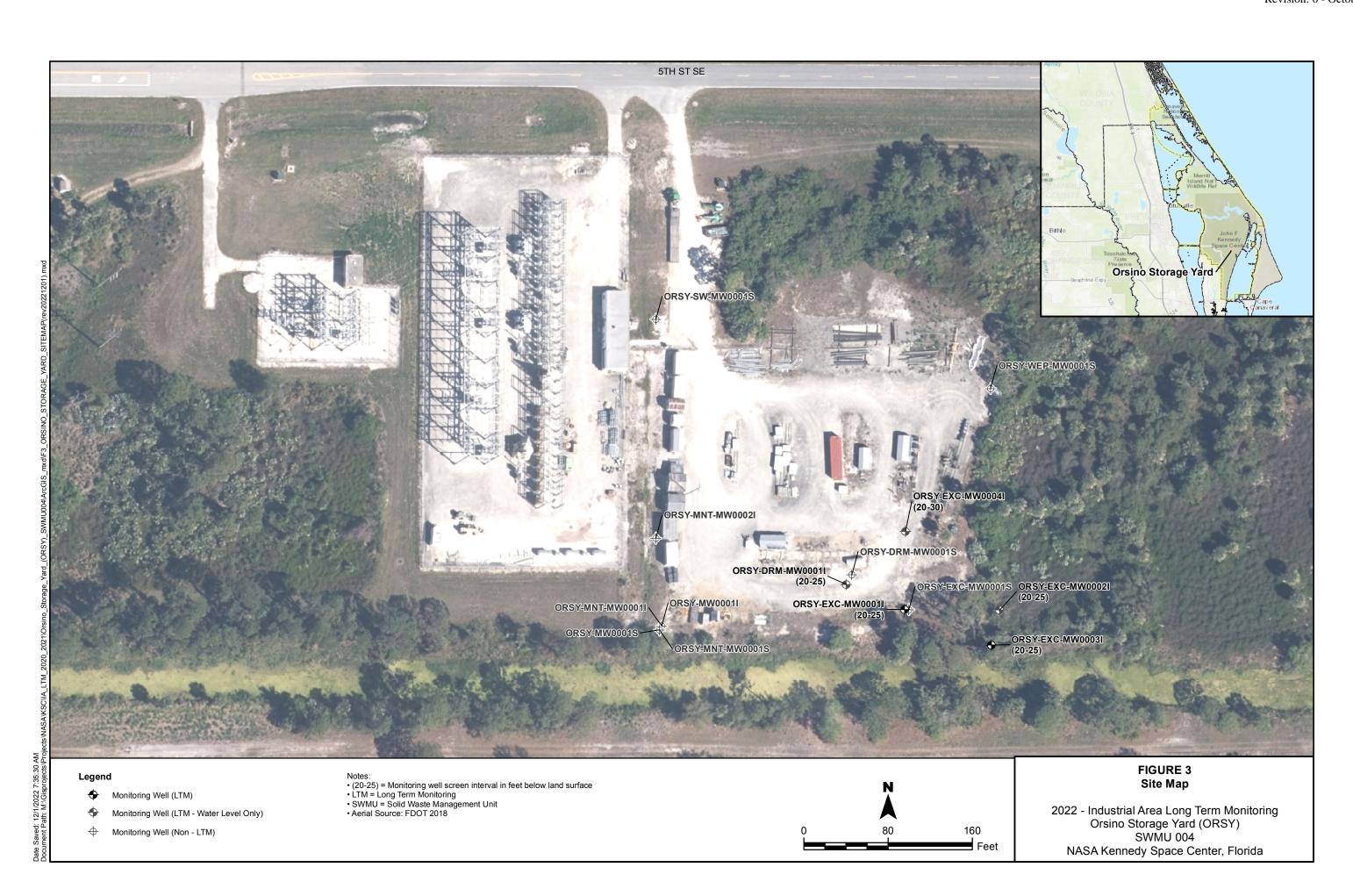
Analyte	GCTL
VINYL CHLORIDE	1

FIGURE 2-4 DPT Sampling Analytical Results

2023 - Industrial Area Long Term Monitoring Ransom Road Landfill (RRLF) SWMU 003 NASA Kennedy Space Center, Florida

3. ORSINO STORAGE YARD

This section provides a summary of the ORSY site (SWMU 004). Refer to **Figure 3** for a site map.


3.1 SITE DESCRIPTION AND HISTORY

ORSY is located to the southeast of the C Avenue and 5th Street Southeast intersection. A power substation borders ORSY to the west. The storage yard has been utilized since 1966 as a staging area for electrical equipment, consisting of wooden electric poles, transformers containing polychlorinated biphenyls (PCBs), electrical cables, control panels, and oil-based switches. The site is predominantly gravel-paved with several sheds situated on concrete pads along the western side of the site (NASA 2005a).

Initial site investigations focused on PCBs, which led to soil interim measure (IM) activities being conducted from 1986 through 1992 to remove soils with PCB concentrations exceeding 25 milligrams per kilogram (mg/kg), complying with the Toxic Substances Control Act. An RFI (Geosyntec 2003b) and RFI Addendum (Geosyntec 2005a) were completed between 1998 and 2005 that identified VOCs, specifically VC and chlorobenzenes, at concentrations above their respective GCTLs. A risk evaluation determined these VOCs may cause an unacceptable human health risk if groundwater was to be used as a source of drinking water, specifically cancer and non-cancer risks were attributed to VC and 1,2,4-trichlorobenzene (TCB). MNA of groundwater was selected as the remediation strategy and ORSY was incorporated into the LTM program in 2005 at an annual sampling frequency.

VC concentrations have remained below the GCTL since 2006. Chlorobenzene, 1,3-dichlorobenzene (DCB), and 1,4-DCB concentrations have remained below their respective GCTLs since 2007; however, 1,2,3-TCB and 1,2,4-TCB have persisted in site groundwater. In 2012, the ORSY LTM groundwater sampling interval was changed to a biennial frequency. In order to obtain a second consecutive event below GCTLs, the sampling frequency was accelerated in 2021 following a clean sample at ORSY-EXC-MW0001I in November 2020.

A letter report detailing the ORSY site history and September 2021 sampling activities was submitted to FDEP on July 10, 2023 and is included as **Appendix H**. Groundwater COC concentrations have remained below GCTLs for two consecutive sampling events in November 2020 and September 2021. The letter report recommended that long-term groundwater monitoring at ORSY should discontinue. The land use control (LUC) for soil will remain in place at the site.

4. BUILDING M7-0505 TREATMENT TANK AREA

This section provides a summary of the Building M7-0505 (M505) site (SWMU 039). Refer to **Figure 4** for a site map.

4.1 SITE DESCRIPTION AND HISTORY

The M505 site is comprised of a waste treatment tank area, grease interceptor tank area, effluent drain lines, and an adjacent north-south trending swale. The Payload Support Building, M505, was constructed in 1964 and is located northeast of the intersection of Third Street and D Avenue. Historically, material fabrication, testing, and metal corrosion prevention treatment activities have been performed at the site. A waste treatment tank and grease interceptor tank, located beneath the parking lot, were operated until their removal in September 1991. The waste treatment tank was constructed of concrete and was used to buffer the pH of waste solutions generated in the metal treatment laboratory. The waste treatment tank discharged effluent to the west via underground metal piping into a north-south trending swale located southeast of the payload maintenance facility. The metal treatment laboratory floor drain and the drainage swale effluent pipe were plugged in 1986, ceasing further discharges. Concurrent with the operation of the waste treatment tank, the grease interceptor tank received M505's paint shop wastewater. Effluent from the grease interceptor tank also ultimately drained to the west and into the north-south oriented drainage swale.

Prior to the treatment tank removal in 1991, groundwater and soil investigations began in 1990. The initial site investigations identified polynuclear aromatic hydrocarbon (PAH)-contaminated soils along the north-south swale. A soil IM was completed in 1998 to remove soil with PAH exceedances.

An RFI performed in 1999 at the M505 treatment tank area identified chlorinated volatile organic compound (CVOC) impacted groundwater (HSW Engineering [HSW] 1999). A Corrective Measures Study (CMS) in 2000 selected an air sparge (AS)/soil vapor extraction (SVE) system to remediate CVOC concentrations in groundwater to less than half of the NADC for each COC (HSW 2000). NASA installed a pilot-scale AS/SVE system in May 2002, which began operation in June 2002. Additional AS and SVE wells were installed following the March 2004 Statement of Basis (HSW 2004). The pilot scale AS/SVE system continued operation through September 2008, when the SVE portion of the system ceased operation based on limited effectiveness.

Additional groundwater sampling was performed in 2010, which delineated the CVOCs laterally and vertically (Levine Fricke Recon, Inc. [LFR] 2010a). The investigation found no trichloroethene (TCE) concentrations in groundwater exceeding the NADC. Additionally, it concluded that the 2002 pilot-scale AS system had limited effectiveness, which resulted in its shut down in November 2010.

Remedial alternatives were evaluated in 2011, which resulted in the construction of an expanded, larger scale AS/SVE groundwater treatment system to address CVOCs exceeding NADCs (LFR 2011). The larger AS/SVE system was constructed from November 2011 to January 2012 and included 24 monitoring wells to monitor system performance. These monitoring wells were sampled quarterly with the initial sampling event occurring in January 2012. Following the first four quarters of groundwater sampling (between January 2012 and January 2013), the results indicated the AS/SVE system was performing effectively. The AS/SVE system was expanded from September through December 2013 to include monitoring wells in the north-south drainage swale and on the western edge of the groundwater plume (KSCRT, May 2013).

Based on the results of the second year of quarterly groundwater monitoring (performed from February 2013 through March 2014), the AS/SVE system continued operation to lower TCE concentrations below the GCTL of 3 μ g/L (KSCRT, August 2014). The following year, the AS/SVE system achieved its CVOC reduction goal and the system was deactivated (KSCRT, December 2015). Semi-annual sampling of 14 monitoring wells was initiated in 2016 (Jacobs-CORE 2017a). The semi-annual sampling events were conducted in November 2016 and May 2017. Based on semi-annual monitoring results, an annual LTM sampling frequency alternating between wet and dry seasons was adopted in 2017. A biennial sampling schedule with alternating seasons was adopted in 2020.

A historical review was completed in January 2023 to provide cross-section analytical figures bisecting the site north to south and west to east. The figures provided in **Appendix I** were generated during an engineering evaluation to determine the horizontal and vertical delineation at the site (Arcadis U.S., Inc. [ARCADIS] 2010). Monitoring wells were installed at select DPT locations to continue monitoring VOC concentrations along the plume axis.

4.2 FIELD ACTIVITIES

Field activities were performed at M505 in May 2022. Groundwater levels were measured at 35 monitoring wells, and samples from eight monitoring wells were collected. Monitoring wells M505-MW0033 and M505-MW0049 were retained in the sampling schedule to verify horizontal and vertical delineation. The following table shows the network of monitoring wells used for groundwater level measurements and sampling at M505.

Well ID	Screen Interval (ft bls)	Analysis
M505-MW0003S	4-14	WL Only
M505-MW0007S	4-14	WL Only
M505-MW0007I	25-35	WL Only
M505-MW0008S	4-14	WL Only
M505-MW0009S	5-15	WL Only
M505-MW0009I	23-28	WL Only
M505-MW0012I	23-28	WL Only
M505-MW0013	23-28	WL + select VOCs

Well ID	Screen Interval (ft bls)	Analysis
M505-MW0014	4-14	WL Only
M505-MW0017	22.5-27.5	WL Only
M505-MW0020	33.5-38.5	WL Only
M505-MW0022	22.5-27.5	WL Only
M505-MW0024	32.5-37.5	WL Only
M505-MW0025	22.5-27.5	WL Only
M505-MW0026	32.5-37.5	WL Only
M505-MW0027	22.5-27.5	WL Only
M505-MW0028	22.5-27.5	WL Only
M505-MW0029	22.5-27.5	WL Only
M505-MW0030	22.5-27.5	WL Only
M505-MW0031	22.5-27.5	WL Only
M505-MW0032	32.5-37.5	WL + select VOCs
M505-MW0033	22.5-27.5	WL + select VOCs
M505-MW0035	22.5-27.5	WL Only
M505-MW0039	30-35	WL + select VOCs
M505-MW0042	32.5-37.5	WL Only
M505-MW0045	32-37	WL Only
M505-MW0046	5-15	WL Only
M505-MW0049	20-35	WL + select VOCs
M505-MW0050	5-15	WL Only
M505-MW0051	22.5-27.5	WL + select VOCs
M505-MW0054	5-15	WL Only
M505-MW0055	22.5-27.5	WL + select VOCs
M505-MW0057	22.5-27.5	WL Only
M505-MW0058	5-15	WL Only
M505-MW0059	22.5-27.5	WL + select VOCs

ID = identification

MW = monitoring well

Select VOCs = TCE, cis-1,2-dichloroethene (cis-1,2-DCE), and VC analysis by Method 8260

WL = water level measurement

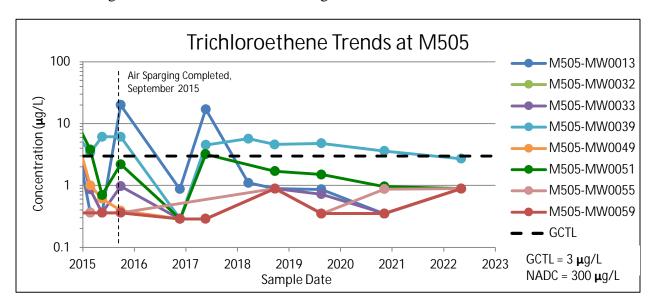
Groundwater samples collected from M505 during the 2022 sampling event were analyzed for select VOCs by Method 8260. Below are the respective GCTLs and NADCs for the COCs present at M505.

COC	GCTL (µg/L)	NADC (µg/L)
TCE	3	300
cis-1,2-DCE	70	700
VC	1	100

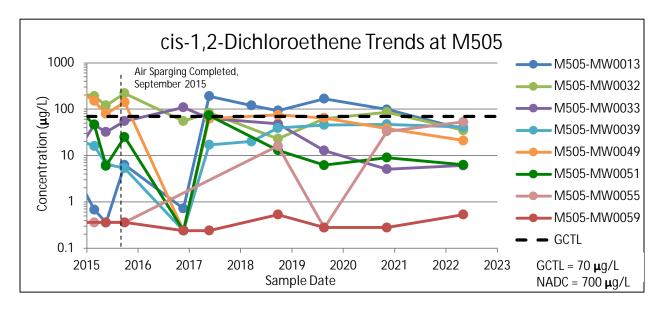
4.3 WATER LEVEL COLLECTION AND GROUNDWATER FLOW DIRECTION

Groundwater levels collected during the 2022 biennial sampling event were used to calculate groundwater elevations presented in **Table 4-1**. The 2022 shallow aquifer zone (4 ft bls to 15 ft

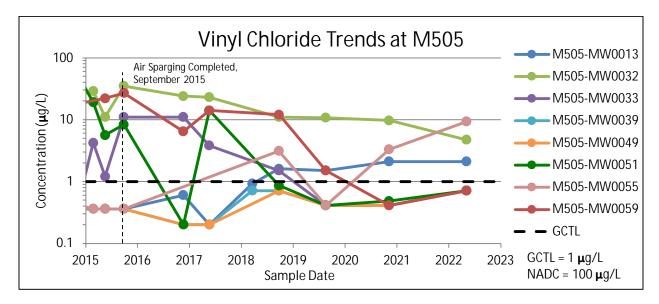
bls) groundwater flow directions indicate a mound around M505-MW0007S, which divided groundwater flow direction between northwest and southeast. At approximately 300 linear feet south of the former source area, the shallow groundwater flow direction was to the southwest. The 2022 intermediate aquifer zone (20 ft bls to 38.5 ft bls) groundwater flow changes from south, near M505-MW0013, to south-southwest, near M505-MW0025, with a mound around M505-MW0049. The historical shallow and intermediate groundwater flow at M505 is predominantly to the southwest. The May 2022 groundwater flows are depicted on **Figure 4-1** and **Figure 4-2**.


4.4 ANALYTICAL RESULTS

Eight monitoring wells were sampled for select VOCs in May 2022. TCE and cis-1,2-dichloroethene (cis-1,2-DCE) concentrations did not exceed GCTLs in 2022. VC was detected at concentrations above the GCTL in monitoring wells M505-MW0013 (2.1 μ g/L), M505-MW0032 (4.7 μ g/L), and M505-MW0055 (9.3 μ g/L). Recent and historical analytical results are summarized in **Table 4-2**. Analytical results are depicted on **Figure 4-3**.


4.5 TREND ANALYSIS

The following trend charts present the current and historical concentrations for TCE, cis-1,2-DCE, and VC since the AS system shutdown in September 2015. These COCs generally show a rebound in concentration after the AS system shutdown followed by decreasing trends.


TCE was not detected during the November 2016 sampling event following the AS shutdown. The monitoring wells have shown an overall slight decrease in TCE concentrations since 2017.

Except for the slight increase at M505-MW0055, the monitoring wells have shown an overall decrease in cis-1,2-DCE concentrations since 2017.

The monitoring wells have shown a stable or slight decrease in VC concentrations since 2018, except for M505-MW0055, which has increased since 2019.

4.6 CONCLUSION AND RECOMMENDATION

COC concentrations at M505 exceeded GCTLs in three of the eight monitoring wells sampled in May 2022. There have been no analyte detections exceeding NADCs since the AS system shutdown in 2015, and the overall COC concentrations in the monitoring well network continue to show a decreasing or stable trend except for a small increase in (cis-1,2-DCE and VC at M505-MW0055.

Downgradient monitoring well M505-MW0029 is recommended to be added to the sampling network because of the recent increases in COC concentrations at monitoring well M505-MW0055. Groundwater levels are recommended to be measured at 35 monitoring wells and samples collected from nine monitoring wells on a biennial frequency. The following table shows the recommended network of monitoring wells for groundwater level measurements and groundwater sampling for the next sampling event at M505 scheduled for November 2024.

Well ID	Screen Interval (ft bls)	Analysis
M505-MW0003S	4-14	WL Only
M505-MW0007S	4-14	WL Only
M505-MW0007I	25-35	WL Only
M505-MW0008S	4-14	WL Only
M505-MW0009S	5-15	WL Only
M505-MW0009I	23-28	WL Only
M505-MW0012I	23-28	WL Only
M505-MW0013	23-28	WL + Select VOCs
M505-MW0014	4-14	WL Only
M505-MW0017	22.5-27.5	WL Only
M505-MW0020	33.5-38.5	WL Only
M505-MW0022	22.5-27.5	WL Only
M505-MW0024	32.5-37.5	WL Only
M505-MW0025	22.5-27.5	WL Only
M505-MW0026	32.5-37.5	WL Only
M505-MW0027	22.5-27.5	WL Only
M505-MW0028	22.5-27.5	WL Only
M505-MW0029	22.5-27.5	WL + Select VOCs
M505-MW0030	22.5-27.5	WL Only
M505-MW0031	22.5-27.5	WL Only
M505-MW0032	32.5-37.5	WL + Select VOCs
M505-MW0033	22.5-27.5	WL + Select VOCs
M505-MW0035	22.5-27.5	WL Only
M505-MW0039	30-35	WL + Select VOCs
M505-MW0042	32.5-37.5	WL Only
M505-MW0045	32-37	WL Only
M505-MW0046	5-15	WL Only
M505-MW0049	20-35	WL + Select VOCs
M505-MW0050	5-15	WL Only
M505-MW0051	22.5-27.5	WL + Select VOCs
M505-MW0054	5-15	WL Only
M505-MW0055	22.5-27.5	WL + Select VOCs
M505-MW0057	22.5-27.5	WL Only
M505-MW0058	5-15	WL Only
M505-MW0059	22.5-27.5	WL + Select VOCs

ID = identificationMW = monitoring well

Select VOCs = TCE, cis-1,2-DCE, and VC analysis by Method 8260 WL = water level measurement

Table 4-1
Building M7-0505 Treatment Tank Area - Long Term Monitoring (LTM)
Monitoring Well Groundwater Elevations

SHALLOW WELL ID:	M505-MW0003S		M505-MW0007S		M505-MW0008S	
Screen Interval (ft bls):	4 -	-14	4 -	-14	4 -14	
TOC Elevation (ft NAVD88):	9.	64	9.	15	9.	11
Date	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)
November 2016	Not Measured		5.99	3.16	Not Measured	
May 2017	7.98	1.66	7.30	1.85	7.65	1.46
March 2018	Not Me	easured	5.70	3.45	6.72	2.39
September 2018	6.66	2.98	6.04	3.11	6.58	2.53
August 2019	5.54	4.10	4.78	4.37	5.38	3.73
November 2020	5.75	3.89	4.28	4.87	5.38	3.73
May 2022	6.56	3.08	5.90	3.25	6.38	2.73

SHALLOW WELL ID:	M505-MW0009S		M505-MW0014		M505-MW0046	
Screen Interval (ft bls):	5 -	15	4 -	-14	5 - 15	
TOC Elevation (ft NAVD88):	9.	37	9.	21	9.	03
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
November 2016	Not Measured		6.94	2.27	6.51	2.52
May 2017	Not Me	easured	8.38	0.83	7.86	1.17
March 2018	6.96	2.41	6.84	2.37	6.72	2.31
September 2018	7.10	2.27	7.30	1.91	6.83	2.20
August 2019	5.78	3.59	5.85	3.36	5.49	3.54
November 2020	5.59	3.78	5.45	3.76	5.30	3.73
May 2022	6.80	2.57	6.97	2.24	6.48	2.55

CHALLOW WELL ID	: M505-MW0050 M505-MW0054			M505 N	MV0050	
SHALLOW WELL ID:	M505-MW0050		M303-N	1W0054	M303-N	/IW0058
Screen Interval (ft bls):	5 -	15	5 -	15	5 -	15
TOC Elevation (ft NAVD88):	10	.85	10	.03	7.	10
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
November 2016	8.64	2.21	8.21	1.82	3.88	3.22
May 2017	10.04	0.81	9.71	0.32	4.86	2.24
March 2018	8.54	2.31	8.02	2.01	3.94	3.16
September 2018	8.99	1.86	8.53	1.50	4.00	3.10
August 2019	7.58	3.27	5.92	4.11	2.65	4.45
November 2020	7.31	3.54	7.18	2.85	2.26	4.84
May 2022	8.70	2.15	8.30	1.73	3.61	3.49

INTERMEDIATE WELL ID:	M505-MW0007I		M505-MW0009I		M505-MW0012I		
Screen Interval (ft bls):	25	- 35	23	- 28	23 - 28		
TOC Elevation (ft NAVD88):	9.	19	9.	35	8.	8.89	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation	
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	
November 2016	Not Me	easured	6.87	2.48	Not Measured		
May 2017	Not Me	easured	8.26	1.09	Not Mo	easured	
March 2018	6.80	2.39	6.99	2.36	6.53	2.36	
September 2018	6.85	2.34	7.15	2.20	6.52	2.37	
August 2019	5.58	3.61	5.82	3.53	5.22	3.67	
November 2020	5.42	3.77	5.62	3.73	5.13	3.76	
May 2022	6.59	2.60	6.84	2.51	6.25	2.64	

INTERMEDIATE WELL ID:	M505-MW0013		M505-MW0017		M505-MW0020	
Screen Interval (ft bls):	23	- 28	22.5	- 27.5	33.5 - 38.5	
TOC Elevation (ft NAVD88):	10	.20	9.	30	9.	07
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
November 2016	6.85	3.35	6.95	2.35	6.89	2.18
May 2017	8.16	2.04	8.34	0.96	8.02	1.05
March 2018	7.02	3.18	6.99	2.31	6.74	2.33
September 2018	7.09	3.11	7.23	2.07	6.98	2.09
August 2019	5.83	4.37	5.80	3.50	5.54	3.53
November 2020	5.72	4.48	5.69	3.61	5.31	3.76
May 2022	6.82	3.38	6.96	2.34	6.58	2.49

Table 4-1
Building M7-0505 Treatment Tank Area - Long Term Monitoring (LTM)
Monitoring Well Groundwater Elevations

INTERMEDIATE WELL ID:	M505-MW0022		M505-MW0024		M505-MW0025	
Screen Interval (ft bls):	22.5	- 27.5	32.5	- 37.5	22.5 - 27.5	
TOC Elevation (ft NAVD88):	9.	45	8.	72	10	.70
Date	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)
November 2016	7.08	2.37	5.79	2.93	8.46	2.24
May 2017	8.49	0.96	7.23	1.49	9.86	0.84
March 2018	7.11	2.34	6.35	2.37	5.41	5.29
September 2018	7.32	2.13	6.68	2.04	8.81	1.89
August 2019	5.97	3.48	5.50	3.22	7.55	3.15
November 2020	5.70	3.75	5.20	3.52	7.17	3.53
May 2022	6.98	2.47	6.41	2.31	8.52	2.18

INTERMEDIATE WELL ID:	M505-MW0026		M505-MW0027		M505-MW0028	
Screen Interval (ft bls):	32.5	- 37.5	22.5	- 27.5	22.5	- 27.5
TOC Elevation (ft NAVD88):	10	.71	9.	9.70		66
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
November 2016	8.48	2.23	7.30	2.40	3.46	2.20
May 2017	9.84	0.87	8.73	0.97	4.93	0.73
March 2018	8.42	2.29	7.39	2.31	3.39	2.27
September 2018	8.82	1.89	7.63	2.07	3.91	1.75
August 2019	7.52	3.19	6.23	3.47	2.50	3.16
November 2020	7.18	3.53	6.00	3.70	2.10	3.56
May 2022	8.51	2.20	7.27	2.43	3.49	2.17

INTERMEDIATE WELL ID:	M505-MW0029		M505-MW0030		M505-MW0031	
Screen Interval (ft bls):	22.5	- 27.5	22.5	- 27.5	22.5 - 27.5	
TOC Elevation (ft NAVD88):	6.	88	10	.13	10	.37
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
November 2016	5.11	1.77	Not Measured		8.41	1.96
May 2017	6.42	0.46	Not Mo	easured	9.65	0.72
March 2018	4.95	1.93	8.90	1.23	8.33	2.04
September 2018	5.54	1.34	8.40	1.73	8.08	2.29
August 2019	4.45	2.43	7.12	3.01	7.72	2.65
November 2020	4.07	2.81	6.71	3.42	7.73	2.64
May 2022	5.26	1.62	8.10	2.03	8.60	1.77

INTERMEDIATE WELL ID:	M505-MW0032		M505-MW0033		M505-MW0035	
Screen Interval (ft bls):	32.5	- 37.5	22.5	- 27.5	22.5 - 27.5	
TOC Elevation (ft NAVD88):	10	.82	10	10.67		85
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
November 2016	8.68	2.14	8.57	2.10	4.61	2.24
May 2017	10.01	0.81	9.94	0.73	5.96	0.89
March 2018	5.57	5.25	8.43	2.24	4.58	2.27
September 2018	9.02	1.80	8.91	1.76	4.95	1.90
August 2019	8.35	2.47	7.70	2.97	3.74	3.11
November 2020	7.47	3.35	7.38	3.29	3.39	3.46
May 2022	8.78	2.04	8.70	1.97	4.69	2.16

INTERMEDIATE WELL ID:	M505-MW0039		M505-MW0042		M505-MW0045	
Screen Interval (ft bls):	30	- 35	32.5	- 37.5	32 - 37	
TOC Elevation (ft NAVD88):	8.	49	9.	14	9.	03
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
November 2016	5.93	2.56	6.67	2.47	6.54	2.49
May 2017	7.24	1.25	8.04	1.10	7.86	1.17
March 2018	6.02	2.47	6.75	2.39	6.75	2.28
September 2018	6.15	2.34	6.96	2.18	6.95	2.08
August 2019	4.85	3.64	5.65	3.49	5.50	3.53
November 2020	4.71	3.78	5.51	3.63	5.26	3.77
May 2022	5.88	2.61	6.67	2.47	6.50	2.53

Table 4-1 Building M7-0505 Treatment Tank Area - Long Term Monitoring (LTM) Monitoring Well Groundwater Elevations

INTERMEDIATE WELL ID:	M505-MW0049		M505-MW0051		M505-MW0055	
Screen Interval (ft bls):	20 -	- 35	22.5	- 27.5	22.5	- 27.5
TOC Elevation (ft NAVD88):	11	.03	9.	63	9.	60
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
November 2016	8.85	2.18	7.59	2.04	Not Me	easured
May 2017	9.56	1.47	8.96	0.67	Not Me	easured
March 2018	8.06	2.97	7.46	2.17	7.45	2.15
September 2018	8.47	2.56	7.96	1.67	7.94	1.66
August 2019	7.22	3.81	6.88	2.75	7.50	2.10
November 2020	6.92	4.11	6.57	3.06	8.50	1.10
May 2022	8.20	2.83	7.77	1.86	7.72	1.88

INTERMEDIATE WELL ID:	M505-MW0057		M505-MW0059	
Screen Interval (ft bls):	22.5	- 27.5	22.5 - 27.5	
TOC Elevation (ft NAVD88):	6.	93	6.	78
	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
November 2016	4.69	2.24	4.60	2.18
May 2017	6.16	0.77	6.15	0.63
March 2018	4.66	2.27	4.57	2.21
September 2018	5.11	1.82	5.09	1.69
August 2019	3.72	3.21	3.70	3.08
November 2020	3.35	3.58	3.30	3.48
May 2022	4.73	2.20	4.74	2.04

Notes:

bls = below land surface BTOC = below top of casing

ft = feet

M505 = Building M7-0505 Treatment Tank Area

MW = monitoring well

NAVD88 = North American Vertical Datum of 1988

TOC = top of casing

Table 4-2 M7-505 Treatment Tank Area - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

		Category	Volatile Organic	c Compounds (VOC) by	Method 8260
				CIS-1,2-	
		Analyte	TRICHLOROETHENE	DICHLOROETHENE	VINYL CHLORIDE
	F	DEP GCTLs (µg/L)	3	70	1
	F	DEP NADCs (µg/L)	300	700	100
		Screened Interval			
Location ID	Sample Date	(ft bls)			
M505-MW0013	11/29/2005	23 - 28	2.3	120	0.43 U
	9/19/2006	23 - 28	14	220	0.37 U
	5/22/2007	23 - 28	2.8	290	0.84 I
	11/8/2007	23 - 28	1.0 I	130	0.12 U
	5/28/2008	23 - 28	8.2	110	0.25 U
	12/16/2008	23 - 28	3.3	76	0.25 U
	5/12/2009	23 - 28	0.45 I	68	0.25 U
	12/17/2009	23 - 28	0.15 U	79	0.25 U
	5/25/2010	23 - 28	0.63 U	79	0.52 U
	11/9/2010	23 - 28	0.16 U	58.1	0.22 U
	5/2/2011	23 - 28	26.7	126	0.36 U
	11/14/2013	23 - 28	1.1	560	7.3
	2/18/2014	23 - 28	0.36 U	13	0.36 U
	5/29/2014	23 - 28	0.36 U	0.81 I	0.36 U
	8/14/2014	23 - 28	0.36 U	0.71 I	0.36 U
	11/24/2014	23 - 28	4.5	2.3	0.36 U
	2/24/2015	23 - 28	0.36 U	0.68 I	0.36 U
	5/19/2015	23 - 28	0.36 U	0.36 U	0.36 U
	9/28/2015	23 - 28	20	6.3	0.36 U
	11/21/2016	23 - 28	0.87 U	0.72 U	0.6 U
	5/24/2017	23 - 28	17	190	0.20 U
	3/22/2018	23 - 28	1.1	120	0.92 I
	9/27/2018	23 - 28	0.89 U	93	1.6
	8/22/2019	23 - 28	0.86 U	167	1.5 I
	11/11/2020	23 - 28	0.35 U	98.5	2.1
	5/11/2022	23 - 28	0.89 U	37	2.1
M505-MW0020	5/23/2007	33.5 - 38.5	0.20 U	3.0	0.12 U
	11/8/2007	33.5 - 38.5	0.20 U	6.1	0.12 U
	5/27/2008	33.5 - 38.5	0.15 U	1.8	0.25 U
	12/17/2008	33.5 - 38.5	0.15 U	1.2	0.25 U
	5/13/2009	33.5 - 38.5	0.15 U	14	0.25 U
	12/17/2009	33.5 - 38.5	0.15 U	120	0.25 U
	5/26/2010	33.5 - 38.5	0.63 U	300	0.52 U
	11/10/2010	33.5 - 38.5	0.16 U	433	0.22 U
	5/2/2011	33.5 - 38.5	0.36 U	402	0.36 U
	11/10/2011	33.5 - 38.5	0.36 U	728	0.36 U
	4/17/2012	33.5 - 38.5	0.36 U	73.9	0.36 U
	7/24/2012	33.5 - 38.5	0.36 U	177	0.36 U
	10/9/2012	33.5 - 38.5	0.36 U	117	0.36 U
	1/9/2013	33.5 - 38.5	0.36 U	12	0.36 U
	4/23/2013	33.5 - 38.5	0.36 U	9.4	0.36 U
	11/13/2013	33.5 - 38.5	0.36 U	280	0.36 U
	2/18/2014	33.5 - 38.5	0.36 U	8.5	0.36 U
	5/28/2014	33.5 - 38.5	0.36 U	1.5	0.36 U

Table 4-2 M7-505 Treatment Tank Area - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

		Category	Volatile Organi	c Compounds (VOC) by	Method 8260
		Category	voidine Organie		141cmou 0200
		A T . 4 .	TRICIII OROETHENE	CIS-1,2-	WINNI CHI ODIDE
	17		TRICHLOROETHENE		
		DEP GCTLs (µg/L)	3	70	1
	r	DEP NADCs (µg/L)	300	700	100
		Screened Interval			
Location ID	Sample Date	(ft bls)			
M505-MW0020	8/13/2014	33.5 - 38.5	0.36 U	4.8	0.36 U
(continued)	5/20/2015	33.5 - 38.5	0.36 U	160	0.42 I
	9/29/2015	33.5 - 38.5	0.36 U	120	0.36 U
	11/21/2016	33.5 - 38.5	0.29 U	0.24 U	0.20 U
	5/23/2017	33.5 - 38.5	0.29 U	130	0.20 U
	9/27/2018	33.5 - 38.5	0.89 U	98	0.71 U
	8/22/2019	33.5 - 38.5	0.35 U	34.8	0.41 U
3.550.5 3.57770.000	11/11/2020	33.5 - 38.5	0.35 U	21.8	0.41 U
M505-MW0028	12/16/2009	22.5 - 27.5	0.15 U	1.0	27
	5/26/2010	22.5 - 27.5	0.63 U	0.76 I	42
	11/9/2010	22.5 - 27.5	0.16 U	1.58	19.6
	5/3/2011	22.5 - 27.5	0.36 U	1.24	28.3
	1/7/2013	22.5 - 27.5	0.36 U	1.4	72
	5/28/2014	22.5 - 27.5	0.36 U	1.8	87
	5/20/2015	22.5 - 27.5	0.36 U	2.3	83
	9/29/2015	22.5 - 27.5	0.36 U	3.3	50
	11/21/2016	22.5 - 27.5	0.29 U	1.6	8.6
	5/24/2017	22.5 - 27.5	0.29 U	1.8	0.20 U
	9/27/2018	22.5 - 27.5	0.89 U	0.87 I	1.3
	8/22/2019	22.5 - 27.5	0.35 U	0.34 I	0.41 U
M505 MXX0022	11/11/2020	22.5 - 27.5	0.35 U	0.28 U	0.41 U 2.7
M505-MW0032	12/16/2009	32.5 - 37.5 32.5 - 37.5	0.15 U	57	
	5/26/2010 11/9/2010	32.5 - 37.5	0.63 U 0.16 U	170	170 156
	5/3/2010	32.5 - 37.5	0.16 U	343 132	241
	11/14/2011	32.5 - 37.5	0.36 U	320	123
	4/17/2012	32.5 - 37.5	0.36 U		25.5
	7/23/2012	32.5 - 37.5		84.4	
	10/9/2012	32.5 - 37.5	0.36 U 0.72 U	109	16.4 30.9
	1/8/2013	32.5 - 37.5	0.72 U 0.36 U	184 170	13
	4/24/2013	32.5 - 37.5	0.36 U	1.8	0.47 I
	11/12/2013	32.5 - 37.5	0.36 U	260	32
	2/17/2014	32.5 - 37.5	0.36 U	190	25
	5/28/2014	32.5 - 37.5	0.36 U	170	8.7
	8/13/2014	32.5 - 37.5	0.36 U	67	5.5
	11/24/2014	32.5 - 37.5	0.36 U	220	25
	2/24/2014	32.5 - 37.5	0.36 U	190	29
	5/19/2015	32.5 - 37.5	0.36 U	120	11
	9/28/2015	32.5 - 37.5	0.36 U	220	35
	11/21/2016	32.5 - 37.5	0.29 U	55	24
	5/23/2017	32.5 - 37.5	0.29 U	84	23
	9/26/2018	32.5 - 37.5	0.89 U	23	11
	8/22/2019	32.5 - 37.5	0.35 U	62.1	10.7
	11/11/2020	32.5 - 37.5	0.35 U	85.5	9.7
	5/11/2022	32.5 - 37.5	0.89 U	35	4.7
	3/11/2022	32.3 - 31.3	0.09 0	33	7./

Table 4-2 M7-505 Treatment Tank Area - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

			Volatile Organi	c Compounds (VOC) by	Mathad 9260
		Category	voiaille Organic		Meinoa 8200
		•	TRICHLOROETHENE	CIS-1,2- DICHLOROETHENE	VINYL CHLORIDE
		DEP GCTLs (µg/L)	3	70	1
	F	DEP NADCs (µg/L)	300	700	100
		Screened Interval			
Location ID	Sample Date	(ft bls)			
M505-MW0033	12/16/2009	22.5 -27.5	0.57 I	700	130
	5/26/2010	22.5 -27.5	0.69 I	47	48
	11/9/2010	22.5 -27.5	0.16 U	76.3	67.3
	5/3/2011	22.5 -27.5	1.47	94.5	69.8
	11/14/2011	22.5 -27.5	2.23	97.4	39.9
	4/17/2012	22.5 -27.5	2.4	79.7	17.2
	7/23/2012	22.5 -27.5	3.5	116	23.2
	10/9/2012	22.5 -27.5	0.68 I	40.4	6.61
	1/8/2013	22.5 -27.5	1.6	34	7.5
	4/24/2013	22.5 -27.5	0.86 I	24	2.8
	11/12/2013	22.5 -27.5	0.56 I	8.6	1.5
	2/17/2014	22.5 -27.5	0.38 I	13	0.36 U
	5/28/2014	22.5 -27.5	1.3	42	2.8
	8/13/2014	22.5 -27.5	0.81 I	26	0.85 I
	11/24/2014	22.5 -27.5	4.7	17	0.62 I
	2/24/2015	22.5 -27.5	0.86 I	46	4.2
	5/19/2015	22.5 -27.5	0.36 I	32	1.2
	9/28/2015	22.5 - 27.5	0.97 I	55	11
	11/21/2016	22.5 -27.5	0.29 U	110	11
	5/23/2017	22.5 -27.5	0.29 U	63	3.8
	9/26/2018	22.5 - 27.6	0.89 U	48	1.5
	8/22/2019	22.5 -27.5	0.72 I	12.7	0.41 U
	11/11/2020	22.5 -27.5	0.35 U	5.1	0.41 U
	5/11/2022	22.5 -27.5	0.89 U	6.1	0.71 U
M505-MW0039	12/17/2009	30 - 35	21	130	0.47 I
	5/25/2010	30 - 35	16	85	0.52 U
	11/10/2010	30 - 35	37.9	119	0.22 U
	5/4/2011	30 - 35	54.6	164	0.57 I
	1/7/2013	30 - 35	64	160	0.36 U
	11/14/2013	30 - 35	45	110	0.36 U
	2/18/2014	30 - 35	6.6	38	0.36 U
	5/29/2014	30 - 35	3.2	21	0.36 U
	8/14/2014	30 - 35	4.8	30	0.36 U
	11/24/2014	30 - 35	6.5	20	0.36 U
	2/24/2015	30 - 35	3.4	16	0.36 U
	5/20/2015	30 - 35	6.1	6.5	0.36 U
	9/28/2015	30 - 35	6.1	5.3	0.36 U
	11/22/2016	30 - 35	0.29 U	0.24 U	0.20 U
	5/24/2017	30 - 35	4.5	17	0.20 U
	3/22/2018	30 - 35	5.7	20	0.71 U
	9/25/2018	30 - 35	4.6	39	0.71 U
	8/22/2019	30 - 35	4.8	45.4	0.41 U
	11/11/2020	30 - 35	3.6	47.3	0.41 U
	5/11/2022	30 - 35	2.7	41	0.71 U

Table 4-2 M7-505 Treatment Tank Area - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

		Category	Volatile Organi	c Compounds (VOC) by	Method 8260
		04008025	, outilité organie		
		Analyta	TRICHLOROETHENE	CIS-1,2-	VINYL CHLORIDE
	F	DEP GCTLs (µg/L)	3	70	1
		DEP NADCs (µg/L)	300	700	100
	I.	1	300	700	100
I andian ID	Carrella Data	Screened Interval (ft bls)			
Location ID M505-MW0049	Sample Date 1/9/2013	20 - 35	38	220	0.36 U
W1505-W1 W 0049	11/12/2013	20 - 35	15	120	0.36 U
	2/19/2014	20 - 35	9.6	80	0.36 U
	5/28/2014	20 - 35	11	240	0.39 I
	8/13/2014	20 - 35	4.7	240	0.40 I
	11/25/2014	20 - 35	5.5	230	0.40 I
	2/24/2015	20 - 35	1.0	150	0.36 U
	5/19/2015	20 - 35	0.61 I	79	0.36 U
	9/29/2015	20 - 35	0.39 I	140	0.36 U
	11/22/2016	20 - 35	0.29 U	0.24 U	0.20 U
	5/23/2017	20 - 35	0.29 U	62	0.20 U
	9/26/2018	20 - 35	0.89 U	75	0.71 U
	8/22/2019	20 - 35	0.35 U	64.2	0.41 U
	11/11/2020	20 - 35	0.35 U	38.1	0.41 U
	5/11/2022	20 - 35	0.89 U	21	0.71 U
M505-MW0051	11/15/2011	22.5 - 27.5	13.5	319	72.5
	4/17/2012	22.5 - 27.5	16.3	129	34.7
	7/23/2012	22.5 - 27.5	7.45	143	31.6
	10/9/2012	22.5 - 27.5	10.2	110	30
	1/8/2013	22.5 - 27.5	13	160	37
	4/24/2013	22.5 - 27.5	11	170	45
	11/12/2013	22.5 - 27.5	8.1	150	50
	2/19/2014	22.5 - 27.5	9.2	64	29
	5/28/2014	22.5 - 27.5	6.1	46	20
	8/13/2014	22.5 - 27.5	7.1	47	24
	11/24/2014	22.5 - 27.5	9.9	88	45
	2/24/2015	22.5 - 27.5	3.8	46	19
	5/19/2015	22.5 - 27.5	0.70 I	6.0	5.6
	9/28/2015	22.5 - 27.5	2.2	25	8.3
	11/22/2016	22.5 - 27.5	0.29 U	0.24 U	0.20 U
	5/23/2017	22.5 - 27.5	3.2	73	14
	9/26/2018	22.5 - 27.5	1.7	13	0.86 I
	8/22/2019	22.5 - 27.5	1.5	6.2	0.41 U
	11/11/2020	22.5 - 27.5	0.96 I	9.0	0.48 I
	5/11/2022	22.5 - 27.5	0.89 U	6.3	0.71 U
M505-MW0055	11/14/2011	22.5 - 27.5	0.36 U	1,130	39.1
	4/17/2012	22.5 - 27.5	0.36 U	171	509
	7/23/2012	22.5 - 27.5	0.36 U	137	336
	10/9/2012	22.5 - 27.5	0.36 U	1.42	19.5
	1/8/2013	22.5 - 27.5	0.36 U	0.90 I	6.3
	4/24/2013	22.5 - 27.5	0.36 U	0.83 I	6.4
	11/12/2013	22.5 - 27.5	0.36 U	0.36 U	2.0
	2/19/2014	22.5 - 27.5	0.36 U	0.90 I	5.3
	5/28/2014	22.5 - 27.5	0.36 U	1.0	3.0
	8/13/2014	22.5 - 27.5	0.36 U	0.46 I	0.46 I

Table 4-2 M7-505 Treatment Tank Area - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

		Catagory	Volatila Onogni	Compounds (VOC) hu	Mathad 9260
		Category	voiaille Organic	c Compounds (VOC) by	Meinoa 8200
				CIS-1,2-	
			TRICHLOROETHENE		
		DEP GCTLs (µg/L)	3	70	1
	F	DEP NADCs (µg/L)	300	700	100
		Screened Interval			
Location ID	Sample Date	(ft bls)			
M505-MW0055	11/24/2014	22.5 - 27.5	0.36 U	0.36 U	0.41 I
(continued)	2/24/2015	22.5 - 27.5	0.36 U	0.36 U	0.36 U
	5/19/2015	22.5 - 27.5	0.36 U	0.36 U	0.36 U
	9/28/2015	22.5 - 27.5	0.36 U	0.36 U	0.36 U
	9/26/2018	22.5 - 27.5	0.89 U	16	3.1
	8/22/2019	22.5 - 27.5	0.35 U	0.28 U	0.41 U
	11/11/2020	22.5 - 27.5	0.87 I	33.1	3.3
	5/11/2022	22.5 - 27.5	0.89 U	53	9.3
M505-MW0057	1/7/2013	22.5 - 27.5	0.36 U	0.38 I	85
	5/27/2014	22.5 - 27.5	0.36 U	0.36 U	65
	5/20/2015	22.5 - 27.5	0.36 U	0.36 U	65
	9/29/2015	22.5 - 27.5	0.36 U	0.36 U	58
	11/21/2016	22.5 - 27.5	0.29 U	0.24 U	13
	5/24/2017	22.5 - 27.5	0.29 U	0.24 U	0.20 U
	9/27/2018	22.5 - 27.5	0.89 U	0.53 U	0.71 U
	8/22/2019	22.5 - 27.5	0.35 U	0.28 U	0.41 I
	11/11/2020	22.5 - 27.5	0.35 U	0.28 U	0.41 U
M505-MW0059	1/7/2013	22.5 - 27.5	0.36 U	0.36 U	2.4
	5/27/2014	22.5 - 27.5	0.36 U	0.36 U	15
	5/19/2015	22.5 - 27.5	0.36 U	0.36 U	22
	9/29/2015	22.5 - 27.5	0.36 U	0.36 U	27
	11/21/2016	22.5 - 27.5	0.29 U	0.24 U	6.4
	5/24/2017	22.5 - 27.5	0.29 U	0.24 U	14
	9/27/2018	22.5 - 27.5	0.89 U	0.53 U	12
	8/22/2019	22.5 - 27.5	0.35 U	0.28 U	1.5
	11/11/2020	22.5 - 27.5	0.35 U	0.28 U	0.41 U
	5/11/2022	22.5 - 27.6	0.89 U	0.53 U	0.71 U

FDEP GCTLs = Florida Department of Environmental Protection Groundwater Cleanup Target Levels,

Chapter 62-777 Florida Administrative Code, Table 1 (2005)

FDEP NADCs = Natural Attenuation Default Concentration, Chapter 62-777 Florida Administrative Code, Table V (2005)

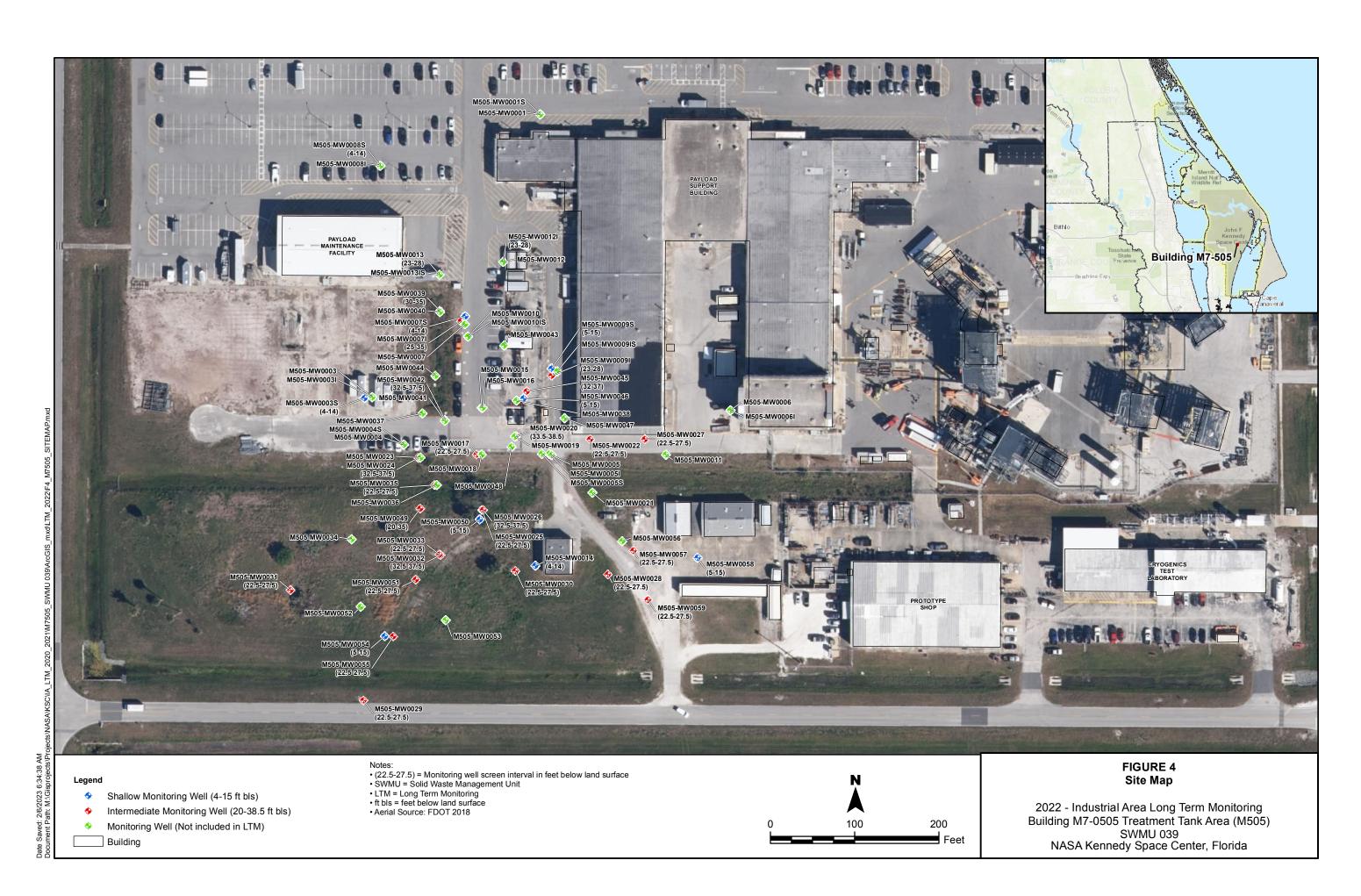
ft bls = feet below land surface

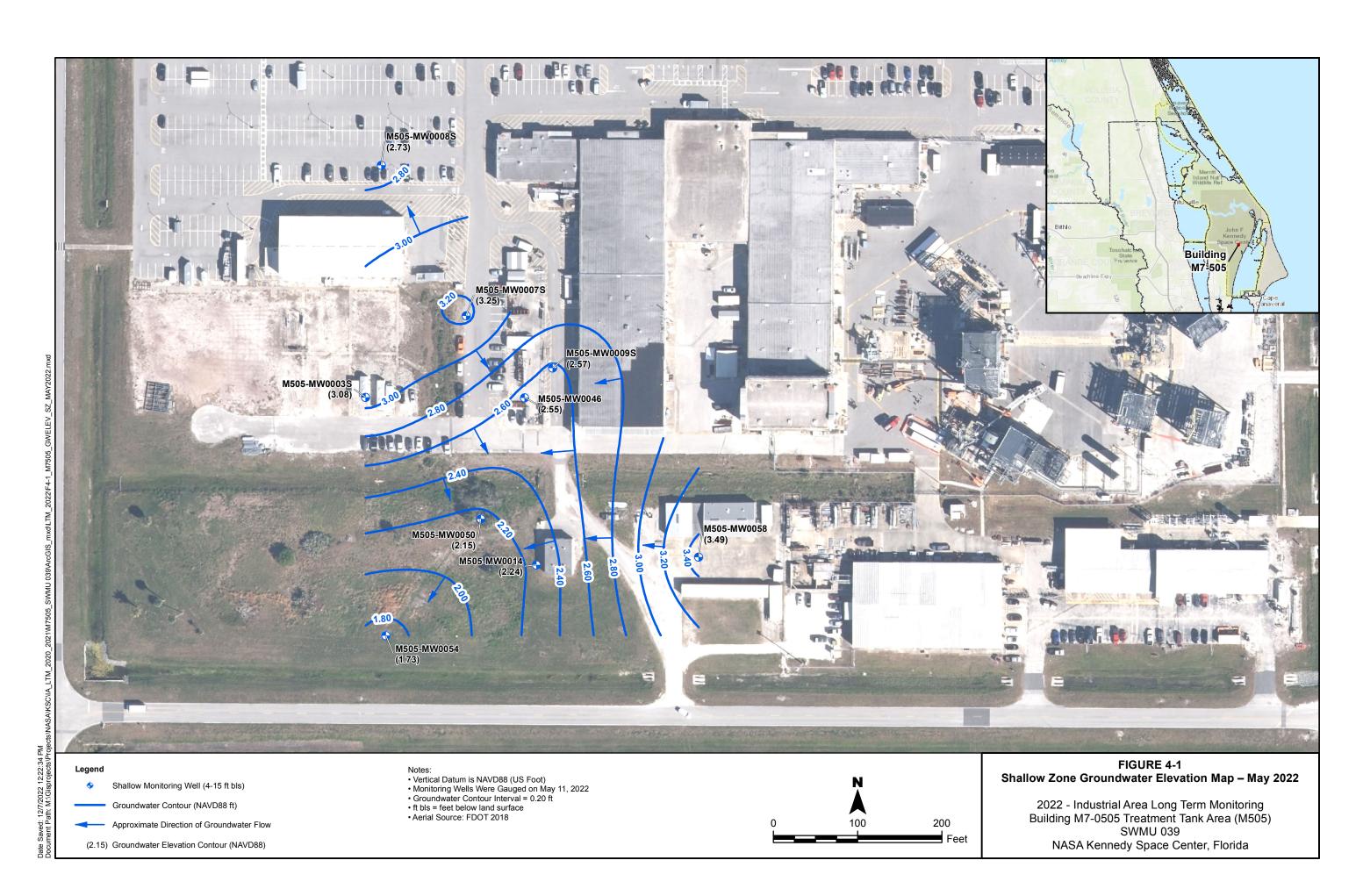
M505 = Building M7-0505 Treatment Tank Area

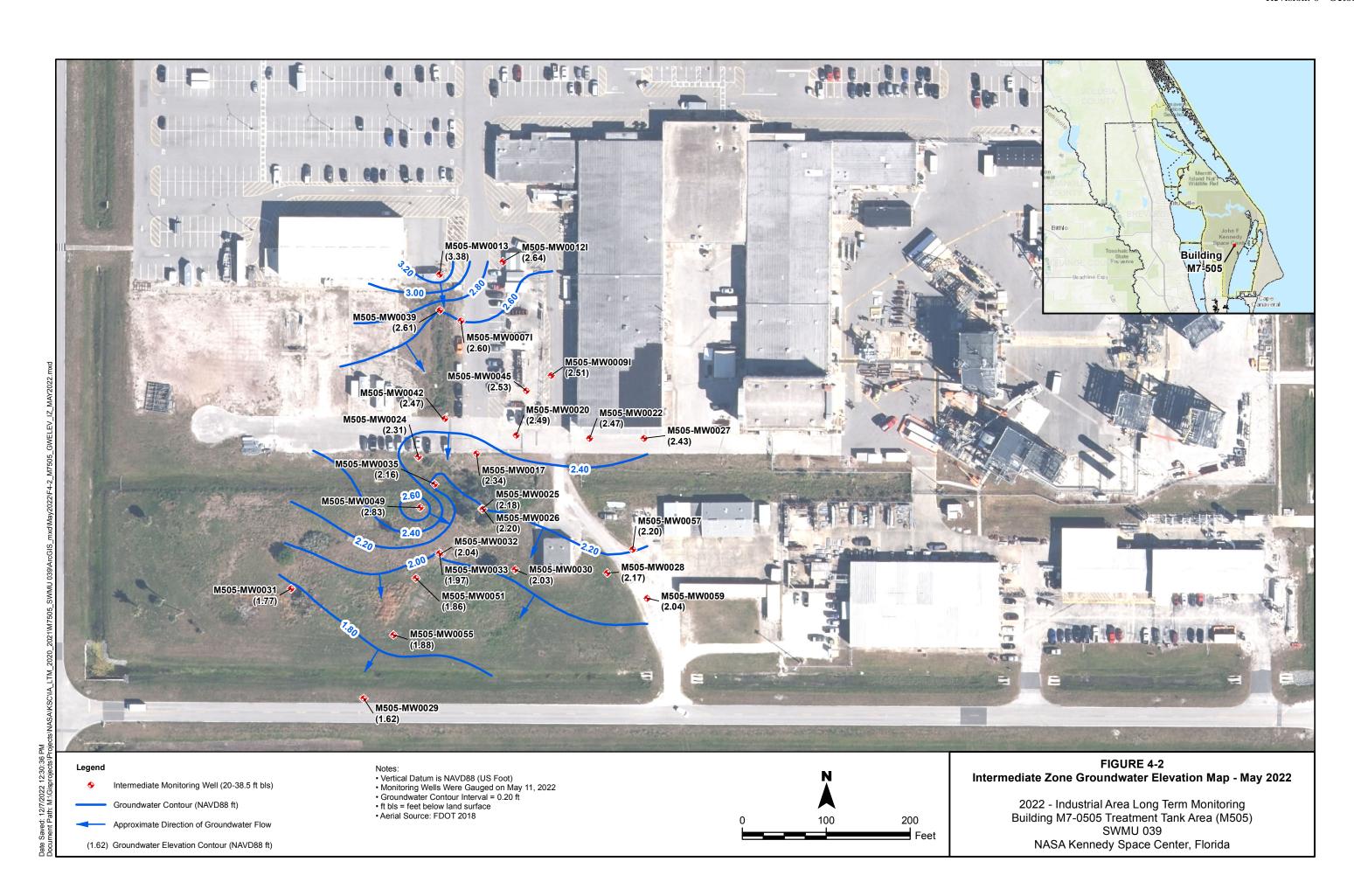
MW = monitoring well

Results and screening criteria presented in µg/L (micrograms per liter)

Bolded results indicate the presence of an analyte at the specified concentration

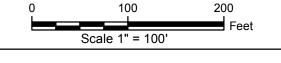

Red font indicates an exceedance of FDEP GCTLs


Highlighted cell indicates an exceedance of FDEP NADCs


I = Analyte greater than or equal to the method detection limit, but less than the practical quantitation limit

U = Analyte not detected

The numeric value presented for non-detects is the sample-specific reporting detection limit



Legend

- Intermediate LTM Well, Sample Results Exceed
- Intermediate, LTM-WL Only, Below Screen
- Non-LTM Well, No Sample Results
- Intermediate Groundwater Elevation Contours May
- Direction of Groundwater Flow
- Approximate Extent of Vinyl Chloride Greater Than GCTLs from Monitoring Well Sampling (Dashed Where Inferred)

- LTM = Long Term Monitoring
 MW = Monitoring Well
- NM = Normal Sample
 SWMU = Solid Waste Management Unit
 All results and screening criteria presented in µg/L
- 6. I = Result is greater than or equal to the Method Detection Limit (MDL) but less than the
- Practical Quantitation limit (PQL).
- 7. J = Estimated Concentration.
- 8. U = Result was below the MDL.
- FDEP GCTLs = Florida Department of Environmental Protection Groundwater Cleanup Target Levels, Chapter 62-777, F.A.C.
 FDEP NADCs = Natural Attenuation Default Concentration, Chapter 62-777, F.A.C.
- 11. **Bolded** results indicate the presence of an analyte at the specified concentration. 12. Blue font indicates an exceedance of FDEP GCTLs.
- 13. Aerial Source: FDOT 2018.
- 14. Depth is presented in feet below land surface.
- 15. Depth of monitoring well screen interval is presented in feet below land surface.

TRICHLOROETHENE	3
CIS-1,2-DICHLOROETHENE	70
VINYL CHLORIDE	1

FIGURE 4-3 **Groundwater Sampling Analytical Results**

2022 - Industrial Area Long Term Monitoring M7-0505 Treatment Tank Area (M505) **SWMU 039** NASA Kennedy Space Center, Florida

5. HYPERGOL MAINTENANCE FACILITY HAZARDOUS WASTE SOUTH STAGING AREA

This section provides a summary of the HMF South site (SWMU 070). Refer to **Figure 5** for a site map.

5.1 SITE DESCRIPTION AND HISTORY

The HMF South site is located between F Avenue Southeast and G Avenue East, on the south side of 9th Street Southeast. The HMF site contained several buildings, mostly constructed in the early 1960s. Building M7-1410 and Pad M7-1460 were constructed in 1966. The Hazardous Waste Staging Shelter M7-1411 was constructed in 1985. The HMF site included both East and West hypergol storage buildings, a hazardous waste staging shelter, a hazardous waste staging area (formerly a liquid oxygen fuel pad), a former liquid hydrogen fuel pad, a pair of leaching ponds, and small equipment shelters.

The site was utilized to support the Apollo and space shuttle programs by conducting cryogenic testing for the apollo space program and "hot-testing" of the solid rocket booster aft skirt. Spanning from 1981 to 1998, the Hazardous Waste Staging Area M7-1361 was a RCRA-permitted temporary storage and disposal facility. In accordance with RCRA requirements, the staging area closed in 1988. Accordingly, a RCRA Facility Assessment was conducted in 1999 to evaluate potential sources of contamination at the site, which included confirmation sampling. The results of these investigations identified concentrations of PCBs in surface soils exceeding the FDEP industrial soil cleanup target level (SCTL), and both trichlorofluoromethane (TCFM) and aluminum were detected at concentrations in groundwater exceeding their respective GCTLs (Geosyntec 2002a).

An RFI was conducted from 1999 through 2002, which delineated two small areas with PCB concentrations in soil exceeding the industrial SCTL (Geosyntec 2002a). Additionally, concentrations of TCFM, TCE, cis-1,2-DCE, VC, and aluminum were found in groundwater exceeding their respective GCTLs to a depth of 55 ft bls. A CMS was completed and recommended IM for site soil, which was performed in December 2003 with the removal 200 tons (4,700 cubic ft) of PCB-contaminated soil exceeding residential SCTLs. One location with arsenic concentrations exceeding the SCTL was ruled out using the 95% upper confidence limit (UCL). The study also evaluated groundwater remediation options (Geosyntec 2004a).

The HMF South site was mostly inactive during the early 2000s and was utilized for miscellaneous equipment storage. Buildings M7-1410 and M7-1460 were demolished in late 2005. The 2004 Statement of Basis recommended MNA of groundwater for aluminum and VC, and implementation of an AS treatment system to treat TCFM (NASA 2004b). The AS system was constructed and began operation in September 2005. Based on groundwater analytical

Long-Term Groundwater Monitoring Report Industrial Area Revision: 0 October 2023

results, no further action (NFA) was approved for aluminum in September 2006 (Tetra Tech 2006).

Additional assessment activities were performed in October 2004, including the use of DPT, which resulted in a recommendation to expand the AS system. This expansion was completed in 2007 (Tetra Tech 2007a). After several years of monitoring, NFA was approved for VC in October 2010 (Tetra Tech 2010a).

In March 2013, the AS system was temporarily shut down, but after two quarterly monitoring events (September and December 2013), the AS system was restarted for another 5 months (February through July 2013). Quarterly groundwater monitoring was continued through September 2015 and the IA LTM program was added on a biennial LTM sampling frequency that started in 2016. Shortly thereafter in November 2016, the Hazardous Waste Staging Area M7-1361 and associated support structures at the site were demolished.

A historical review was completed in January 2023 to analyze past TCFM groundwater data at the site. The monitoring well network was extensively sampled between 2005 and 2015. In 2016, three monitoring wells (HMF-NLP-IW0004I, HMF-MW0005I, and HMF-MW0006I) remained in the sampling network as the site entered the LTM program, while the other monitoring wells in the network had many consecutive events below GCTLs and ceased sampling. Monitoring wells HMF-MW0005I and HMF-MW0006I were removed from the sampling network following the 2016 and 2018 sampling events, respectively, due to continued analyses below GCTLs. A historical data table, generated by Tetra Tech, for the 2016 Corrective Measures Implementation 10 year annual report is provided in **Appendix J**.

During the January 2023 historical review, two soil sample locations outside of the IM areas were found to have had PCB concentrations exceeding the FDEP Residential SCTL (1.0 mg/kg at M71361-SS2 and 0.67 mg/kg at M71410-SS2). A 95% UCL analysis was performed in March 2023. The 95% UCL calculated was 0.347 mg/kg, which is below the FDEP Residential SCTL of 0.5 mg/kg. The 95% UCL analysis results are provided in **Appendix K**.

5.2 FIELD ACTIVITIES

LTM field activities were conducted at HMF South in September 2021. Groundwater levels were obtained at six monitoring wells, and groundwater samples were collected from two monitoring wells. Monitoring well HMF-MW0007I was submerged during this sampling event, so the water level was not gauged. Monitoring well HMF-MW0006I was added back into the 2021 sampling schedule for site closure purposes as a downgradient well, and was replaced with HMF-MW0006IR due to excessive silt buildup in the screen interval (Jacobs-CORE 2019a). Monitoring well construction details are presented in the well installation report (HydroGeoLogic 2021). The following table shows the network of wells used for groundwater level measurements and sampling at HMF South.

Well ID	Screen Interval (ft bls)	Analysis
HMF-NLP-IW0001I	35-40	WL Only
HMF-NLP-IW0002I	37-42	WL Only
HMF-NLP-IW0003I	35.5-40.5	WL Only
HMF-NLP-IW0004I	35-40	WL + TCFM
HMF-MW0005I	35-40	WL Only
HMF-MW0006IR	35-40	WL + TCFM
HMF-MW0007I	35-40	WL Only (submerged)

ID = identification

MW = monitoring well

TCFM = TCFM analysis by Method 8260

WL = water level measurement

The groundwater samples collected from HMF-NLP-IW0004I and HMF-MW0006IR were analyzed for TCFM by Method 8260. Below are the respective GCTL and NADC for the COC present at HMF.

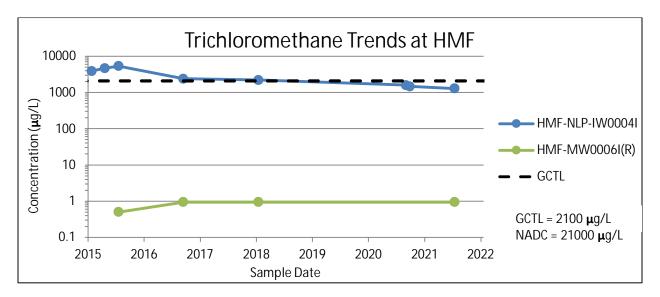
COC	GCTL (µg/L)	NADC (μg/L)
TCFM	2,100	21,000

A field survey was completed in November 2022, in accordance with recommendations from the 2021 IA LTM Advanced Data Package (ADP), using a transit level to establish updated TOC elevations at HMF South. TOC and groundwater levels were measured at 10 intermediate monitoring wells. HMF-MW0006IR's established TOC elevation, surveyed by a professional surveyor, was used as the benchmark elevation to adjust the relative elevations captured in the field to NAVD88 elevations. The survey data is provided in **Appendix L**.

In addition to the seven monitoring wells within the LTM program listed in the table above, the following table shows three supplementary wells included in the survey. A complete list of the survey and groundwater level data collected in November 2022 is presented in **Table 5-1**.

Well ID	Screen Interval (ft bls)
HMF-M71411-IW0001D	40-45
HMF-MW0008I	35-40
HMF-MW0009I	35-40

5.3 WATER LEVEL COLLECTION AND GROUNDWATER FLOW DIRECTION


Groundwater levels collected during the September 2021 sampling event and November 2022 surveying event were used to calculate groundwater elevations presented in **Table 5-2**. Groundwater elevations were calculated with the updated TOC data to determine the 2021 and 2022 groundwater contours and flow directions for the intermediate aquifer zone (35 ft bls to 45 ft bls) at HMF South, shown on **Figure 5-1** and **Figure 5-2**. The groundwater flow directions during the 2021 and 2022 events were both south to southeast; similar to the southeast flow direction historically reported at the site.

5.4 ANALYTICAL RESULTS

Groundwater samples were collected from monitoring wells HMF-NLP-IW0004I and HMF-MW0006IR in September 2021 for TCFM analysis. Concentrations of TCFM were below the GCTL at HMF-NLP-IW0004I (1,300 μ g/L) and not detected at HMF-MW0006IR. A summary of recent and historical analytical results is presented in **Table 5-3**. Analytical results are depicted on **Figure 5-3**.

5.5 TREND ANALYSIS

Concentrations of TCFM have continued to decline at HMF-NLP-IW0004I since 2015, and have been below GCTLs since 2018. TCFM concentrations at HMF-MW0006IR continue to be non-detect since 2015.

5.6 CONCLUSION AND RECOMMENDATION

The updated TOC elevations confirm a south to southeast groundwater flow direction, similar to historical trends. TCFM concentrations at HMF South have shown a decreasing trend since 2015, and for the second consecutive sampling event, concentrations were below the GCTL in September 2021. TCFM concentrations continue to be non-detect at the downgradient monitoring well HMF-MW0006IR, and have historically been below GCTLs at the remaining HMF South monitoring wells. Therefore, long-term groundwater monitoring at HMF South is recommended to discontinue. The LUC for groundwater is recommended to be removed, and a Site Rehabilitation Completion Report is recommended to be completed for NFA without controls.

With FDEP agreement during the April 2023 KSCRT meeting (**Appendix A**), the HMF South monitoring well network was abandoned in May 2023 (HydroGeoLogic 2023) to support construction activities at the site.

Table 5-1

Hypergol Maintenance Facility Hazardous Waste South Staging Area - Long Term Monitoring (LTM)

Top of Casing Elevation Survey - November 7, 2022

Well ID		Interval bls)	Time Opened	Time Gauged	DTW (ft BTOC)	Relative Elevations (ft)	TOC Elevation (ft NAVD88)	Note	S
HMF-M71411-IW0001I	16	21	11:12	12:20	5.63	3.53	6.38	Reported $TOC = 7.71$	no well cap or lid
HMF-M71411-IW0001D	40	45	11:13	12:18	5.62	3.44	6.47	Reported $TOC = 7.83$	no well cap
HMF-NLP-IW0001I	35	40	10:54	12:12	0.85	8.11	1.80	Reported TOC = 1.90	
HMF-NLP-IW0002I	37	42	10:48	12:15	4.09	4.71	5.20	Reported TOC = 5.15	no manhole lid
HMF-NLP-IW0003I	35.5	40.5	10:49	12:14	2.99	5.88	4.03	Reported TOC = 4.18	
HMF-NLP-IW0004I	35	40	10:30	11:45	3.64	5.19	4.72	Reported TOC = 1.87	
HMF-MW0005I	35	40	10:34	11:47	2.97	5.77	4.14	Reported TOC = 4.65	
HMF-MW0006IR	35	40	10:44	12:07	4.60	4.33	5.58	Benchmark well	
HMF-MW0007I	35	40	10:46	12:09	0.24	8.97	0.94	Reported TOC = 0.96	no well cap
HMF-MW0008I	35	40	11:18	12:22	0.54	8.57	1.34		
HMF-MW0009I	35	40	10:43	12:05	1.78	6.97	2.94		no manhole lid

bls = below land surface

BTOC = below top of casing

DTW = depth to water

ft = feet

HMF = Hypergol Maintenance Facility Hazardous Waste South Staging Area

HMF-MW0006IR used as benchmark elevation due to being professionally surveyed in January 2022 by Kugelmann Land Surveying, Inc.

HMF South monitoring wells abandoned in 2023 in preparation for construction activities at the site.

IW = investigation well

MW = monitoring well

NAVD88 = North American Vertical Datum of 1988

Reported TOC elevations obtained from KSC Remediation Information System.

TOC = top of casing

TOC elevation calculated using benchmark TOC elevation, benchmark relative elevation, and monitoring well relative elevation.

Table 5-2 Hypergol Maintenance Facility Hazardous Waste South Staging Area - Long Term Monitoring (LTM) Monitoring Well Groundwater Elevations

INTERMEDIATE WELL ID:	HMF-M71411-IW0001D		HMF-NLP-IW0001I		HMF-NLP-IW0002I	
Screen Interval (ft bls):	40 -	- 45	35	35 - 40		- 42
TOC Elevation (ft NAVD88):	6.4	47	1.	80	5.	20
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
November 2016	Not Me	easured	1.27	0.53	4.53	0.67
March 2018	Not Me	easured	1.00	0.80	4.60	0.60
November 2020	Not Measured		0.00	1.80	3.30	1.90
September 2021	Not Measured		0.73	1.07	3.55	1.65
November 2022	5.62	0.85	0.85	0.95	4.09	1.11

INTERMEDIATE WELL ID:	HMF-NLP-IW0003I		HMF-NLP-IW0004I		HMF-MW0005I	
Screen Interval (ft bls):	35.5	- 40.5	35	- 40	35 - 40	
TOC Elevation (ft NAVD88):	4.	03	4.	4.72		14
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
November 2016	3.48	0.55	4.18	0.54	3.53	0.61
March 2018	3.60	0.43	4.35	0.37	3.42	0.72
November 2020	2.20	1.83	2.78	1.94	2.20	1.94
September 2021	5.10	-1.07	3.08	1.64	2.43	1.71
November 2022	2.99	1.04	3.64	1.08	2.97	1.17

INTERMEDIATE WELL ID:	HMF-MW0006IR		HMF-MW0007I		HMF-MW0008I	
Screen Interval (ft bls):	35 -	- 40	35	35 - 40		- 40
TOC Elevation (ft NAVD88):	5.:	58	0.	0.94		34
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
November 2016	-	-	0.25	0.69	Not Me	easured
March 2018	-	-	0.90	0.04	Not Me	easured
November 2020	Not Installed		>TOC	Not Measured	Not Me	easured
September 2021	4.08 1.50		>TOC	Not Measured	Not Me	easured
November 2022	4.60	0.98	0.24	0.70	0.54	0.80

INTERMEDIATE WELL ID:	HMF-MW0009I		
Screen Interval (ft bls):	35 - 40		
TOC Elevation (ft NAVD88):	2.94		
	Depth to Water	Water Elevation	
Date	(ft BTOC)	(ft NAVD88)	
November 2022	1.78	1.16	

bls = below land surface

BTOC = below top of casing

ft = feet

HMF = Hypergol Maintenance Facility Hazardous Waste South Staging Area

MW = monitoring well

NAVD88 = North American Vertical Datum of 1988

TOC = top of casing

Table 5-3 Hypergol Maintenance Facility Hazardous Waste South Staging Area - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

		Category	Volatile Organic Compounds (VOC) by Method 8260
		Analyte	TRICHLOROFLUOROMETHANE
	F	DEP GCTLs (µg/L)	2,100
		DEP NADCs (µg/L)	21,000
		Screened Interval	7
Location ID	Sample Date	(ft bls)	
HMF-NLP-IW0004I	8/25/2004	35 - 40	360,000
	9/8/2005	35 - 40	396,000
	10/26/2005	35 - 40	23,500
	12/1/2005	35 - 40	21,200
	12/28/2005	35 - 40	54,700
	1/25/2006	35 - 40	49,700
	2/28/2006	35 - 40	9,230
	3/28/2006	35 - 40	27,200
	4/25/2006	35 - 40	34,800
	5/25/2006	35 - 40	2,380
	6/21/2006	35 - 40	17,000
	7/26/2006	35 - 40	40,600
	9/1/2006	35 - 40	6,370
	9/28/2006	35 - 40	48,900
	10/25/2006	35 - 40	25,700
	11/29/2006	35 - 40	21,400
	12/28/2006	35 - 40	12,500
	1/31/2007	35 - 40	45,800
	2/27/2007	35 - 40	65,300
	3/29/2007	35 - 40	36,200
	4/30/2007	35 - 40	8,180
	5/31/2007	35 - 40	583
	6/28/2007	35 - 40	19,500
	7/31/2007	35 - 40	67,000
	8/28/2007	35 - 40	13,000
	9/26/2007	35 - 40	24,000
	11/28/2007	35 - 40	4,590
	1/31/2008	35 - 40	2,580
	3/27/2008	35 - 40	5,220
	5/28/2008	35 - 40	9,330
	7/29/2008	35 - 40	953
	9/25/2008	35 - 40	437
	11/24/2008	35 - 40	183
	1/30/2009	35 - 40	90.5
	4/1/2009	35 - 40	4,470
	5/26/2009	35 - 40	5,610
	7/1/2009	35 - 40	352
	7/29/2009	35 - 40	918
	9/24/2009	35 - 40	22,800
	10/27/2009	35 - 40	21,900
	11/24/2009	35 - 40	7,240
	12/29/2009	35 - 40	6,840
	1/28/2010	35 - 40	90.7

Table 5-3 Hypergol Maintenance Facility Hazardous Waste South Staging Area - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

		Category	Volatile Organic Compounds (VOC) by Method 8260
		Analyte	TRICHLOROFLUOROMETHANE
	F	DEP GCTLs (µg/L)	2,100
		DEP NADCs (µg/L)	21,000
		Screened Interval	
Location ID	Sample Date	(ft bls)	
HMF-NLP-IW0004I	2/24/2010	35 - 40	529
(continued)	3/31/2010	35 - 40	107
,	5/27/2010	35 - 40	507
	7/27/2010	35 - 40	3,350
	8/31/2010	35 - 40	3,100
	9/23/2010	35 - 40	3,670
	12/29/2010	35 - 40	2,750
	3/24/2011	35 - 40	1,190
	6/22/2011	35 - 40	2,940
	9/15/2011	35 - 40	7,210
	12/16/2011	35 - 40	9,660
	3/29/2012	35 - 40	723
	6/21/2012	35 - 40	9,250
	11/20/2012	35 - 40	166
	12/27/2012	35 - 40	76.4
	3/27/2013	35 - 40	272
	6/27/2013	35 - 40	1,480
	9/26/2013	35 - 40	6,730
	12/19/2013	35 - 40	10,300
	2/13/2014	35 - 40	14,600
	3/27/2014	35 - 40	26.0
	7/10/2014	35 - 40	123
	9/23/2014	35 - 40	3,370
	12/23/2014	35 - 40	75.1
	3/31/2015	35 - 40	3,910
	6/25/2015	35 - 40	4,670
	9/23/2015	35 - 40	5,410
	11/18/2016	35 - 40	2,400
	3/22/2018	35 - 40	2,200
	11/10/2020	35 - 40	1,590
	12/4/2020	35 - 40	1,470
	9/22/2021	35 - 40	1,300
HMF-MW0006I	9/8/2005	35 - 40	2 U
	10/26/2005	35 - 40	41.7
	12/1/2005	35 - 40	3.4
	12/28/2005	35 - 40	15.1
	1/25/2006	35 - 40	17.5
	2/28/2006	35 - 40	9.8
	3/28/2006	35 - 40	5.0
	4/25/2006	35 - 40	2.3
	5/25/2006	35 - 40	0.7
	6/21/2006	35 - 40	0.5 U
	7/26/2006	35 - 40	0.5 U

Table 5-3 Hypergol Maintenance Facility Hazardous Waste South Staging Area - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

		Volatile Organic Compounds (VOC) by Method 8260	
		TRICHLOROFLUOROMETHANE	
	F	2,100	
	F	21,000	
		Screened Interval	
Location ID	Sample Date	(ft bls)	
HMF-MW0006I	9/1/2006	35 - 40	0.5 U
(Continued)	9/28/2006	35 - 40	2.7
	10/25/2006	35 - 40	2.7 U
	11/29/2006	35 - 40	2.7 U
	12/28/2006	35 - 40	1.6 I
	1/31/2007	35 - 40	0.5 U
	2/27/2007	35 - 40	0.5 U
	3/29/2007	35 - 40	0.5 U
	4/30/2007	35 - 40	4.0
	5/31/2007	35 - 40	5.8
	6/28/2007	35 - 40	0.5 U
	7/31/2007	35 - 40	69.7
	8/28/2007	35 - 40	2.1
	9/26/2007	35 - 40	2.6
	11/28/2007	35 - 40	2.2
	1/31/2008	35 - 40	2.1
	3/27/2008	35 - 40	5.2
	9/25/2008	35 - 40	4.5
	4/1/2009	35 - 40	1.4 I
	9/24/2009	35 - 40	1.0 I
	3/31/2010	35 - 40	0.4 U
	9/23/2010	35 - 40	2.6
	9/15/2011	35 - 40	0.5 U
	9/26/2013	35 - 40	0.5 U
	9/23/2014	35 - 40	14.1
	9/23/2015	35 - 40	0.5 U
	11/18/2016	35 - 40	0.94 U
	3/22/2018	35 - 40	0.94 U
HMF-NLP-MW0006IR	9/22/2021	35 - 40	0.94 U

FDEP GCTLs = Florida Department of Environmental Protection Groundwater Cleanup Target Levels, Chapter 62-777 Florida Administrative Code, Table 1 (2005)

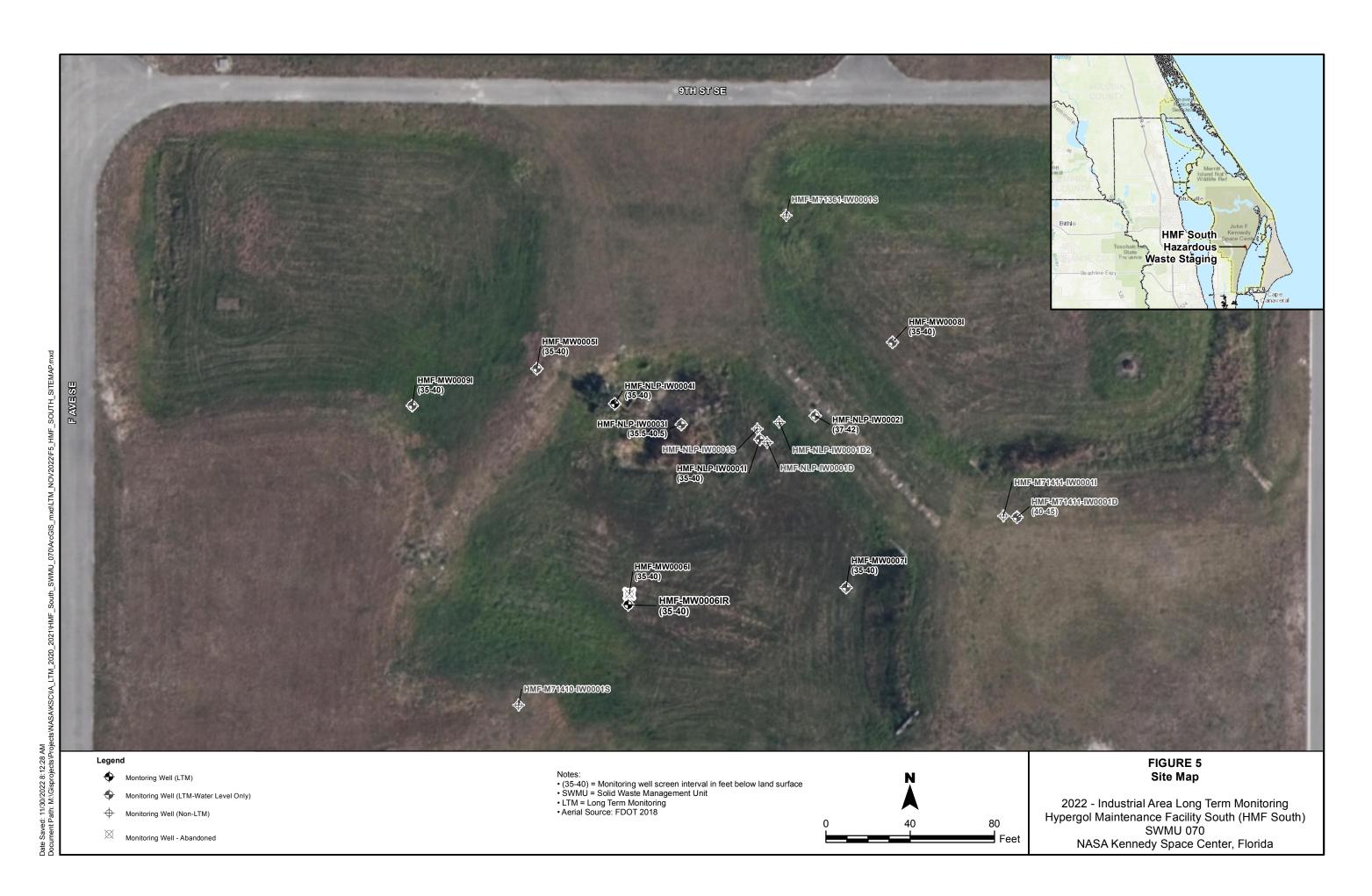
FDEP NADCs = Natural Attenuation Default Concentration, Chapter 62-777 Florida Administrative Code, Table V (2005)

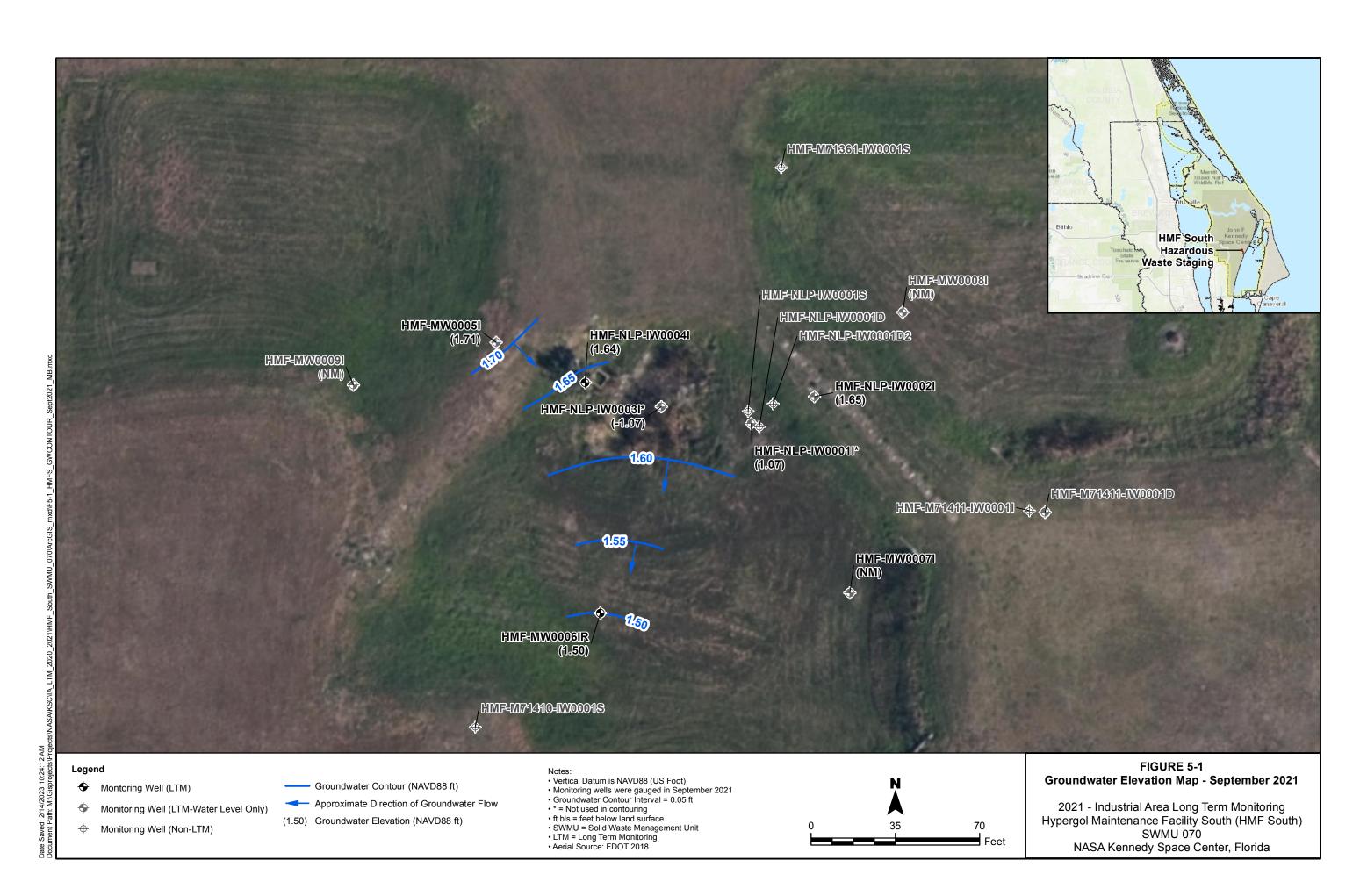
ft bls = feet below land surface

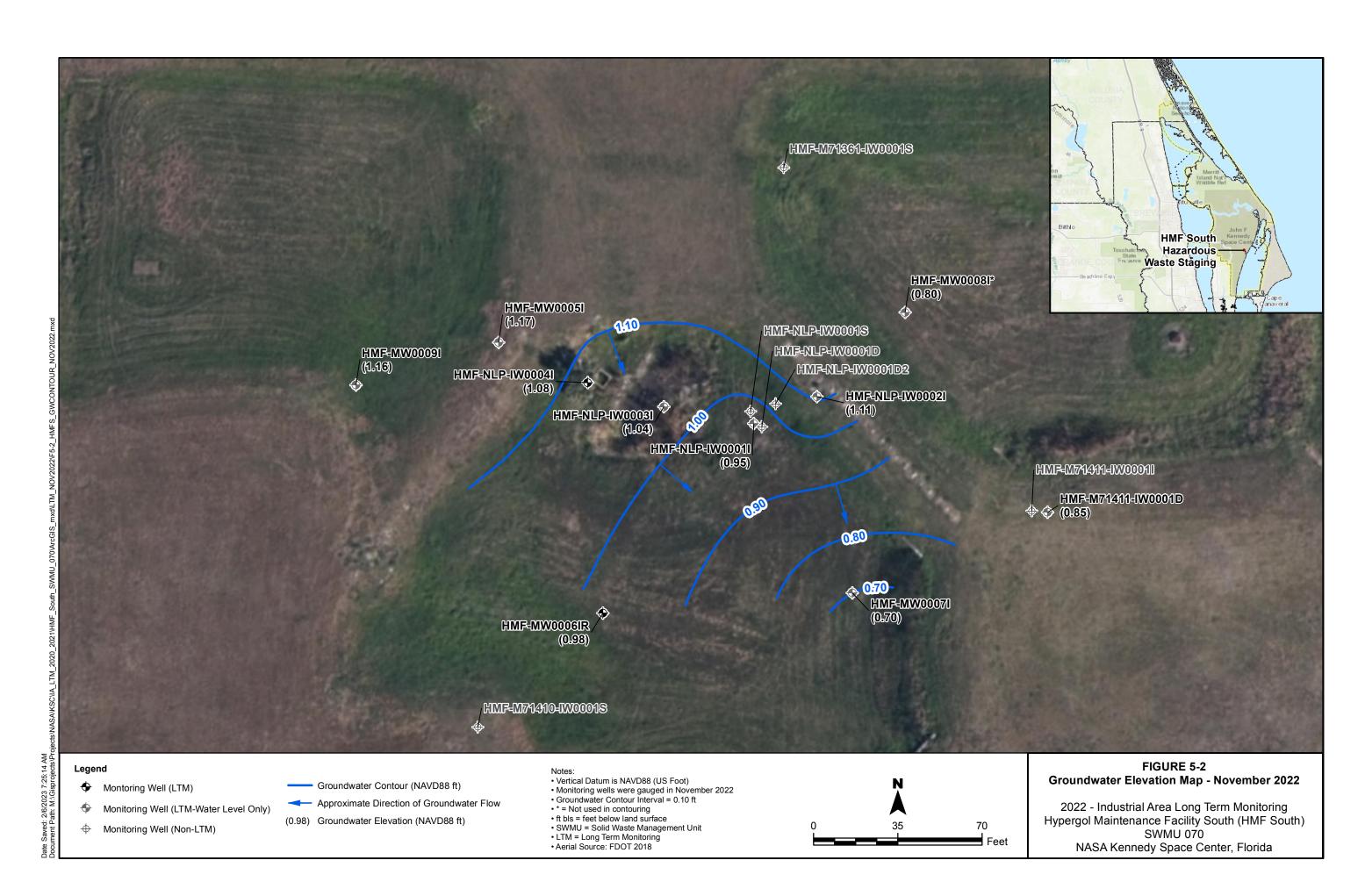
HMF = Hypergol Maintenance Facility Hazardous Waste South Staging Area

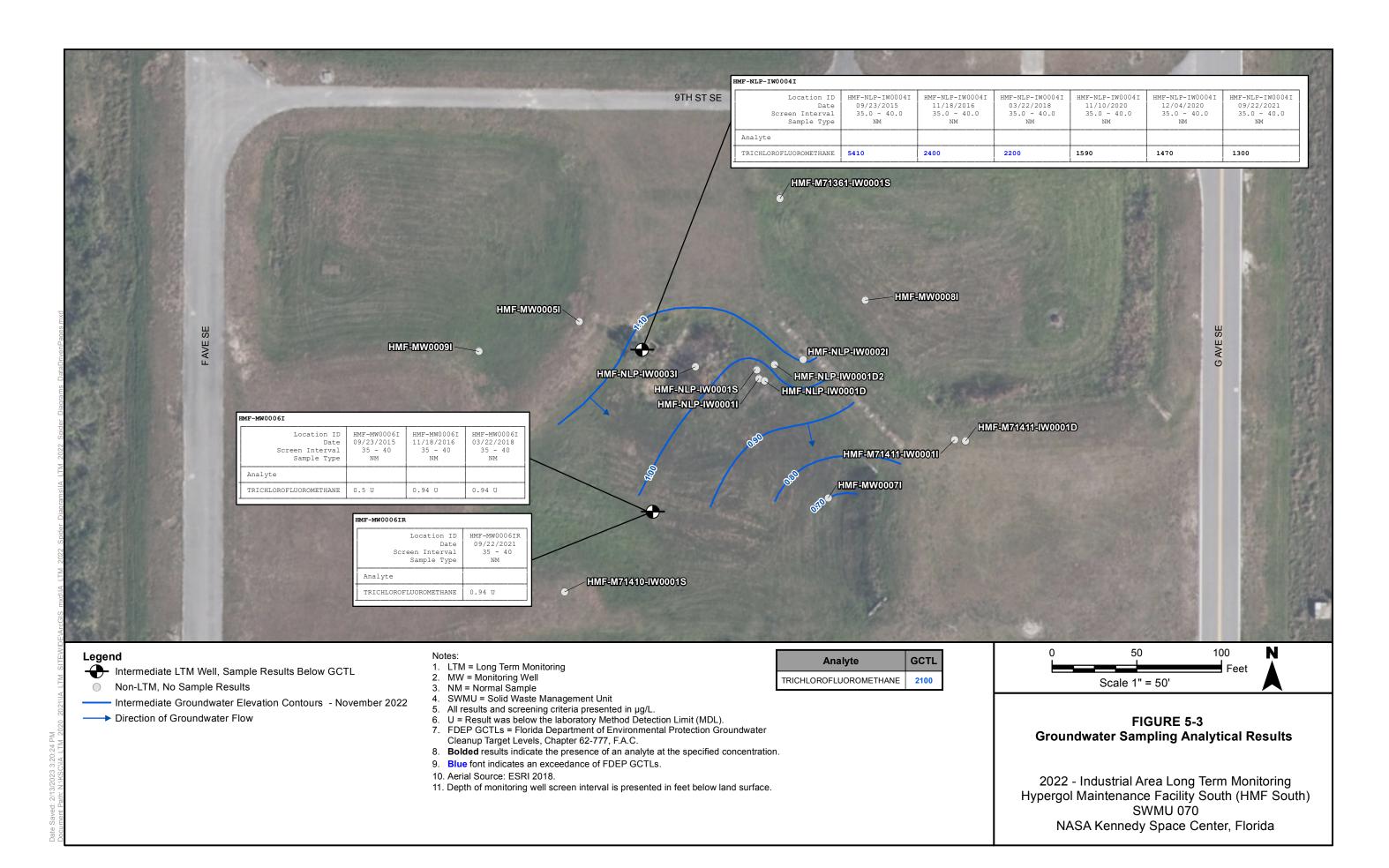
MW = monitoring well

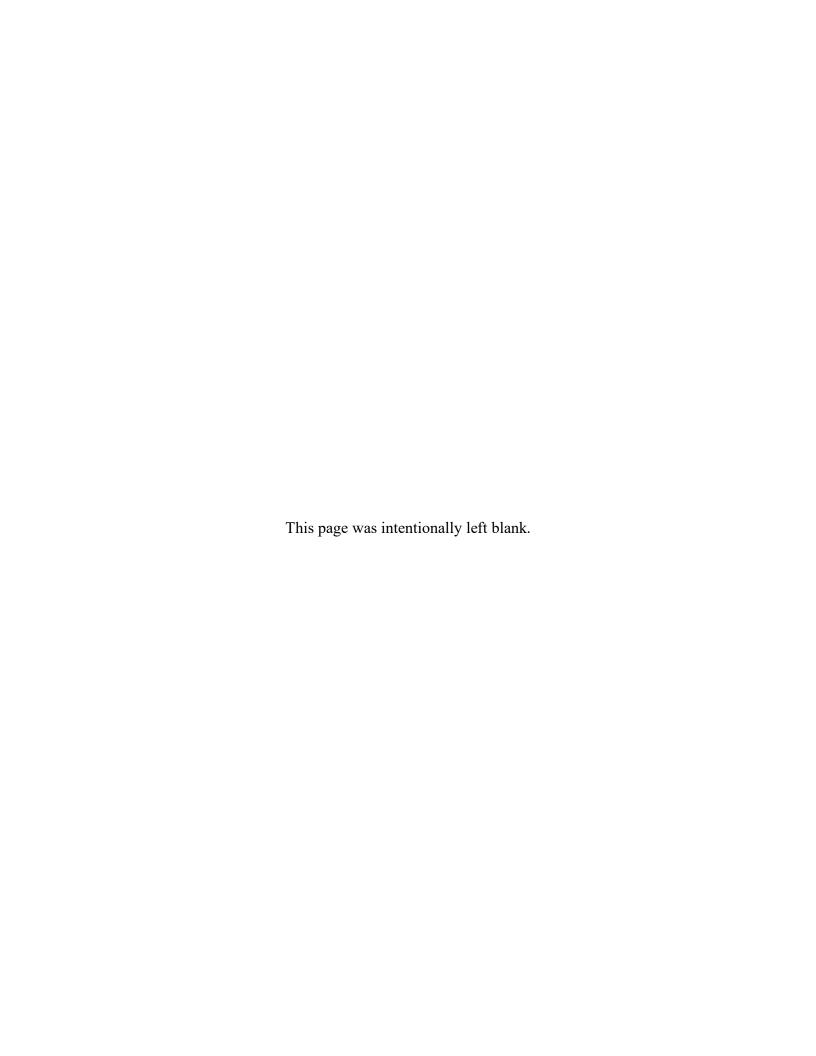
Results and screening criteria presented in µg/L (micrograms per liter)


Bolded results indicate the presence of an analyte at the specified concentration


Red font indicates an exceedance of FDEP GCTLs


Highlighted cell indicates an exceedance of FDEP NADCs


I = Analyte greater than or equal to the method detection limit, but less than the practical quantitation limit U = Analyte not detected


The numeric value presented for non-detects is the sample-specific reporting detection limit

6. OPERATIONS AND CHECKOUT BUILDING

This section provides a summary of the O&C Building site (SWMU 076). Refer to **Figure 6** for a site map.

6.1 SITE DESCRIPTION AND HISTORY

The O&C Building located to the east of D Avenue Southeast and south of NASA Parkway East is comprised of the O&C Building, support structures, and adjacent storage areas. The O&C building, constructed in the early 1960s to support space flight operations, contains offices, laboratories, former astronaut quarters, and an assembly and test bay. The O&C assembly and test bay were used to assemble and test the Apollo Spacecraft from the 1960s through the 1970s. When the Apollo Space Program ended, the assembly and test bay were converted to process Space Shuttle payloads and for testing of the International Space Station components (NASA 2004c).

Site assessment and confirmatory sampling activities were conducted in the late 1990s and confirmed the presence of VC in groundwater located north of the O&C Building. A SWMU Assessment was performed in 2001, which confirmed the presence of VC and iron above GCTLs in the groundwater (Geosyntec 2002b). In 2003, an RFI and risk evaluation were conducted that identified VC and iron as potentially causing an unacceptable human health risk if groundwater was to be used as a source of drinking water. To address contaminant concentrations that exceeded GCTLs, MNA of groundwater was selected to reduce VC and iron concentrations (NASA 2004a). Annual LTM of groundwater commenced at O&C in 2004. In 2012, the sampling schedule transitioned to what is now the current biennial groundwater sampling schedule. Of note, in August 2004, consensus was reached that iron would not be monitored at the existing SWMUs due to there being no potential source for iron. Thus, iron was eliminated as a COC at O&C (Geosyntec 2004b).

6.2 FIELD ACTIVITIES

Field activities were performed at O&C in May 2022. Groundwater levels were obtained at four monitoring wells, and groundwater samples were collected from two monitoring wells. Monitoring well O_C-MW0007I was installed in September 2021, in accordance with recommendations from the 2019-2020 IA LTM Report, to verify downgradient delineation. Monitoring well construction details are presented in the well installation report (HydroGeoLogic 2021). The following table shows the network of monitoring wells used for groundwater level measurements and sampling at O&C.

Well ID	Screen Interval (ft bls)	Analysis
O_C-MW0003I	30-35	WL Only
O_C-MW0004I	30-35	WL Only
O_C-MW0005I	40-45	WL + VC
O_C-MW0007I	40-45	WL + VC

ID = identification MW = monitoring well

VC = vinyl chloride analysis by Method 8260

WL = water level measurement

The groundwater samples collected from O_C-MW0005I and O_C-MW0007I were analyzed for VC by Method 8260. Below are the GCTL and NADC for the COC present at O&C.

COC	GCTL (µg/L)	NADC (µg/L)
VC	1	100

6.3 WATER LEVEL COLLECTION AND GROUNDWATER FLOW DIRECTION

Groundwater levels collected during the May 2022 sampling event were used to calculate groundwater elevations presented in **Table 6-1**. Groundwater elevations were used to determine the contours and flow direction for the intermediate aquifer zone (30 ft bls to 45 ft bls) at O&C, shown on **Figure 6-1**. The flow direction during the May 2022 sampling event was toward the northeast, which is consistent with the observed historical groundwater flow at O&C.

6.4 ANALYTICAL RESULTS

In May 2022, VC was detected at concentrations exceeding the GCTL in monitoring well O_C-MW0005I (3.0 μ g/L) and O_C-MW0007I (3.2 μ g/L). A summary of the analytical results is presented in **Table 6-2**. **Figure 6-2** depicts the analytical results for monitoring wells O_C-MW0005I and O_C-MW0007I.

6.5 TREND ANALYSIS

Low-level VC concentrations at monitoring well O_C-MW0005I have exceeded the GCTL since 2014.

6.6 CONCLUSION AND RECOMMENDATION

VC concentrations in monitoring wells O_C-MW0005I and O_C-MW0007I exceed the GCTL. Biennial sampling is recommended to continue at O&C with the addition of downgradient monitoring well O_C-MW0006I for groundwater levels and VC analysis. The following table shows the recommended monitoring wells for groundwater level measurements and groundwater sampling for the next sampling event at O&C scheduled for November 2024.

Well ID	Screen Interval (ft bls)	Analysis
O_C-MW0003I	30-35	WL Only
O_C-MW0004I	30-35	WL Only
O_C-MW0005I	40-45	WL + VC
O_C-MW0006I	30-35	WL + VC
O_C-MW0007I	40-45	WL + VC

ID = identification MW = monitoring well

VC = vinyl chloride analysis by Method 8260

WL = water level measurement

Table 6-1
Operations and Checkout Building - Long Term Monitoring (LTM)
Monitoring Well Groundwater Elevations

INTERMEDIATE WELL ID:	O_C-MW0003I		O_C-MW0004I		O_C-MW0005I	
Screen Interval (ft bls):	30 - 35		30	- 35	40 - 45	
TOC Elevation (ft NAVD88):	9.87		8.41		9.30	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
May 2014	7.83	2.04	6.96	1.45	7.82	1.48
November 2016	7.23	2.64	6.50	1.91	7.40	1.90
March 2018	7.98	1.89	7.1	1.31	8.08	1.22
November 2020	6.81	3.06	6.18	2.23	7.07	2.23
May 2022	7.58	2.29	6.88	1.53	7.88	1.42

INTERMEDIATE WELL ID:	O_C-MW0007I		
Screen Interval (ft bls):	40 - 45		
TOC Elevation (ft NAVD88):	5.95		
	Depth to Water Water Elevation		
Date	(ft BTOC) (ft NAVD88)		
May 2022	4.76	1.19	

Notes:

bls = below land surface

BTOC = below top of casing

ft = feet

MW = monitoring well

NAVD88 = North American Vertical Datum of 1988

O_C = Operations and Checkout Building

TOC = top of casing

Table 6-2
Operations and Checkout Building - Long Term Monitoring (LTM)
Groundwater Sampling Analytical Results

			Volatile Organic Compounds (VOC)
		Category	by Method 8260
		VINYL CHLORIDE	
	F	DEP GCTLs (µg/L)	1
	F	DEP NADCs (µg/L)	100
		Screened Interval	
Location ID	Sample Date	(ft bls)	
O_C-MW0005I	1/31/2003	40 - 45	2.6
	10/5/2004	40 - 45	1.4
	6/2/2005	40 - 45	0.43 U
	11/14/2005	40 - 45	1.8
	5/22/2006	40 - 45	2.2
	11/6/2006	40 - 45	1.6
	5/7/2007	40 - 45	2.2
	11/8/2007	40 - 45	2.0
	5/2/2008	40 - 45	1.8
	11/3/2008	40 - 45	1.7
	5/13/2009	40 - 45	1.5
	11/9/2009	40 - 45	1.2
	5/17/2010	40 - 45	1.1
	11/9/2010	40 - 45	0.22 U
	5/4/2011	40 - 45	0.713 I
	11/1/2011	40 - 45	1.66
	11/26/2012	40 - 45	0.36 U
	5/16/2014	40 - 45	1.6
	11/15/2016	40 - 45	1.4
	3/19/2018	40 - 45	2.0
	11/11/2020	40 - 45	2.1
	5/9/2022	40 - 45	3.0
O_C-MW0007I	5/9/2022	40 - 45	3.2

Notes:

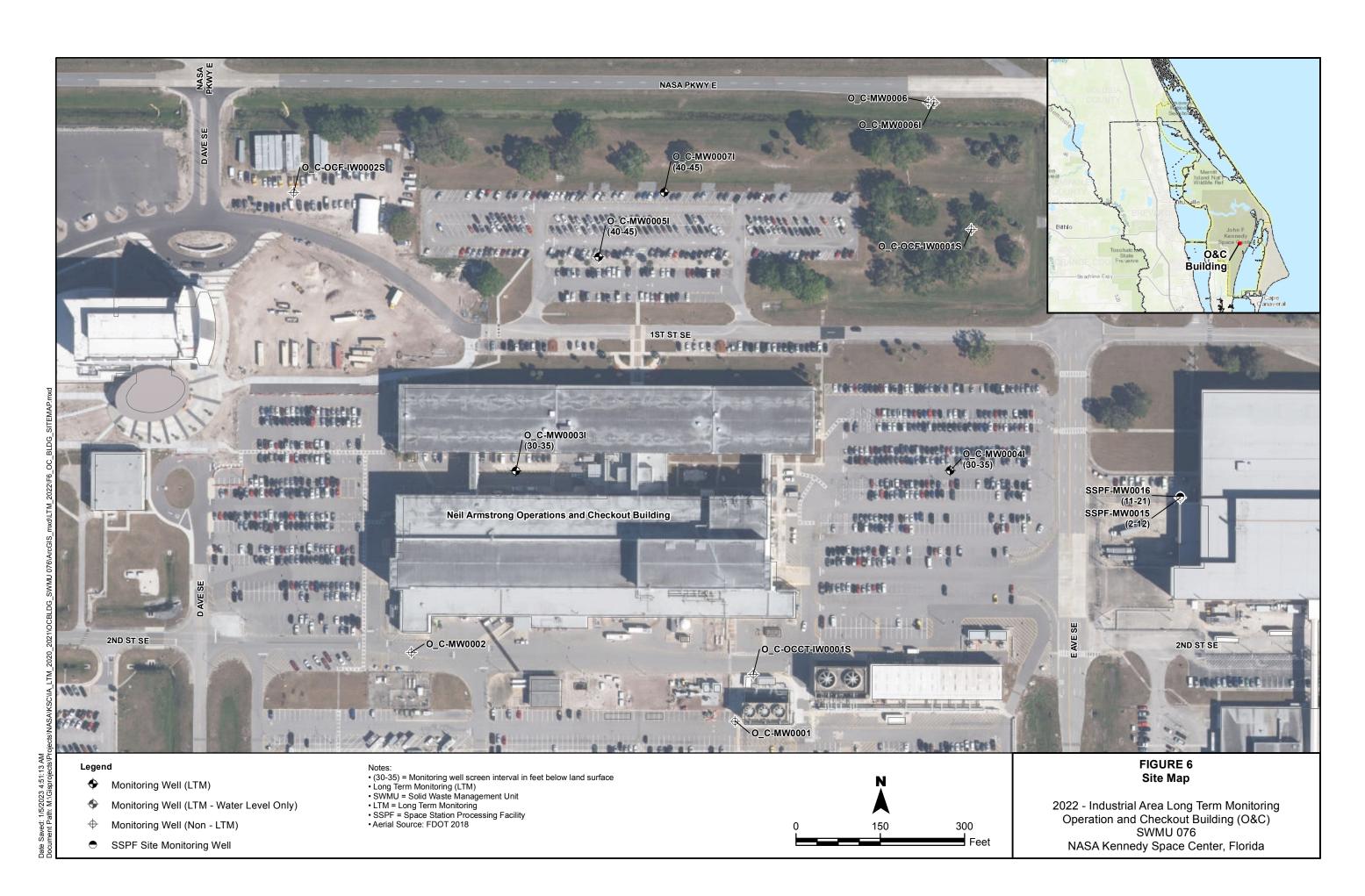
FDEP GCTLs = Florida Department of Environmental Protection Groundwater Cleanup Target Levels, Chapter 62-777 Florida Administrative Code, Table 1 (2005)

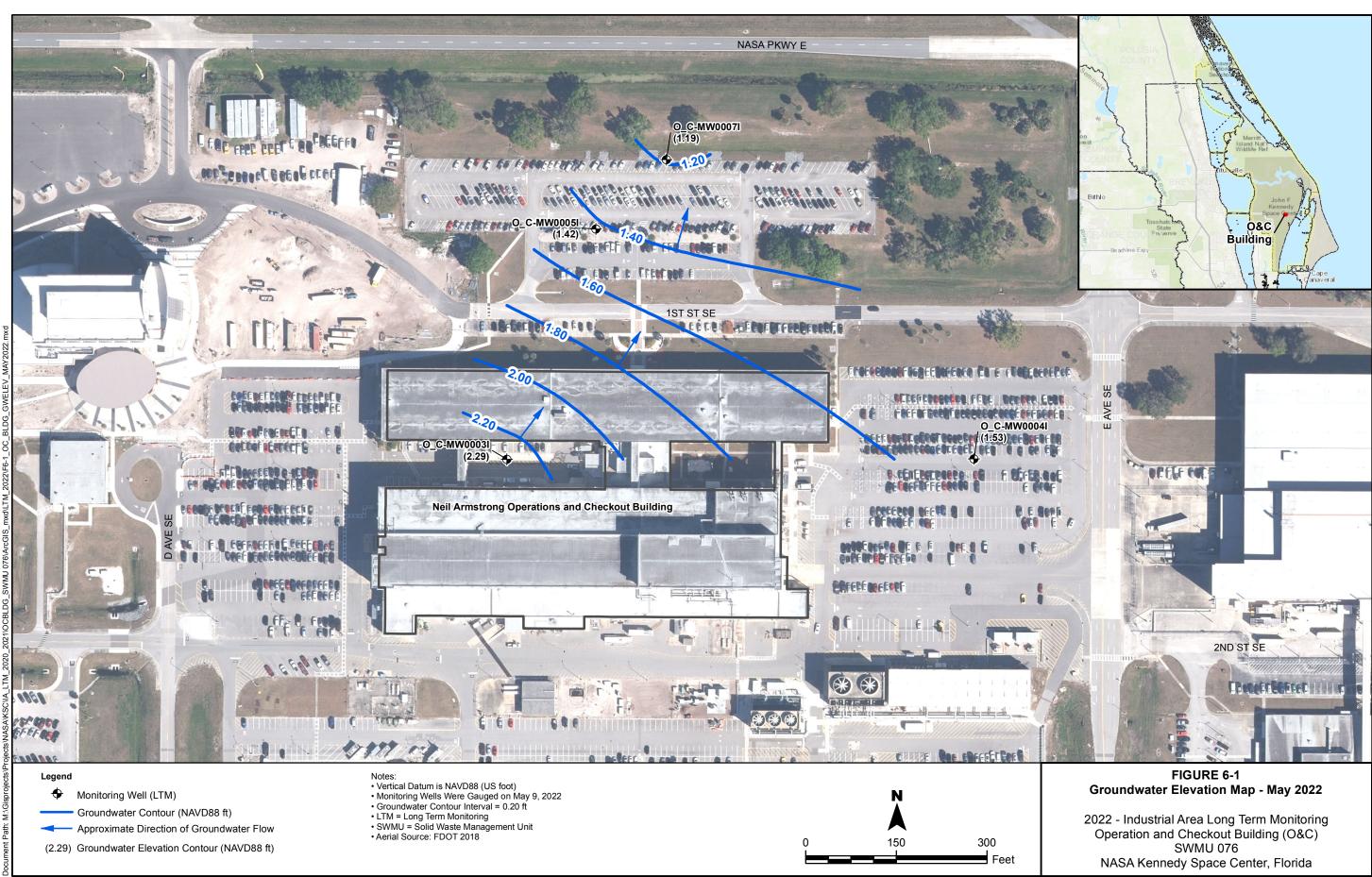
FDEP NADCs = Natural Attenuation Default Concentration, Chapter 62-777 Florida Administrative Code, Table V (2005)

ft bls = feet below land surface

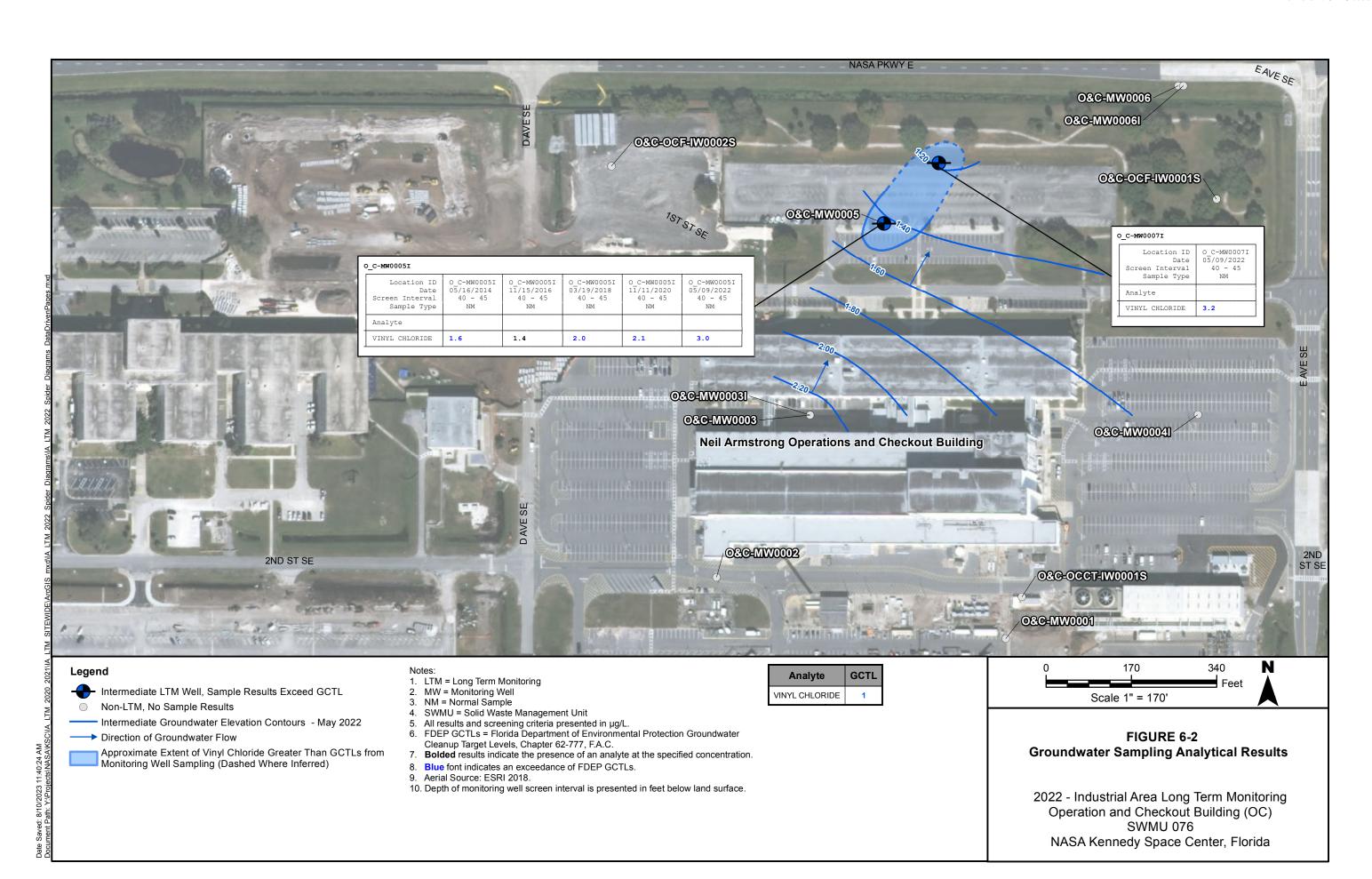
O_C = Operations and Checkout Building

MW = monitoring well


Results and screening criteria presented in $\mu\text{g/L}$ (micrograms per liter)


Bolded results indicate the presence of an analyte at the specified concentration

Red font indicates an exceedance of FDEP GCTLs


I = Analyte greater than or equal to the method detection limit, but less than the practical quantitation limit U = Analyte not detected

The numeric value presented for non-detects is the sample-specific reporting detection limit

Date Saved: 12/7/2022 12:02:26 PM

7. VERTICAL PROCESSING FACILITY

This section provides a summary of the VPF site (SWMU 077). Refer to **Figure 7** for a site map.

7.1 SITE DESCRIPTION AND HISTORY

The VPF is located north of 10th Street Southeast and approximately 600 feet west of Banana River Drive Northeast. VPF was constructed to support the manned spaceflight programs. Once the Space Shuttle Program began, VPF was utilized for staging and processing of flight payloads. In 2010, the VPF Building (M7-1469) was demolished toward the conclusion of the Space Shuttle Program. In the fall of 2012, a mobile office building (Facility M7-1470A) and associated antenna arrays were installed as part of the Ka-Band Objects Observation and Monitoring Project, which develops techniques required to track and characterize Near Earth Objects (Geosyntec 2018b).

In 2005, based on historical operations, an RFI was performed and identified groundwater CVOCs, specifically TCE, cis-DCE, and VC, above their respective GCTLs (HSW 2005). In 2005, a bioremediation IM was conducted to address the groundwater exceedances (Geosyntec 2005b). The bioremediation IM consisted of both biostimulation, using potassium lactate, and bioaugmentation, using a microbial culture capable of complete dechlorination. These agents were injected through an injection well network. Based on the associated performance monitoring, it was concluded that there was another source of TCE beyond the initial treatment area.

The 2005 RFI also identified the presence of soils exceeding residential, industrial, and ecological SCTLs for arsenic, copper, and PAHs. RFI addendum soil sampling activities concluded PAH and B(a)P equivalents were below leachability criteria via SPLP analysis, arsenic, cadmium, and thallium were below SCTLs, and copper and chromium exceeded residential SCTLs. NFA was recommended for the constituents below SCTLs while IM activities were recommended for copper and chromium impacted areas. IM activities were performed in 2009 and resulted in NFA for soils at VPF without LUCs (Tetra Tech 2010b).

In 2009 and 2010, additional site groundwater assessment activities delineated areas of COCs that exceeded their respective GCTLs and NADCs. Based on these results, AS treatment was selected to address the groundwater CVOC impacts at the site with a goal for the system to reduce CVOC concentrations to below their respective NADCs (Geosyntec 2011).

In April 2012, the AS system was installed and began operation. The AS system achieved CVOC concentration reduction to below respective NADCs in 6 months. Due to its quick success, the AS system continued operation to treat CVOCs exceeding their respective GCTLs. After a year of operation, the AS system was shut down temporarily until funding was allotted for system expansion. The AS system was expanded and then restarted in September 2014. After a year of

operation of the expanded AS system, CVOCs were below their respective GCTLs in the sampled wells except for one monitoring well (VPF-MW0022), which contained TCE above its GCTL. A decision was made to operate the AS system for an additional 6 months; however, monitoring well VPF-MW0022 contained TCE at a concentration that remained above the GCTL. The AS system was shut down and transported off-site in March 2016 (Geosyntec 2018b).

Supplemental assessment was performed in the vicinity of monitoring well VPF-MW0022 to delineate the remaining CVOC plume. Based on the supplemental assessment results, it was concluded that air sparge well ASW22 likely had a cracked screen. The well was replaced, and the AS system was reactivated in May 2017. Though intended to be operated for a full year, the AS system's compressor failed, causing a permanent shut down in October 2017. When the shutdown occurred, TCE exceeded its GCTL at two monitoring wells (VHF-MW0022 and VHF-MW0027) and VC exceeded its GCTL at one monitoring well (VHF-IW0008I). In March 2018, based on these limited GCTLs exceedances, KSCRT transitioned VPF into the IA LTM Program on an annual sampling frequency, alternating between wet and dry seasons. VPF transitioned to a biennial sampling frequency in 2020.

7.2 FIELD ACTIVITIES

Field activities were performed at VPF in May 2022. Groundwater levels were measured at 34 monitoring wells. Samples were collected from six monitoring wells. The following table shows the network of wells used for groundwater level measurements and sampling at VPF.

Well ID	Screen Interval (ft bls)	Analysis
VPF-IW0001S	3-13	WL Only
VPF-IW0002I	22-27	WL Only
VPF-IW0002S	5-15	WL Only
VPF-IW0003I	22-27	WL Only
VPF-IW0003S	5-15	WL Only
VPF-IW0004I	22-27	WL Only
VPF-IW0004S	5-15	WL Only
VPF-IW0005S	3-13	WL Only
VPF-IW0006S	3-13	WL Only
VPF-IW0007I	15-25	WL Only
VPF-IW0008D	43-48	WL Only
VPF-IW0008I	15-25	WL + Select VOCs
VPF-IW0009I	15-25	WL Only
VPF-IW0010I	15-25	WL Only
VPF-IW0011I	15-25	WL Only
VPF-IW0012I	15-25	WL Only
VPF-IW0013I	15-25	WL Only
VPF-IW0014I	15-25	WL Only
VPF-IW0015I	15-25	WL Only

Well ID	Screen Interval (ft bls)	Analysis
VPF-IW0016I	15-25	WL Only
VPF-IW0017I	15-25	WL Only
VPF-IW0018I	18-28	WL + Select VOCs
VPF-MW0020	15-25	WL Only
VPF-MW0021	25-35	WL + Select VOCs
VPF-MW0022	5-15	WL + Select VOCs
VPF-MW0023	15-25	WL Only
VPF-MW0024	35-45	WL Only
VPF-MW0025	35-45	WL + Select VOCs
VPF-MW0026	35-45	WL Only
VPF-MW0027	35-45	WL + Select VOCs
VPF-MW0028	25-35	WL Only
VPF-MW0029	15-25	WL Only
VPF-MW0030	25-35	WL Only
VPF-MW0031	35-45	WL Only

ID = identification

MW = monitoring well

Select VOCs = TCE, cis-1,2-DCE, and VC analysis by Method 8260

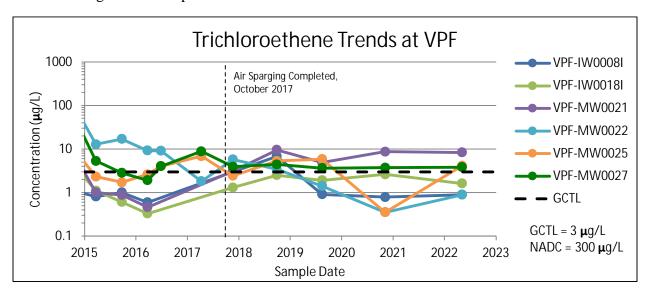
WL = water level measurement

Groundwater samples collected during the May 2022 sampling event were analyzed for select VOCs by Method 8260. Below are the respective GCTLs and NADCs for the COCs present at VPF.

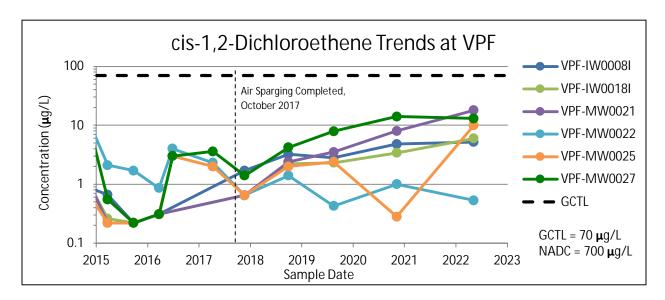
COC	GCTL (µg/L)	NADC (μg/L)
TCE	3	300
cis-1,2-DCE	70	700
VC	1	100

7.3 WATER LEVEL COLLECTION AND GROUNDWATER FLOW DIRECTION

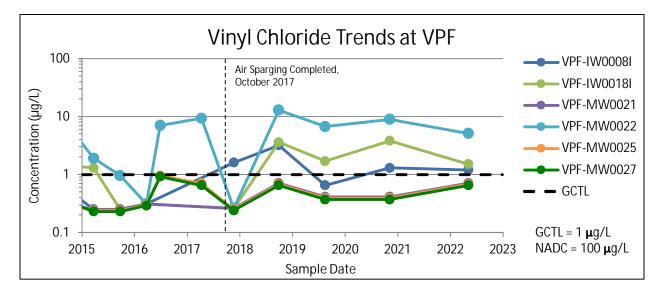
Groundwater levels collected during the May 2022 sampling event were used to calculate groundwater elevations presented in **Table 7-1**. The shallow aquifer zone (3 ft bls to 15 ft bls) flow direction was similar to the historical radial flow pattern that is centered around the middle of the site; although, the radial flow was centered over the western side of the site in 2022. The intermediate aquifer zone (15 ft bls to 35 ft bls) flow directions were generally north with a small radial mound centered around VPF-MW0029 and VPF-MW0030. Typically, groundwater flow direction in the intermediate aquifer has been radial from the central portion of the VPF. The deep aquifer zone (35 to 48 ft bls) flow directions were generally southward toward a depression near monitoring well VFP-MW0027. Shallow, intermediate, and deep aquifer flow maps are depicted on **Figure 7-1**, **Figure 7-2**, and **Figure 7-3**, respectively.


7.4 ANALYTICAL RESULTS

Groundwater was sampled from six monitoring wells in May 2022. TCE was detected at concentrations above the GCTL in monitoring wells VPF-MW0021 (8.3 μ g/L), VPF-MW0025 (4.1 μ g/L), and VPF-MW0027 (3.8 μ g/L). No concentrations of cis-1,2-DCE were detected above the GCTL. VC was detected at concentrations above the GCTL in monitoring wells VPF-IW0018I (1.5 μ g/L) and VPF-MW0022 (5.1 μ g/L). A summary of the available analytical data at the sampled wells from 2003 to present is presented in **Table 7-2**. Analytical results are depicted on **Figure 7-7**.


7.5 TREND ANALYSIS

After the AS system termination in October 2017, four intermediate aquifer monitoring wells (VPF-IW0008I, VPF-IW0018I, VPF-MW0021, and VPF-MW0025) showed an initial rebound in TCE concentrations. TCE concentrations have remained stable in monitoring well VPF-MW0027, and have decreased in monitoring wells VPF-MW0008I and VPF-MW0022. Similarly, since the 2017 AS system shutdown, VC concentrations showed initial rebound in two intermediate aquifer monitoring wells (VPF-IW0008I and VPF-IW0018I) in addition to shallow aquifer monitoring well VPF-MW0022.


The following trend chart presents the concentration trends for TCE at select wells since 2015.

The following trend chart presents the concentration trends for cis-1,2-DCE at select wells since 2015.

The following trend chart presents the concentration trends for VC at select wells since 2015.

7.6 CONCLUSION AND RECOMMENDATION

TCE concentrations have persisted above the GCTL in three monitoring wells, and VC concentrations exceeded the GCTL in two monitoring wells; therefore, LTM is recommended to continue at VPF. A new flush-mount shallow monitoring well, screened 3 ft bls to 13 ft bls, is recommended to be installed adjacent to VPF-MW0023 to verify horizontal delineation in the shallow zone downgradient of VPF-MW0022. Monitoring well VPF-MW0010I is recommended to be added into the sampling schedule to verify horizontal delineation in the intermediate zone downgradient of VPF-MW0018I. Monitoring well VPF-MW0008D is recommended to be added into the sampling schedule to verify vertical delineation around VPF-MW0008I.

The biennial sampling schedule is recommended to continue with 35 groundwater level measurements and nine monitoring wells sampled for select VOCs. The following table shows the proposed monitoring wells for water level collection and groundwater sampling for the next sampling event at VPF scheduled for November 2024.

Well ID	Screen Interval (ft bls)	Analysis	
VPF-IW0001S	3-13	WL Only	
VPF-IW0002I	22-27	WL Only	
VPF-IW0002S	5-15	WL Only	
VPF-IW0003I	22-27	WL Only	
VPF-IW0003S	5-15	WL Only	
VPF-IW0004I	22-27	WL Only	
VPF-IW0004S	5-15	WL Only	
VPF-IW0005S	3-13	WL Only	
VPF-IW0006S	3-13	WL Only	
VPF-IW0007I	15-25	WL Only	
VPF-IW0008D	43-48	WL + Select VOCs	
VPF-IW0008I	15-25	WL + Select VOCs	
VPF-IW0009I	15-25	WL Only	
VPF-IW0010I	15-25	WL + Select VOCs	
VPF-IW0011I	15-25	WL Only	
VPF-IW0012I	15-25	WL Only	
VPF-IW0013I	15-25	WL Only	
VPF-IW0014I	15-25	WL Only	
VPF-IW0015I	15-25	WL Only	
VPF-IW0016I	15-25	WL Only	
VPF-IW0017I	15-25	WL Only	
VPF-IW0018I	18-28	WL + Select VOCs	
VPF-MW0020	15-25	WL Only	
VPF-MW0021	25-35	WL + Select VOCs	
VPF-MW0022	5-15	WL + Select VOCs	
VPF-MW0023	15-25	WL Only	
VPF-MW0024	35-45	WL Only	
VPF-MW0025	35-45	WL + Select VOCs	
VPF-MW0026	35-45	WL Only	
VPF-MW0027	35-45	WL + Select VOCs	
VPF-MW0028	25-35	WL Only	
VPF-MW0029	15-25	WL Only	
VPF-MW0030	25-35	WL Only	
VPF-MW0031	35-45	WL Only	
VPF-MW0032 ^a	3-13	WL + Select VOCs	

ID = identification

MW = monitoring well

Select VOCs = TCE, cis-1,2-DCE, and VC analysis by Method 8260

WL = water level measurement

^a proposed monitoring well

Table 7-1 Vertical Processing Facility - Long Term Monitoring (LTM) Monitoring Well Groundwater Elevations

SHALLOW WELL ID:	VPF-IW0001S		VPF-IW0002S		VPF-IW0003S	
Screen Interval (ft bls):	3 - 13		5 - 15		5 - 15	
TOC Elevation (ft NAVD88):	7.	7.01 4.80		80	5.38	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
September 2018	6.47	0.54	3.98	0.82	5.76	-0.38
August 2019	4.32	2.69	2.28	2.52	1.97	3.41
November 2020	3.32	3.69	1.98	2.82	2.94	2.44
May 2022	6.46	0.55	3.92	0.88	3.65	1.73

SHALLOW WELL ID:	VPF-IW0004S		VPF-IW0005S		VPF-IW0006S	
Screen Interval (ft bls):	5 - 15		3 - 13		3 - 13	
TOC Elevation (ft NAVD88):	8.	28	4.	99	5.	41
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
September 2018	6.87	1.41	4.28	0.71	4.60	0.81
August 2019	4.30	3.98	1.38	3.61	2.34	3.07
November 2020	4.35	3.93	1.10	3.89	2.18	3.23
May 2022	5.93	2.35	3.45	1.54	4.28	1.13

SHALLOW WELL ID:	VPF-MW0022			
Screen Interval (ft bls):	5 - 15			
TOC Elevation (ft NAVD88):	7.82			
	Depth to Water	Water Elevation		
Date	(ft BTOC)	(ft NAVD88)		
September 2018	6.96	0.86		
August 2019	5.33	2.49		
November 2020	3.41	4.41		
May 2022	6.61	1.21		

INTERMEDIATE WELL ID:	VPF-IW0002I		VPF-IW0003I		VPF-IW0004I		
Screen Interval (ft bls):	22 -27		22	22 -27		22 -27	
TOC Elevation (ft NAVD88):	5.19		5.70		8.32		
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation	
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	
September 2018	4.47	0.72	4.77	0.93	7.66	0.66	
August 2019	2.92	2.27	2.83	2.87	5.84	2.48	
November 2020	2.55	2.64	2.78	2.92	5.69	2.63	
May 2022	4.35	0.84	4.61	1.09	7.48	0.84	

INTERMEDIATE WELL ID:	VPF-IW0007I		VPF-IV	VPF-IW0008I		VPF-IW0009I	
Screen Interval (ft bls):	15 - 25		15	15 - 25		- 25	
TOC Elevation (ft NAVD88):	3.86		3.66		4.31		
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation	
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	
September 2018	3.19	0.67	3.13	0.53	3.75	0.56	
August 2019	1.28	2.58	1.24	2.42	1.86	2.45	
November 2020	1.09	2.77	0.30	3.36	1.65	2.66	
May 2022	2.97	0.89	2.78	0.88	3.50	0.81	

INTERMEDIATE WELL ID:	VPF-IW0010I		VPF-IW0011I		VPF-IW0012I	
Screen Interval (ft bls):	15 - 25		15 - 25		15 - 25	
TOC Elevation (ft NAVD88):	4.02		5.70		6.97	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
September 2018	3.33	0.69	Not Mo	easured	6.95	0.02
August 2019	1.64	2.38	3.37	2.33	Not Me	easured
November 2020	1.39	2.63	3.18	2.52	5.93	1.04
May 2022	2.22	1.80	5.03	0.67	6.58	0.39

INTERMEDIATE WELL ID:	VPF-IW0013I		VPF-IW0014I		VPF-IW0015I	
Screen Interval (ft bls):	15 - 25		15 - 25		15 - 25	
TOC Elevation (ft NAVD88):	6.77		6.11		5.73	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
September 2018	6.28	0.49	Not Me	easured	5.09	0.64
August 2019	4.65	2.12	2.75	3.36	3.81	1.92
November 2020	5.70	1.07	3.52	2.59	3.39	2.34
May 2022	6.13	0.64	5.37	0.74	5.21	0.52

INTERMEDIATE WELL ID:	VPF-IW0016I		VPF-IV	VPF-IW0017I		VPF-IW0018I	
Screen Interval (ft bls):	15 -	- 25	15	15 - 25		- 28	
TOC Elevation (ft NAVD88):	6.79		5.86		5.47		
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation	
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	
September 2018	6.27	0.52	5.17	0.69	4.92	0.55	
August 2019	4.77	2.02	3.82	2.04	3.08	2.39	
November 2020	4.53	2.26	3.42	2.44	2.86	2.61	
May 2022	6.18	0.61	5.25	0.61	4.65	0.82	

Table 7-1 Vertical Processing Facility - Long Term Monitoring (LTM) Monitoring Well Groundwater Elevations

INTERMEDIATE WELL ID:	VPF-MW0020		VPF-MW0021		VPF-MW0023		
Screen Interval (ft bls):	15 - 25		25	25 - 35		15 - 25	
TOC Elevation (ft NAVD88):	5.37		5.64		4.73		
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation	
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	
September 2018	4.78	0.59	5.02	0.62	3.95	0.78	
August 2019	2.96	2.41	3.05	2.59	2.36	2.37	
November 2020	3.69	1.68	2.93	2.71	2.06	2.67	
May 2022	4.59	0.78	4.70	0.94	3.85	0.88	

INTERMEDIATE WELL ID:	VPF-MW0028		VPF-MW0029		VPF-MW0030	
Screen Interval (ft bls):	25 - 35		15 - 25		25 - 35	
TOC Elevation (ft NAVD88):	3.51		3.36		3.64	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
September 2018	2.91	0.60	2.67	0.69	2.95	0.69
August 2019	0.98	2.53	1.30	2.06	1.18	2.46
November 2020	0.59	2.92	0.84	2.52	0.79	2.85
May 2022	2.63	0.88	2.31	1.05	2.61	1.03

DEEP WELL ID:	VPF-IW0008D		VPF-MW0024		VPF-MW0025	
Screen Interval (ft bls):	43 - 48		35	35 - 45		- 45
TOC Elevation (ft NAVD88):	3.52		7.22		6.86	
Date	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)
September 2018	3.30	0.22	6.85	0.37	6.47	0.39
August 2019	0.40	3.12	4.86	2.36	4.45	2.41
November 2020	0.31	3.21	4.71	2.51	4.98	1.88
May 2022	2.10	1.42	6.50	0.72	6.06	0.80

DEEP WELL ID:	VPF-MW0026		VPF-MW0027		VPF-MW0031	
Screen Interval (ft bls):	35 - 45		35	35 - 45		- 45
TOC Elevation (ft NAVD88):	6.41		6.	6.42		13
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
September 2018	5.92	0.49	6.05	0.37	3.87	0.26
August 2019	3.89	2.52	4.19	2.23	Not Measured	
November 2020	3.80	2.61	4.15	2.27	1.15	2.98
May 2022	5.60	0.81	5.80	0.62	2.98	1.15

Notes:

bls = below land surface

BTOC = below top of casin

BTOC = below top of casing

ft = feet

IW = investigation well

MW = monitoring well

NAVD88 = North American Vertical Datum of 1988

TOC = top of casing

 $VPF = Vertical\ Processing\ Facility$

Table 7-2 Vertical Processing Facility - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

		Category	Volatile Organic	c Compounds (VOC) by	Method 8260
				CIS-1,2-	
		Analyte	TRICHLOROETHENE	DICHLOROETHENE	VINYL CHLORIDE
	F	DEP GCTLs (µg/L)	3	70	1
	F	DEP NADCs (µg/L)	300	700	100
		Screened Interval			
Location ID	Sample Date	(ft bls)			
VPF-IW0008I	9/23/2003	15 - 25	2,640	644	456
	6/17/2004	15 - 25	2,350	625	922
	4/15/2005	15 - 25	754	197	321
	9/15/2005	15 - 25	2,700	661	1,160
	11/1/2005	15 - 25	1,150	351	350
	11/18/2005	15 - 25	91.8	11.2	0.5 U
	12/19/2005	15 - 25	1,960	596	454
	1/18/2006	15 - 25	1,440	423	395
	4/18/2006	15 - 25	1,510	437	467
	8/18/2006	15 - 25	75.5	10.4	26.4
	9/22/2006	15 - 25	1,350	393	340
	10/25/2006	15 - 25	420	290	280
	1/15/2007	15 - 25	1,660	837	469
	4/5/2007	15 - 25	915	379	208
	5/17/2007	15 - 25	841	824	611
	7/3/2007	15 - 25	8.7	4.5	4.8
	7/24/2007	15 - 25	0.38 U	0.28 U	0.34 U
	10/11/2007	15 - 25	355	544	299
	1/21/2008	15 - 25	112	198	180
	3/27/2008	15 - 25	475	375	220
	9/23/2008	15 - 25	226	489	319
	12/16/2008	15 - 25	162	337	253
	2/27/2009	15 - 25	1.4	5.2	10.4
	6/16/2009	15 - 25	2.4	114	169
	9/22/2009	15 - 25	1.4	63.4	272
	12/3/2009	15 - 25	0.87 I	0.49 I	54.5
	6/23/2010	15 - 25	1.1	2.2	58.1
	9/23/2010	15 - 25	0.56 I	0.64 U	146
	12/22/2010	15 - 25	0.65 I	0.26 U	44.4
	12/6/2011	15 - 25	1 U	1 U	10.8
	7/26/2012	15 - 25 15 - 25	6.4	15.8	21.4
	10/18/2012	15 - 25	18.2	86.6	28.7
	1/15/2013	15 - 25 15 - 25	2.2	3.4	1.2
	4/25/2013	15 - 25 15 - 25	0.80 I	0.91 I	0.44 U
	6/18/2014	15 - 25 15 - 25	1.4	1.2	0.84 I 0.25 U
	3/23/2015 9/23/2015	15 - 25 15 - 25	0.80 I	0.66 I 0.22 U	0.25 U
	3/24/2016	15 - 25	0.59 I	0.22 U 0.31 U	0.23 U
	11/22/2017	15 - 25	3	1.7	1.6
	10/1/2018	15 - 25	6.8	3.2	3.2
	8/19/2019	15 - 25	0.90 I	2.8	0.65 I
	11/10/2020	15 - 25	0.78 I	4.8	1.3
	5/12/2022	15 - 25 15 - 25	0.781 0.89 U	5.2	1.3
	J/ 1 4/ 4U44	13 - 23	0.07 U	5.4	1,4

Table 7-2 Vertical Processing Facility - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

		Category	Volatile Organic	Compounds (VOC) by	Method 8260
				CIS-1,2-	
			TRICHLOROETHENE	DICHLOROETHENE	VINYL CHLORIDE
	F	DEP GCTLs (µg/L)	3	70	1
	F	DEP NADCs (µg/L)	300	700	100
		Screened Interval			
Location ID	Sample Date	(ft bls)			
VPF-IW0018I	9/15/2005	18 - 28	1,420	560	527
	11/1/2005	18 - 28	2,980	946	50 U
	11/18/2005	18 - 28	1,890	623	384
	12/19/2005	18 - 28	2,250	683	560
	1/18/2006	18 - 28	2,330	784	525
	4/18/2006	18 - 28	2,000	945	524
	8/18/2006	18 - 28	1,280	636	525
	9/22/2006	18 - 28	1,720	672	674
	10/25/2006	18 - 28	1,600	680	510
	1/15/2007	18 - 28	531	258	453
	4/5/2007	18 - 28	1,000	529	550
	5/17/2007	18 - 28	731	464	553
	7/3/2007	18 - 28	700	390	480
	7/24/2007	18 - 28	746	484	503
	10/11/2007	18 - 28	761	667	475
	1/21/2008	18 - 28	545	463	315
	3/27/2008	18 - 28	234	182	274
	9/23/2008	18 - 28	51.9	29.4	797
	12/16/2008	18 - 28	45.8	25.4	796
	2/27/2009	18 - 28	16.4	5	279
	6/16/2009	18 - 28	23	6.5	261
	9/22/2009	18 - 28	23.4	5.1	916
	12/3/2009	18 - 28	29	7.6	992
	6/23/2010	18 - 28	2.8	3.6	659
	9/23/2010	18 - 28	25.5	20.6	218
	12/22/2010	18 - 28	13.8	10.8	911
	12/6/2011	18 - 28	6.5	2.8	460
	7/26/2012	18 - 28	0.55 I	0.26 U	2.9
	10/18/2012	18 - 28	4.6	4.1	9.1
	1/16/2013	18 - 28	0.89 I	0.26 I	1.7
	4/26/2013	18 - 28	1.8	0.31 I	1.5
	6/18/2014	18 - 28	24.6	6.5	15.9
	10/16/2014	18 - 28	4.3	1.3	1.4
	3/24/2015	18 - 28	1.1	0.26 I	1.3
	9/24/2015	18 - 28	0.60 I	0.22 U	0.25 U
	3/24/2016	18 - 28	0.33 I	0.31 U	0.31 U
	11/22/2017	18 - 28	1.3	0.65 U	0.26 U
	10/1/2018	18 - 28	2.5	2.2	3.6
	8/19/2019	18 - 28	1.9	2.3	1.7
	11/10/2020	18 - 28	2.6	3.4	3.8
	5/12/2022	18 - 28	1.6	6.0	1.5

Table 7-2 Vertical Processing Facility - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

Category			Volatile Organic Compounds (VOC) by Method 8260			
			g	CIS-1,2-		
		Analyte	TRICHLOROETHENE		VINYL CHLORIDE	
	FDEP GCTLs (µg/L)			70	1	
	FDEP NADCs (µg/L)		300	700	100	
		Screened Interval				
Location ID	Sample Date	(ft bls)				
VPF-MW0021	12/5/2011	25 - 35	4,700	280	100 U	
	5/21/2012	25 - 35	119	9.2	0.22 U	
	7/26/2012	25 - 35	12.1	0.74 I	0.22 U	
	10/17/2012	25 - 35	12.1	0.70 I	0.44 U	
	1/16/2013	25 - 35	2.3	0.24 U	0.44 U	
	4/26/2013	25 - 35	1.9	0.24 U	0.44 U	
	6/18/2014	25 - 35	36.6	5.9	0.33 U	
	3/24/2015	25 - 35	1	0.22 U	0.25 U	
	9/24/2015	25 - 35	0.87 I	0.22 U	0.25 U	
	3/23/2016	25 - 35	0.46 I	0.31 U	0.31 U	
	11/22/2017	25 - 35	3.1	0.65 U	0.26 U	
	10/1/2018	25 - 35	9.5	2.4	0.71 U	
	8/19/2019	25 - 35	4.9	3.5	0.41 U	
	11/10/2020	25 - 35	8.6	8.0	0.41 U	
	5/12/2022	25 - 35	8.3	18	0.71 U	
VPF-MW0022	12/5/2011	5 - 15	2.1	2.2	28.1	
	5/21/2012	5 - 15	12	22.4	1.9	
	10/17/2012	5 - 15	82.2	49.6	15.8	
	1/15/2013	5 - 15	0.40 I	0.71 I	0.44 U	
	4/26/2013	5 - 15	31	8.1	4.1	
	6/18/2014	5 - 15	3.5	2.6	38.7	
	10/16/2014	5 - 15	104	15.6	6.1	
	3/23/2015	5 - 15	12.7	2.1	1.9	
	9/23/2015	5 - 15	16.9	1.7	0.96 I	
	3/23/2016	5 - 15	9.2	0.86 I	0.31 U	
	6/28/2016	5 - 15	9	4	7	
	4/11/2017	5 - 15	1.8	2.3	9.3	
	11/21/2017	5 - 15	5.7	0.65 U	0.26 U	
	10/1/2018	5 - 15	3.4	1.4	13	
	8/19/2019	5 - 15	1.4	0.43 I	6.7	
	11/10/2020	5 - 15	0.35 U	1.0	8.9	
**********	5/12/2022	5 - 15	0.89 U	0.53 U	5.1	
VPF-MW0025	12/5/2011	35 - 45	2,400	85	50 U	
	5/21/2012	35 - 45	295	22.2	1.1 U	
	7/26/2012	35 - 45	81.3	7.3	0.22 U	
	10/17/2012	35 - 45	48.1	3.5	0.44 U	
	1/15/2013	35 - 45	29.1	4.3	0.44 U	
	4/25/2013	35 - 45	3.7	0.24 U	0.44 U	
	6/18/2014	35 - 45	29.9	2.2	0.33 U	
	3/24/2015	35 - 45	2.3	0.22 U	0.25 U	

Table 7-2 Vertical Processing Facility - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

Category			Volatile Organic	: Compounds (VOC) by	Method 8260
				CIS-1,2-	
Analyte			TRICHLOROETHENE	The state of the s	VINYL CHLORIDE
	FDEP GCTLs (µg/L)			70	1
FDEP NADCs (µg/L)			300	700	100
		Screened Interval			
Location ID	Sample Date	(ft bls)			
VPF-MW0025	9/24/2015	35 - 45	1.7	0.22 U	0.25 U
(continued)	3/23/2016	35 - 45	2.6	0.31 U	0.31 U
	6/28/2016	35 - 45	4	3 U	1 U
	4/11/2017	35 - 45	6.8	2	0.71 U
	11/22/2017	35 - 45	2.4	0.65 U	0.26 U
	10/1/2018	35 - 45	5.3	2	0.71 U
	8/19/2019	35 - 45	5.8	2.4	0.41 U
	11/10/2020	35 - 45	0.35 U	0.28 U	0.41 U
	5/12/2022	35 - 45	4.1	10	0.71 U
VPF-MW0026	12/5/2011	35 - 45	91.1	8.1	1 U
	10/17/2012	35 - 45	3.2	0.24 I	0.44 U
	4/25/2013	35 - 45	0.31 U	0.24 U	0.44 U
	6/18/2014	35 - 45	2.1	0.33 U	0.33 U
	3/24/2015	35 - 45	0.42 I	0.22 U	0.25 U
	9/24/2015	35 - 45	0.22 U	0.22 U	0.25 U
	3/23/2016	35 - 45	0.30 I	0.31 U	0.31 U
	11/22/2017	35 - 45	0.61 U	0.65 U	0.26 U
	10/1/2018	35 - 45	1	0.53 U	0.71 U
	8/19/2019	35 - 45	0.35 U	0.28 U	0.41 U
	11/10/2020	35 - 45	1.0	0.73 I	0.41 U
VPF-MW0027	12/5/2011	35 - 45	180	12.1	1 U
	10/19/2012	35 - 45	223	18.6	0.44 U
	1/15/2013	35 - 45	149	12.6	0.44 U
	4/26/2013	35 - 45	100	11.7	0.44 U
	6/17/2014	35 - 45	119	29.1	0.65 U
	10/16/2014	35 - 45	58.2	17.8	0.33 U
	3/24/2015	35 - 45	5.3	0.55 I	0.25 U
	9/24/2015	35 - 45	2.8	0.22 U	0.25 U
	3/24/2016	35 - 45	1.9	0.31 U	0.31 U
	6/28/2016	35 - 45	4	3 U	1 U
	4/11/2017	35 - 45	8.8	3.6	0.71 U
	11/22/2017	35 - 45	3.9	1.4	0.26 U
	10/1/2018	35 - 45	4.4	4.2	0.71 U
	8/19/2019	35 - 45	3.6	7.9	0.41 U
	11/10/2020	35 - 45	3.7	14.0	0.41 U
	5/12/2022	35 - 45	3.8	13	0.71 U

Table 7-2 Vertical Processing Facility - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

		Category	Volatile Organic	Compounds (VOC) by	Method 8260
				CIS-1,2- DICHLOROETHENE	VINVI CHI ODIDE
	177	•			VINTE CHLORIDE
		DEP GCTLs (µg/L)	3	70	1
	F	DEP NADCs (µg/L)	300	700	100
		Screened Interval			
Location ID	Sample Date	(ft bls)			
VPF-MW0029	12/5/2011	15 - 25	91.9	69.1	32,2
	5/21/2012	15 - 25	1,940	319	69.2
	7/26/2012	15 - 25	911	211	4.4 U
	10/18/2012	15 - 25	64.9	19.1	4.6
	1/16/2013	15 - 25	13.7	14.1	3.7
	4/25/2013	15 - 25	4.4	1.2	0.44 U
	6/17/2014	15 - 25	1.3	1.6	1.2
	10/16/2014	15 - 25	2.5	7.3	0.33 U
	3/24/2015	15 - 25	0.63 I	1.2	0.25 U
	9/24/2015	15 - 25	0.51 I	0.48 I	0.25 U
	3/24/2016	15 - 25	0.38 I	0.31 U	0.31 U
	11/22/2017	15 - 25	0.67 I	0.65 U	0.26 U
	10/1/2018	15 - 25	0.89 I	1.5	0.75 I
	8/19/2019	15 - 25	0.45 I	1.3	0.41 U
	11/10/2020	15 - 25	2.0	7	0.41 U

Notes:

 $FDEP\ GCTLs = Florida\ Department\ of\ Environmental\ Protection\ Groundwater\ Cleanup\ Target\ Levels,$

Chapter 62-777 Florida Administrative Code, Table 1 (2005)

FDEP NADCs = Natural Attenuation Default Concentration, Chapter 62-777 Florida Administrative Code, Table V (2005)

ft bls = feet below land surface

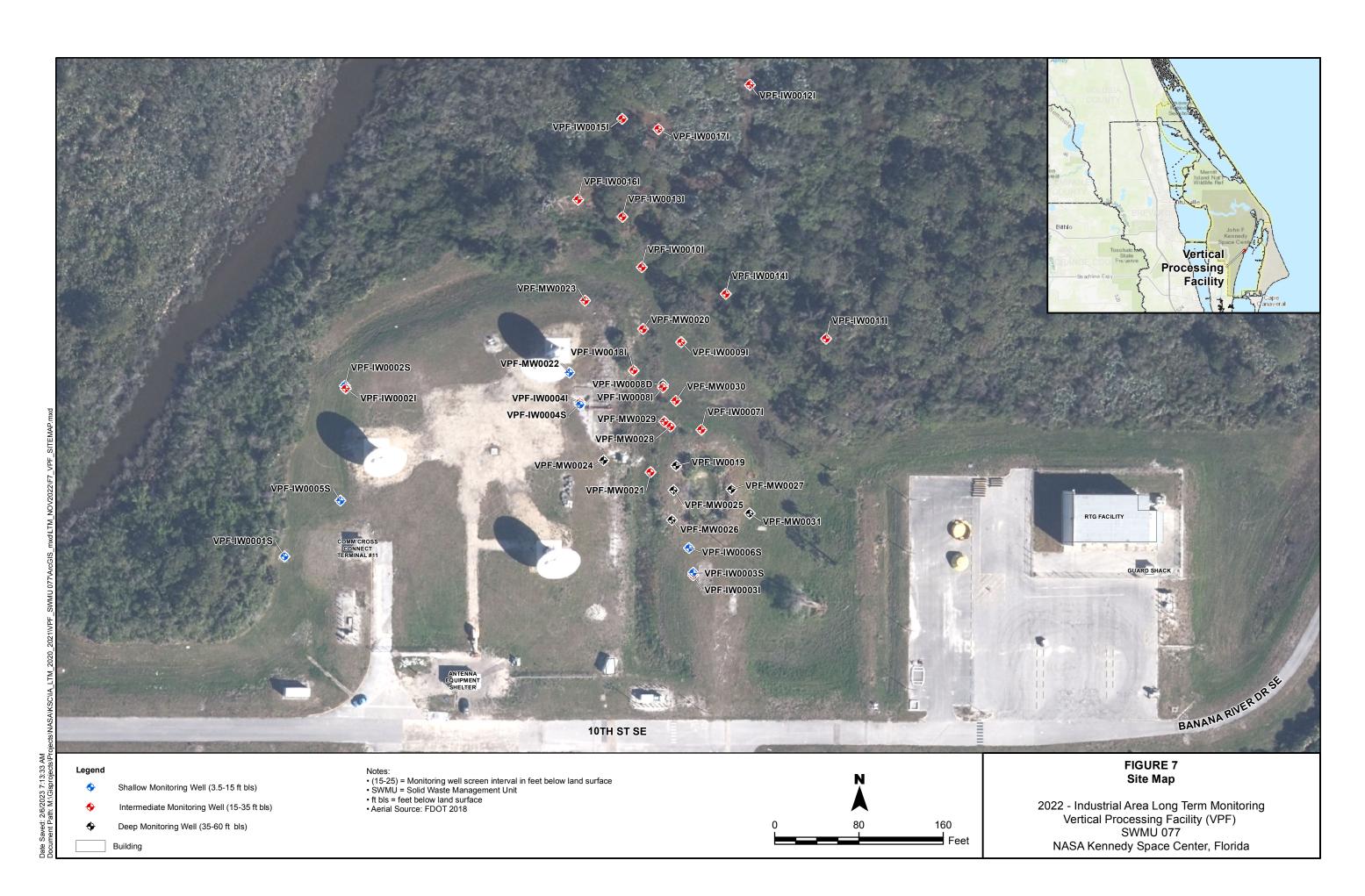
VPF = Vertical Processing Facility

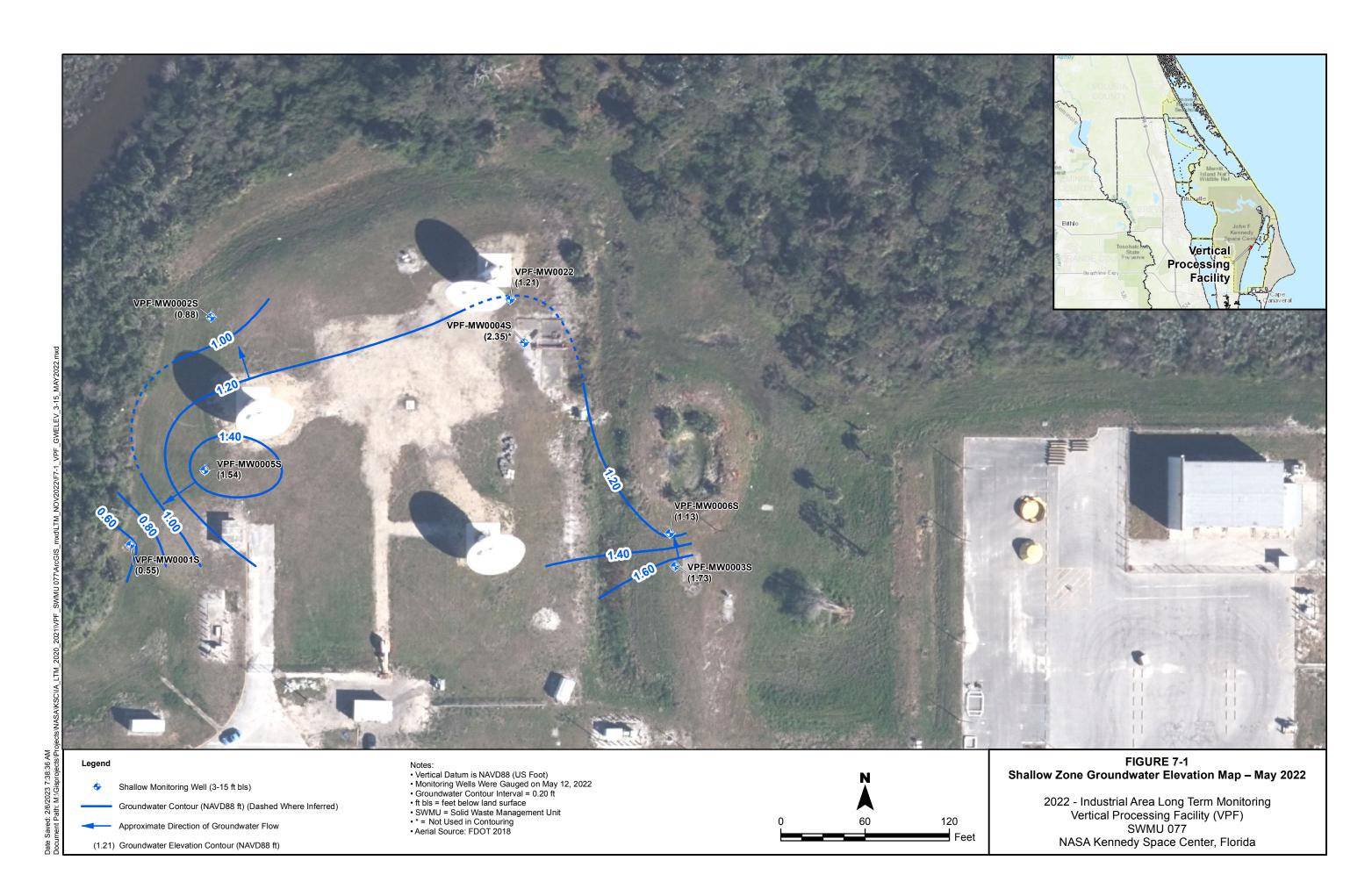
IW = investigation well

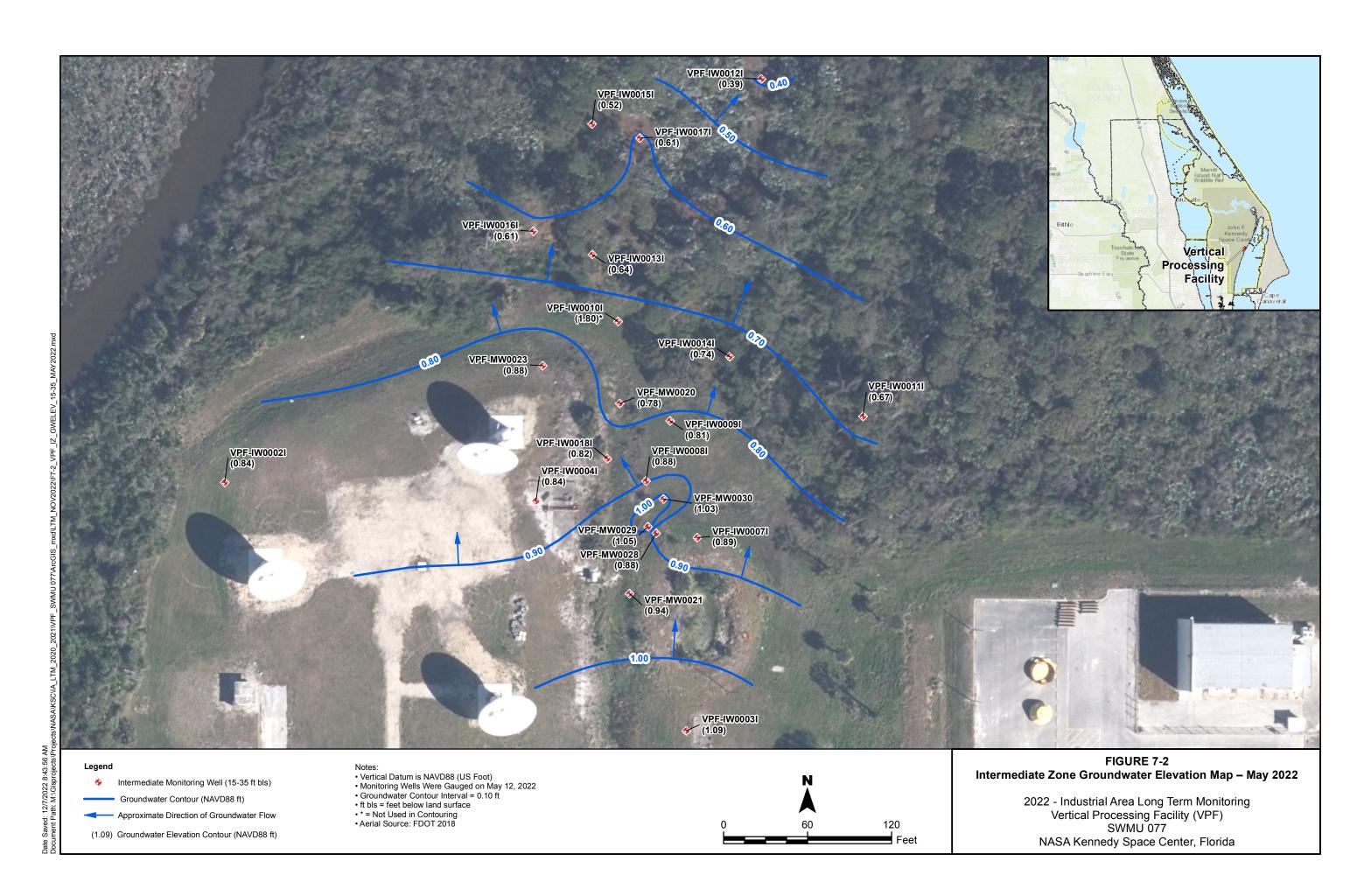
MW = monitoring well

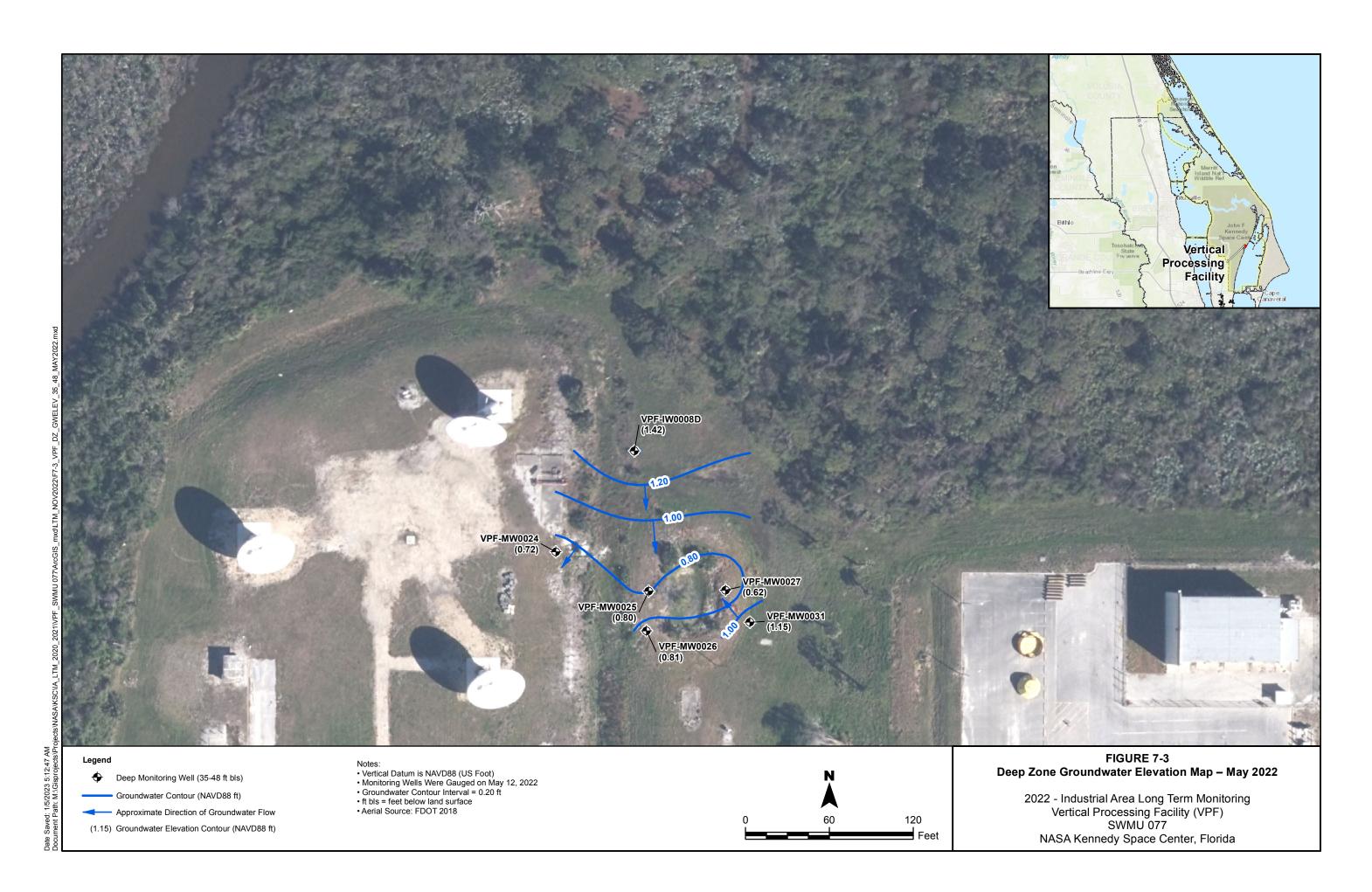
Results and screening criteria presented in µg/L (micrograms per liter)

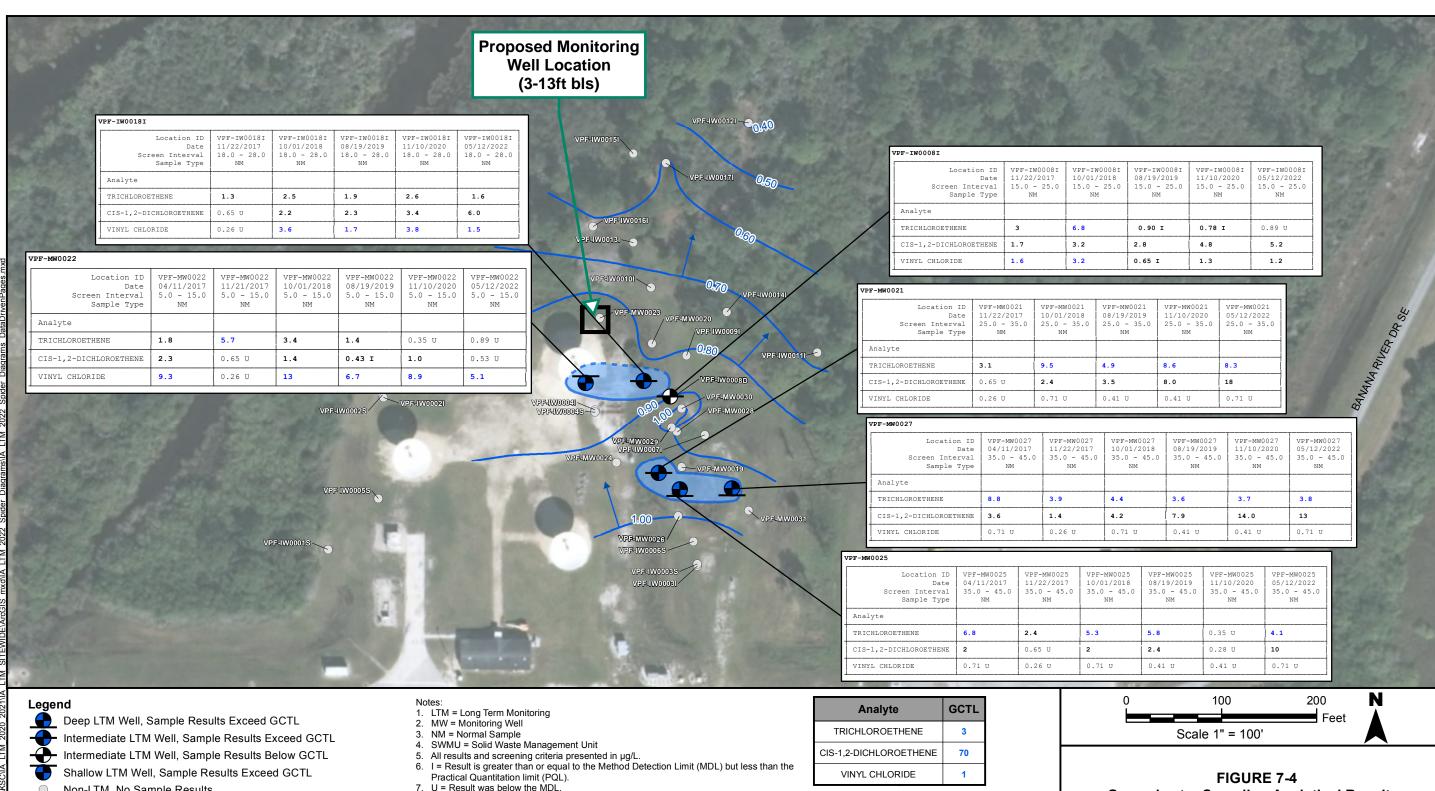
Bolded results indicate the presence of an analyte at the specified concentration


Red font indicates an exceedance of FDEP GCTLs


Highlighted cell indicates an exceedance of FDEP NADCs


I = Analyte greater than or equal to the method detection limit, but less than the practical quantitation limit


U = Analyte not detected


The numeric value presented for non-detects is the sample-specific reporting detection limit

- Non-LTM, No Sample Results
- Intermediate Groundwater Elevation Contours November 2022
- Direction of Groundwater Flow
- Approximate Extent of Multiple Contaminants Greater Than GCTLs from Monitoring Well Sampling (Dashed Where Inferred)
- 8. FDEP GCTLs = Florida Department of Environmental Protection Groundwater Cleanup Target Levels, Chapter 62-777, F.A.C.
- **Bolded** results indicate the presence of an analyte at the specified concentration.
- 10. Blue font indicates an exceedance of FDEP GCTLs.
- 11. Aerial Source: ESRI 2018.
- 12. Depth of monitoring well screen interval is presented in feet below land surface

Groundwater Sampling Analytical Results

2022 - Industrial Area Long Term Monitoring Vertical Processing Facility (VPF) SWMU 077 NASA Kennedy Space Center, Florida

8. ENVIRONMENTAL HEALTH FACILITY

This section provides a summary of the EHF site (SWMU 079). Refer to **Figure 8** for a site map.

8.1 SITE DESCRIPTION AND HISTORY

The EHF is at an isolated location at the north end of C Avenue Southeast, approximately 1 mile north of the main KSC IA. The site is comprised of the former EHF Building (L7-1557), support facilities, an asbestos laboratory, and satellite antenna dishes, which remain along the northeastern edge of the site. Constructed in 1966, the EHF Building was equipped with an ionization detection system. The site was utilized as the Central Instrumentation Facility that housed computers from 1976 through 1982. Some maintenance activities were conducted on-site during that period. In 1982, Environmental Health Services occupied the site. An asbestos laboratory was constructed in 1985 (LFR 2005). In 2015, the EHF Building (L7-1557), associated support facilities, and the asbestos laboratory were demolished. The satellite antenna dishes remain along the northeastern edge of the site.

An RFI and risk evaluation were conducted in 2004 and 2005 (LFR 2005). PCB and chromium impacts were identified in soil, and VC was detected at concentrations exceeding GCTLs. The PCB and chromium impacts were removed by an IM in December 2005. The risk evaluation identified VC as causing an unacceptable human health risk in groundwater (LFR 2005). To address contaminant concentrations that exceeded GCTLs, MNA of groundwater was selected to reduce VC concentrations per a Statement of Basis in October 2005 (NASA 2005b). LTM sampling of groundwater began at EHF in November 2005. In 2014, the sampling frequency transitioned from semi-annual to the current biennial sampling schedule.

8.2 FIELD ACTIVITIES

Groundwater levels were measured at six monitoring wells, and groundwater samples were collected from three monitoring wells at EHF in November 2022. The following table shows the network of wells used for groundwater level measurements and sampling at EHF.

Well ID	Screen Interval (ft bls)	Analysis
EHF-MW0001	20-30	WL + VC
EHF-MW0003	25-30	WL Only
EHF-MW0004	15-20	WL + VC
EHF-MW0005	15-25	WL + VC
EHF-MW0006	30-35	WL Only
EHF-MW0007	30-35	WL Only

ID = identification

MW = monitoring well

VC = vinyl chloride analysis by Method 8260

WL = water level measurement

DPT groundwater sampling was performed at three locations in January 2023 and three step-out locations in March 2023. The January 2023 locations were chosen to complete a horizontal delineation of the VC plume at EHF. The three step-out locations were performed northwest, west, and southwest of EHF-DPT0002 in a 40 ft square.

The groundwater samples collected during the November 2022 LTM event and the January and March 2023 DPT sampling events were analyzed for VC by Method 8260. Below are the respective GCTL and NADC for the COC present at EHF.

COC	GCTL (µg/L)	NADC (µg/L)
VC	1	100

8.3 WATER LEVEL COLLECTION AND GROUNDWATER FLOW DIRECTION

Groundwater levels collected during the November 2022 sampling event were used to calculate groundwater elevations presented in **Table 8-1**. Groundwater elevations were used to determine the contours and flow direction for the shallow-intermediate aquifer zone (15 ft bls to 35 ft bls), shown on **Figure 8-1**. The groundwater flow direction in November 2022 was mounded around monitoring well EHF-MW0005 with the flow split to the south toward EHF-MW0007 and east toward EHF-MW0003. Historical groundwater flow direction at EHF, before the removal of the EHF buildings in 2015, was toward the northeast.

8.4 ANALYTICAL RESULTS

8.4.1 Groundwater Analytical Results – Monitoring Wells

In November 2022, VC was detected in monitoring well EHF-MW0004 (5.4 μ g/L) above the GCTL, while monitoring wells EHF-MW0001 and EHF-MW0005 were below the GCTL. A summary of the current and historical analytical results is presented in **Table 8-2**. Analytical results are depicted on **Figure 8-2**.

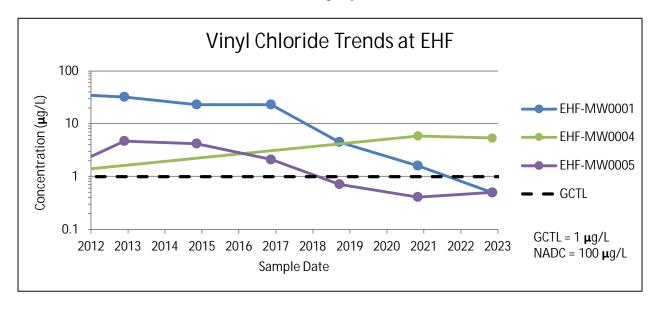
8.4.2 Groundwater Analytical Results – DPT

Groundwater samples were collected from the center of a temporary four ft screen at the following depths: 10, 15, 20, 30, 40, and 50 ft bls. The depth intervals were kept similar to past EHF site assessments to analyze COC concentrations above and below the present contaminated zone. The 50 ft sample interval was removed for the March 2023 step-out locations, because the January 2023 samples did not report any VC concentrations deeper than the 30 ft interval.

Concentrations of VC were detected at the following locations and depths:

VC Analysis (μg/L)								
DPT Location		Screen Interval (ft bls)						
DF1 LOCATION	(8-12)	(13-17)	(18-22)	(28-32)	(38-42)	(48-52)		
EHF-DPT0001	0.71 U	0.71 U	0.71 U	1.4	0.71 U	0.71 U		
EHF-DPT0002	0.71 U	15	19	0.71 U	0.71 U	0.71 U		
EHF-DPT0003	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U		
EHF-DPT0004	0.71 U	1.7	3.9	0.71 U	0.71 U	NS		
EHF-DPT0005	0.71 U	8.9	2.9	0.71 U	0.71 U	NS		
EHF-DPT0006	1.1	3.0	2.1	0.71 U	0.71 U	NS		

U = Result was below laboratory method detection limit


Bold results indicate the presence of an analyte at the specified concentration

Red font indicates an exceedance of FDEP GCTLs

VC concentrations were limited to the shallow and intermediate intervals. No VC concentrations were detected during the January and March 2023 DPT assessment below 32 ft bls. A summary of the analytical results is presented in **Table 8-3**. **Figure 8-3** depicts the analytical results of the groundwater samples collected from each DPT location.

8.5 TREND ANALYSIS

November 2022 data from the EHF monitoring wells were compared to historical sampling trends. Monitoring wells EHF-MW0001 and EHF-MW0005 show a decreasing trend and are now both below the GCTL. Monitoring well EHF-MW0004 was analyzed below the GCTL in 2004; however, VC concentrations stabilized slightly above the GCTL in 2020 and 2022.

8.6 CONCLUSION AND RECOMMENDATION

Although the VC concentration at monitoring well EHF-MW0001 dropped below the GCTL for the first event since assessment began in 2004, low level concentrations of VC remain above the GCTL at monitoring well EHF-MW0004. VC concentrations were also analyzed above the GCTL at DPT locations EHF-DPT0002, EHF-DPT0004, EHF-DPT0005, and EHF-DPT0006.

A new upgradient flush-mount monitoring well, EHF-MW0009, is recommended to be installed at the location of EHF-DPT0005 to serve as a horizontal point of compliance well. The screen interval for EHF-MW0009 is recommended to be 15 ft bls to 25 ft bls to capture the aquifer conditions across both the intervals of EHF-DPT0005 that exceeded the VC GCTL. VC concentrations at each step-out location were found to be less than EHF-DPT0002, suggesting that the low level contamination plume is centered around EHF-DPT0002 and EHF-MW0004.

The biennial sampling frequency is recommended to continue at monitoring wells EHF-MW0001, EHF-MW0004, EHF-MW0005, and new monitoring well EHF-MW0009 for VC analysis. Groundwater levels are recommended to be measured at seven wells. The following table shows the recommended monitoring wells for water level measurements and groundwater sampling for the next sampling event at EHF scheduled for November 2024.

Well ID	Screen Interval (ft bls)	Analysis
EHF-MW0001	20-30	WL + VC
EHF-MW0003	25-30	WL Only
EHF-MW0004	15-20	WL + VC
EHF-MW0005	15-25	WL + VC
EHF-MW0006	30-35	WL Only
EHF-MW0007	30-35	WL Only
EHF-MW0009 a	15-25	WL + VC

ID = identification

MW = monitoring well

VC = vinyl chloride analysis by Method 8260

WL = water level measurement

^a proposed monitoring well

Table 8-1
Environmental Health Facility - Long Term Monitoring (LTM)
Monitoring Well Groundwater Elevations

INTERMEDIATE WELL ID:	EHF-MW0001		EHF-MW0003		EHF-MW0004		
Screen Interval (ft bls):	20	- 30	25	25 - 30		15 - 20	
TOC Elevation (ft NAVD88):	8.	70	6.	6.62		5.52	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation	
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	
November 2014	5.84	2.86	4.00	2.62	2.66	2.86	
November 2016	5.10	3.60	3.04	3.58	2.00	3.52	
September 2018	5.41	3.29	3.29	3.33	2.41	3.11	
November 2020	4.30	4.40	2.20	4.42	1.02	4.50	
November 2022	4.21	4.49	2.15	4.47	0.99	4.53	

INTERMEDIATE WELL ID:	EHF-MW0005		EHF-MW0006		EHF-MW0007	
Screen Interval (ft bls):	15	- 25	30 - 35		30 - 35	
TOC Elevation (ft NAVD88):	5.	31	6.26		5.61	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
November 2014	2.52	2.79	3.41	2.85	2.82	2.79
November 2016	1.67	3.64	2.82	3.44	1.96	3.65
September 2018	2.02	3.29	3.15	3.11	2.31	3.30
November 2020	0.85	4.46	1.89	4.37	1.47	4.14
November 2022	0.69	4.62	1.70	4.56	1.05	4.56

Notes:

bls = below land surface

BTOC = below top of casing

EHF = Environmental Health Facility

ft = feet

MW = monitoring well

NAVD88 = North American Vertical Datum of 1988

TOC = top of casing

Table 8-2 Environmental Health Facility - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

		Category	Volatile Organic Compounds (VOC) by Method 8260
		VINYL CHLORIDE	
	F	1	
		DEP NADCs (µg/L)	100
		Screened Interval	
Location ID	Sample Date	(ft bls)	
EHF-MW0001	8/31/2004	20 - 30	89
	6/6/2005	20 - 30	75
	11/16/2005	20 - 30	73
	5/22/2006	20 - 30	55
	11/8/2006	20 - 30	74
	5/7/2007	20 - 30	49
	11/6/2007	20 - 30	71
	5/2/2008	20 - 30	52
	11/4/2008	20 - 30	84
	5/11/2009	20 - 30	45
	11/9/2009	20 - 30	65
	11/1/2010	20 - 30	38.1
	11/1/2011	20 - 30	34.9
	11/26/2012	20 - 30	32
	11/11/2014	20 - 30	23
	11/17/2016	20 - 30	23
	9/24/2018	20 - 30	4.5
	11/9/2020	20 - 30	1.6
	11/15/2022	20 - 30	0.50 U
EHF-MW0004	8/31/2004	15 - 20	0.43 U
	11/9/2020	15 - 20	5.9
	11/15/2022	15 - 20	5.4
EHF-MW0005	8/31/2004	15 - 25	68
	6/2/2005	15 - 25	29
	11/16/2005	15 - 25	35
	5/22/2006	15 - 25	10
	11/8/2006	15 - 25	35
	5/7/2007	15 - 25	41
	11/6/2007	15 - 25	33
	5/2/2008	15 - 25	20
	11/4/2008	15 - 25	19
	5/11/2009	15 - 25	22
	11/9/2009	15 - 25	10
	11/1/2010	15 - 25	4.13

Table 8-2 Environmental Health Facility - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

		Category	Volatile Organic Compounds (VOC)
		by Method 8260	
Analyte			VINYL CHLORIDE
	F	1	
	F	DEP NADCs (µg/L)	100
		Screened Interval	
Location ID	Sample Date	(ft bls)	
EHF-MW0005	11/1/2011	15 - 25	2.11
(continued)	11/26/2012	15 - 25	4.7
	11/11/2014	15 - 25	4.2
	11/17/2016	15 - 25	2.1
	9/24/2018	15 - 25	0.71 U
	11/9/2020	15 - 25	0.41 U
	11/15/2022	15 - 25	0.50 U

FDEP GCTLs = Florida Department of Environmental Protection Groundwater Cleanup Target Levels, Chapter 62-777 Florida Administrative Code, Table 1 (2005)

FDEP NADCs = Natural Attenuation Default Concentration, Chapter 62-777 Florida Administrative Code, Table V (2005)

ft bls = feet below land surface

EHF = Environmental Health Facility

MW = monitoring well

Results and screening criteria presented in µg/L (micrograms per liter)

Bolded results indicate the presence of an analyte at the specified concentration

Red font indicates an exceedance of FDEP GCTLs

U = Analyte not detected

Table 8-3 Environmental Health Facility - Long Term Monitoring (LTM) DPT Sampling Analytical Results

		Samping Analytical	
			Volatile Organic Compounds (VOC)
		Category	by Method 8260
		Analyte	VINYL CHLORIDE
	F	DEP GCTLs (µg/L)	1
	F	DEP NADCs (µg/L)	100
		Screened Interval	
Location ID	Sample Date	(ft bls)	
EHF-DPT0001	1/10/2023	8 - 12	0.71 U
	1/10/2023	13 - 17	0.71 U
	1/10/2023	18 - 22	0.71 U
	1/10/2023	28 - 32	1.4
	1/10/2023	38 - 42	0.71 U
	1/10/2023	48 - 52	0.71 U
EHF-DPT0002	1/10/2023	8 - 12	0.71 U
	1/10/2023	13 - 17	15
	1/10/2023	18 - 22	19
	1/10/2023	28 - 32	0.71 U
	1/10/2023	38 - 42	0.71 U
	1/10/2023	48 - 52	0.71 U
EHF-DPT0003	1/10/2023	8 - 12	0.71 U
	1/10/2023	13 - 17	0.71 U
	1/10/2023	18 - 22	0.71 U
	1/10/2023	28 - 32	0.71 U
	1/10/2023	38 - 42	0.71 U
	1/10/2023	48 - 52	0.71 U
EHF-DPT0004	3/27/2023	8 - 12	0.71 U
	3/27/2023	13 - 17	1.7
	3/27/2023	18 - 22	3.9
	3/27/2023	28 - 32	0.71 U
	3/27/2023	38 - 42	0.71 U
EHF-DPT0005	3/27/2023	8 - 12	0.71 U
	3/27/2023	13 - 17	8.9
	3/27/2023	18 - 22	2.9
	3/27/2023	28 - 32	0.71 U
	3/27/2023	38 - 42	0.71 U
EHF-DPT0006	3/27/2023	8 - 12	1.1
	3/27/2023	13 - 17	3.0
	3/27/2023	18 - 22	2.1
	3/27/2023	28 - 32	0.71 U
	3/27/2023	38 - 42	0.71 U

Notes:

FDEP GCTLs = Florida Department of Environmental Protection Groundwater Cleanup Target Levels, Chapter 62-777 Florida Administrative Code, Table 1 (2005)

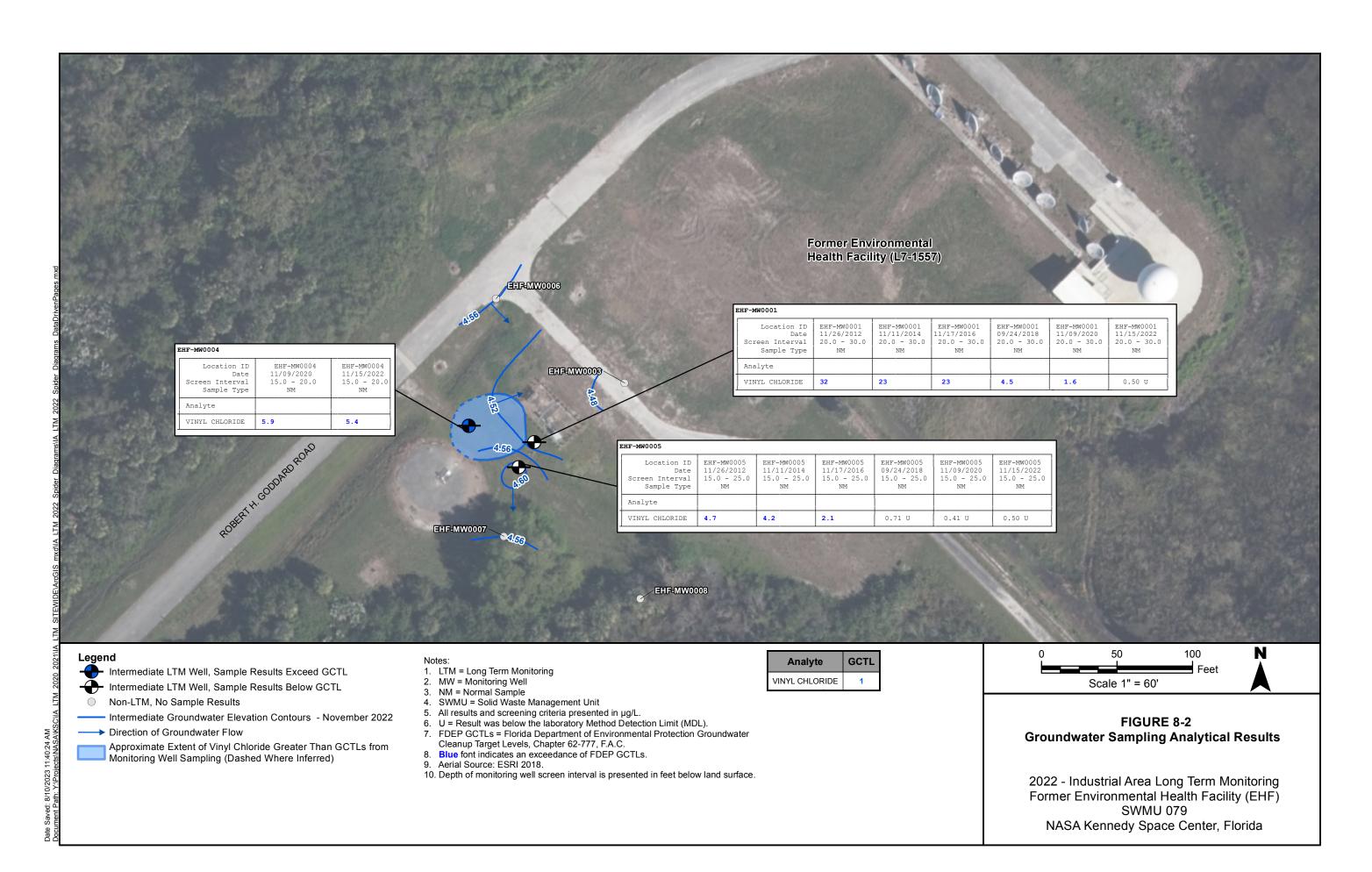
FDEP NADCs = Natural Attenuation Default Concentration, Chapter 62-777 Florida Administrative Code, Table V (2005)

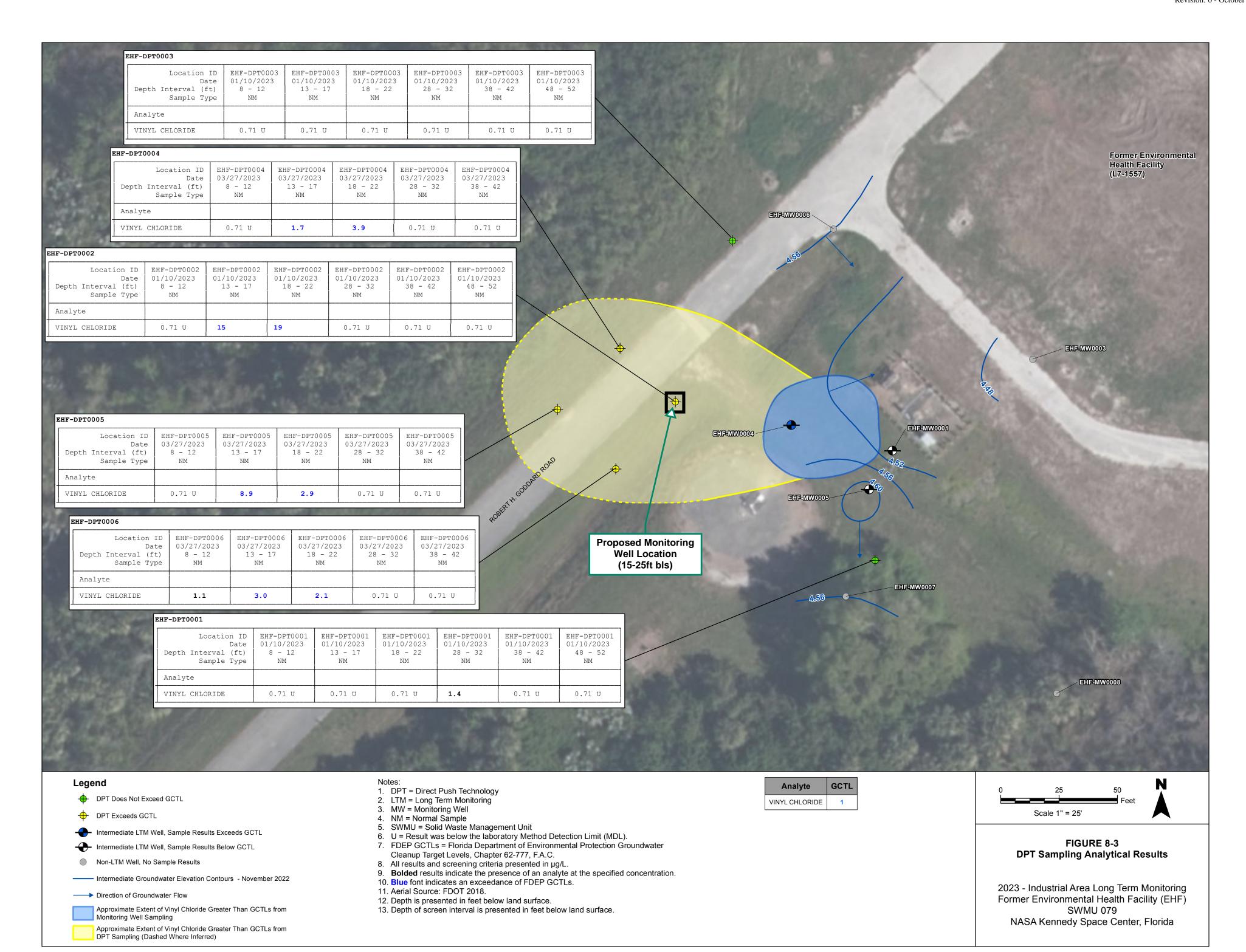
ft bls = feet below land surface

EHF = Environmental Health Facility

MW = monitoring well


Results and screening criteria presented in µg/L (micrograms per liter)


Bolded results indicate the presence of an analyte at the specified concentration


Red font indicates an exceedance of FDEP GCTLs

U = Analyte not detected

9. KENNEDY ATHLETIC, RECREATION, AND SOCIAL PARK 1

This section provides a summary of the KARS Park 1 Location of Concern (LOC) 9 site (SWMU 084). Refer to **Figure 9** for a site map.

9.1 SITE DESCRIPTION AND HISTORY

The KARS Park 1 site is located on East Hall Road, approximately 2.5 miles east of State Road 3, and approximately 5 miles south of KSC on Merritt Island. The 135 acre park is utilized by current and former NASA personnel as a recreational facility, which includes picnic areas; tent and recreational vehicle camp sites; tennis, volleyball, and basketball courts; softball fields; and a boat launch ramp. The LOC 9 area consists of former rifle, skeet, and pistol ranges, which have been inactive since 2003 (NASA 2008).

An RFI, completed in 2005, identified accumulated lead shot and spent skeet targets as a potential for release of contaminants. The RFI confirmed PAH and lead-impacted soils exceeding SCTLs and groundwater at concentrations exceeding the GCTL and KSC background level (Tetra Tech 2005).

Based on the RFI, the impacted soils at LOC 9 were to be removed during a series of soil IMs. PAH-impacted soils were addressed during Phase 1 of the soil IM between December 2004 and May 2005. Lead-impacted soils were addressed during Phases 2 and 3 of the Soil IM between June 2007 and February 2008. NFA for soil at LOC 9 was achieved in 2008 following the completion of successful excavation activities (NASA 2008).

As part of the 2005 RFI, a risk evaluation was conducted, which determined that groundwater posed an unacceptable human health risk if it was used as a potable water source. A CMS was performed in 2007 to determine the appropriate remedy for groundwater, which recommended NFA with controls (Tetra Tech 2007b). The remedy included LTM sampling of 12 monitoring wells, which began in 2008 on an annual schedule. In 2013, the sampling program changed to biennial groundwater sampling of three monitoring wells due to COC concentrations in the other nine monitoring wells reducing to below the GCTL (Tetra Tech 2013). LOC 9 changed to a 5-year sampling schedule after the July 2015 sampling event (Jacobs-CORE 2017b).

Lead concentrations were below the GCTL in the three remaining monitoring wells in November 2020. Monitoring well KP1-MW0018 was found destroyed during the November 2020 sampling event and was properly abandoned in July 2021 (HydroGeoLogic 2021).

9.2 FIELD ACTIVITIES

A confirmation sampling event was performed in September 2021 following the November 2020 sampling event with no GCTL exceedances. Groundwater levels were measured at 16 monitoring wells, and groundwater samples were collected from three monitoring wells. In accordance with the recommendations from the 2021 IA LTM ADP, monitoring well

KP1-MW0022 was redeveloped and sampled in May 2022 due to debris obstructing the well screen. The following table shows the network of wells used for groundwater level measurements and sampling at LOC 9.

Well ID	Screen Interval (ft bls)	Analysis
KP1-MW0001	2-12	WL Only
KP1-MW0003	2-12	WL + Lead
KP1-MW0004	2-12	WL Only
KP1-MW0005	2-12	WL Only
KP1-MW0015	2-12	WL Only
KP1-MW0016	2-12	WL Only
KP1-MW0017	2-12	WL Only
KP1-MW0019	2-12	WL Only
KP1-MW0022	2-12	WL + Lead
KP1-MW0023	2-12	WL Only
KP1-MW0024	2-12	WL Only
KP1-MW0027	2-12	WL Only
KP1-MW0028	2-12	WL Only
KP1-MW0035	2-12	WL + Lead
KP1-MW0036	2-12	WL Only
KP1-MW0037	2-12	WL Only

ID = identification

Lead = total lead analysis by Method 6020

MW = monitoring well

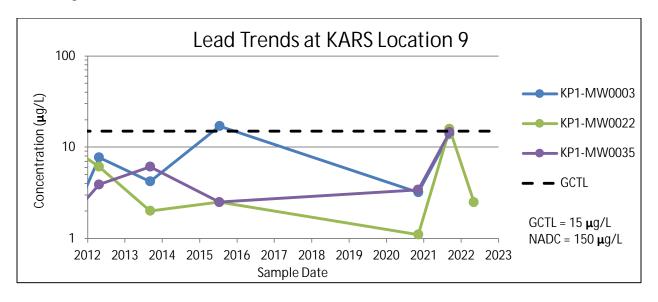
WL = water level measurement

The groundwater samples collected during the September 2021 and May 2022 field events at KARS Park 1 LOC 9 were analyzed for lead by Method 6020. Below are the respective GCTLs and NADCs for the COC present at KARS Park 1 LOC 9.

COC	GCTL (µg/L)	NADC (μg/L)
Total lead	15	150

9.3 WATER LEVEL COLLECTION AND GROUNDWATER FLOW DIRECTION

Groundwater levels collected during the September 2021 sampling event were used to calculate groundwater elevations presented in **Table 9-1**. Groundwater elevations were used to determine the contours and flow direction for the shallow aquifer zone (2 ft bls to 12 ft bls) shown on **Figure 9-1**. The shallow groundwater flow direction at LOC 9 was toward the southeast in September 2021. The average historical groundwater flow at LOC 9 is east-southeast.


9.4 ANALYTICAL RESULTS

Lead concentrations were detected in groundwater at levels exceeding the GCTL at KP1-MW0022 (15.8 $\mu g/L$) in 2021; however, the detections were within the range of KSC

background concentrations (2.5 μ g/L to 28 μ g/L). Lead concentrations were not detected at KP1-MW0022 when resampled in May 2022. A summary of the analytical results from 2003 to present is presented in **Table 9-2**. Analytical results are depicted on **Figure 9-2**.

9.5 TREND ANALYSIS

Concentrations of lead at LOC 9 have decreased significantly since 2003. The three monitoring wells analyzed in 2021 have exhibited no clear trends during recent sampling events. The following chart shows the lead concentrations at LOC 9 since 2011.

9.6 CONCLUSION AND RECOMMENDATION

Total lead concentrations at monitoring well KP1-MW0022 were slightly elevated in September 2021, but were not detected in May 2022. Monitoring wells KP1-MW0003 and KP1-MW0035 are recommended to be removed from the sampling schedule because concentrations of total lead in these two monitoring wells have been below the GCTL for the last two consecutive sampling events. The 5-year LTM frequency is recommended to be accelerated to May 2023 at LOC 9 with 16 monitoring wells used for groundwater level measurements and a groundwater sample collected from KP1-MW0022. Pending continued analytical data below the GCTL in May 2023, long-term groundwater monitoring at KARS Park 1 LOC 9 is recommended to discontinue and the LUC is recommended to be removed.

The following table shows the recommended network of wells for groundwater level measurements and groundwater sampling for the next sampling event at KARS Park 1 LOC 9 scheduled for May 2023.

Well ID	Screen Interval (ft bls)	Analysis
KP1-MW0001	2-12	WL Only
KP1-MW0003	2-12	WL Only

Well ID	Screen Interval (ft bls)	Analysis
KP1-MW0004	2-12	WL Only
KP1-MW0005	2-12	WL Only
KP1-MW0015	2-12	WL Only
KP1-MW0016	2-12	WL Only
KP1-MW0017	2-12	WL Only
KP1-MW0019	2-12	WL Only
KP1-MW0022	2-12	WL + Lead
KP1-MW0023	2-12	WL Only
KP1-MW0024	2-12	WL Only
KP1-MW0027	2-12	WL Only
KP1-MW0028	2-12	WL Only
KP1-MW0035	2-12	WL Only
KP1-MW0036	2-12	WL Only
KP1-MW0037	2-12	WL Only

ID = identification

Lead = total lead analysis by Method 6020

MW = monitoring well WL = water level measurement

Table 9-1 Kennedy Athletic, Recreation, and Social Park 1 - Long Term Monitoring (LTM) Monitoring Well Groundwater Elevations

		*****	*****	*****	ALD4 PARAGOOA	
LOC9 SHALLOW WELL ID:	KP1-MW0001		KP1-MW0003		KP1-MW0004	
Screen Interval (ft bls):	2 - 12		2 - 12		2 - 12	
TOC Elevation (ft NAVD88):	4.96		2.82		4.56	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
July 2015	5.31	-0.35	2.20	0.62	5.08	-0.52
November 2020	3.15	1.81	>TOC	Not Measured	3.09	1.47
September 2021	4.58	0.38	2.01	0.81	4.25	0.31

LOC9 SHALLOW WELL ID:	KP1-MW0005		KP1-MW0015		KP1-MW0016	
Screen Interval (ft bls):	2 - 12		2 - 12		2 - 12	
TOC Elevation (ft NAVD88):	4.79		3.01		4.21	
Date	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)
July 2015	5.23	-0.44	2.25	0.76	3.58	0.63
November 2020	3.25	1.54	0.00	3.01	1.15	3.06
September 2021	4.53	0.26	2.03	0.98	2.78	1.43

LOC9 SHALLOW WELL ID:	KP1-MW0017		KP1-MW0018		KP1-MW0019	
Screen Interval (ft bls):	2 - 12		2 - 12		2 - 12	
TOC Elevation (ft NAVD88):	4.04		4.94		2.34	
D .	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
July 2015	3.15	0.89	5.12	-0.18	2.79	-0.45
November 2020	0.87	3.17	Destr	royed	1.00	1.34
September 2021	2.51	1.53	Aban	doned	2.29	0.05

LOC9 SHALLOW WELL ID:	KP1-MW0022		KP1-MW0023		KP1-MW0024	
Screen Interval (ft bls):			2 - 12		2 - 12	
TOC Elevation (ft NAVD88):	2.73		4.82		2.18	
Date	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)
July 2015	3.35	-0.62	4.52	0.30	2.68	-0.50
November 2020	1.60	1.13	2.55	2.27	0.95	1.23
September 2021	2.63	0.10	3.70	1.12	2.15	0.03
May 2022	3.38	-0.65	Not Measured		Not Me	easured

LOC9 SHALLOW WELL ID:	KP1-MW0027		KP1-MW0028		KP1-MW0035	
Screen Interval (ft bls):	2 - 12		2 - 12		2 - 12	
TOC Elevation (ft NAVD88):	5.57		2.64		1.99	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
July 2015	5.37	0.20	3.16	-0.52	1.25	0.74
November 2020	3.32	2.25	1.00	1.64	0.62	1.37
September 2021	4.43	1.14	2.97	-0.33	1.88	0.11

LOC9 SHALLOW WELL ID:	KP1-M	W0036	KP1-MW0037		
Screen Interval (ft bls):	2 -	12	2 - 12		
TOC Elevation (ft NAVD88):	2.	10	4.98		
Date	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)	
July 2015	2.10	0.00	5.41	-0.43	
November 2020	0.27	1.83	3.49	1.49	
September 2021	1.92	0.18	4.49	0.49	

Notes:

bls = below land surface

BTOC = below top of casing

ft = feet

KP1 = Kennedy Athletic, Recreation, and Social Park 1

MW = monitoring well

NAVD88 = North American Vertical Datum of 1988

TOC = top of casing

Table 9-2 KARS Park 1 - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

		Catalogue	Metals A	
		Category	by Method S	
		Analyte	TOTAL LEAD	DISSOLVED LEAD
	F	DEP GCTLs (µg/L)	15	15
		DEP NADCs (µg/L)	150	150
	_	Screened Interval	150	150
Location ID	Sample Date	(ft bls)		
LOC 9:	12/30/2003	2 - 12	25.1	6.9
KP1-MW0001	5/4/2006	2 - 12	7.2	1.7 U
LOC 9:	12/30/2003	2 - 12	188	41.5
KP1-MW0003	4/19/2004	2 - 12	1,650	39.2
111 1 111 11 0000	5/5/2006	2 - 12	266	3.2 I
	4/23/2008	2 - 12	4.2 I	2.2 I
	8/5/2008	2 - 12	20.0	2.0 U
	6/10/2009	2 - 12	47.6	31.0
	9/23/2009	2 - 12	4.4 I	3.4 I
	4/14/2010	2 - 12	3.4 J	2.0 U
	9/15/2010	2 - 12	6.2 J	2.0 U
	4/19/2011	2 - 12	19.0	13.0
	9/6/2011	2 - 12	2.0 U	2.0 U
	4/22/2012	2 - 12	7.7 I	2.0 U
	9/5/2013	2 - 12	4.2 I	2.0 I
	7/17/2015	2 - 12	17.0	NA
	11/13/2020	2 - 12	3.2 I	NA NA
	9/16/2021	2 - 12	13.9	NA
LOC 9:	2/20/2004	2 - 12	55.7	8.7
KP1-MW0004	2/24/2004	2 - 12	82.2	50.3
KI 1-1/1// 0004	4/23/2008	2 - 12	2.8 I	2.9 I
	8/5/2008	2 - 12	2 U	2.5 I
	6/10/2009	2 - 12	2 I	2.1 I
	9/23/2009	2 - 12	2 U	2.5 I
	4/14/2010	2 - 12	2.1 J	2 U
	9/15/2010	2 - 12	2 U	2 U
	4/19/2011	2 - 12	2 U	2 U
	9/6/2011	2 - 12	2 U	2 U
LOC 9:	2/20/2004	2 - 12	24.4	12.3
KP1-MW0005	2/24/2004	2 - 12	28.7	19.4
KI 1-1/17/70003	5/4/2006	2 - 12	42.1	32.5
	4/24/2008	2 - 12	2.6 I	2.3 I
	8/6/2008	2 - 12	2.01 2 U	2.3 I
	6/10/2009	2 - 12	2 U	2 U
	9/23/2009	2 - 12	2 U	2 U
	4/14/2010	2 - 12	2 U	2 U
	9/15/2010	2 - 12	2 U	2 U
	4/19/2011	2 - 12	2 U	2 U
	9/6/2011	2 - 12	2 U	2 U
LOC 9:	2/20/2004	2 - 12	8.3	5
KP1-MW006	2/24/2004	2 - 12	13.5	3.4 I
131 1-1/1 // 000	5/4/2006	2 - 12	20.7	17.6
	4/24/2008	2 - 12	12.5	5.9
	8/6/2008	2 - 12	9.6	8
	6/10/2009	2 - 12	3 I	2.2 I
	9/23/2009	2 - 12	10.4	4 I
	4/14/2010	2 - 12	4.3 J	2 U
	9/15/2010	2 - 12	2.4 J	2 U
	4/19/2011	2 - 12	2.4 J 2 U	2 U
	9/6/2011	2 - 12	2.8 I	2 U

Table 9-2 KARS Park 1 - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

	Category		Metals A by Method S	•
		Ŭ.	TOTAL	DISSOLVED
		Analyte	LEAD	LEAD
	F	DEP GCTLs (µg/L)	15	15
		DEP NADCs (µg/L)	150	150
		Screened Interval	150	100
Location ID	Sample Date	(ft bls)		
LOC 9:	3/29/2005	2 - 12	7.8	3.7 I
KP1-MW0015	5/5/2006	2 - 12	5.9	3.3 I
LOC 9:	3/30/2005	2 - 12	6.4	1.2 U
KP1-MW0016	5/5/2006	2 - 12	1.8 I	1.7 U
LOC 9:	3/30/2005	2 - 12	5.5	3.9 I
KP1-MW0017	5/5/2006	2 - 12	7	3 I
LOC 9:	3/30/2005	2 - 12	85.7	16.4
KP1-MW0018	5/3/2006	2 - 12	6.7	1.7 U
	4/23/2008	2 - 12	2.2 I	2.3 I
	8/5/2008	2 - 12	2 U	2 U
LOC 9:	3/29/2005	2 - 12	40.2	35.8
KP1-MW0019	5/6/2006	2 - 12	73.4	12.4
111 1 111 11 0012	4/23/2008	2 - 12	2.6 I	2.8 I
	8/6/2008	2 - 12	2 U	2 U
LOC 9:	3/30/2005	2 - 12	1.2 U	1.2 U
KP1-MW0022	5/6/2006	2 - 12	2.1 I	1.7 U
	4/24/2008	2 - 12	4.6 I	3.2 I
	8/6/2008	2 - 12	3.6 I	2 U
	6/10/2009	2 - 12	22.8	16.5
	9/23/2009	2 - 12	5.3 I	6.2 I
	4/14/2010	2 - 12	2.0 U	2.0 U
	9/15/2010	2 - 12	6.7 J	6.4 J
	4/19/2011	2 - 12	2.6 I	3.0 I
	9/6/2011	2 - 12	9.1 I	7.9 I
	4/22/2012	2 - 12	6.1 I	2.0 U
	9/5/2013	2 - 12	2.0 I	2.0 I
	7/15/2015	2 - 12	2.5 U	NA
	11/13/2020	2 - 12	1.1 U	NA
	9/16/2021	2 - 12	15.8	NA
	5/12/2022	2 - 12	2.50 U	NA
LOC 9:	5/25/2005	1.5 - 11.5	2.3 I	1.2 U
KP1-MW0023	5/3/2006	1.5 - 11.5	1.7 U	1.7 U
LOC 9:	5/25/2005	2 - 12	1.2 U	1.2 U
KP1-MW0024	5/6/2006	2 - 12	3.1 I	2.4 I
111 1 111 1 1 0 0 2 1	4/23/2008	2 - 12	2.5 I	2.4 I
	8/6/2008	2 - 12	3.8 I	2.7 I
LOC 9:	5/25/2005	8 - 18	1.2 U	1.2 U
KP1-MW0025	5/4/2006	8 - 18	1.7 U	1.7 U
LOC 9:	5/25/2005	8 - 18	1.2 U	1.2 U
KP1-MW0026	5/4/2006	8 - 18	1.7 I	1.7 U
LOC 9:	5/25/2005	2 - 12	1.4 I	1.2 U
KP1-MW0027	5/3/2006	2 - 12	5	3.1 I
LOC 9:	5/25/2005	2 - 12	1.2 I	1.6 I
KP1-MW0028	5/6/2006	2 - 12	3.4 I	3.2 I

Table 9-2
KARS Park 1 - Long Term Monitoring (LTM)
Groundwater Sampling Analytical Results

Category			Metals Analysis by Method SW846 6010D	
			TOTAL	DISSOLVED
		Analyte	LEAD	LEAD
	F	DEP GCTLs (µg/L)	15	15
	F	DEP NADCs (µg/L)	150	150
		Screened Interval		
Location ID	Sample Date	(ft bls)		
LOC 9:	4/23/2008	2 - 12	3.7 I	3.4 I
KP1-MW0035	8/6/2008	2 - 12	3.0 I	2.0 U
	6/10/2009	2 - 12	3.1 I	2.0 U
	9/23/2009	2 - 12	3.5 I	2.7 I
	4/14/2010	2 - 12	2.0 U	2.2 J
	9/15/2010	2 - 12	2.0 U	2.0 U
	4/19/2011	2 - 12	2.0 U	2.0 U
	9/6/2011	2 - 12	2.0 U	2.0 U
	4/22/2012	2 - 12	3.9 I	2.0 U
	9/5/2013	2 - 12	6.1 I	2.0 I
	7/15/2015	2 - 12	2.5 U	NA
	11/13/2020	2 - 12	3.4 I	NA
	9/16/2021	2 - 12	14.6	NA
LOC 9:	4/23/2008	2 - 12	2.1 I	2.8 I
KP1-MW0036	8/5/2008	2 - 12	2 I	2 U
LOC 9:	4/23/2008	2 - 12	2.1 U	2.3 I
KP1-MW0037	8/5/2008	2 - 12	2 U	2 U
LOC 9:	4/23/2008	20 - 25	2.1 U	3.5 I
KP1-MW0038	8/5/2008	20 - 25	2 U	2 U

FDEP GCTLs = Florida Department of Environmental Protection Groundwater Cleanup Target Levels, Chapter 62-777 Florida Administrative Code, Table 1 (2005)

FDEP NADCs = Natural Attenuation Default Concentration, Chapter 62-777 Florida Administrative Code, Table V (2005)

ft bls = feet below land surface

LOC = location of concern

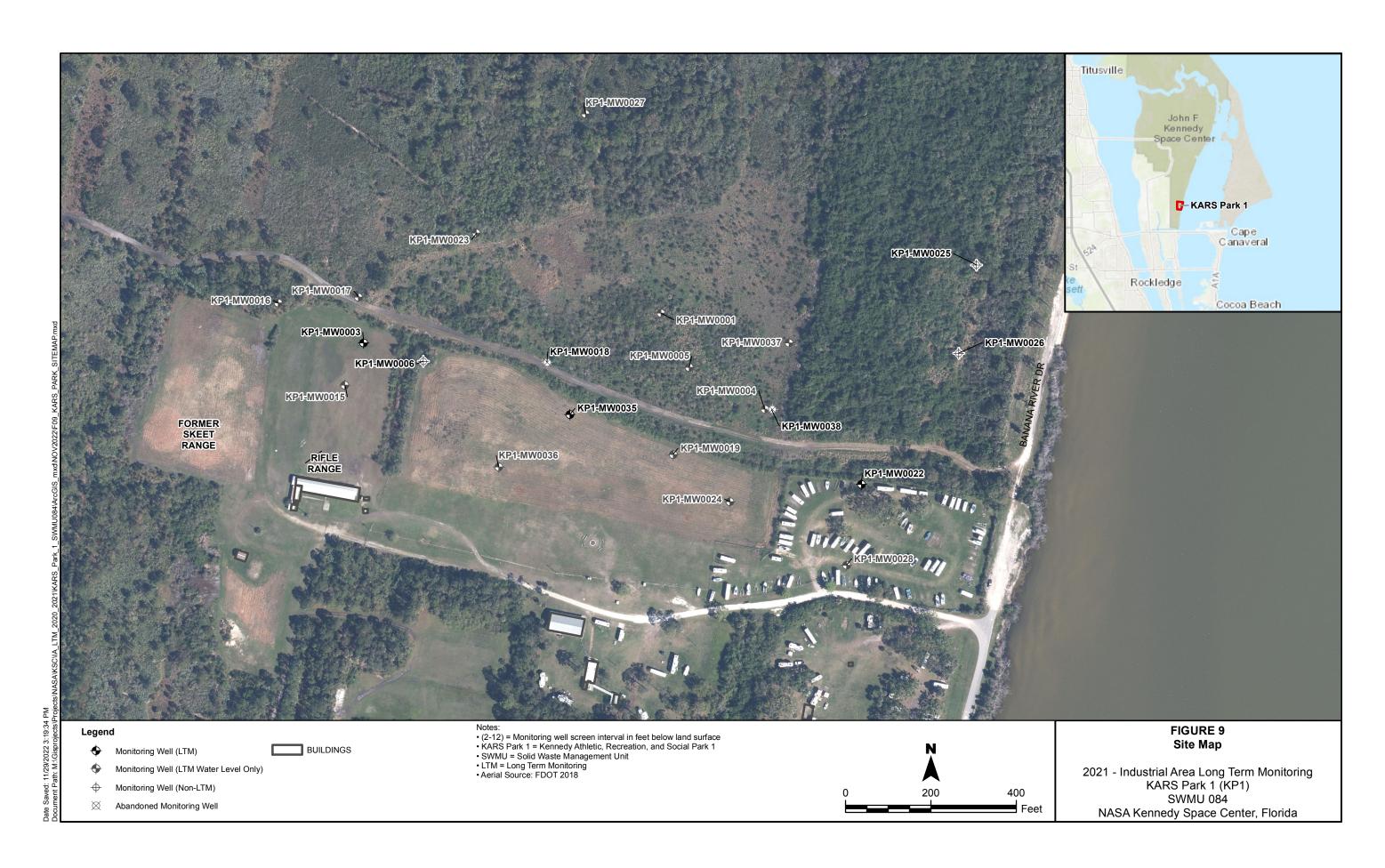
KP1 = Kennedy Athletic, Recreation, and Social Park 1

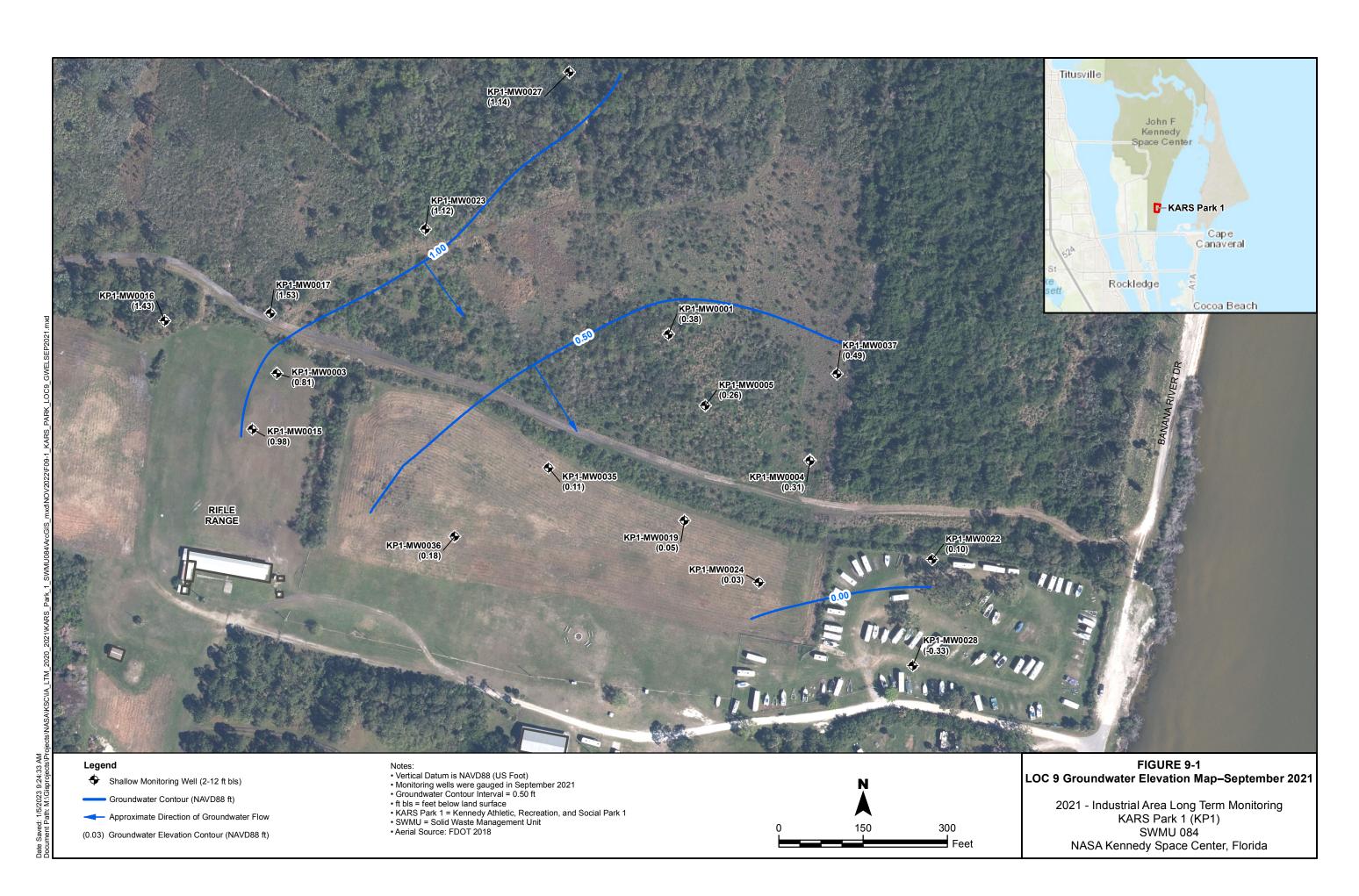
MW = monitoring well

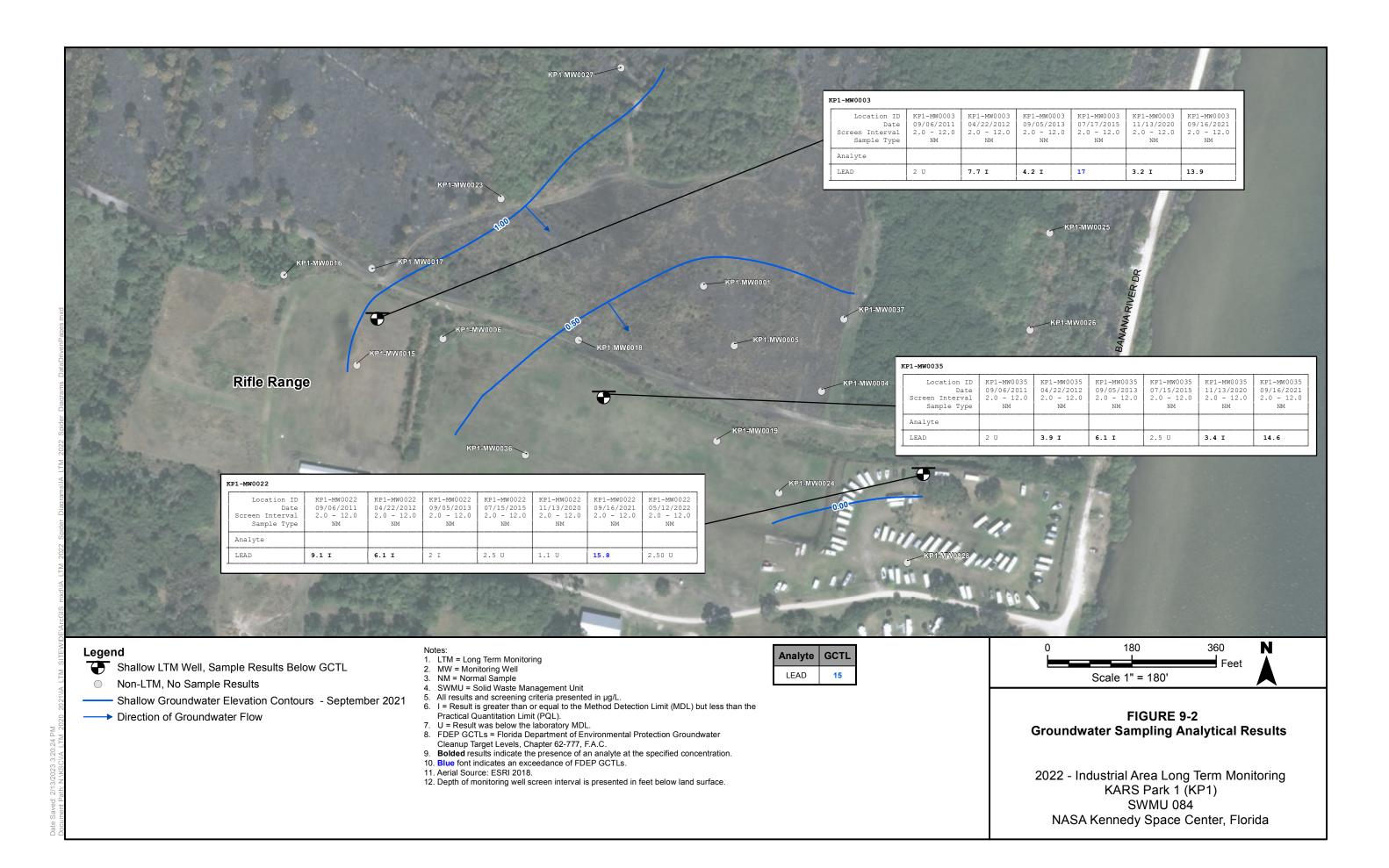
NA = Not Analyzed

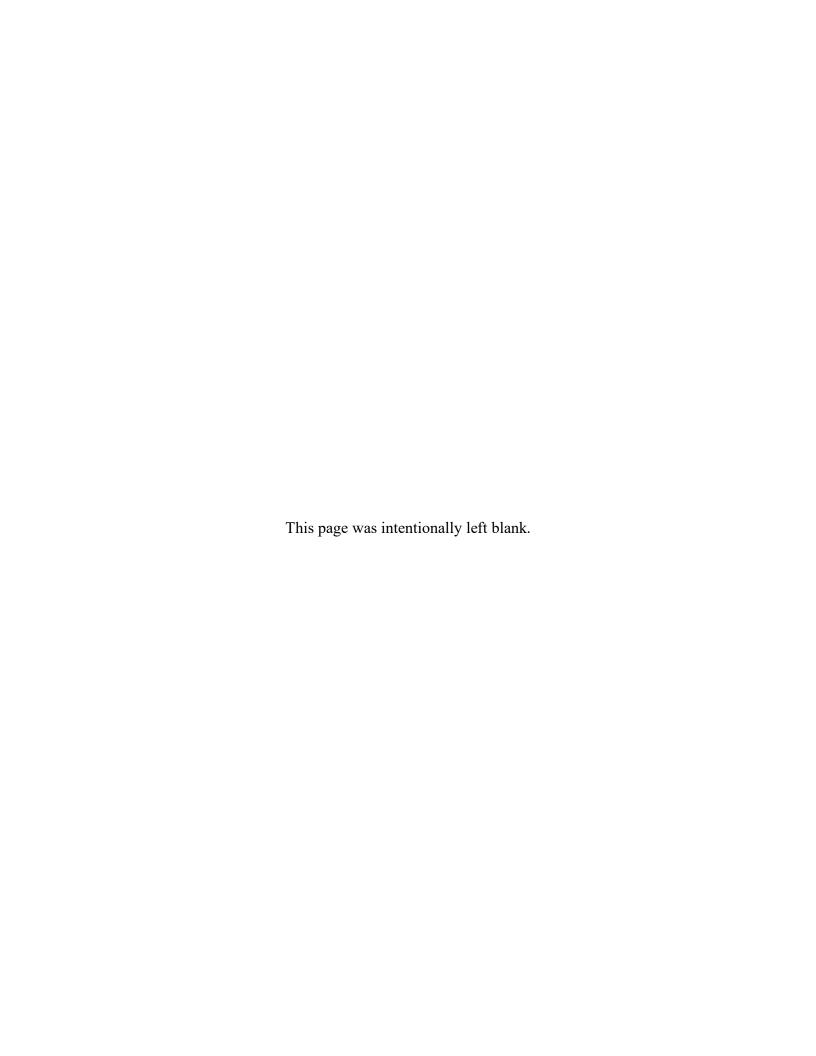
Results and screening criteria presented in µg/L (micrograms per liter)

 \boldsymbol{Bolded} results indicate the presence of an analyte at the specified concentration


Red font indicates an exceedance of FDEP GCTLs


Highlighted cell indicates an exceedance of FDEP NADCs


I = Analyte greater than or equal to the method detection limit, but less than the practical quantitation limit


J = Indicates an estimated value

U = Analyte not detected

10. ENGINEERING DEVELOPMENT LABORATORY

This section provides a summary of the EDL site (SWMU 085). Refer to **Figure 10** for a site map.

10.1 SITE DESCRIPTION AND HISTORY

EDL is located south of the SSPF at the southeast corner of the East Avenue Southeast and 2nd Street Southeast intersection. The EDL Building was constructed in 1966 to support astronaut training for the Apollo Space Program, including mock simulators such as the Lunar Lander. The building is currently utilized as office space, a prototype machine shop, and material testing. The site consists of the EDL Building and associated support facilities (NASA 2005a).

A 2003 SWMU assessment recommended confirmatory sampling at EDL, which was performed in 2004 (J-BOSC 2003). Concentrations of VC were confirmed in groundwater exceeding the GCTL. In 2005, an RFI and risk evaluation confirmed the previous assessment, identifying VC as potentially causing an unacceptable human health risk if groundwater was to be used as a source of drinking water (LFR 2006a). To address contaminant concentrations that exceeded the GCTL, MNA of groundwater was selected to reduce VC concentrations (NASA 2005c). Annual LTM sampling of groundwater commenced at EDL in 2006, and transitioned to the current biennial groundwater sampling schedule in 2012.

10.2 FIELD ACTIVITIES

Field activities were conducted at EDL in November 2022. Groundwater levels were measured at four monitoring wells, and samples from two monitoring wells were collected during the event. The following table shows the network of monitoring wells used for groundwater level measurements and sampling at EDL.

Well ID	Screen Interval (ft bls)	Analysis
EDL-MW0004	30-40	WL + VC
EDL-MW0005	30-40	WL Only
EDL-MW0006R	30-40	WL + VC
EDL-MW0007	30-40	WL Only

ID = identification

MW = monitoring well

VC = vinyl chloride analysis by Method 8260

WL = water level measurement

DPT groundwater sampling was performed at three locations in January 2023. The three locations were chosen to fill a historical data gap and complete a horizontal delineation of the VC plume along the southern boundary at EDL.

Groundwater samples collected during the November 2022 LTM and January 2023 DPT events were analyzed for VC by Method 8260. Below are the respective GCTLs and NADCs for the COC present at EDL.

COC	GCTL (µg/L)	NADC (μg/L)
VC	1	100

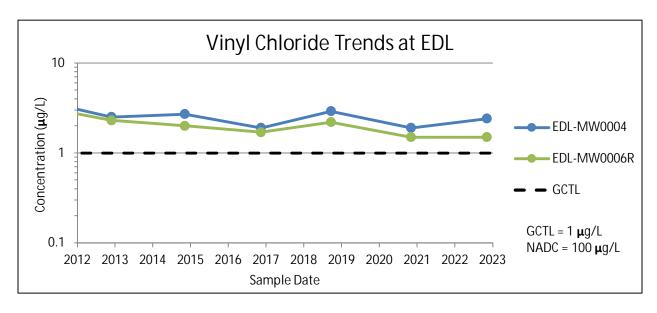
10.3 WATER LEVEL COLLECTION AND GROUNDWATER FLOW DIRECTION

Groundwater levels collected during the November 2022 sampling event were used to calculate groundwater elevations presented in **Table 10-1**. Groundwater elevations were used to determine the contours and flow direction for the intermediate aquifer zone (30 ft bls to 40 ft bls) at EDL, shown on **Figure 10-1**. The flow direction during the November 2022 sampling event was inward from the west and southeast, and outward to the north and south. Historically, groundwater flow direction has been toward the northeast on the western portion of the site and toward the northwest on the eastern portion of the site.

10.4 ANALYTICAL RESULTS

10.4.1 Groundwater Analytical Results – Monitoring Wells

The concentrations of VC at monitoring wells EDL-MW0004 (2.4 μ g/L) and EDL-MW0006R (1.5 μ g/L) were above the GCTL. A summary of the analytical results is presented in **Table 10-2**. Analytical results are depicted on **Figure 10-2**.


10.4.2 Groundwater Analytical Results – DPT

Groundwater samples were collected from the center of a 4 ft screen at the following depths: 30 ft bls, 40 ft bls, and 50 ft bls. The depth intervals were kept similar to past EDL site assessments to analyze COC concentrations above and below the present contaminated zone.

VC was not detected at EDL-DPT0012 and EDL-DPT0013. VC was detected below the GCTL at EDL-DPT0014 at 30 ft (0.94 I μ g/L). A summary of the analytical results is presented in **Table 8-2**. **Figure 8-3** depicts the analytical results of the groundwater samples collected from each DPT location.

10.5 TREND ANALYSIS

November 2022 sampling results from monitoring wells EDL-MW0004 and EDL-MW0006R were compared to historical analytical trends. VC concentrations in both monitoring wells have been stable, remaining slightly above the GCTL. The following trend chart shows the VC concentrations at EDL since 2012.

10.6 CONCLUSION AND RECOMMENDATION

The southern boundary at EDL has been horizontally delineated south of EDL-MW0004 by DPT sampling in January 2023; however, concentrations of VC at select EDL monitoring wells remain slightly above the GCTL. Biennial LTM frequency is recommended to continue at monitoring wells EDL-MW0004 and EDL-MW0006R for VC analysis. Groundwater level measurements are recommended to continue at four monitoring wells.

The following table shows the recommended monitoring wells for water level measurements and groundwater sampling for the next sampling event at EDL scheduled for November 2024.

Well ID	Screen Interval (ft bls)	Analysis
EDL-MW0004	30-40	WL + VC
EDL-MW0005	30-40	WL Only
EDL-MW0006R	30-40	WL + VC
EDL-MW0007	30-40	WL Only

ID = identification

MW = monitoring well

VC = vinyl chloride analysis by Method 8260

WL = water level measurement

Table 10-1
Engineering Development Laboratory - Long Term Monitoring (LTM)
Monitoring Well Groundwater Elevations

INTERMEDIATE WELL ID:	EDL-MW0004		EDL-MW0005		EDL-MW0006R	
Screen Interval (ft bls):	30 -	- 40	30 - 40		30 - 40	
TOC Elevation (ft NAVD88):	8.	03	7.	39	9.	44
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
May 2014	5.73	2.30	5.00	2.39	7.14	2.30
November 2016	5.74	2.29	5.02	2.37	7.15	2.29
March 2018	6.83	1.20	6.12	1.27	8.19	1.25
November 2020	4.92	3.11	4.14	3.25	6.33	3.11
November 2022	5.03	3.00	4.25	3.14	6.45	2.99

INTERMEDIATE WELL ID:	EDL-MW0007	
Screen Interval (ft bls):	30 - 40	
TOC Elevation (ft NAVD88):	8.44	
	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)
May 2014	6.05	2.39
November 2016	6.10	2.34
March 2018	7.18	1.26
November 2020	5.23	3.21
November 2022	5.38	3.06

bls = below land surface

BTOC = below top of casing

EDL = Engineering Development Laboratory

ft = feet

MW = monitoring well

NAVD88 = North American Vertical Datum of 1988

TOC = top of casing

Table 10-2 Engineering Development Laboratory - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

	Volatile Organic Compounds (VOC)				
		Category	by Method 8260		
		Analyte	VINYL CHLORIDE		
	F	DEP GCTLs (µg/L)	1		
		DEP NADCs (µg/L)	100		
		Screened Interval			
Location ID	Sample Date	(ft bls)			
EDL-MW0004	7/11/2005	30 - 40	2.3		
	5/22/2006	30 - 40	2.3		
	11/7/2006	30 - 40	3.0		
	5/7/2007	30 - 40	2.9		
	11/6/2007	30 - 40	4.3		
	5/1/2008	30 - 40	2.5		
	11/3/2008	30 - 40	2.4		
	5/11/2009	30 - 40	2.5		
	11/9/2009	30 - 40	2.2		
	11/1/2010	30 - 40	2.14		
	11/1/2011	30 - 40	3.18		
	11/27/2012	30 - 40	2.5		
	11/10/2014	30 - 40	2.7		
	11/17/2016	30 - 40	1.9		
	9/25/2018	30 - 40	2.9		
	11/10/2020	30 - 40	1.9		
	11/15/2022	30 - 40	2.4		
EDL-MW0006	7/11/2005	30 - 40	3.8		
	5/22/2006	30 - 40	3.4		
	11/7/2006	30 - 40	3.9		
	5/7/2007	30 - 40	3.7		
	11/6/2007	30 - 40	2.3		
	5/1/2008	30 - 40	4.8		
	11/3/2008	30 - 40	4.6		
EDL-MW0006R	6/1/2009	30 - 40	2.2		
	11/9/2009	30 - 40	2.3		
	11/1/2010	30 - 40	1.93		
	11/1/2011	30 - 40	2.82		
	11/27/2012	30 - 40	2.3		
	11/10/2014	30 - 40	2.0		
	11/17/2016	30 - 40	1.7		
	9/25/2018	30 - 40	2.2		
	11/10/2020	30 - 40	1.5		
	11/15/2022	30 - 40	1.5		

FDEP GCTLs = Florida Department of Environmental Protection Groundwater Cleanup Target Levels, Chapter 62-777 Florida Administrative Code, Table 1 (2005)

FDEP NADCs = Natural Attenuation Default Concentration, Chapter 62-777 Florida Administrative Code, Table V (2005)

ft bls = feet below land surface

EDL = Engineering Development Laboratory

MW = monitoring well

Results and screening criteria presented in $\mu\text{g/L}$ (micrograms per liter)

Bolded results indicate the presence of an analyte at the specified concentration

Red font indicates an exceedance of FDEP GCTLs

Table 10-3 Engineering Development Laboratory - Long Term Monitoring (LTM) DPT Sampling Analytical Results

		G-4	Volatile Organic Compounds (VOC)
		Category	by Method 8260
		Analyte	VINYL CHLORIDE
	F	DEP GCTLs (µg/L)	1
	F	DEP NADCs (µg/L)	100
		Screened Interval	
Location ID	Sample Date	(ft bls)	
EDL-DPT0012	1/12/2023	28 - 32	0.71 U
	1/12/2023	38 - 42	0.71 U
	1/12/2023	48 - 52	0.71 U
EDL-DPT0013	1/12/2023	28 - 32	0.71 U
	1/12/2023	38 - 42	0.71 U
	1/12/2023	48 - 52	0.71 U
EDL-DPT0014	1/13/2023	28 - 32	0.94 I
	1/13/2023	38 - 42	0.71 U
	1/13/2023	48 - 52	0.71 U

Notes:

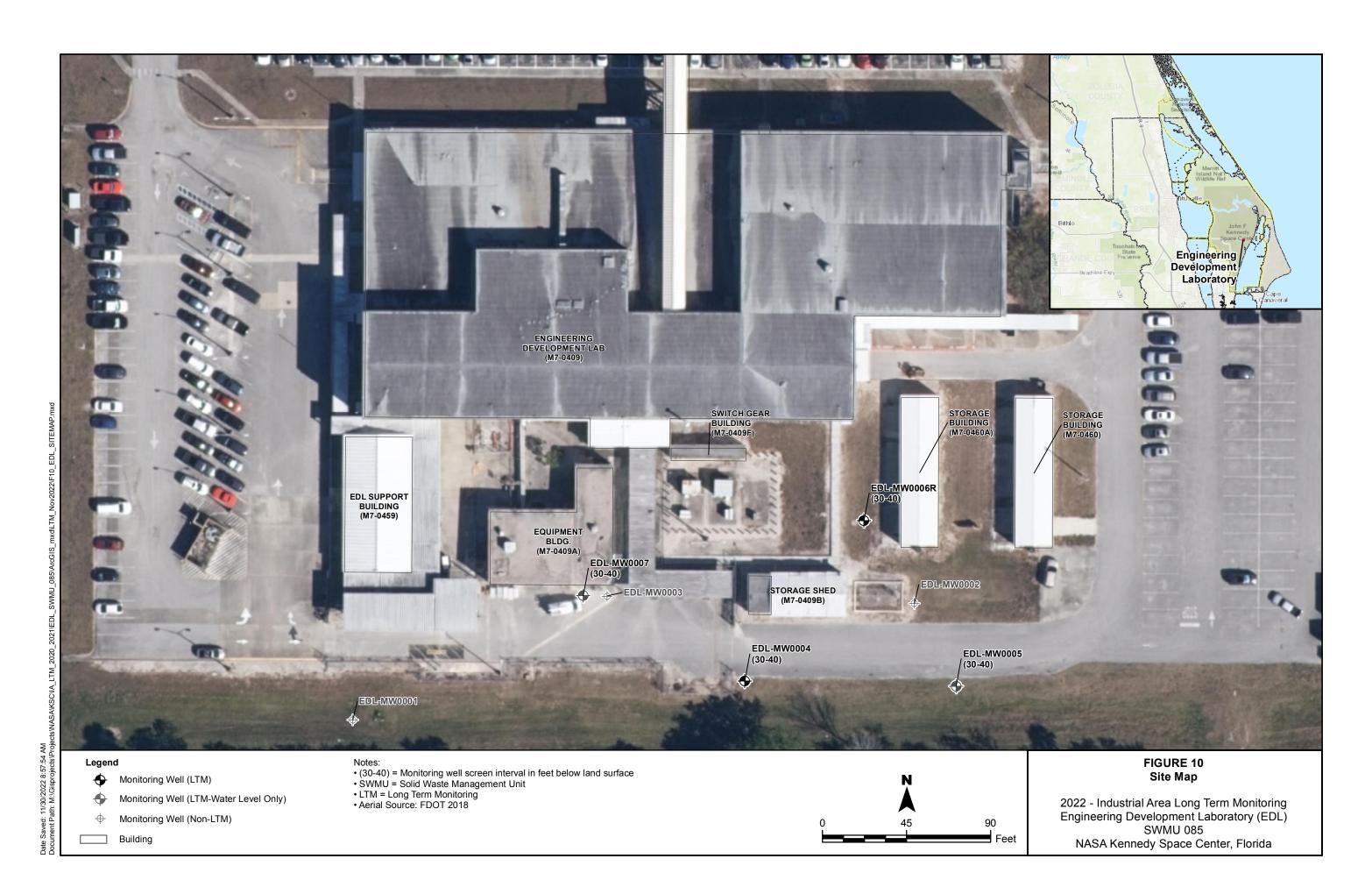
FDEP GCTLs = Florida Department of Environmental Protection Groundwater Cleanup Target Levels,

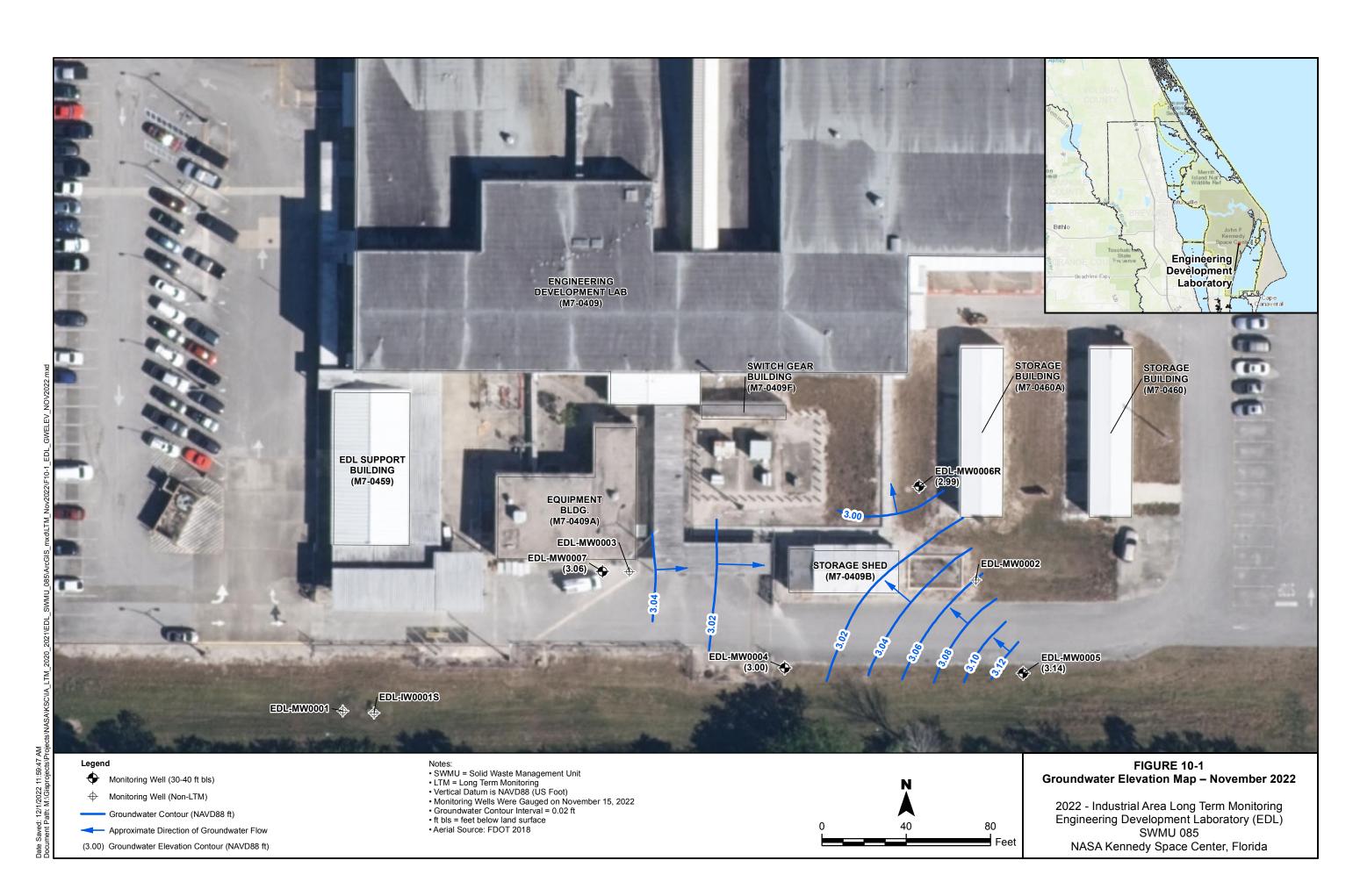
Chapter 62-777 Florida Administrative Code, Table 1 (2005)

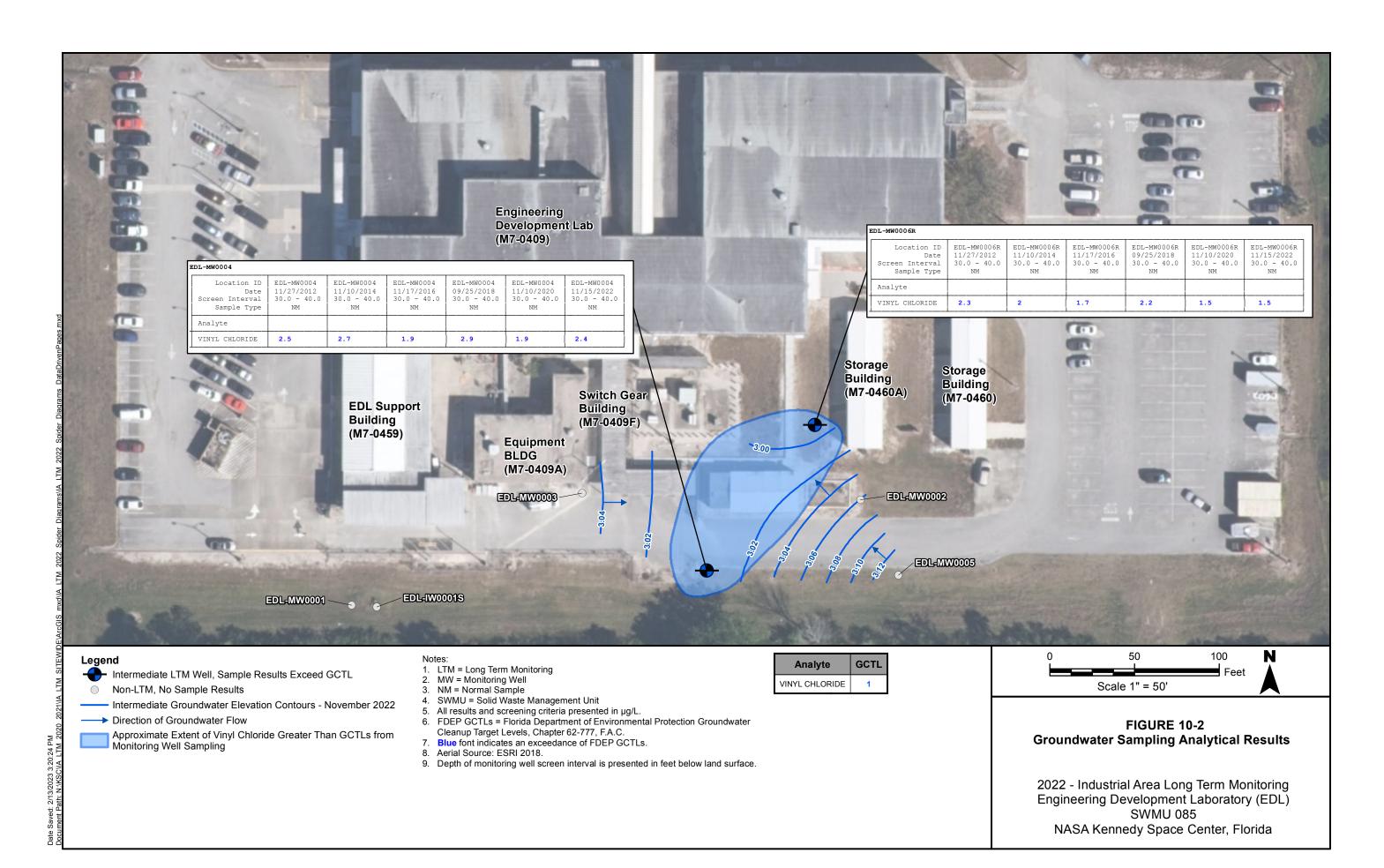
FDEP NADCs = Natural Attenuation Default Concentration, Chapter 62-777 Florida Administrative Code, Table V (2005)

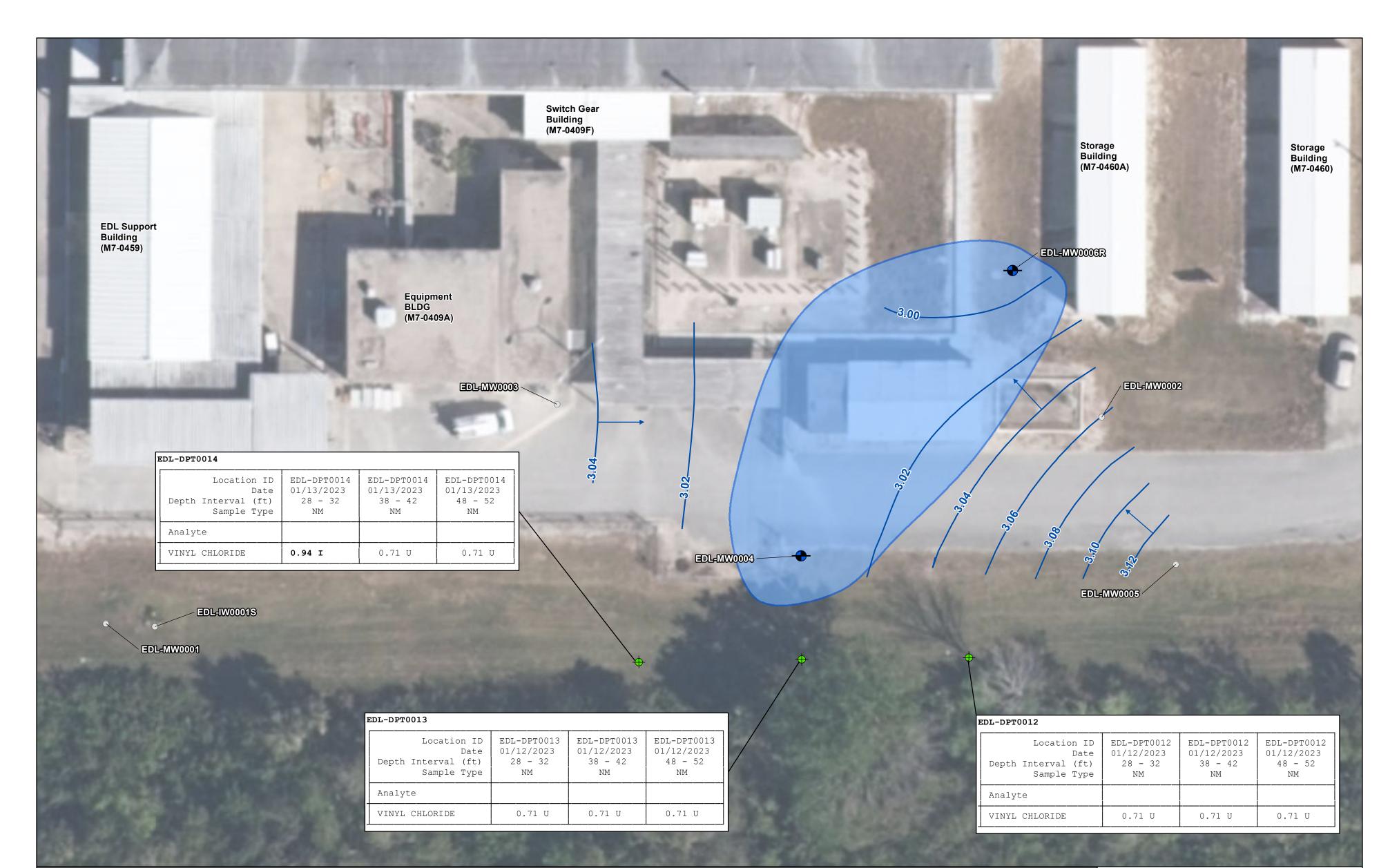
ft bls = feet below land surface

EDL = Engineering Development Laboratory

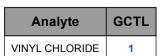

MW = monitoring well

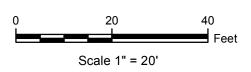

Results and screening criteria presented in µg/L (micrograms per liter)


Bolded results indicate the presence of an analyte at the specified concentration


I = Analyte greater than or equal to the method detection limit, but less than the practical quantitation limit

U = Analyte not detected




Legend

- ◆ DPT Location, Sample Results Below GCTL
- Intermediate LTM Well, Sample Results Exceed GCTL
- Non-LTM, No Sample Results
 - Intermediate Groundwater Elevation Contours November 2022
- → Direction of Groundwater Flow
- Approximate Extent of Vinyl Chloride Greater Than GCTLs from MW Sampling

Notes:

- DPT = Direct Push Technology
- 2. LTM = Long Term Monitoring
- 3. MW = Monitoring Well4. NM = Normal Sample
- 5. SWMU = Solid Waste Management Unit
- 6. All results and screening criteria presented in $\mu\text{g}/\text{L}.$
- 7. I = Result is greater than or equal to the Method Detection Limit (MDL) but less than the Practical Quantitation Limit (PQL).
- 8. U = Result was below the laboratory MDL.
- FDEP GCTLs = Florida Department of Environmental Protection Groundwater Cleanup Target Levels, Chapter 62-777, F.A.C.
- 10. **Bolded** results indicate the presence of an analyte at the specified concentration.
- 11. Blue font indicates an exceedance of FDEP GCTLs.
- 12. Aerial Source: FDOT 2018.
- 13. Depth is presented in feet below land surface.
- 14. Depth of screen interval is presented in feet below land surface.

FIGURE 10-3 DPT Sampling Analytical Results

2023 - Industrial Area Long Term Monitoring Engineering Development Laboratory (EDL) SWMU 085 NASA Kennedy Space Center, Florida

11. LAUNCH EQUIPMENT TEST FACILITY

This section provides a summary of the LETF site (SWMU 091). Refer to **Figure 11** for a site map.

11.1 SITE DESCRIPTION AND HISTORY

The LETF area is located south of the O&C Building and northwest of the intersection of East Avenue Southeast and 3rd Street Southeast. The LETF area is comprised of several buildings and large support structures, including the Supply, Shipping, and Receiving Warehouse/Payload Support Building, the LETF, the LETF Shipping and Receiving Building, the Waste and Water Support Building, the Cryogenic Testing Laboratory, and other support facilities. The majority of these facilities were constructed between 1963 and 1966. In 1976, the eastern portion of LETF was constructed to support launch equipment testing for the Space Shuttle Program (ARCADIS 2014).

During an RFI in 2006, Confirmatory sampling found VC concentrations in groundwater exceeding GCTLs. The assessment also showed that the VC plume in the eastern portion of the site was separate from the plume at the M7-0505 Treatment Tank Area (SWMU 039). In 2010, additional assessment during the RFI indicated that the LETF VC plume was delineated (ARCADIS 2011a). To address contaminant concentrations that exceeded GCTLs, MNA of groundwater was selected to reduce VC concentrations (ARCADIS 2014).

The remedy included LTM sampling of four monitoring wells, which began in 2008 on a semi-annual schedule. In 2009, groundwater sampling results showed increasing VC concentrations at monitoring well LETF-MW0001. Based on the VC concentration increases, additional groundwater assessment was conducted, which found VC exceeding both the GCTL and NADC. LETF was then removed from the LTM program for remedial action.

A remedial Alternatives Evaluation was completed in 2010 and a Remedial Action Plan was presented to the KSCRT in 2011 (ARCADIS 2011a), which recommended treatment of the VC plume area exceeding the NADC with an AS system. In 2012, the AS system began operation and groundwater monitoring was performed to monitor the effectiveness of the AS treatment. In 2013, VC groundwater concentration results across the site were below the NADC, and concentrations within the radius of influence of the AS system had fallen below the GCTL. In June 2013, the AS system was deactivated (ARCADIS 2014). The site was placed back into the LTM program in 2014 to monitor VC concentrations. Annual groundwater sampling resumed at LETF in July 2015, and transitioned to the current biennial sampling schedule in 2018.

11.2 FIELD ACTIVITIES

Field activities were performed at LETF in November 2021. Groundwater levels were measured at 14 monitoring wells and samples from six monitoring wells were collected. The following table shows the network of wells used for groundwater level measurements and sampling at LETF.

Well ID	Screen Interval (ft bls)	Analysis
LETF-MW0001	22.5-27.5	WL + VC
LETF-MW0002	22.5-27.5	WL + VC
LETF-MW0003	22.5-27.5	WL Only
LETF-MW0004	33.5-38.5	WL Only
LETF-MW0005	22.5-27.5	WL + VC
LETF-MW0006	33.5-38.5	WL Only
LETF-MW0007	33.5-38.5	WL + VC
LETF-MW0008	22.5-27.5	WL Only
LETF-MW0009	22.5-27.5	WL Only
LETF-MW0010	22.5-27.5	WL Only
LETF-MW0011	22.5-27.5	WL Only
LETF-PSB-MW0001I	22-27	WL + VC
LETF-PSB-MW0002I	22-27	WL + VC
LETF-PSB-MW0003I	20-25	WL Only

ID = identification

MW = monitoring well

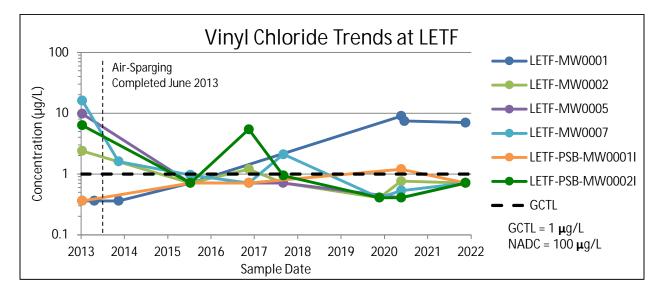
VC = vinyl chloride analysis by Method 8260

WL = water level measurement

Groundwater samples collected during the November 2021 event were analyzed for VC by Method 8260. Below are the respective GCTL and NADC for the COC present at LETF.

COC	GCTL (µg/L)	NADC (µg/L)
VC	1	100

11.3 WATER LEVEL COLLECTION AND GROUNDWATER FLOW DIRECTION


Groundwater levels collected during the November 2021 sampling event were used to calculate groundwater elevations presented in **Table 11-1**. Groundwater elevations were used to determine the contours and flow direction for the shallow-intermediate aquifer zone (20 ft bls to 37.5 ft bls), shown on **Figure 11-1**. The groundwater flow direction in November 2021 was concentered around the drainage ditch between the LETF facility and the prototype shop. The historical flow direction generally ranges from southeast to southwest.

11.4 ANALYTICAL RESULTS

VC concentrations exceeded the GCTL in monitoring well LETF-MW0001 (7.0 μ g/L) in November 2021. A summary of the current and historical analytical results is presented in **Table 11-2**. Analytical results are depicted on **Figure 11-2**.

11.5 TREND ANALYSIS

Once the AS system at LETF was shut down in June 2013, VC concentrations in several monitoring wells in the network slightly increased, but many are now below detection limits. VC at monitoring well LETF-MW0001 was below detection limits through 2015 and was taken out of the sampling schedule until the May 2020 event, where VC concentrations were found to be exceeding the GCTL. The following trend chart shows the VC concentrations at LETF since 2013.

11.6 CONCLUSION AND RECOMMENDATION

VC concentrations continue to exceed the GCTL at monitoring well LETF-MW0001; therefore, the biennial sampling frequency is recommended to continue at LETF. However, with the consecutive non-detect and low-level VC concentrations at the remaining sampled monitoring wells, it is recommended that the sampling scope be reduced to two monitoring wells (LETF-MW0001 and downgradient LETF-PSB-MW0001) for VC analysis. Groundwater levels are recommended to continue to be measured at 14 monitoring wells.

The following table shows the recommended monitoring wells for water level measurements and groundwater sampling for the next sampling event at LETF scheduled for May 2023.

Well ID	Screen Interval (ft bls)	Analysis
LETF-MW0001	22.5-27.5	WL + VC
LETF-MW0002	22.5-27.5	WL Only
LETF-MW0003	22.5-27.5	WL Only
LETF-MW0004	33.5-38.5	WL Only
LETF-MW0005	22.5-27.5	WL Only
LETF-MW0006	33.5-38.5	WL Only
LETF-MW0007	33.5-38.5	WL Only
LETF-MW0008	22.5-27.5	WL Only
LETF-MW0009	22.5-27.5	WL Only
LETF-MW0010	22.5-27.5	WL Only
LETF-MW0011	22.5-27.5	WL Only
LETF-PSB-MW0001I	22-27	WL + VC
LETF-PSB-MW0002I	22-27	WL Only
LETF-PSB-MW0003I	20-25	WL Only

ID = identification

MW = monitoring well

 $VC = vinyl \ chloride \ analysis \ by \ Method \ 8260$ $WL = water \ level \ measurement$

Table 11-1 Launch Equipment Test Facility - Long Term Monitoring (LTM) Monitoring Well Groundwater Elevations

INTERMEDIATE WELL ID:	LETF-MW0001		LETF-MW0002		LETF-MW0003	
Screen Interval (ft bls):	22.5	- 27.5	22.5 - 27.5		22.5 - 27.5	
TOC Elevation (ft NAVD88):	9.	55	9.48		9.36	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
July 2015	8.31	1.24	8.12	1.36	8.15	1.21
November 2016	6.94	2.61	6.70	2.78	6.79	2.57
September 2017	6.33	3.22	6.18	3.30	6.16	3.20
November 2019	6.40	3.15	6.17	3.31	6.23	3.13
May 2020	6.93 2.62		6.81	2.67	Not Me	easured
November 2021	5.45	4.10	5.34	4.14	5.27	4.09
May 2023	6.00	3.55	5.88	3.60	5.83	3.53

INTERMEDIATE WELL ID:	LETF-MW0004		LETF-MW0005		LETF-MW0006	
Screen Interval (ft bls):	33.5	- 38.5	22.5 - 27.5		33.5 - 38.5	
TOC Elevation (ft NAVD88):	9.	55	9.68		6.80	
D .	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
July 2015	8.31	1.24	8.40	1.28	5.70	1.10
November 2016	6.94	2.61	7.20	2.48	4.20	2.60
September 2017	6.28	3.27	6.40	3.28	3.55	3.25
November 2019	6.36	3.19	Not Me	easured	Not Me	easured
May 2020	Not Measured		6.94	2.74	Not Me	easured
November 2021	5.48	4.07	5.55	4.13	2.62	4.18
May 2023	5.97	3.58	6.13	3.55	3.17	3.63

INTERMEDIATE WELL ID:	LETF-MW0007		LETF-MW0008		LETF-MW0009	
Screen Interval (ft bls):	33.5	- 38.5	22.5 - 27.5		22.5 - 27.5	
TOC Elevation (ft NAVD88):	9.	40	9.10		9.48	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
July 2015	8.18	1.22	7.8	1.30	8.16	1.32
November 2016	6.90	2.50	6.37	2.73	6.77	2.71
September 2017	6.18	3.22	5.83	3.27	6.23	3.25
November 2019	6.23	3.17	5.85	3.25	6.23	3.25
May 2020	6.81 2.59		Not Me	easured	Not Me	easured
November 2021	5.28	4.12	5.03	4.07	5.31	4.17
May 2023	5.83	3.57	5.53	3.57	5.89	3.59

INTERMEDIATE WELL ID:	LETF-MW0010		LETF-MW0011		LETF-PSB-MW0001I	
Screen Interval (ft bls):	22.5	- 27.5	22.5 - 27.5		22 - 27	
TOC Elevation (ft NAVD88):	9.	65	8.63		8.86	
Date	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)
July 2015	8.37	1.28	7.44	1.19	7.58	1.28
November 2016	6.97	2.68	6.30	2.33	6.22	2.64
September 2017	6.42	3.23	5.38	3.25	5.57	3.29
November 2019	6.43	3.22	5.49	3.14	5.65	3.21
May 2020	Not Measured		Not Me	easured	6.15	2.71
November 2021	5.48	4.17	4.56	4.07	4.75	4.11
May 2023	6.06	3.59	5.10	3.53	5.27	3.59

INTERMEDIATE WELL ID:	LETF-PSB-MW0002I		LETF-PSB-MW0003I	
Screen Interval (ft bls):	22	- 27	20 - 25	
TOC Elevation (ft NAVD88):	6.	72	7.25	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
July 2015	5.66	1.06	6.19	1.06
November 2016	4.22	2.50	4.88	2.37
September 2017	3.53	3.19	4.02	3.23
November 2019	3.64	3.08	4.13	3.12
May 2020	4.17 2.55		Not Me	easured
November 2021	2.66	4.06	3.11	4.14
May 2023	3.16	3.56	3.68	3.57

Notes:

bls = below land surface BTOC = below top of casing

ft = feet

LETF = Launch Equipment Test Facility

MW = monitoring well

NAVD88 = North American Vertical Datum of 1988

TOC = top of casing

Table 11-2
Launch Equipment Test Facility - Long Term Monitoring (LTM)
Groundwater Sampling Analytical Results

		Volatile Organic Compounds (VOC)	
		by Method 8260	
		VINYL CHLORIDE	
FDEP GCTLs (µg/L)			1
	F	100	
		Screened Interval	
Location ID	Sample Date	(ft bls)	
LETF-MW0001	5/22/2007	22.5 - 27.5	180
	12/16/2008	22.5 - 27.5	25
	5/14/2009	22.5 - 27.5	140
	12/3/2009	22.5 - 27.5	170
	5/19/2010	22.5 - 27.5	160
	11/3/2010	22.5 - 27.5	86.1
	5/4/2011	22.5 - 27.5	77.5
	11/16/2011	22.5 - 27.5	89.4
	4/16/2012	22.5 - 27.5	0.36 U
	7/24/2012	22.5 - 27.5	0.36 U
	10/10/2012	22.5 - 27.5	0.36 U
	1/9/2013	22.5 - 27.5	0.36 U
	4/23/2013	22.5 - 27.5	0.36 U
	11/14/2013	22.5 - 27.5	0.36 U
	7/14/2015	22.5 - 27.5	0.71 U
	5/28/2020	22.5 - 27.5	9.0
	6/26/2020	22.5 - 27.5	7.4
	11/23/2021	22.5 - 27.5	7.0
	5/26/2023	22.5 - 27.5	7.6
LETF-MW0002	5/22/2007	22.5 - 27.5	4.8
	5/14/2009	22.5 - 27.5	14
	12/3/2009	22.5 - 27.5	10
	5/18/2010	22.5 - 27.5	12
	11/3/2010	22.5 - 27.5	10.9
	5/4/2011	22.5 - 27.5	11
	11/16/2011	22.5 - 27.5	13.7
	1/10/2013	22.5 - 27.5	2.4
	7/14/2015	22.5 - 27.5	0.71 U
	11/18/2016	22.5 - 27.5	1.2
	9/5/2017	22.5 - 27.5	0.71 U
	11/26/2019	22.5 - 27.5	0.41 U
	5/28/2020	22.5 - 27.5	0.76 I
	11/23/2021	22.5 - 27.5	0.71 U

Table 11-2
Launch Equipment Test Facility - Long Term Monitoring (LTM)
Groundwater Sampling Analytical Results

		Category	Volatile Organic Compounds (VOC) by Method 8260
		VINYL CHLORIDE	
	F	1	
	F	100	
		Screened Interval	
Location ID	Sample Date	(ft bls)	
LETF-MW0005	5/22/2007	22.5 - 27.5	21
	5/14/2009	22.5 - 27.5	13
	12/3/2009	22.5 - 27.5	14
	5/19/2010	22.5 - 27.5	11
	11/3/2010	22.5 - 27.5	5.77
	5/4/2011	22.5 - 27.5	6.2
	11/16/2011	22.5 - 27.5	6.78
	1/9/2013	22.5 - 27.5	9.8
	7/14/2015	22.5 - 27.5	0.71 U
	11/18/2016	22.5 - 27.5	0.71 U
	9/5/2017	22.5 - 27.5	0.71 U
	5/28/2020	22.5 - 27.5	0.41 U
	11/23/2021	22.5 - 27.5	0.71 U
LETF-MW0007	5/22/2007	33.5 - 38.5	26
	5/14/2009	33.5 - 38.5	59
	12/3/2009	33.5 - 38.5	45
	5/18/2010	33.5 - 38.5	48
	11/3/2010	33.5 - 38.5	56.7
	5/4/2011	33.5 - 38.5	57.1
	11/16/2011	33.5 - 38.5	60.2
	7/24/2012	33.5 - 38.5	60.1
	10/10/2012	33.5 - 38.5	50
	1/9/2013	33.5 - 38.5	16
	11/14/2013	33.5 - 38.5	1.6
	7/14/2015	33.5 - 38.5	0.96 I
	11/18/2016	33.5 - 38.5	0.71 U
	9/6/2017	33.5 - 38.5	2.1
	11/26/2019	33.5 - 38.5	0.41 U
	5/28/2020	33.5 - 38.5	0.53 I
	11/23/2021	33.5 - 38.5	0.71 U

Table 11-2
Launch Equipment Test Facility - Long Term Monitoring (LTM)
Groundwater Sampling Analytical Results

		Volatile Organic Compounds (VOC) by Method 8260	
		VINYL CHLORIDE	
	F	1	
FDEP NADCs (µg/L)			100
		Screened Interval	
Location ID	Sample Date	(ft bls)	
LETF-PSB-MW0001I	9/21/2006	22 - 27	92.3
	5/14/2009	22 - 27	79
	12/3/2009	22 - 27	23
	5/19/2010	22 - 27	3.5
	11/3/2010	22 - 27	8.29
	5/4/2011	22 - 27	4.6
	11/16/2011	22 - 27	0.64 I
	1/10/2013	22 - 27	0.36 U
	7/14/2015	22 - 27	0.71 U
	11/18/2016	22 - 27	0.71 U
	5/28/2020	22 - 27	1.2
	11/23/2021	22 - 27	0.71 U
	5/26/2023	22 - 27	0.71 U
LETF-PSB-MW0002I	9/19/2006	22 - 27	26.2
	5/14/2009	22 - 27	6.5
	12/3/2009	22 - 27	3.8
	5/18/2010	22 - 27	0.80 U
	11/3/2010	22 - 27	3.94
	5/4/2011	22 - 27	10.2
	11/16/2011	22 - 27	7.7
	1/9/2013	22 - 27	6.3
	7/14/2015	22 - 27	0.71 U
	11/18/2016	22 - 27	5.4
	9/6/2017	22 - 27	0.94 I
	11/26/2019	22 - 27	0.41 U
	5/28/2020	22 - 27	0.41 U
	11/23/2021	22 - 27	0.71 U

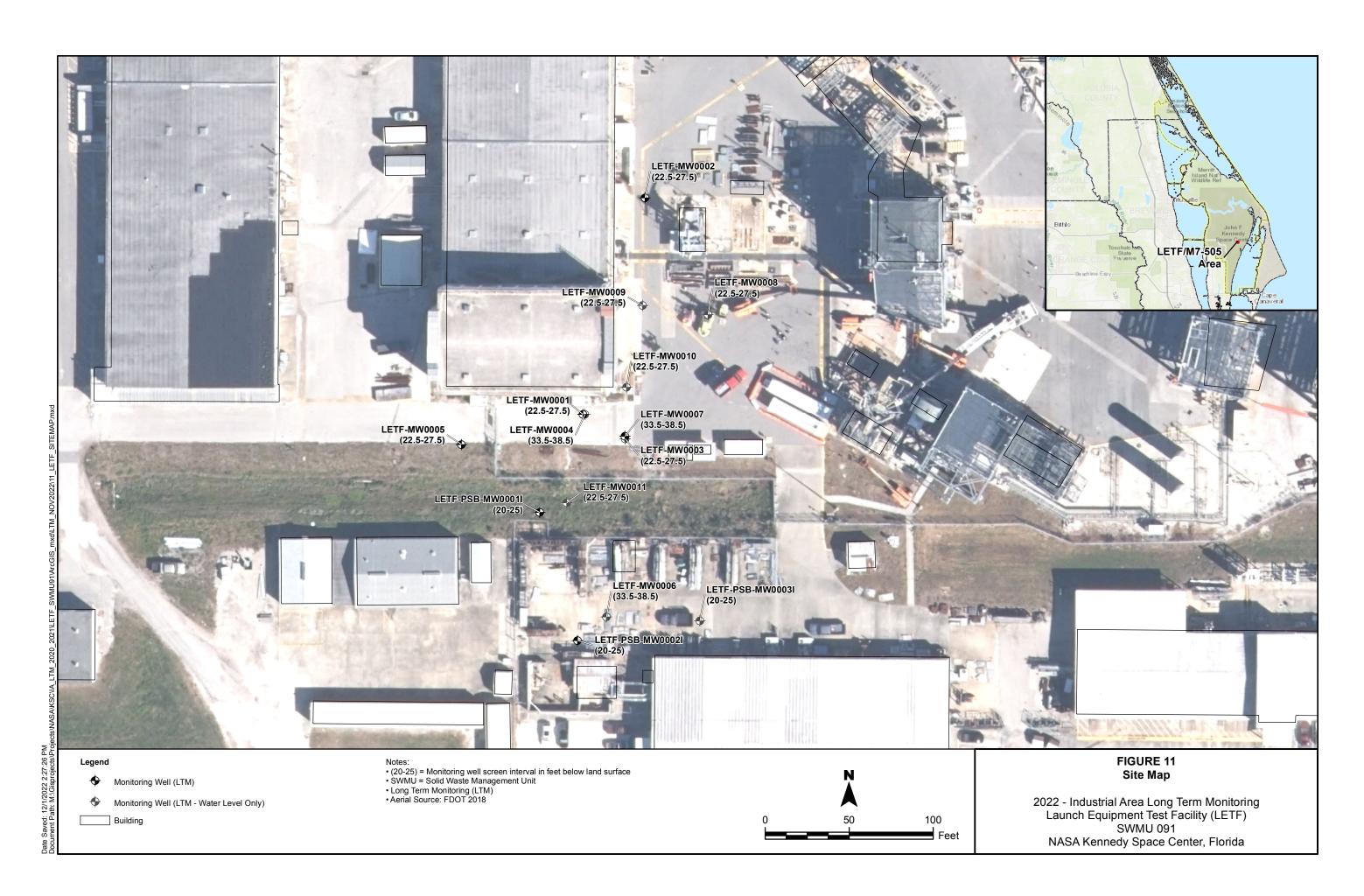
FDEP GCTLs = Florida Department of Environmental Protection Groundwater Cleanup Target Levels, Chapter 62-777 Florida Administrative Code, Table 1 (2005)

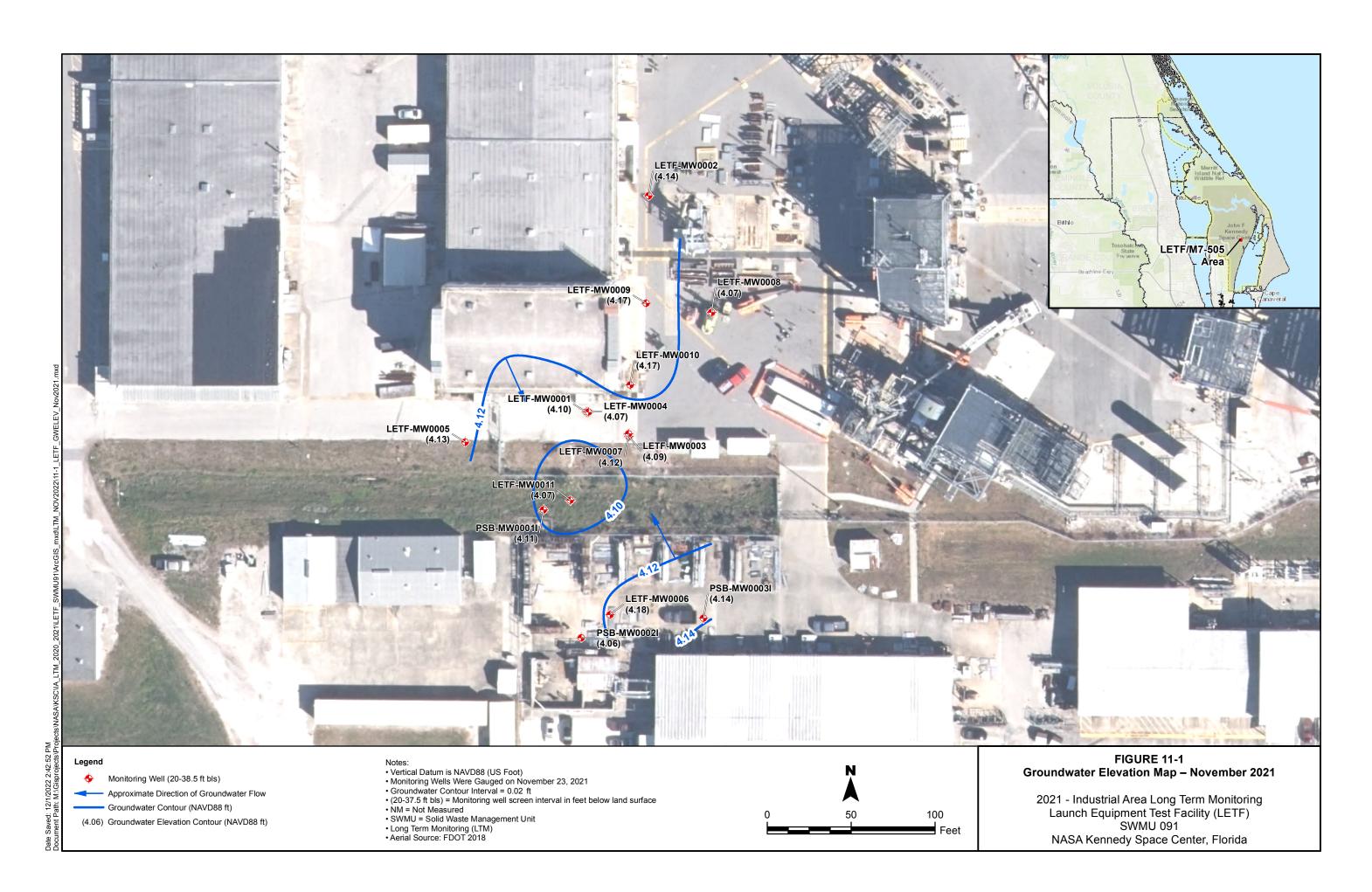
FDEP NADCs = Natural Attenuation Default Concentration, Chapter 62-777 Florida Administrative Code, Table V (2005)

ft bls = feet below land surface

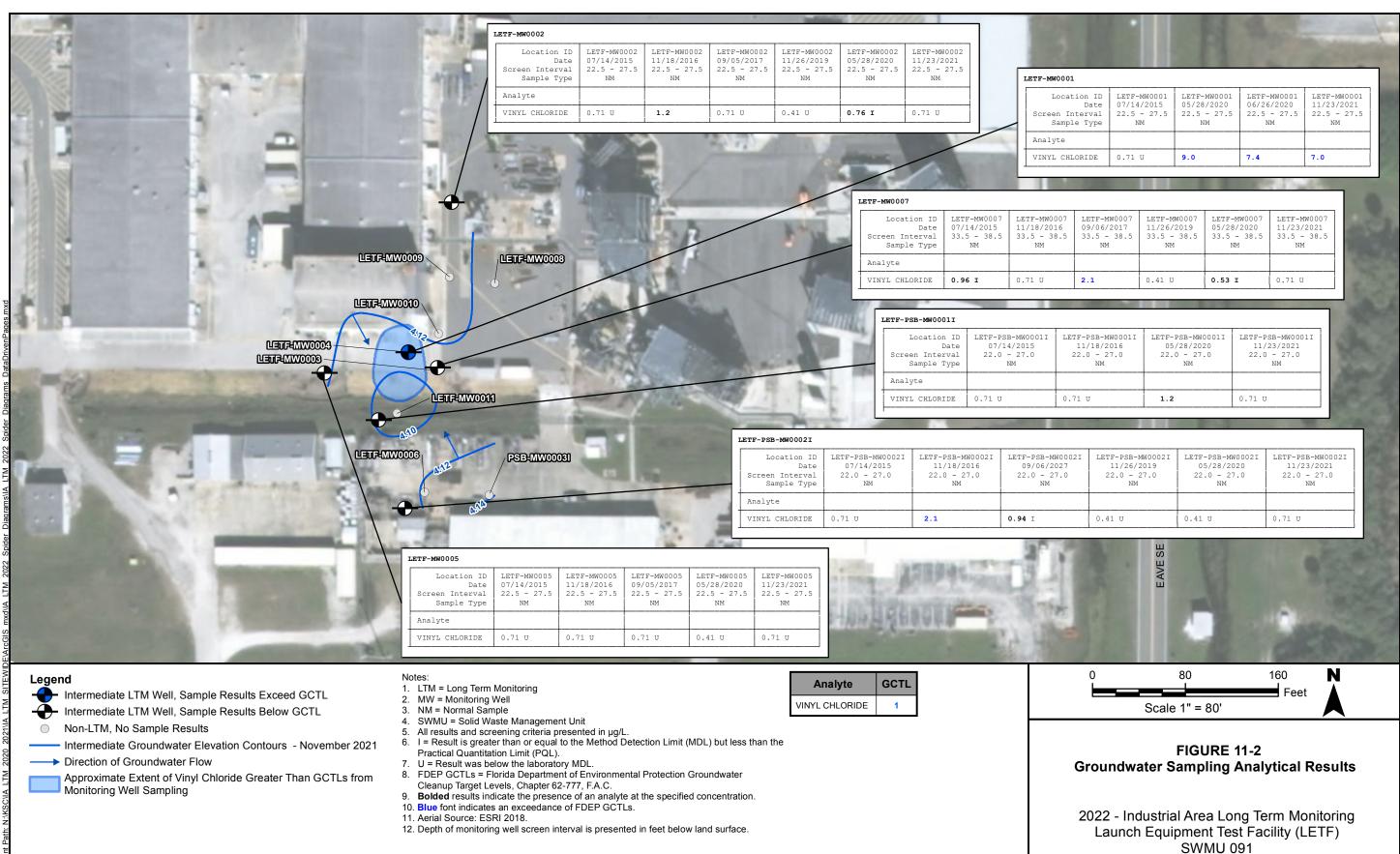
LETF = Launch Equipment Test Facility

MW = monitoring well

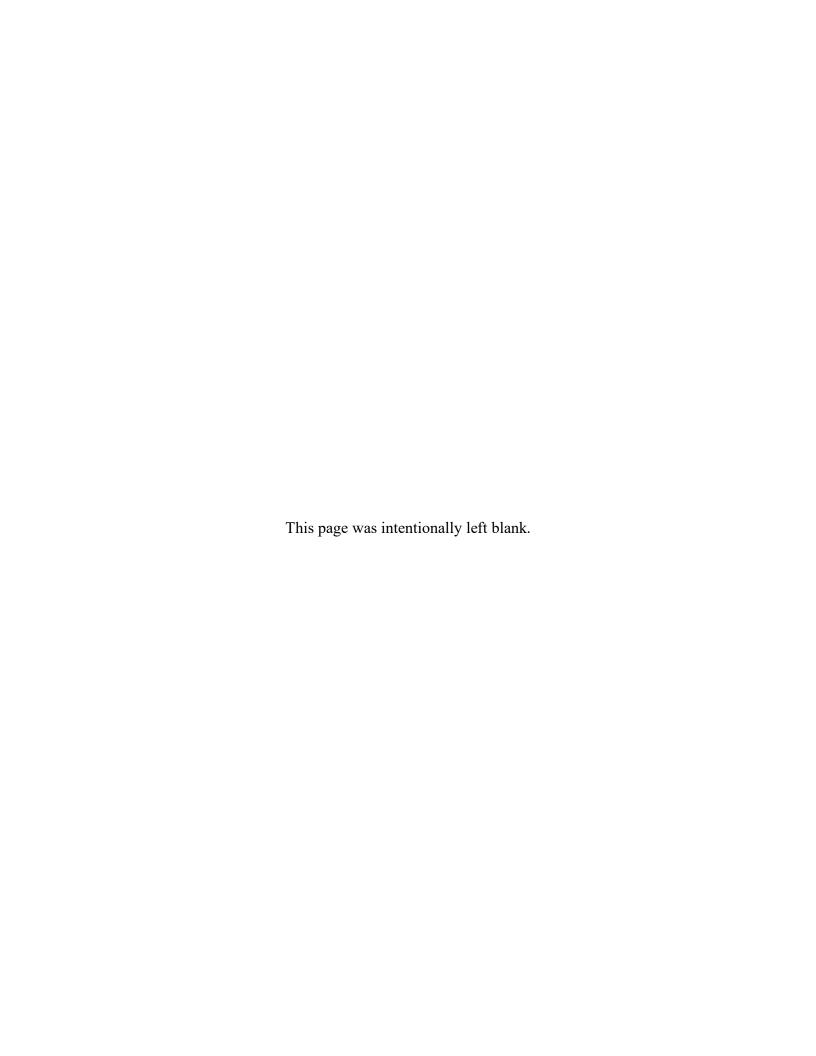

Results and screening criteria presented in µg/L (micrograms per liter)


Bolded results indicate the presence of an analyte at the specified concentration

Red font indicates an exceedance of FDEP GCTLs


Highlighted cell indicates an exceedance of FDEP NADCs

I = Analyte greater than or equal to the method detection limit, but less than the practical quantitation limit U = Analyte not detected



NASA Kennedy Space Center, Florida

Date Saved: 2/13/2023 3:20:24 PM

12. MOBIL SERVICE STATION

This section provides a summary of the MOBIL site (SWMU 093). Refer to **Figure 12** for a site map.

12.1 SITE DESCRIPTION AND HISTORY

MOBIL is the KSC fueling service station, located at the intersection of Third Street Southeast and C Avenue Southeast. Constructed in 1967, the fueling service station was formerly known as the NASA Union 76, which changed to the Citgo Service Station in 2000 and it finally became a Mobil Station in 2011. The fueling service station is comprised of a small service station that provides on-site gasoline, diesel, and ethanol dispensers under a canopy. One compartmentalized 22,000-gallon UST containing gasoline and diesel fuel is located on the east side of the fuel dispensers. A 5,000-gallon ethanol above ground storage tank (AST) is also located on the eastern portion of the site (NASA 2012).

Between 2005 and 2006, a SWMU assessment and confirmatory sampling were conducted, which identified total xylene concentrations exceeding the GCTL and methyl tert-butyl ether (MTBE) exceeding the NADC (J-BOSC 2006). In 2007, a supplemental petroleum site assessment confirmed MTBE and total xylene exceedances, plus benzene, ethylbenzene, and naphthalene were also detected at concentrations exceeding their respective GCTLs (NASA 2012).

In 2009, a remedial alternatives evaluation was completed which described two pilot tests targeting the petroleum-impacted groundwater (LFR 2009a). An AS/SVE pilot test was performed, but the lithology at MOBIL limited the effectiveness of the AS/SVE system. Thus, full-scale implementation of AS/SVE was not recommended. The second pilot test, in situ chemical oxidation using RegenOxTM, was injected into the groundwater. Results from the chemical oxidation pilot test indicated that the lithology also limited oxidant distribution, thus full-scale implementation was not recommended. Based on the limited effects from the two pilot tests, MNA and LTM were recommended and approved by the KSCRT as the remedy to treat the petroleum-impacted groundwater at MOBIL (NASA 2012). In 2010, semi-annual LTM sampling of groundwater began at the site until 2012, when the sampling frequency changed to the current biennial groundwater sampling schedule.

A historical review was completed in January 2023 to determine the extent of vertical delineation at the site. DPT groundwater samples were collected around the site at various depths in 2005 and 2006. The highest measured contamination in the 33ft to 37 ft interval was located at DPT0013 in 2006 (LFR 2006b). Monitoring wells CGO-MW0009 (screened 32.5 ft bls to 37.5 ft bls) and CGO-MW0013 (screened 42.5 ft bls to 47.5 ft bls) were installed at this location. Monitoring well CGO-MW0009 had a benzene exceedance in 2007, but no GCTL exceedances in 2008 or 2010. The samples collected from monitoring well CGO-MW0013 in 2007, 2008, and

2010 were non-detect (ARCADIS 2011b). Historical groundwater DPT and monitoring well analytical figures from 2006 and 2010 are provided in **Appendix M**.

12.2 FIELD ACTIVITIES

Field activities were conducted at MOBIL in May 2022. Groundwater levels were measured at nine monitoring wells, and samples from three monitoring wells were collected during the event. Monitoring well CGO-MW0019 was added to the 2022 sampling schedule to verify horizontal delineation. The following table shows the network of wells used for groundwater level measurements and sampling at MOBIL.

Well ID	Screen Interval (ft bls)	Analysis
CGO-MW0005	22.5-27.5	WL Only
CGO-MW0006	22.5-27.5	WL + select VOCs and select PAHs
CGO-MW0007	22.5-27.5	WL Only
CGO-MW0014	22.5-27.5	WL Only
CGO-MW0015	22.5-27.5	WL Only
CGO-MW0018	22.5-27.5	WL + select VOCs
CGO-MW0019	22.5-27.5	WL + select VOCs
CGO-MW0023	22.5-27.5	WL Only
CGO-MW0024	22.5-27.5	WL Only

ID = identification

MW = monitoring well

Select PAHs = naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene analysis by Method 8270

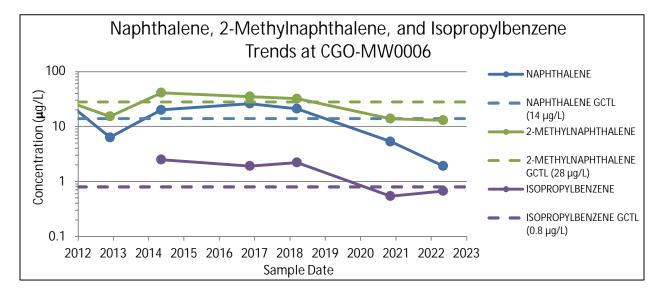
Select VOCs = benzene, 1,2,4-TMB, xylenes, and MTBE analysis by Method 8260

WL = water level measurement

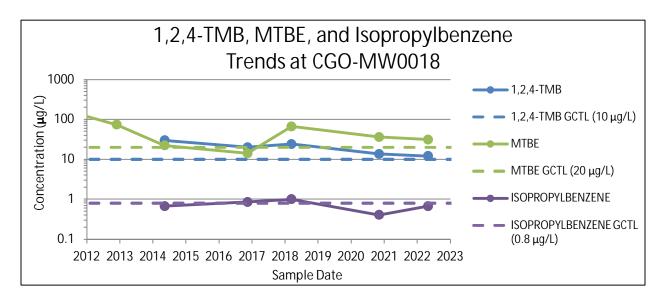
The groundwater samples collected at monitoring wells CGO-MW0006, CGO-MW0018, and CGO-MW0019 were analyzed for VOCs by Method 8260, and samples from CGO-MW0006 were also analyzed for PAHs by Method 8270. The following table shows the COCs for MOBIL with their respective GCTLs and NADCs.

COC	GCTL (µg/L)	NADC (μg/L)
Benzene	1	100
Isopropylbenzene	0.8	8
1,2,4-TMB	10	100
Xylenes	20	200
MTBE	20	200
Naphthalene	14	140
1-Methylnaphthalene	28	280
2-Methylnaphthalene	28	280

12.3 WATER LEVEL COLLECTION AND GROUNDWATER FLOW DIRECTION


Groundwater levels collected during the May 2022 sampling event were used to calculate groundwater elevations presented in **Table 12-1**. Groundwater elevations were used to determine the contours and flow direction for the intermediate groundwater horizon (22.5 ft bls to 27.5 ft bls), shown on **Figure 12-1**. The groundwater flow direction was radially outward with a high mound centered around monitoring well CGO-MW0019. Groundwater flow direction has been historically toward the south-southwest.

12.4 ANALYTICAL RESULTS


Select PAHs were detected at monitoring well CGO-MW0006; however, none of the results exceeded GCTLs. Monitoring well CGO-MW0018 had GCTL exceedances of MTBE (31 μ g/L) and 1,2,4-trimethylbenzene (TMB) (12 μ g/L). The select VOCs analyzed at monitoring well CGO-MW0019 were below the respective GCTLs. A summary of the recent and historical analytical results is presented in **Table 12-2**. Analytical results are depicted on **Figure 12-2**.

12.5 TREND ANALYSIS

Monitoring well CGO-MW0006 has exhibited a decreasing trend since 2014 and has been below GCTLs for the second consecutive event. The following trend chart shows the naphthalene, 2-methylnaphthalene, and isopropylbenzene concentrations at CGO-MW0006 since 2012.

MTBE and 1,2,4-TMB remain above GCTLs at monitoring well CGO-MW0018 but have both shown recent declines since the 2018 sampling event. Isopropylbenzene exceeded the GCTL in 2016 and 2018 but has dropped below the GCTL in 2020 and 2022. The following trend chart shows the MTBE, 1,2,4-TMB, and isopropylbenzene concentrations at CGO-MW0018 since 2012.

Monitoring well CGO-MW0019 was recently added to the sampling schedule and was previously sampled in 2009. Although no recent trends can be generated for CGO-MW0019, the analytical results from 2009 and 2022 were below GCTLs.

12.6 CONCLUSION AND RECOMMENDATION

The analytes at monitoring wells CGO-MW0006 and CGO-MW0019 were below GCTLs in May 2022. MTBE and 1,2,4-TMB concentrations at monitoring well CGO-MW0018 remain above GCTLs, but are continuing to decrease.

Eight historically clean monitoring wells are recommended to be abandoned. Historical groundwater data are provided in **Table 12-2**. These eight monitoring wells were installed during assessment and early LTM activities, before the plume was determined to be isolated in the intermediate zone at this site (22.5 ft bls to 27.5 ft bls). The eight monitoring wells proposed for abandonment, located around the perimeter of the site, are screened above or below the monitored plume, and not used for plume delineation.

The following table lists the proposed monitoring wells to abandon and their screen intervals:

Well ID	Screen Interval (ft bls)
CGO-MW0002	2-12
CGO-MW0003	2-12
CGO-MW0004	2-12
CGO-MW0009	32.5-37.5
CGO-MW0010	32.5-37.5
CGO-MW0012	32.5-37.5
CGO-MW0013	42.5-47.5
CGO-MW0016	32.5-27.5

The biennial LTM sampling frequency is recommended to continue at MOBIL with monitoring wells CGO-MW0005, CGO-MW0023, and CGO-MW0024 added into the sampling program to verify downgradient VOC concentrations. Six monitoring wells are recommended to be analyzed for select VOCs (benzene, 1,2,4-TMB, xylenes, and MTBE), and monitoring well CGO-MW0006 will also be analyzed for select PAHs (naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene). Groundwater levels are recommended to continue to be measured at nine monitoring wells.

The following table shows the recommended monitoring wells for water level measurements and groundwater sampling for the next sampling event at MOBIL, scheduled for November 2024.

Well ID	Screen Interval (ft bls)	Analysis
CGO-MW0005	22.5-27.5	WL + select VOCs
CGO-MW0006	22.5-27.5	WL + select VOCs and select PAHs
CGO-MW0007	22.5-27.5	WL Only
CGO-MW0014	22.5-27.5	WL Only
CGO-MW0015	22.5-27.5	WL Only
CGO-MW0018	22.5-27.5	WL + select VOCs
CGO-MW0019	22.5-27.5	WL + select VOCs
CGO-MW0023	22.5-27.5	WL + select VOCs
CGO-MW0024	22.5-27.5	WL + select VOCs

ID = identification

MW = monitoring well

Select PAHs = naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene analysis by Method 8270

Select VOCs = benzene, 1,2,4-TMB, xylenes, and MTBE analysis by Method 8260

WL = water level measurement

Table 12-1 Mobil Service Station - Long Term Monitoring (LTM) Monitoring Well Groundwater Elevations

INTERMEDIATE WELL ID:	CGO-M	1W0005	CGO-M	IW0006	CGO-MW0007		
Screen Interval (ft bls):	22.5	- 27.5	22.5	- 27.5	22.5	- 27.5	
TOC Elevation (ft NAVD88):	6.	74	8.	70	6.	71	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation	
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	
May 2014	3.62	3.12	5.62	3.08	3.73	2.98	
November 2016	3.21	3.53	5.21	3.49	3.32	3.39	
March 2018	3.21 3.53		5.21	3.49	3.32	3.39	
November 2020	2.00 4.74		4.06	4.64	2.14	4.57	
May 2022	3.49	3.25	5.50 3.20		3.62	3.09	

INTERMEDIATE WELL ID:	CGO-M	IW0014	CGO-M	1W0015	CGO-MW0018		
Screen Interval (ft bls):	22.5	- 27.5	22.5	- 27.5	22.5 - 27.5		
TOC Elevation (ft NAVD88):	7.	82	6.	83	6.	60	
	Depth to Water Water Elevation		Depth to Water	Water Elevation	Depth to Water	Water Elevation	
Date	(ft BTOC) (ft NAVD8		(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	
May 2014	4.72	3.10	3.74	3.09	3.45	3.15	
November 2016	4.34	3.48	3.38	3.45	3.09	3.51	
March 2018	4.34 3.48		3.38	3.45	3.09	3.51	
November 2020	3.19 4.63		2.27	4.56	1.83	4.77	
May 2022	4.58	3.24	3.64	3.64 3.19		3.21	

INTERMEDIATE WELL ID:	CGO-M	IW0019	CGO-M	IW0023	CGO-MW0024	
Screen Interval (ft bls):	22.5	- 27.5	22.5	- 27.5	22.5	- 27.5
TOC Elevation (ft NAVD88):	6.	38	6.	75	6.	73
	Depth to Water Water Elevation		Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
May 2014	3.21	3.17	3.64	3.11	3.62	3.11
November 2016	2.34	4.04	3.24	3.51	3.22	3.51
March 2018	2.34 4.04		3.24	3.51	3.22	3.51
November 2020	1.65 4.73		2.08	4.67	2.05	4.68
May 2022	2.84	3.54	3.57	3.18	3.54	3.19

bls = below land surface

BTOC = below top of casing

CGO = Citgo Service Station

ft = feet

MW = monitoring well

NAVD88 = North American Vertical Datum of 1988

TOC = top of casing

Table 12-2 Mobil Service Station - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

		Category		r Aromatic Hydrocarb y Method SW8270 SIN		Volatile Organic Compounds (VOC) by Method 8260			ł 8260		
		•	1-METHYL NAPHTHALENE	2-METHYL NAPHTHALENE	NAPHTHALENE	BENZENE	1,3,5-TRIMETHYL BENZENE	BENZENE	ISOPROPYL BENZENE	METHYL TERT- BUTYL ETHER	TOTAL XYLENES
		DEP GCTLs (µg/L)	28	28	14	10	10	1	0.8	20	20
	F	DEP NADCs (µg/L)	280	280	140	100	100	100	8	200	200
Location ID	Sample Date	Screened Interval (ft bls)									
CGO-MW0001	5/30/2007	2 - 12	0.04 U	0.041 U	0.080 I	NA	NA	0.088 U	NA	36	13.2
	5/21/2008	2 - 12	0.038 U	0.039 U	0.048 U	NA	NA	0.2 U	NA	40	9.9
	4/30/2009	2 - 12	NA	NA	NA	NA	NA	0.52 U	NA	25	0.4 I
	7/24/2009	2 - 12	NA	NA	NA	NA	NA	0.52 U	NA	12	0.69 I
	5/18/2010	2 - 12	NA	NA	NA	NA	NA	0.21 U	NA	3.8	1.24 U
	11/15/2011	2 - 12	NA	NA	NA	NA	NA	0.21 U	NA	0.14 U	0.55 U
CGO-MW0002	5/30/2007	2 - 12	0.042 U	0.043 U	0.053 U	NA	NA	0.088 U	NA	4.6	0.273 U
	5/21/2008	2 - 12	0.039 U	0.04 U	0.049 U	NA	NA	0.2 U	NA	9.8	17.5
CGO-MW0003	5/30/2007	2 - 12	0.037 U	0.038 U	0.054 I	NA	NA	0.088 U	NA	2.4	0.49 I
	5/21/2008	2 - 12	0.039 U	0.04 U	0.048 U	NA	NA	0.2 U	NA	4.0	0.32 I
CGO-MW0004	5/30/2007	2 - 12	0.036 U	0.037 U	0.068 I	NA	NA	0.088 U	NA	1.3 U	0.273 U
	5/21/2008	2 - 12	0.039 U	0.04 U	0.048 U	NA	NA	0.2 U	NA	1.1 I	0.72 U
CGO-MW0005	5/30/2007	22.5 - 27.5	0.041 U	0.042 U	0.051 U	NA	NA	4.3	NA	190	1.1
	5/21/2008	22.5 - 27.5	0.039 U	0.04 U	0.048 U	NA	NA	7.1	NA	230	0.51 I
	4/30/2009	22.5 - 27.5	NA	NA	NA	NA	NA	8.1	NA	240	0.32 U
	7/24/2009	22.5 - 27.5	NA	NA	NA	NA	NA	3.5	NA	140	0.32 U
CGO-MW0006	5/30/2007	22.5 - 27.5	10	16	16	NA	NA	0.64 I	NA	1.3 U	3.44 I
	5/22/2008	22.5 - 27.5	11	19	15	NA	NA	0.2 U	NA	0.16 U	2.80
	5/18/2010	22.5 - 27.5	12	26	18	NA	NA	0.38 I	NA	0.14 U	1.63
	11/15/2010	22.5 - 27.5	11	23	19	NA	NA	0.32 I	NA	0.14 U	1.76 I
	5/11/2011	22.5 - 27.5	10.9	17.6	20.1	NA	NA	0.49 I	NA	0.24 U	0.31 I
	11/2/2011	22.5 - 27.5	12.1	26.5	22.9	NA	NA	0.51 I	NA	0.24 U	0.14 U
	11/27/2012	22.5 - 27.5	6.17	15.2	6.32	NA	NA	0.44 I	NA	0.24 U	1.6
	5/14/2014	22.5 - 27.5	22	41	20	3.0	0.58 U	0.71 U	2.5	0.60 U	1.3 U
	11/16/2016	22.5 - 27.5	16	35	26	1.8	0.58 U	0.71 U	1.9	0.60 U	1.3 U
	3/19/2018	22.5 - 27.5	17	32	21	1.9	0.58 U	0.71 U	2.2	0.60 U	1.3 I
	11/11/2020	22.5 - 27.5	8.0	13.8	7.3	0.51 I	0.27 U	0.31 U	0.54 I	0.23 U	0.72 U
	5/11/2022	22.5 - 27.5	6.5	13	1.9	0.69 U	0.58 U	0.71 U	0.67 U	0.60 U	1.3 U
CGO-MW0007	5/31/2007	22.5 - 27.5	0.043 U	0.044 U	0.076 I	NA	NA	140	NA	80	0.273 U
	5/22/2008	22.5 - 27.5	0.039 U	0.04 U	0.056 I	NA	NA	280	NA	75	1.9
	5/18/2010	22.5 - 27.5	NA	NA	NA	NA	NA	410	NA	14	50.8
	11/16/2010	22.5 - 27.5	NA	NA	NA	NA	NA	251	NA	6.9	127.5
	5/11/2011	22.5 - 27.5	NA	NA	NA	NA	NA	167	NA	4.37	170.6
	11/2/2011	22.5 - 27.5	NA	NA	NA	NA	NA	110	NA	3.07	239
	11/27/2012	22.5 - 27.5	NA	NA	NA	NA	NA	7.7	NA	1.7 I	230
	5/14/2014	22.5 - 27.5	NA	NA	NA	12.0	3.1	2.0	2.4	3.6	250
	11/16/2016	22.5 - 27.5	NA	NA	NA	6.6	1.2	0.71 U	0.81 I	1.0 U	10
	3/19/2018	22.5 - 27.5	NA	NA	NA	2.6	0.74 I	1.0 U	1.0 U	0.96 I	2.0 U

Table 12-2 Mobil Service Station - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

			D. I. I.		Iphing Amarytical Rest						
		Catagamy		r Aromatic Hydrocarb y Method SW8270 SIN			Volat	ila Oraguia Campan	ada (VOC) bu Mathad	1 0240	
		Category	-		4			ue Organic Compoui	nds (VOC) by Method 		
			1-METHYL	2-METHYL		1,2,4-TRIMETHYL			ISOPROPYL	METHYL TERT-	
	T.		NAPHTHALENE	NAPHTHALENE	NAPHTHALENE	BENZENE	BENZENE	BENZENE	BENZENE	BUTYL ETHER	TOTAL XYLENES
		DEP GCTLs (µg/L)	28	28	14	10	10	1	0.8	20	20
		DEP NADCs (µg/L)	280	280	140	100	100	100	8	200	200
		Screened Interval									
Location ID	Sample Date	(ft bls)	0.040.77	0.040.77		37.1	37.1	0.000.77	N		
CGO-MW0008	5/30/2007	22.5 - 27.5	0.042 U	0.043 U	0.087 I	NA	NA	0.088 U	NA	62	3.9 I
	5/21/2008	22.5 - 27.5	0.039 U	0.04 U	0.049 U	NA	NA	0.2 U	NA	110	6.4
	5/18/2010	22.5 - 27.5	NA	NA	NA	NA	NA	0.21 U	NA	38	15.6
	11/16/2010	22.5 - 27.5	NA	NA	NA	NA	NA	0.21 U	NA	24.7	19.8
	5/11/2011	22.5 - 27.5	NA	NA	NA	NA	NA	0.21 U	NA	17.5	11.93
~~~	11/2/2011	22.5 - 27.5	NA	NA	NA 0.12	NA	NA	0.38 I	NA	5.6	2.09
CGO-MW0009	5/31/2007	32.5 - 37.5	0.042 U	0.043 U	0.13	NA	NA	4.5	NA	1.3 U	1.47 I
	5/22/2008	32.5 - 37.5	0.047 U	0.042 U	0.26	NA	NA	0.2 U	NA	1.2 I	0.72 U
	5/18/2010	32.5 - 37.5	NA	NA	NA	NA	NA	0.21 U	NA	0.95 I	1.24 U
GG 0 3 57770040	11/15/2010	32.5 - 37.5	NA	NA	NA 1.2	NA	NA	0.21 U	NA	9.28	0.55 U
CGO-MW0010	5/30/2007	32.5 - 37.5	0.039 U	0.042 U	1.2	NA	NA	0.47 I	NA	1.3 U	94
	5/22/2008	32.5 - 37.5	0.04 U	0.041 U	0.95	NA	NA	0.2 U	NA	1.0 I	35
	5/18/2010	32.5 - 37.5	NA	NA	NA	NA	NA	0.21 U	NA	0.65 I	3.5
GG 0 3 57710044	11/15/2010	32.5 - 37.5	NA 0.22	NA	NA	NA	NA	0.21 U	NA	0.14 U	0.55 I
CGO-MW0011	5/30/2007	32.5 - 37.5	0.23	0.047 I	1.1	NA	NA	0.088 U	NA	7.2	0.273 U
	5/21/2008	32.5 - 37.5	0.16	0.041 U	0.93	NA	NA	0.2 U	NA	10	0.72 U
	4/30/2009	32.5 - 37.5	NA	NA	NA	NA	NA	0.52 U	NA	6.2	0.32 U
	7/24/2009	32.5 - 37.5	NA	NA	NA	NA	NA	0.52 U	NA	3.8	0.32 U
CGO-MW0012	5/31/2007	32.5 - 37.5	0.041 U	0.042 U	0.071 I	NA	NA	0.36 I	NA	1.7 I	0.273 U
	5/22/2008	32.5 - 37.5	0.042 U	0.043 U	0.052 U	NA	NA	2.0	NA	2.7	0.72 U
	5/18/2010	32.5 - 37.5	NA	NA	NA	NA	NA	0.21 U	NA	0.84 I	1.24 U
	11/15/2010	32.5 - 37.5	NA	NA	NA	NA	NA	0.21 U	NA	0.14 U	0.55 U
CGO-MW0013	5/31/2007	42.5 - 47.5	0.04 U	0.041 U	0.13	NA	NA	0.088 U	NA	1.3 U	0.273 U
	5/22/2008	42.5 - 47.5	0.039 U	0.04 U	0.07 I	NA	NA	0.2 U	NA	0.16 U	0.72 U
	5/18/2010	42.5 - 47.5	NA	NA	NA	NA	NA	0.21 U	NA	0.14 U	1.24 U
	11/15/2010	42.5 - 47.5	NA	NA	NA	NA	NA	0.21 U	NA	0.14 U	0.55 U
CGO-MW0014	8/7/2007	22.5 - 27.5	NA	NA	NA	NA	NA	0.088 U	NA	1.8 I	0.273 U
	5/22/2008	22.5 - 27.5	0.039 U	0.04 U	0.054 I	NA	NA	0.84 I	NA	3.6	0.72 U
	11/16/2016	22.5 - 27.5	NA	NA	NA	1.0 U	1.0 U	0.71 U	1.0 U	0.60 U	1.3 U
CGO-MW0015	8/7/2007	22.5 - 27.5	NA 0.020 V	NA	NA	NA	NA	0.088 U	NA	1.9 I	0.273 U
000 1	5/21/2008	22.5 - 27.5	0.039 U	0.04 U	0.048 U	NA	NA	0.2 U	NA	2.6	0.72 U
CGO-MW0016	8/7/2007	32.5 - 37.5	NA	NA	NA 0.050 H	NA	NA	0.088 U	NA	1.3 U	0.273 U
000 1	5/22/2008	32.5 - 37.5	0.04 U	0.041 U	0.050 U	NA	NA	0.2 U	NA	0.16 U	0.72 U
CGO-MW0017	8/13/2008	2 -12	0.02 U	0.022 U	0.028 U	NA	NA	2.6 U	NA	23	10.1 I
	4/30/2009	2 -12	NA	NA	NA	NA	NA	0.52 U	NA	12	0.37 I
	7/24/2009	2 -12	NA	NA	NA	NA	NA	0.52 U	NA	11	0.32 U

Table 12-2 Mobil Service Station - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

Groundwater Sampling Analytical Results											
		Category	•	r Aromatic Hydrocarl			<b>T7. 1</b> (	1. O	A WOOLAND	1.0260	
	Category			y Method SW8270 SII	<i>I</i> I			le Organic Compoui	ıds (VOC) by Method I		T
			1-METHYL	2-METHYL			1,3,5-TRIMETHYL		ISOPROPYL	METHYL TERT-	
		Analyte		NAPHTHALENE	NAPHTHALENE	BENZENE	BENZENE	BENZENE	BENZENE	BUTYL ETHER	TOTAL XYLENES
		DEP GCTLs (µg/L)	28	28	14	10	10	1	0.8	20	20
	F	DEP NADCs (µg/L)	280	280	140	100	100	100	8	200	200
		<b>Screened Interval</b>									
<b>Location ID</b>	Sample Date	(ft bls)									
CGO-MW0018	8/13/2008	22.5 - 27.5	0.2 U	0.22 U	0.28 U	NA	NA	6.8	NA	280	6.4
	4/30/2009	22.5 - 27.5	NA	NA	NA	NA	NA	6.3	NA	160	2.7
	7/24/2009	22.5 - 27.5	NA	NA	NA	NA	NA	4	NA	300	0.31 I
	5/18/2010	22.5 - 27.5	NA	NA	NA	NA	NA	1.5	NA	130	1.24 U
	11/15/2010	22.5 - 27.5	NA	NA	NA	NA	NA	0.21 U	NA	125	0.32 I
	5/11/2011	22.5 - 27.5	NA	NA	NA	NA	NA	0.24 I	NA	79	0.6 I
	11/2/2011	22.5 - 27.5	NA	NA	NA	NA	NA	0.21 U	NA	131	0.14 U
	11/27/2012	22.5 - 27.5	NA	NA	NA	NA	NA	0.21 U	NA	73	0.74 I
	5/14/2014	22.5 - 27.5	NA	NA	NA	30	7.6	0.71 U	0.67 U	22	1.3 U
	11/16/2016	22.5 - 27.5	NA	NA	NA	20	4.4	0.71 U	0.85 I	14	1.3 U
	3/19/2018	22.5 - 27.5	NA	NA	NA	24	5.5	0.71 U	1.0	66	1.3 I
	11/11/2020	22.5 - 27.5	NA	NA	NA	13.6	2.4	0.31 U	0.40 I	35.9	0.72 U
	5/11/2022	22.5 - 27.5	NA	NA	NA	12	2.4	0.71 U	0.67 U	31	1.3 U
CGO-MW0019	8/13/2008	22.5 - 27.5	0.02 U	0.022 U	0.029 U	NA	NA	2.6 U	NA	44	1.6 U
	4/30/2009	22.5 - 27.5	NA	NA	NA	NA	NA	0.52 U	NA	42	0.63 I
	7/24/2009	22.5 - 27.5	NA	NA	NA	NA	NA	0.52 U	NA	0.072 U	0.32 U
	5/11/2022	22.5 - 27.5	NA	NA	NA	0.69 U	0.58 U	0.71 U	0.67 U	7.9	1.3 U
CGO-MW0020	8/13/2008	22.5 - 27.5	0.02 U	0.022 U	0.028 U	NA	NA	2.6 U	NA	150	1.60 U
	4/30/2009	22.5 - 27.5	NA	NA	NA	NA	NA	1.6	NA	100	0.32 U
	7/24/2009	22.5 - 27.5	NA	NA	NA	NA	NA	2.9	NA	190	0.41 I
	5/18/2010	22.5 - 27.5	NA	NA	NA	NA	NA	0.21 U	NA	23	1.24 U
	11/15/2010	22.5 - 27.5	NA	NA	NA	NA	NA	0.21 U	NA	4.44	0.55 U
	5/11/2011	22.5 - 27.5	NA	NA	NA	NA	NA	0.21 U	NA	3.76	0.14 U
	11/2/2011	22.5 - 27.5	NA	NA	NA	NA	NA	0.21 U	NA	19	0.14 U
CGO-MW0021	8/13/2008	32.5 - 37.5	0.051 I	0.022 U	1.1	NA	NA	2.6 U	NA	5.3 I	1.60 U
	4/30/2009	32.5 - 37.5	NA	NA	NA	NA	NA	0.52 U	NA	4.8	0.32 U
	7/24/2009	32.5 - 37.5	NA	NA	NA	NA	NA	0.52 U	NA	5.5	0.32 U
CGO-MW0022	8/13/2008	22.5 - 27.5	0.035 I	0.022 U	1.0	NA	NA	2.6 U	NA	0.36 U	1.60 U
	4/30/2009	22.5 - 27.5	NA	NA	NA	NA	NA	0.52 U	NA	1.4 I	0.32 U
	7/24/2009	22.5 - 27.5	NA	NA	NA	NA	NA	0.52 U	NA	4.2	0.32 U
CGO-MW0023	5/1/2009	22.5 - 27.5	NA	NA	NA	NA	NA	0.52 U	NA	25	0.32 U
	7/24/2009	22.5 - 27.5	NA	NA	NA	NA	NA	0.52 U	NA	52	0.32 U
CGO-MW0024	5/1/2009	22.5 - 27.5	NA	NA	NA	NA	NA	0.94 I	NA	71	1.1
	7/24/2009	22.5 - 27.5	NA	NA	NA	NA	NA	1.2	NA	110	1.5

FDEP GCTLs = Florida Department of Environmental Protection Groundwater Cleanup Target Levels, Chapter 62-777 Florida Administrative Code, Table 1 (2005)

FDEP NADCs = Natural Attenuation Default Concentration, Chapter 62-777 Florida Administrative Code, Table V (2005)

ft bls = feet below land surface

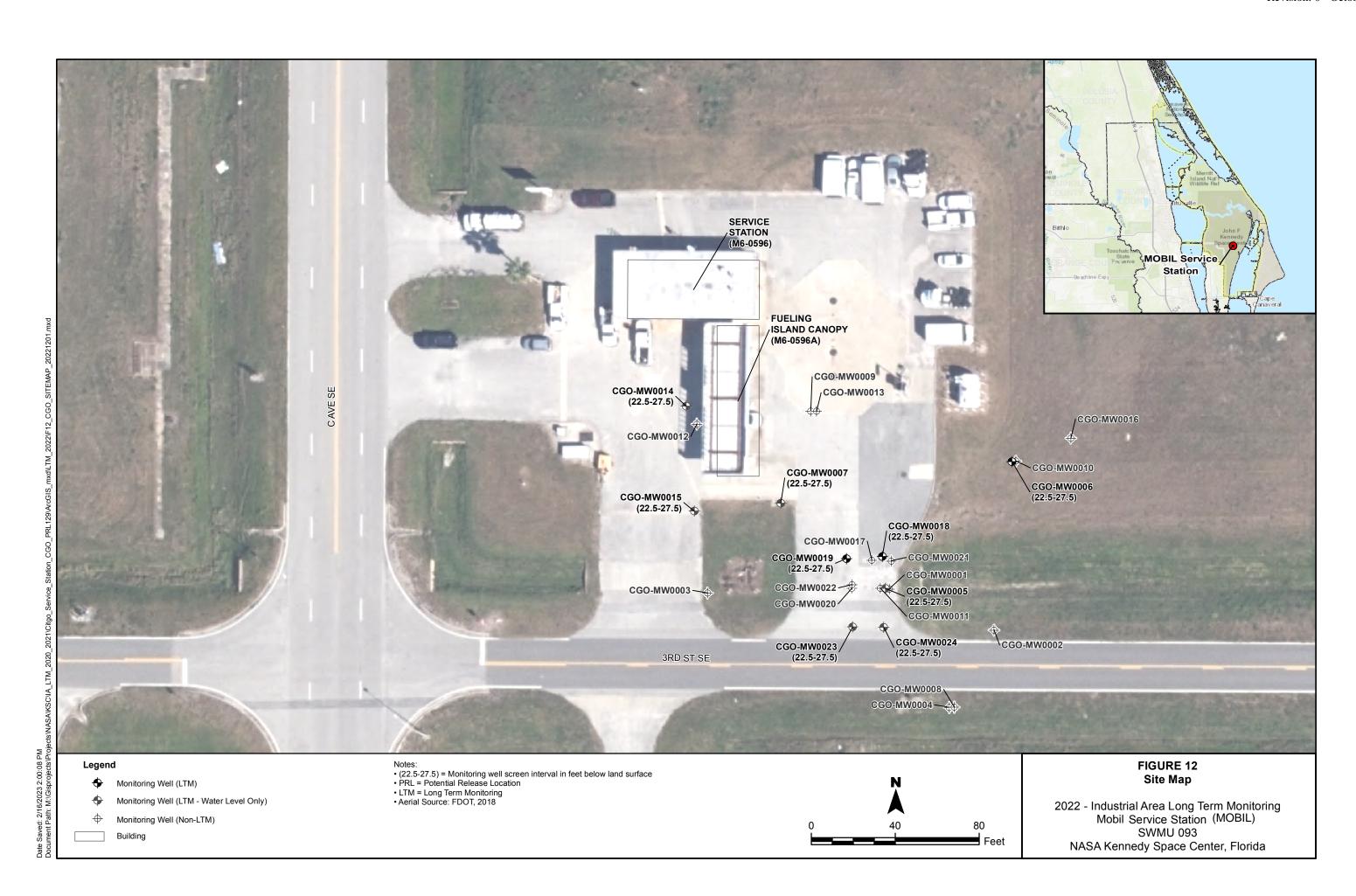
CGO = Citgo Service Station

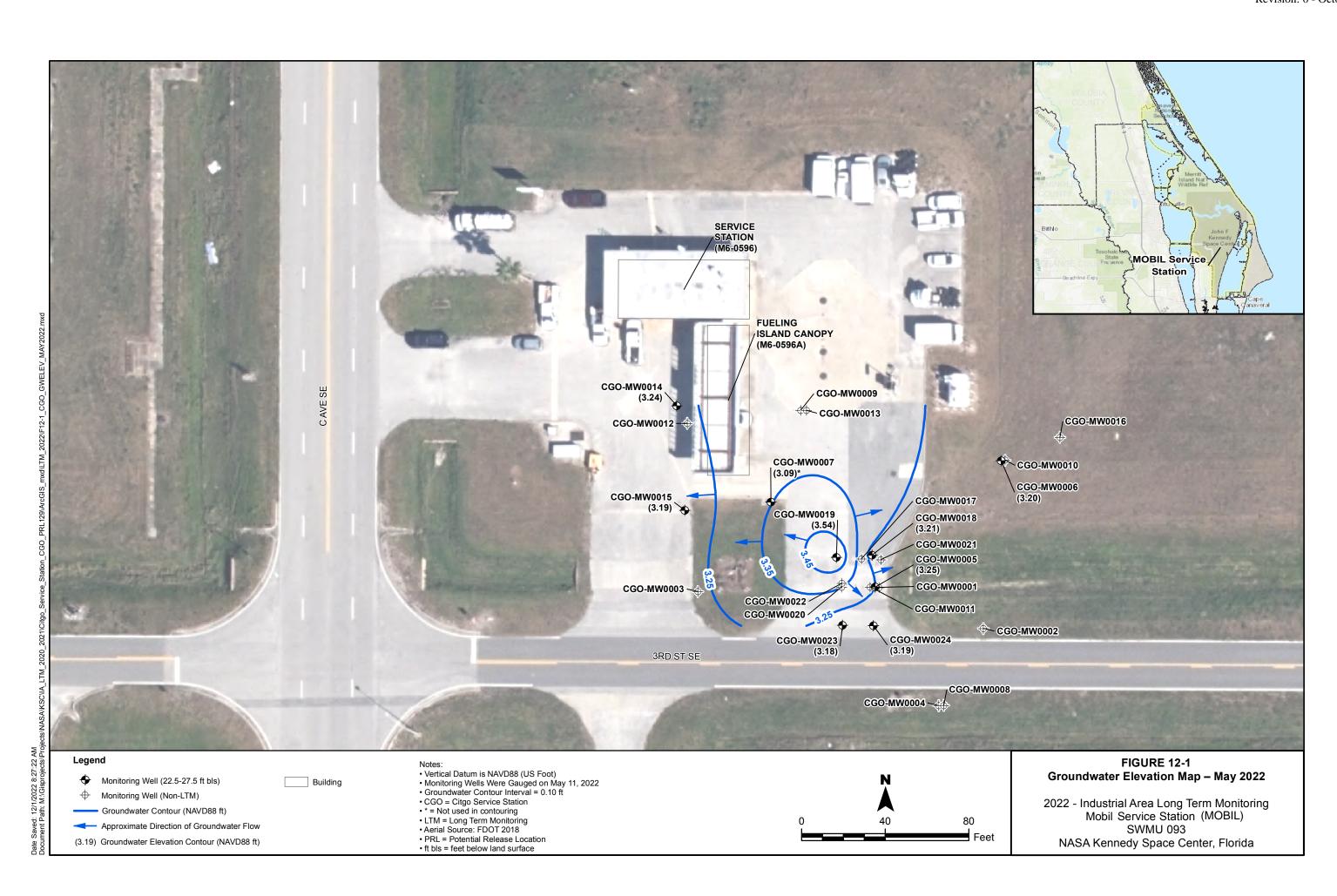
MW = monitoring well

NA = Not Analyzed

Results and screening criteria presented in µg/L (micrograms per liter)

**Bolded** results indicate the presence of an analyte at the specified concentration


**Red** font indicates an exceedance of FDEP GCTLs


Highlighted cell indicates an exceedance of FDEP NADCs

I = Analyte greater than or equal to the method detection limit, but less than the practical quantitation limit

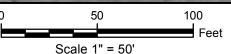
U = Analyte not detected

The numeric value presented for non-detects is the sample-specific reporting detection limit





Intermediate LTM Well, Sample Results Exceed GCTL


Intermediate LTM Well, Sample Results Below GCTL

- Non-LTM, No Sample Results
- Intermediate Groundwater Elevation Contours May 2022
- Direction of Groundwater Flow

Approximate Extent of Multiple Contaminants Greater Than GCTLs from Monitoring Well Sampling (Dashed Where Inferred)

- 1. LTM = Long Term Monitoring
- 2. MW = Monitoring Well
- 3. NM = Normal Sample
- 4. SWMU = Solid Waste Management Unit
- 5. All results and screening criteria presented in µg/L.
- 6. I = Result is greater than or equal to the Method Detection Limit (MDL) but less than the
- Practical Quantitation Limit (PQL). U = Result was below the laboratory MDL.
- 8. FDEP GCTLs = Florida Department of Environmental Protection Groundwater Cleanup Target Levels, Chapter 62-777, F.A.C.
- 9. **Bolded** results indicate the presence of an analyte at the specified concentration.
- 10. Blue font indicates an exceedance of FDEP GCTLs.
- 11. Aerial Source: ESRI 2018.
- 12. Depth of monitoring well screen interval is presented in feet below land surface.

Analyte	GCTL
1,2,4-TRIMETHYLBENZENE	10
1,3,5,-TRIMETHYLBENZENE	10
BENZENE	1
ISOPROPYLBENZENE	8.0
METHYL TERT BUTYL ETHER	20
TOTAL XYLENES	20
1-METHYL NAPHTHALENE	28
2-METHYL NAPHTHALENE	28
NAPHTHALENE	14





2022 - Industrial Area Long Term Monitoring Mobil Service Station (MOBIL) **SWMU 093** NASA Kennedy Space Center, Florida

#### 13. GENERAL SERVICES ADMINISTRATION SEIZED PROPERTY

This section provides a summary of the GSSP site (SWMU 095). Refer to **Figure 13** for a site map.

#### 13.1 SITE DESCRIPTION AND HISTORY

The GSSP is located on the western edge of the KSC industrial area on the north side of the Kennedy Parkway North and 5th Street Southeast/Odyssey Way intersection. The site was developed in 1989 for storage and auctioning of vehicles, trucks, and boats seized by various government agencies. Minor vehicle maintenance was also performed at the site. Major vehicle repairs were handled off-site and outside of KSC property. Vehicle detailing activities were also performed at the GSA Vehicle Maintenance Facility. The site is currently an open field, and the impacts from these historical activities extend from west of the KSC Child Care Facility toward the borrow pond located west of Kennedy Parkway (Geosyntec 2012).

An RFI (Geosyntec 2007) and RFI Addendum (Geosyntec 2010) were completed in 2007 through 2010 to assess groundwater contaminants at GSSP, including tetrachloroethene (PCE) and its degradation products. GCTL exceedances were found across the site at various depths between 4 ft bls and 50 ft bls. Near the center of the site, a PCE source area was found, and a Source Area IM was conducted in 2008. The IM included open soil excavation to a depth of 12.5 ft bls that was aerated and then backfilled with a hydrogen releasing compound (Geosyntec 2012).

Between 2010 and 2011, another IM was performed downgradient of the PCE source area utilizing enhanced reductive dechlorination (ERD) to reduce VOC concentrations to below NADCs within the treatment zone. Six drums containing emulsified oil plus 500 liters of microbial culture were injected at 46 locations throughout the treatment zone where TCE concentrations exceeded the NADC. A solar powered recirculation system aided in the distribution of amendments (Geosyntec 2012). Once the ERD IM and performance monitoring sampling was completed at GSSP, annual interim groundwater monitoring was approved. The site was added to the IA LTM program in 2012 and annual sampling has continued through the present.

The primary COCs at GSSP are VOCs (PCE; TCE; cis-1,2-DCE; trans-1,2-dichloroethene [trans-1,2-DCE]; and VC); however, naphthalene concentrations were detected above the GCTL at monitoring well GSSP-MW0024 in 2018. Monitoring well GSSP-MW0025 was found destroyed during the 2018 sampling event; therefore, it was abandoned along with adjacent monitoring well GSSP-MW0024 (Jacobs-CORE 2019a). Monitoring well GSSP-MW0024 was re-installed in April 2019 to continue COC analysis (Jacobs-CORE 2019b).

A historical review was completed in January 2023 to determine the extent of horizontal delineation downgradient from the present VOC plume. The typical groundwater flow is toward the northwest with a VOC source area east of Kennedy Parkway. During an RFI in 2007, DPT investigations confirmed plume delineation to the north, south, and west. DPT locations DPT0045, DPT0049, and DPT0051 had VOC exceedances east of the borrow pit pond; however, DPT0055 and surface water SW0001, located downgradient from the VOC plume, were non-detect (Geosyntec 2007). A summary of historical DPT analytical results from select DPT locations and an analytical figure from the 2007 RFI are presented in **Appendix N**.

#### 13.2 FIELD ACTIVITIES

Field activities were performed at GSSP in November 2021 and November 2022. Groundwater samples were collected from 14 monitoring wells and groundwater levels were measured at 33 monitoring wells during both sampling events. The following table shows the network of monitoring wells used for groundwater level measurements and sampling at GSSP.

Well ID	Screen Interval (ft bls)	Analysis
GSSP-MW0006	5-15	WL Only
GSSP-MW0007	25-35	WL Only
GSSP-MW0008	5-15	WL Only
GSSP-MW0009	25-35	WL Only
GSSP-MW0013	5-15	WL + select VOCs
GSSP-MW0014	25-35	WL Only
GSSP-MW0019	15-25	WL + select VOCs
GSSP-MW0020	25-35	WL + select VOCs
GSSP-MW0021	40-50	WL Only
GSSP-MW0022	15-25	WL Only
GSSP-MW0023	25-35	WL Only
GSSP-MW0024R	15-25	WL + select VOCs and select PAHs
GSSP-MW0026	5-15	WL Only
GSSP-MW0027	5-15	WL Only
GSSP-MW0034	5-15	WL + select VOCs
GSSP-MW0035	15-25	WL + select VOCs and select PAHs
GSSP-MW0036	30-40	WL + select VOCs
GSSP-MW0039	25-35	WL Only
GSSP-MW0042	30-40	WL Only
GSSP-MW0043R	5-15	WL Only
GSSP-MW0044R	25-35	WL + select VOCs
GSSP-MW0045	15-25	WL Only
GSSP-MW0047	15-25	WL Only
GSSP-MW0049	55-60	WL Only
GSSP-MW0053	15-25	WL + select VOCs and select PAHs
GSSP-MW0054	25-35	WL Only
GSSP-MW0055	5-15	WL Only
GSSP-MW0058	10-15	WL Only
GSSP-MW0059	16-21	WL + select VOCs

Well ID	Screen Interval (ft bls)	Analysis
GSSP-MW0060	10-15	WL + select VOCs
GSSP-MW0061	16-21	WL + select VOCs
GSSP-MW0062	10-15	WL + select VOCs
GSSP-MW0063	16-21	WL + select VOCs

ID = identification

MW = monitoring well

Select PAHs = naphthalene analysis by Method 8270

Select VOCs = PCE, TCE, cis-1,2-DCE, trans-1,2-DCE and VC analysis by Method 8260

WL = water level measurement

Groundwater samples collected during the 2021 and 2022 annual sampling events were analyzed, as prescribed in the table above, for one or more of the following: select VOCs by Method 8260 and naphthalene by Method 8270. The following table shows the COCs for GSSP with their respective GCTL and NADC.

COC	GCTL (µg/L)	NADC (μg/L)
PCE	3	300
TCE	3	300
cis-1,2-DCE	70	700
trans-1,2-DCE	100	1,000
VC	1	100
Naphthalene	14	140

## 13.3 WATER LEVEL COLLECTION AND GROUNDWATER FLOW DIRECTION

Groundwater levels collected during the 2021 and 2022 annual sampling events were used to calculate groundwater elevations presented in **Table 13-1**. Groundwater elevations collected during this event were used to determine the contours and flow direction for the shallow (2.5 ft bls to 15 ft bls), shallow-intermediate (15 ft bls to 25 ft bls), and intermediate aquifer zones (25 ft bls to 40 ft bls), shown on **Figure 13-1** through **Figure 13-6**. During both sampling events, the groundwater flow direction for the shallow and shallow-intermediate aquifer zones was toward the northwest, while the groundwater flow direction in the intermediate aquifer zone was toward the west-northwest. The groundwater flow direction at GSSP is historically toward the west-northwest.

#### 13.4 ANALYTICAL RESULTS

Groundwater samples from 14 monitoring wells were analyzed in November 2021 and November 2022. A summary of the analytical results is presented in **Table 13-2**. Analytical results are depicted on **Figure 13-7**.

Analytical results for each COC present at GSSP are discussed below:

#### PCE

— PCE was not detected at GSSP during the 2021 and 2022 sampling events.

#### TCE

TCE was not detected at GSSP during the 2021 and 2022 sampling events.

### • cis-1,2-DCE

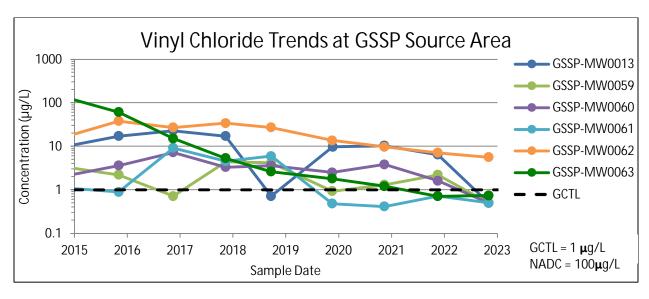
 No concentrations of cis-1,2-DCE were detected above the GCTL in November 2021 or November 2022.

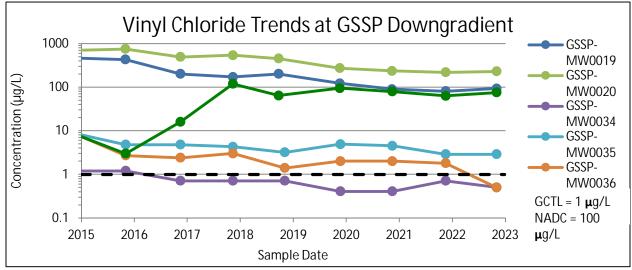
## • trans-1,2-DCE

 No concentrations of trans-1,2-DCE were detected above the GCTL in November 2021 or November 2022.

### • VC

- In November 2021, VC was detected at concentrations above the GCTL in monitoring wells GSSP-MW0013 (6.4  $\mu$ g/L), GSSP-MW0019 (81  $\mu$ g/L), GSSP-MW0035 (2.9  $\mu$ g/L), GSSP-MW0036 (1.8  $\mu$ g/L), GSSP-MW0053 (63  $\mu$ g/L), GSSP-MW0059 (2.2  $\mu$ g/L), GSSP-MW0060 (1.6  $\mu$ g/L), and GSSP-MW0062 (7.1  $\mu$ g/L). The VC concentration in monitoring well GSSP-MW0020 (220  $\mu$ g/L) exceeded both the GCTL and the NADC.
- In November 2022, VC was detected at concentrations above the GCTL in monitoring wells GSSP-MW0019 (93  $\mu$ g/L), GSSP-MW0035 (2.9  $\mu$ g/L), GSSP-MW0053 (75  $\mu$ g/L), and GSSP-MW0062 (5.6  $\mu$ g/L). The VC concentration in monitoring well GSSP-MW0020 (230  $\mu$ g/L) exceeded both the GCTL and the NADC.

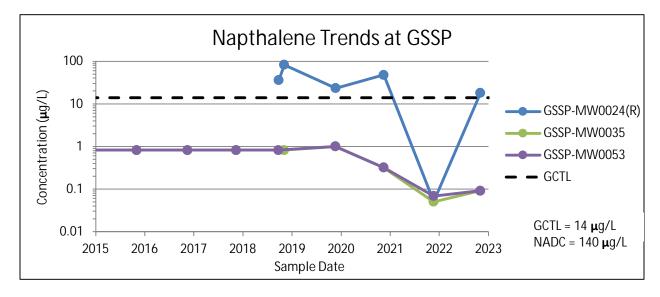

#### Naphthalene


- No concentrations of naphthalene were detected above the GCTL in November 2021.
- In November 2022, naphthalene was detected at a concentration above the GCTL in monitoring well GSSP-MW0024R (18  $\mu$ g/L).

## 13.5 TREND ANALYSIS

The following trend charts present the current and historical concentrations for VC at former source area and downgradient wells, and naphthalene at monitoring well GSSP-MW0024R and select upgradient and downgradient wells. PCE, TCE, cis-1,2-DCE, and trans-1,2-DCE concentrations have remained below their respective GCTLs since 2011 except for a TCE detection at monitoring well GSSP-MW0019 in 2018. VC concentrations at GSSP show an

overall decreasing trend. Three monitoring wells had an increase in VC concentration between 2021 and 2022: GSSP-MW0019 (81  $\mu$ g/L to 93  $\mu$ g/L), GSSP-MW0020 (220  $\mu$ g/L to 230  $\mu$ g/L), and GSSP-MW0053 (63  $\mu$ g/L to 75  $\mu$ g/L). The following trend charts show concentrations of VC at former source area and downgradient wells since 2015.






A Mann-Kendall trend analysis was performed for VC at GSSP, and the results are summarized in the following table. Sampling results, from the past 10 years of data, show that VC concentrations are decreasing, stable, or have no significant trend at each sampled monitoring well except at GSSP-MW0053. Monitoring well GSSP-MW0053 shows an increasing trend over the past 10 years; however, VC concentrations have stabilized within the past five years.

Mann-Kendall Statistics Summary VC at GSSP								
Monitoring Well	Concentration Trend	Monitoring Well	Concentration Trend					
GSSP-MW0013	Probably Decreasing	GSSP-MW0044R	Decreasing					
GSSP-MW0019	Decreasing	GSSP-MW0053	Increasing					
GSSP-MW0020	Decreasing	GSSP-MW0059	No Trend					
GSSP-MW0024R	Stable	GSSP-MW0060	Stable					
GSSP-MW0034	Decreasing	GSSP-MW0061	No Trend					
GSSP-MW0035	Decreasing	GSSP-MW0062	Decreasing					
GSSP-MW0036	Decreasing	GSSP-MW0063	Decreasing					

Naphthalene concentrations present at monitoring well GSSP-MW0024R have fluctuated over the past four years, but are statistically stable. Naphthalene has not been detected in monitoring wells upgradient or downgradient of monitoring well GSSP-MW0024(R). The following trend chart shows concentrations of naphthalene at monitoring well GSSP-MW0024(R) and select upgradient and downgradient wells.



## 13.6 CONCLUSION AND RECOMMENDATION

Concentrations of select COCs exceeded GCTLs in nine monitoring wells sampled in November 2021 and in five monitoring wells in November 2022. VC concentrations exceeded the NADC at monitoring well GSSP-MW0020 in 2021 and 2022. Concentrations of VC continue to show an overall declining trend along with geotechnical parameters indicative of favorable conditions for reductive dechlorination (analyzed in 2019).

Site COCs are recommended to be reduced to VC only for each sampled well and retain naphthalene analysis at monitoring wells GSSP-MW0024R, GSSP-MW0035, and GSSP-MW0053. Select VOC concentrations, other than VC, have not exceeded GCTLs in the past four annual sampling events.

The annual LTM sampling frequency is recommended to continue with an expanded sampling event every five years (the next expanded event to be scheduled for November 2024). The next sampling event, scheduled for November 2023, will include water level measurements at 33 monitoring wells and groundwater samples from 14 monitoring wells.

The following table shows the recommended monitoring wells for water level collection and groundwater sampling for the next sampling event at GSSP scheduled for November 2023.

Well ID	Screen Interval (ft bls)	Analysis
GSSP-MW0006	5-15	WL Only
GSSP-MW0007	25-35	WL Only
GSSP-MW0008	5-15	WL Only
GSSP-MW0009	25-35	WL Only
GSSP-MW0013	5-15	WL + VC
GSSP-MW0014 ^a	25-35	WL Only
GSSP-MW0019	15-25	WL + VC
GSSP-MW0020	25-35	WL + VC
GSSP-MW0021 a	40-50	WL Only
GSSP-MW0022 a	15-25	WL Only
GSSP-MW0023 ^a	25-35	WL Only
GSSP-MW0024R	15-25	WL + VC and Naphthalene
GSSP-MW0026 ^a	5-15	WL Only
GSSP-MW0027 ^a	5-15	WL Only
GSSP-MW0034	5-15	WL + VC
GSSP-MW0035	15-25	WL + VC and Naphthalene
GSSP-MW0036	30-40	WL + VC
GSSP-MW0039 ^a	25-35	WL Only
GSSP-MW0042 a	30-40	WL Only
GSSP-MW0043R ^a	5-15	WL Only
GSSP-MW0044R	25-35	WL + VC
GSSP-MW0045	15-25	WL Only
GSSP-MW0047	15-25	WL Only
GSSP-MW0049	55-60	WL Only
GSSP-MW0053	15-25	WL + VC and Naphthalene
GSSP-MW0054	25-35	WL Only
GSSP-MW0055	5-15	WL Only
GSSP-MW0058	10-15	WL Only
GSSP-MW0059	16-21	WL + VC
GSSP-MW0060	10-15	WL + VC
GSSP-MW0061	16-21	WL + VC
GSSP-MW0062	10-15	WL + VC
GSSP-MW0063	16-21	WL + VC

ID = identification

MW = monitoring well

Naphthalene = naphthalene analysis by Method 8270

VC = vinyl chloride analysis by Method 8260

WL = water level measurement

^a monitoring well sampled during expanded sampling events

Table 13-1 General Services Administration Seized Property - Long Term Monitoring (LTM) Monitoring Well Groundwater Elevations

SHALLOW WELL ID:	GSSP-N	GSSP-MW0006 GSSP-MW0008		GSSP-MW0013		
Screen Interval (ft bls):	5 -	15	5 -	15	5 - 15	
TOC Elevation (ft NAVD88):	7.	93	6.	29	5.	60
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
November 2013	5.72	2.21	2.18	4.11	3.41	2.19
November 2014	4.56	3.37	2.36	3.93	2.26	3.34
November 2015	5.42	2.51	2.89	3.40	3.08	2.52
November 2016	4.67	3.26	2.64	3.65	2.33	3.27
November 2017	3.88	4.05	1.97	4.32	1.50	4.10
September 2018	7.38	0.55	3.85	2.44	3.84	1.76
November 2019	3.87	4.06	1.58	4.71	1.48	4.12
November 2020	3.81	4.12	1.49	4.80	1.46	4.14
November 2021	3.29	4.64	0.65	5.64	0.83	4.77
November 2022	4.57	3.36	2.46	3.83	2.22	3.38

SHALLOW WELL ID:	GSSP-MW0026		GSSP-MW0027		GSSP-MW0034	
Screen Interval (ft bls):	5 -	15	5 -	15	5 - 15	
<b>TOC Elevation (ft NAVD88):</b>	5.	88	5.	60	7.	30
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
November 2013	3.98	1.90	3.89	1.71	7.18	0.12
November 2014	2.85	3.03	2.68	2.92	5.89	1.41
November 2015	3.67	2.21	3.29	2.31	6.78	0.52
November 2016	2.90	2.98	2.81	2.79	5.84	1.46
November 2017	2.10	3.78	1.98	3.62	4.68	2.62
September 2018	3.51	2.37	3.07	2.53	Not Mo	easured
November 2019	2.08	3.80	1.89	3.71	4.94	2.36
November 2020	2.13	3.75	2.02	3.58	4.69	2.61
November 2021	1.55	4.33	1.59	4.01	4.18	3.12
November 2022	2.80	3.08	2.59	3.01	5.28	2.02

SHALLOW WELL ID:	GSSP-MW0043R GSSP-MW0055		GSSP-MW0058			
Screen Interval (ft bls):	5 -	15	5 -	15	10	- 15
TOC Elevation (ft NAVD88):	7.	54	5.	39	7.	19
Date	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)
November 2013	5.02	2.52	3.38	2.01	4.85	2.34
November 2014	3.94	3.60	2.64	2.75	3.75	3.44
November 2015	4.72	2.82	3.13	2.26	4.57	2.62
November 2016	4.07	3.47	2.68	2.71	3.85	3.34
November 2017	3.36	4.18	2.33	3.06	3.06	4.13
September 2018	4.70	2.84	3.12	2.27	4.53	2.66
November 2019	3.12	4.42	2.38	3.01	2.97	4.22
November 2020	3.00	4.54	2.58	2.81	2.91	4.28
November 2021	2.18	5.36	2.21	3.18	2.28	4.91
November 2022	3.83	3.71	2.73	2.66	3.68	3.51

SHALLOW WELL ID:	GSSP-N	/IW0060	GSSP-MW0062		
Screen Interval (ft bls):	10	- 15	10	- 15	
<b>TOC Elevation (ft NAVD88):</b>	7.	59	6.	50	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	
November 2013	5.49	2.10	4.19	2.31	
November 2014	4.18	3.41	3.06	3.44	
November 2015	4.99	2.60	3.91	2.59	
November 2016	4.25	3.34	3.17	3.33	
November 2017	3.46	4.13	2.35	4.15	
September 2018	4.65	2.94	3.94	2.56	
November 2019	3.42	4.17	2.30	4.20	
November 2020	3.37	4.22	2.27	4.23	
November 2021	2.70	4.89	1.65	4.85	
November 2022	4.15	3.44	2.99	3.51	

SHALLOW - INTERMEDIATE WELL ID:	GSSP-MW0019 GSSP-MW0022		GSSP-MW0024			
Screen Interval (ft bls):	15	- 25	15	- 25	15 - 25	
TOC Elevation (ft NAVD88):	6.	30	4.	97	7.	37
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
November 2013	4.34	1.96	3.05	1.92	Not Me	easured
November 2014	3.25	3.05	2.02	2.95	Not Me	easured
November 2015	4.04	2.26	2.81	2.16	Not Me	easured
November 2016	3.35	2.95	2.09	2.88	Not Me	easured
November 2017	2.48	3.82	1.08	3.89	Not Me	easured
September 2018	3.89	2.41	3.90	1.07	3.07	4.30
November 2019	2.50	3.80	1.20	3.77	Abandoned	
November 2020	2.51	3.79	1.15	3.82		
November 2021	1.88	4.42	0.44	4.53		
November 2022	3.20	3.10	1.89	3.08	-	-

Table 13-1 General Services Administration Seized Property - Long Term Monitoring (LTM) Monitoring Well Groundwater Elevations

SHALLOW - INTERMEDIATE WELL ID:	GSSP-MW0024R		GSSP-MW0035		GSSP-MW0045	
Screen Interval (ft bls):	15	- 25	15	- 25	15 - 25	
TOC Elevation (ft NAVD88):	4.	32	7.	19	7.91	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
November 2013	-		7.03	0.16	5.72	2.19
November 2014	-			1.41	4.55	3.36
November 2015	-		6.65	0.54	5.38	2.53
November 2016	-		5.59	1.60	4.68	3.23
November 2017	-		4.58	2.61	3.88	4.03
September 2018	Not In	stalled	Not Measured		7.41	0.50
November 2019	0.97	3.35	4.88	2.31	3.85	4.06
November 2020	0.90	3.42	4.60	2.59	3.82	4.09
November 2021	0.27	4.05	4.10	3.09	3.28	4.63
November 2022	1.55	2.77	5.23	1.96	4.57	3.34

SHALLOW - INTERMEDIATE WELL ID:	GSSP-N	/W0047	GSSP-MW0053		GSSP-MW0059	
Screen Interval (ft bls):	15	- 25	15	- 25	16 - 21	
<b>TOC Elevation (ft NAVD88):</b>	6.	29	6.	17	7.	34
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
November 2013	3.90	2.39	4.26	1.91	5.04	2.30
November 2014	2.75	3.54	3.21	2.96	3.93	3.41
November 2015	3.54	2.75	3.98	2.19	4.47	2.87
November 2016	2.86	3.43	3.30	2.87	3.98	3.36
November 2017	2.13	4.16	2.39	3.78	3.18	4.16
September 2018	3.58	2.71	3.82	2.35	4.70	2.64
November 2019	2.03	4.26	2.43	3.74	3.13	4.21
November 2020	2.00	4.29	2.45	3.72	3.10	4.24
November 2021	1.47	4.82	1.83	4.34	2.45	4.89
November 2022	2.75	3.54	3.12	3.05	3.88	3.46

SHALLOW - INTERMEDIATE WELL ID:	GSSP-MW0061 GSSP-MW00			/W0063	
Screen Interval (ft bls):		- 21	16 - 21		
TOC Elevation (ft NAVD88):	_	76	6.57		
Date	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)	
November 2013	5.31	2.45	4.24	2.33	
November 2014	4.32	3.44	3.14	3.43	
November 2015	5.12	2.64	3.95	2.62	
November 2016	4.42	3.34	3.24	3.33	
November 2017	3.60	4.16	2.43	4.14	
September 2018	4.65	3.11	3.94	2.63	
November 2019	3.54	4.22	2.35	4.22	
November 2020	3.53	4.23	2.34	4.23	
November 2021	2.89	4.87	1.74	4.83	
November 2022	4.30	3.46	3.08	3.49	

INTERMEDIATE WELL ID:	GSSP-N	/W0007	GSSP-N	/W0009	GSSP-N	/W0014
Screen Interval (ft bls):	25	- 35	25	- 35	25 - 35	
<b>TOC Elevation (ft NAVD88):</b>	7.	90	6.	30	5.	38
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
November 2013	5.67	2.23	3.89	2.41	Not Mo	easured
November 2014	4.53	3.37	2.74	3.56	2.14	3.24
November 2015	5.35	2.55	3.50	2.80	2.94	2.44
November 2016	4.67	3.23	2.89	3.41	2.28	3.10
November 2017	3.83	4.07	2.16	4.14	1.36	4.02
September 2018	7.36	0.54	3.59	2.71	3.84	1.54
November 2019	3.80	4.10	2.03	4.27	1.33	4.05
November 2020	3.78	4.12	1.99	4.31	1.33	4.05
November 2021	3.24	4.66	1.47	4.83	0.69	4.69
November 2022	4.52	3.38	2.71	3.59	2.05	3.33

INTERMEDIATE WELL ID:	GSSP-N	/W0020	GSSP-N	/W0023	GSSP-N	1W0036	
Screen Interval (ft bls):	25	- 35	25	- 35	30 - 40		
TOC Elevation (ft NAVD88):	6.	30	4.	82	7.	15	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation	
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	
November 2013	4.38	1.92	2.95	1.87	7.09	0.06	
November 2014	3.29	3.01	1.93	2.89	5.83	1.32	
November 2015	4.09	2.21	2.67	2.15	6.90	0.25	
November 2016	3.37	2.93	1.93	2.89	5.68	1.47	
November 2017	2.51	3.79	1.02	3.80	4.68	2.47	
September 2018	3.94	2.36	3.75	1.07	Not Mo	easured	
November 2019	2.55	3.75	1.10	3.72	4.97	2.18	
November 2020	2.54	3.76	1.12	3.70	4.65	2.50	
November 2021	1.91	4.39	0.44	4.38	4.23	2.92	
November 2022	3.23	3.07	1.78	3.04	5.29	1.86	

Table 13-1 General Services Administration Seized Property - Long Term Monitoring (LTM) Monitoring Well Groundwater Elevations

INTERMEDIATE WELL ID:	GSSP-N	/W0039	GSSP-N	MW0042	GSSP-M	IW0044R
Screen Interval (ft bls):	25	- 35	30	- 40	25	- 35
TOC Elevation (ft NAVD88):	7.	82	6.	17	7.	15
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
November 2013	7.64	0.18	6.45	-0.28	4.92	2.23
November 2014	6.41	1.41	5.23	0.94	3.94	3.21
November 2015	7.28	0.54	6.08	0.09	4.74	2.41
November 2016	6.24	1.58	5.15	1.02	4.08	3.07
November 2017	5.20	2.62	4.14	2.03	3.21	3.94
September 2018	3.70	4.12	5.96	0.21	4.70	2.45
November 2019	5.50	2.32	4.38	1.79	3.15	4.00
November 2020	5.22	2.60	4.04	2.13	3.10	4.05
November 2021	4.74	3.08	3.76	2.41	2.44	4.71
November 2022	5.84	1.98	4.64	1.53	3.90	3.25

INTERMEDIATE WELL ID:	GSSP-N	/W0054			
Screen Interval (ft bls):	25	- 35			
TOC Elevation (ft NAVD88):	<b>6.10</b>				
	Depth to Water Water Eleva				
Date	(ft BTOC)	(ft NAVD88)			
November 2013	4.17	1.93			
November 2014	3.12	2.98			
November 2015	3.92	2.18			
November 2016	3.20	2.90			
November 2017	2.33	3.77			
September 2018	3.73	2.37			
November 2019	2.38	3.72			
November 2020	2.39	3.71			
November 2021	1.78	4.32			
November 2022	3.09	3.01			

DEEP WELL ID:	GSSP-N	MW0021	GSSP-N	ЛW0049	
Screen Interval (ft bls):	40	- 50	55 - 60		
TOC Elevation (ft NAVD88):	6.	07	7.	49	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	
November 2013	4.26	1.81	5.01	2.48	
November 2014	3.14	2.93	3.91	3.58	
November 2015	3.92	2.15	4.74	2.75	
November 2016	3.14	2.93	4.02	3.47	
November 2017	2.26	3.81	3.23	4.26	
September 2018	3.76	2.31	4.64	2.85	
November 2019	2.27	3.80	3.11	4.38	
November 2020	2.21	3.86	3.04	4.45	
November 2021	1.60	4.47	2.42	5.07	
November 2022	2.92	3.15	3.82	3.67	

bls = below land surface BTOC = below top of casing

ft = fee

GSSP = General Services Administration Seized Property

MW = monitoring well

NAVD88 = North American Vertical Datum of 1988

TOC = top of casing

Table 13-2
General Services Administration Seized Property - Long Term Monitoring (LTM)
Groundwater Sampling Analytical Results

			Polynuclear Aromatic Hydrocarbons (PAH)	arbons (PAH) Volatile Organic Compounds (VOC)							
		Category	by Method 8270 SIM			by Meth	od 8260				
		Analyte	NAPHTHALENE	NAPHTHALENE	TETRACHLOROETHENE	TRICHLOROETHENE	TRANS-1,2- DICHLOROETHENE	CIS-1,2- DICHLOROETHENE	VINYL CHLORIDE		
	F	DEP GCTLs (µg/L)	14	14	3	3	100	70	1		
		DEP NADCs (µg/L)	140	140	300	300	1000	700	100		
	1	Screened Interval									
Location ID	Sample Date	(ft bls)									
GSSP-MW0013	6/4/2007	5 - 15	NA	NA	5.0 U	5.6	6.6	64.9	105		
	6/3/2008	5 - 15	NA	NA	20 U	20 U	20 U	55	360		
	7/1/2009	5 - 15	NA	NA	1.0 U	1.3	6.3	14.7	490		
	10/26/2010	5 - 15	NA	NA	0.25 U	0.26 U	12.1	55.6	645		
	9/21/2011	5 - 15	NA	NA	0.25 U	0.49 I	10.6	2.2	36.7		
	11/1/2012	5 - 15	NA	NA	0.22 U	0.36 U	0.19 U	0.36 U	0.90 I		
	11/6/2013	5 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	28		
	11/11/2014	5 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	10		
	11/4/2015	5 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.65 I	17		
	11/15/2016	5 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	1.3	23		
	11/13/2017	5 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	1.4	17		
	9/25/2018	5 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U		
	11/25/2019	5 - 15	NA	1.0 U	0.22 U	0.35 U	0.22 U	0.53 I	9.7		
	11/17/2020	5 - 15	NA	NA	0.22 U	0.35 U	0.22 U	0.54 I	10.3		
	11/22/2021	5 - 15	NA	NA	0.76 U	0.89 U	0.73 U	0.53 U	6.4		
	11/8/2022	5 - 15	NA	NA	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U		
GSSP-MW0014	6/4/2007	25 - 35	NA	NA	1.0 U	1.0 U	1.0	1.0 U	572		
	7/1/2009	25 - 35	NA	NA	5.0 U	50	13	210	1,700		
	10/26/2010	25 - 35	NA	NA	1.3 U	25	9.3	245	1,180		
	9/21/2011	25 - 35	NA	NA	0.25 U	4.9	15.8	388	699		
	11/1/2012	25 - 35	NA	NA	0.22 U	0.36 U	0.24 I	0.36 U	25		
	11/11/2014	25 - 35	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.87 I		
	11/4/2015	25 - 35	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.97 I		
	11/17/2016	25 - 35	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U		
	11/25/2019	25 - 35	NA	1.0 U	0.22 U	0.35 U	0.22 U	0.28 U	0.41 U		
GSSP-MW0019	6/5/2007	15 - 25	NA	NA	1.0 U	1.0 U	5.0	25.5	586		
	7/1/2009	15 - 25	NA	NA	1.0 U	4.4	15.8	44.2	1,000		
	10/26/2010	15 - 25	NA	NA	1.3 U	1.3 U	11.6	10.1	957		
	9/22/2011	15 - 25	NA	NA	0.25 U	0.63 I	17.1	38	1,210		
	10/31/2012	15 - 25	NA	NA	0.22 U	0.36 U	16	25	1,500		
	11/4/2013	15 - 25	NA	0.82 U	0.76 U	0.89 U	16	21	740		
	11/12/2014	15 - 25	NA	8.2 U	7.6 U	8.9 U	7.3 U	5.3 U	470		
	11/3/2015	15 - 25	NA	0.82 U	0.76 U	0.89 U	4.7	1.4	430		
	11/17/2016	15 - 25	NA	1.6 U	1.5 U	1.8 U	2.1	1.4 I	200		
	11/13/2017	15 - 25	NA	1.6 U	1.5 U	1.8 U	2.4	1.6 I	170		
	9/25/2018	15 - 25	NA	1.6 U	1.5 U	6.8	2.3	8.3	200		
	11/22/2019	15 - 25	NA	1.0 U	0.22 U	0.35 U	1.6	1.4	122		
	11/17/2020	15 - 25	NA	NA	0.22 U	0.35 U	1.1	2.2	89.4		
	11/22/2021	15 - 25	NA	NA	0.76 U	0.89 U	1.0	2.5	81		
	11/8/2022	15 - 25	NA	NA	0.50 U	0.50 U	0.74 I	0.78 I	93		

Table 13-2
General Services Administration Seized Property - Long Term Monitoring (LTM)
Groundwater Sampling Analytical Results

		Category	Polynuclear Aromatic Hydrocarbons (PAH) by Method 8270 SIM		water sampling rmarytear it	Volatile Organic C by Meth	_		
			NA DATELLA L'ENTE	NA PARTITAL A FINE	THE TO A CAN OR OF TAXABLE ME	TRICIN OR OF THE VE	TRANS-1,2-	CIS-1,2-	AMANA CHI ODIDE
	T-	Analyte	NAPHTHALENE	NAPHTHALENE	TETRACHLOROETHENE	TRICHLOROETHENE	DICHLOROETHENE	DICHLOROETHENE	VINYL CHLORIDE
		TDEP GCTLs (µg/L)	14	14	3	3	100	70	100
	ľ	DEP NADCs (µg/L)	140	140	300	300	1000	700	100
		Screened Interval							
Location ID	Sample Date	(ft bls)	N	NY.	10.77	4.0.77	- ^	44.6	=10
GSSP-MW0020	6/5/2007	25 - 35	NA	NA	1.0 U	1.0 U	7.9	41.2	718
	7/1/2009	25 - 35	NA	NA	1.0 U	1.0 U	8.1	5.3	990
	10/26/2010	25 - 35	NA	NA	1.3 U	1.3 U	7.7	1.3 U	896
	9/22/2011	25 - 35	NA	NA	0.25 U	0.26 U	13.5	0.59 I	1,490
	10/31/2012	25 - 35	NA	NA 0.02 H	0.22 U	0.36 U	11	0.45 I	1,200
	11/4/2013	25 - 35	NA NA	0.82 U	0.76 U	0.89 U	14	0.53 U	1,100
	11/12/2014	25 - 35	NA	8.2 U	7.6 U	8.9 U	7.3 U	5.3 U	700
	11/3/2015	25 - 35	NA	4.1 U	3.8 U	4.4 U	7.6	2.6 U	750
	11/17/2016	25 - 35	NA	4.1 U	3.8 U	4.4 U	5.6	2.6 U	490
	11/13/2017	25 - 35	NA	8.2 U	7.6 U	8.9 U	7.3 U	5.3 U	540
	9/25/2018	25 - 35	NA	4.1 U	3.8 U	4.4 U	3.6 I	5.0	450
	11/22/2019	25 - 35	NA	1.0 U	0.22 U	0.35 U	2.7	0.28 U	271
	11/17/2020	25 - 35	NA	NA	0.22 U	0.35 U	2.6	0.28 U	235
	11/22/2021	25 - 35	NA	NA	0.76 U	0.89 U	2.4	0.53 U	220
	11/8/2022	25 - 35	NA	NA	0.50 U	0.50 U	1.5	0.50 U	230
GSSP-MW0021	6/5/2007	40 - 50	NA	NA	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	7/1/2009	40 - 50	NA	NA	1.0 U	1.0 U	1.0 U	1.0 U	1.4
	10/26/2010	40 - 50	NA	NA	0.25 U	0.26 U	0.35 U	0.26 U	0.22 U
	9/22/2011	40 - 50	NA	NA	0.25 U	0.26 U	0.35 U	0.26 U	0.77 I
	10/31/2012	40 - 50	NA	NA	0.22 U	0.36 U	0.19 U	0.36 U	0.36 U
	11/5/2013	40 - 50	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
G G G T T T T T T T T T T T T T T T T T	11/22/2019	40 - 50	NA	1.0 U	0.22 U	0.35 U	0.22 U	0.28 U	0.43 I
GSSP-MW0022	6/5/2007	15 - 25	NA	NA	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	6/30/2009	15 - 25	NA	NA	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	10/26/2010	15 - 25	NA	NA	0.25 U	0.26 U	0.35 U	0.26 U	0.22 U
	9/22/2011	15 - 25	NA	NA	0.25 U	0.26 U	0.35 U	0.26 U	0.22 U
	10/31/2012	15 - 25	NA NA	NA 0.82 H	0.22 U	0.36 U	0.19 U	0.36 U	0.36 U
	11/5/2013	15 - 25	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
	11/12/2014	15 - 25	NA NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
CCCD 3 #TT/0044	11/25/2019	15 - 25 25 - 25	NA NA	1.0 U	0.22 U	0.35 U	0.22 U	0.28 U	0.41 U
GSSP-MW0023	6/5/2007	25 - 35	NA NA	NA	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	6/30/2009	25 - 35	NA NA	NA NA	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	10/26/2010	25 - 35 25 - 35	NA NA	NA NA	0.25 U	0.26 U	0.35 U	0.26 U	0.22 U
	9/22/2011	25 - 35 25 - 35	NA NA	NA NA	0.25 U	0.26 U	0.35 U	0.26 U	0.22 U
	10/31/2012	25 - 35	NA NA	NA 0.82 H	0.22 U	0.36 U	0.19 U	0.36 U	0.36 U
	11/5/2013	25 - 35 25 - 35	NA NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
CCCD 3 #TT/004 #	11/25/2019	25 - 35	NA NA	1.0 U	0.22 U	0.35 U	0.22 U	0.28 U	0.41 U
GSSP-MW0024	6/5/2007	15 - 25	NA NA	NA NA	1.0 U	1.0 U	1.0 U	0.59 I	5.5
	7/1/2009	15 - 25	NA NA	NA	1.0 U	1.0 U	1.0 U	1.0 U	2.3
	9/26/2018	15 - 25	NA NA	36.0	0.76 U	0.89 U	1.5	0.53 U	0.71 U
	11/7/2018	15 - 25	NA	82.0	0.76 U	0.89 U	1.3	0.53 U	0.71 U

Table 13-2
General Services Administration Seized Property - Long Term Monitoring (LTM)
Groundwater Sampling Analytical Results

		Category	Polynuclear Aromatic Hydrocarbons (PAH) by Method 8270 SIM		water Sampling Analytical K	Volatile Organic C by Meth			
		Analyte	NAPHTHALENE	NAPHTHALENE	TETRACHLOROETHENE	TRICHLOROETHENE	TRANS-1,2- DICHLOROETHENE	CIS-1,2- DICHLOROETHENE	VINYL CHLORIDE
	FI	DEP GCTLs (µg/L)	14	14	3	3	100	70	1
		DEP NADCs (µg/L)	140	140	300	300	1000	700	100
		Screened Interval							
Location ID	Sample Date	(ft bls)							
GSSP-MW0024R	11/25/2019	15 - 25	9.2	23.2	0.22 U	0.35 U	0.66 I	0.28 U	0.41 U
	11/17/2020	15 - 25	47.6	NA	0.22 U	0.35 U	0.22 U	0.28 U	0.41 U
	11/22/2021	15 - 25	0.051 I	NA	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
	11/8/2022	15 - 25	18	NA	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
GSSP-MW0026	9/25/2007	5 - 15	NA	NA	0.25 U	0.38 U	0.20 U	0.28 U	0.34 U
	7/1/2009	5 - 15	NA	NA	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	11/1/2012	5 - 15	NA	NA	0.22 U	0.36 U	0.19 U	0.36 U	0.36 U
	11/5/2013	5 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
	11/12/2014	5 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
	11/25/2019	5 - 15	NA	1.0 U	0.22 U	0.35 U	0.22 U	0.28 U	0.41 U
GSSP-MW0027	9/25/2007	5 - 15	NA	NA	1.3 U	1.9 U	1.0 U	1.4 U	150
	7/1/2009	5 - 15	NA	NA	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	10/25/2010	5 - 15	NA	NA	0.25 U	0.26 U	0.35 U	0.26 U	1.2
	9/22/2011	5 - 15	NA	NA	0.25 U	0.26 U	1.9	0.31 I	189
	11/1/2012	5 - 15	NA	NA	0.22 U	0.36 U	0.19 U	0.36 U	0.45 I
	11/4/2013	5 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
	11/10/2014	5 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
	11/25/2019	5 - 15	NA	1.0 U	0.22 U	0.35 U	0.22 U	0.28 U	0.41 U
GSSP-MW0034	9/24/2007	5 - 15	NA	NA	0.25 U	0.38 U	0.20 U	0.28 U	0.34 U
	7/1/2009	5 - 15	NA	NA	1.0 U	1.0 U	1.0 U	1.0 U	4.7
	10/25/2010	5 - 15	NA	NA	0.25 U	0.26 U	0.35 U	0.26 U	4.8
	9/22/2011	5 - 15	NA	NA	0.25 U	0.26 U	0.35 U	0.26 U	5.0
	11/1/2012	5 - 15	NA	NA	0.22 U	0.36 U	0.19 U	0.36 U	3.9
	11/6/2013	5 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	2.7
	11/12/2014	5 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	1.2
	11/4/2015	5 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	1.2
	11/17/2016	5 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
	11/13/2017	5 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
	11/7/2018	5 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
	11/25/2019	5 - 15	NA	1.0 U	0.22 U	0.35 U	0.22 U	0.28 U	0.41 U
	11/17/2020	5 - 15	NA	NA	0.22 U	0.35 U	0.22 U	0.28 U	0.41 U
	11/22/2021	5 - 15	NA	NA	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
	11/8/2022	5 - 15	NA	NA	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U

Table 13-2
General Services Administration Seized Property - Long Term Monitoring (LTM)
Groundwater Sampling Analytical Results

			Polynuclear Aromatic	0.70	water Sampling Analytical Re				
		Category	Hydrocarbons (PAH) by Method 8270 SIM			Volatile Organic C by Meth			
		Category	by Memou 6270 51101		1	by Mein			
		Analyte	NAPHTHALENE	NAPHTHALENE	TETRACHLOROETHENE	TRICHLOROETHENE	TRANS-1,2- DICHLOROETHENE	CIS-1,2- DICHLOROETHENE	VINYL CHLORIDE
	FI	DEP GCTLs (µg/L)	14	14	3	3	100	70	1
		DEP NADCs (µg/L)	140	140	300	300	1000	700	100
		Screened Interval							
Location ID	Sample Date	(ft bls)							
GSSP-MW0035	9/24/2007	15 - 25	NA	NA	0.25 U	0.38 U	0.20 U	0.34 U	0.28 U
	7/1/2009	15 - 25	NA	NA	1.0 U	1.0 U	1.0 U	1.0 U	6.1
	10/25/2010	15 - 25	NA	NA	0.25 U	0.26 U	0.35 U	0.26 U	8.0
	9/22/2011	15 - 25	NA	NA	0.25 U	0.26 U	0.35 U	0.26 U	12
	11/1/2012	15 - 25	NA	NA	0.22 U	0.36 U	0.19 U	0.36 U	14
	11/6/2013	15 - 25	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	11
	11/12/2014	15 - 25	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	8.9
	11/4/2015	15 - 25	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	4.8
	11/17/2016	15 - 25	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	4.8
	11/13/2017	15 - 25	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	4.3
	11/7/2018	15 - 25	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	3.2
	11/25/2019	15 - 25	0.33 U	1.0 U	0.22 U	0.35 U	0.22 U	0.28 U	4.9
	11/17/2020	15 - 25	0.32 U	NA	0.22 U	0.35 U	0.22 U	0.28 U	4.5
	11/22/2021	15 - 25	0.050 U	NA	0.76 U	0.89 U	0.73 U	0.53 U	2.9
	11/8/2022	15 - 25	0.091 U	NA	0.50 U	0.50 U	0.50 U	0.50 U	2.9
GSSP-MW0036	9/24/2007	30 - 40	NA	NA	0.25 U	0.38 U	0.20 U	0.28 U	7.1
	7/1/2009	30 - 40	NA	NA	1.0 U	1.0 U	1.0 U	1.0 U	23.5
	10/25/2010	30 - 40	NA	NA	0.25 U	0.26 U	0.35 U	0.26 U	39.4
	9/22/2011	30 - 40	NA	NA	0.25 U	0.26 U	0.35 U	0.26 U	29
	11/1/2012	30 - 40	NA	NA	0.22 U	0.36 U	0.19 U	0.36 U	25
	11/6/2013	30 - 40	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	17
	11/12/2014	30 - 40	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	8.7
	11/4/2015	30 - 40	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	2.7
	11/17/2016	30 - 40	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	2.4
	11/13/2017	30 - 40	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	3.0
	11/7/2018	30 - 40	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	1.4
	11/25/2019	30 - 40	NA	1.0 U	0.22 U	0.35 U	0.22 U	0.28 U	2.0
	11/17/2020	30 - 40	NA	NA	0.22 U	0.35 U	0.22 U	0.28 U	2.0
	11/22/2021	30 - 40	NA	NA	0.76 U	0.89 U	0.73 U	0.53 U	1.8
	11/8/2022	30 - 40	NA	NA	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
GSSP-MW0039	9/24/2007	25 - 35	NA	NA	0.25 U	0.38 U	0.20 U	0.28 U	0.34 U
	6/30/2009	25 - 35	NA	NA	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	11/6/2013	25 - 35	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
	11/25/2019	25 - 35	NA	1.0 U	0.22 U	0.35 U	0.22 U	0.28 U	0.41 U
GSSP-MW0042	9/24/2007	30 - 40	NA	NA	0.25 U	0.38 U	0.20 U	0.28 U	0.34 U
	6/30/2009	30 - 40	NA	NA	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	11/1/2012	30 - 40	NA	NA	0.22 U	0.36 U	0.19 U	0.36 U	0.36 U
	11/6/2013	30 - 40	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
	11/25/2019	30 - 40	NA	1.0 U	0.22 U	0.35 U	0.22 U	0.28 U	0.41 U

Table 13-2
General Services Administration Seized Property - Long Term Monitoring (LTM)
Groundwater Sampling Analytical Results

		Category	Polynuclear Aromatic Hydrocarbons (PAH) by Method 8270 SIM		Iwater Sampling Analytical Ke	Volatile Organic C by Meth			
		Analyte	NAPHTHALENE	NAPHTHALENE	TETRACHLOROETHENE	TRICHLOROETHENE	TRANS-1,2- DICHLOROETHENE	CIS-1,2- DICHLOROETHENE	VINYL CHLORIDE
	F	DEP GCTLs (µg/L)	14	14	3	3	100	70	1
		DEP NADCs (µg/L)	140	140	300	300	1000	700	100
Location ID		Screened Interval (ft bls)							
GSSP-MW0043R	1/13/2009	5 - 15	NA	NA	0.22 U	0.32 U	2.9	99	4.0
	10/26/2010	5 - 15	NA	NA	0.25 U	0.26 U	0.35 U	0.26 U	2.8
	9/21/2011	5 - 15	NA	NA	0.25 U	0.26 U	0.35 U	0.26 U	2.1
	10/31/2012	5 - 15	NA	NA	0.22 U	0.36 U	0.19 U	0.36 U	0.54 I
	11/5/2013	5 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
	11/11/2014	5 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
	11/3/2015	5 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
	11/22/2019	5 - 15	NA	1.0 U	0.22 U	0.35 U	0.22 U	0.28 U	0.41 U
GSSP-MW0044R	1/13/2009	25 - 35	NA	NA	0.22 U	5.7	1.6	19.6	230
	10/26/2010	25 - 35	NA	NA	0.25 U	0.26 U	1.1	28.3	105
	9/21/2011	25 - 35	NA	NA	0.25 U	0.26 U	0.64 I	2.6	48.3
	10/31/2012	25 - 35	NA	NA	0.22 U	0.36 U	0.35 I	0.43 I	37
	11/5/2013	25 - 35	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	33
	11/11/2014	25 - 35	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	18
	11/3/2015	25 - 35	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	2.8
	11/17/2016	25 - 35	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
	11/13/2017	25 - 35	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	1.5
	9/25/2018	25 - 35	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
	11/22/2019	25 - 35	NA	1.0 U	0.22 U	0.35 U	0.22 U	0.28 U	1.0
	11/17/2020	25 - 35	NA	NA	0.22 U	0.35 U	0.22 U	0.28 U	0.41 U
	11/22/2021	25 - 35	NA	NA	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
	11/8/2022	25 - 35	NA	NA	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
GSSP-MW0053	9/11/2009	15 - 25	NA	NA	1.0 U	1.0 U	1.0 U	1.0 U	93.8
	10/25/2010	15 - 25	NA	NA	0.25 U	0.26 U	0.35 U	0.26 U	6.5
	9/21/2011	15 - 25	NA	NA	0.25 U	0.26 U	0.35 U	0.26 U	12.3
	10/31/2012	15 - 25	NA	NA	0.22 U	0.36 U	0.19 U	0.36 U	6.1
	11/5/2013	15 - 25	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	4.1
	11/10/2014	15 - 25	NA	0.82 U	0.76 U	0.89 U	0.93 I	0.53 U	8.4
	11/4/2015	15 - 25	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	3.0
	11/17/2016	15 - 25	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	16
	11/13/2017	15 - 25	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	120
	9/25/2018	15 - 25	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	64
	11/22/2019	15 - 25	0.32 U	1.0 U	0.22 U	0.35 U	0.22 U	0.28 U	94.7
	11/17/2020	15 - 25	0.32 U	NA	0.22 U	0.35 U	0.22 U	0.28 U	79.1
	11/22/2021	15 - 25	0.069 I	NA	0.76 U	0.89 U	0.73 U	0.53 U	63
	11/8/2022	15 - 25	0.091 U	NA	0.50 U	0.50 U	0.50 U	0.50 U	75

Table 13-2
General Services Administration Seized Property - Long Term Monitoring (LTM)
Groundwater Sampling Analytical Results

		Category	Polynuclear Aromatic Hydrocarbons (PAH) by Method 8270 SIM		Iwater Samping Analytical Ke		Compounds (VOC) od 8260		
		Analyte	NAPHTHALENE	NAPHTHALENE	TETRACHLOROETHENE	TRICHLOROETHENE	TRANS-1,2- DICHLOROETHENE	CIS-1,2- DICHLOROETHENE	VINYL CHLORIDE
	F	DEP GCTLs (µg/L)	14	14	3	3	100	70	1
	F	DEP NADCs (µg/L)	140	140	300	300	1000	700	100
Location ID	Sample Date	Screened Interval (ft bls)							
GSSP-MW0059	8/26/2010	16 - 21	NA	NA	2.2 U	25.4	35.9	365	477
	10/27/2010	16 - 21	NA	NA	0.25 U	0.76 I	24.3	47.2	477
	11/30/2010	16 - 21	NA	NA	0.25 U	0.26 U	13.5	0.26 U	25.6
	1/27/2011	16 - 21	NA	NA	0.25 U	0.26 U	12	0.26 U	0.76 I
	3/3/2011	16 - 21	NA	NA	0.25 U	0.26 U	15.3	0.26 U	0.29 I
	6/2/2011	16 - 21	NA	NA	0.25 U	0.26 U	8.9	0.26 U	0.22 U
	9/22/2011	16 - 21	NA	NA	0.25 U	0.26 U	0.35 U	0.26 U	0.38 I
	11/1/2012	16 - 21	NA	NA	0.22 U	0.36 U	0.19 U	0.36 U	0.36 U
	11/6/2013	16 - 21	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.81 I
	11/11/2014	16 - 21	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	3.3
	11/4/2015	16 - 21	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	2.2
	11/16/2016	16 - 21	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
	11/14/2017	16 - 21	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	4.4
	9/25/2018	16 - 21	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.62 I	4.2
	11/22/2019	16 - 21	NA	1.0 U	0.22 U	0.35 U	0.22 U	0.28 U	0.93 I
	11/17/2020	16 - 21	NA	NA	0.22 U	0.35 U	0.22 U	0.28 U	1.3
	11/22/2021	16 - 21	NA	NA	0.76 U	0.89 U	0.73 U	0.53 U	2.2
	11/8/2022	16 - 21	NA	NA	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
GSSP-MW0060	8/25/2010	10 - 15	NA	NA	0.44 U	0.24 U	8.2	29.4	649
	10/27/2010	10 - 15	NA	NA	0.25 U	0.26 U	3.9	10.5	93.9
	11/29/2010	10 - 15	NA	NA	0.25 U	0.26 U	1.6	2.1	112
	1/27/2011	10 - 15	NA	NA	0.25 U	0.26 U	1.8	1.3	133
	3/4/2011	10 - 15	NA	NA	0.25 U	1.3	1.0	1.9	134
	6/2/2011	10 - 15	NA	NA	0.25 U	6.3	1.4	6.3	151
	9/22/2011	10 - 15	NA	NA	0.25 U	0.26 U	1.3	0.26 U	104
	11/1/2012	10 - 15	NA	NA	0.22 U	0.36 U	0.23 I	0.36 U	0.36 U
	11/6/2013	10 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	12
	11/11/2014	10 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	2.1
	11/4/2015	10 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	3.6
	11/16/2016	10 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	7.2
	11/14/2017	10 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	3.3
	9/25/2018	10 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.71 I	3.6
	11/22/2019	10 - 15	NA	1.0 U	0.22 U	0.35 U	0.22 U	0.28 U	2.5
	11/17/2020	10 - 15	NA	NA	0.22 U	0.35 U	0.22 U	0.28 U	3.8
	11/22/2021	10 - 15	NA	NA	0.76 U	0.89 U	0.73 U	0.53 U	1.6
	11/8/2022	10 - 15	NA	NA	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U

Table 13-2
General Services Administration Seized Property - Long Term Monitoring (LTM)
Groundwater Sampling Analytical Results

		Category	Polynuclear Aromatic Hydrocarbons (PAH) by Method 8270 SIM		Iwater Sampling Analytical Re		Compounds (VOC) and 8260		
		Analyte	NAPHTHALENE	NAPHTHALENE	TETRACHLOROETHENE	TRICHLOROETHENE	TRANS-1,2- DICHLOROETHENE	CIS-1,2- DICHLOROETHENE	VINYL CHLORIDE
	F	DEP GCTLs (µg/L)	14	14	3	3	100	70	1
	F	DEP NADCs (µg/L)	140	140	300	300	1000	700	100
Location ID	Sample Date	Screened Interval (ft bls)							
GSSP-MW0061	8/25/2010	16 - 21	NA	NA	0.88 U	110	6.4	110	232
	10/27/2010	16 - 21	NA	NA	0.25 U	4.4	4.9	147	216
	11/29/2010	16 - 21	NA	NA	0.25 U	2.2	2.0	28.9	138
	1/27/2011	16 - 21	NA	NA	0.25 U	0.74 I	0.66 I	6.8	70.5
	3/4/2011	16 - 21	NA	NA	0.25 U	2.0	0.59 I	5.3	53.1
	6/2/2011	16 - 21	NA	NA	0.25 U	0.26 I	0.35 U	0.76 I	46.6
	9/22/2011	16 - 21	NA	NA	0.25 U	0.26 U	0.41 I	0.26 U	77.5
	11/1/2012	16 - 21	NA	NA	0.22 U	0.36 U	0.76 I	0.36 U	0.36 U
	11/6/2013	16 - 21	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
	11/11/2014	16 - 21	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	1.1
	11/4/2015	16 - 21	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	0.89 I
	11/16/2016	16 - 21	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	9.1
	11/14/2017	16 - 21	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	4.5
	9/25/2018	16 - 21	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.78 I	5.9
	11/22/2019	16 - 21	NA	1.0 U	0.22 U	0.35 U	0.22 U	0.28 U	0.48 I
	11/17/2020	16 - 21	NA	NA	0.22 U	0.35 U	0.22 U	0.28 U	0.41 U
	11/22/2021	16 - 21	NA	NA	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
	11/8/2022	16 - 21	NA	NA	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
GSSP-MW0062	8/25/2010	10 - 15	NA	NA	0.46 I	39.8	6.8	31.1	1,340
	10/27/2010	10 - 15	NA	NA	0.25 U	5.3	16.9	213	743
	11/29/2010	10 - 15	NA	NA	0.25 U	0.26 U	9.6	4.9	639
	1/27/2011	10 - 15	NA	NA	0.25 U	0.26 U	16.4	1.7	144
	3/4/2011	10 - 15	NA	NA	0.25 U	0.26 U	15.8	2.5	132
	6/2/2011	10 - 15	NA	NA	0.25 U	0.26 U	11.1	1.1	78.7
	9/22/2011	10 - 15	NA	NA	0.25 U	0.26 U	6.0	0.53 I	91
	10/31/2012	10 - 15	NA	NA	0.22 U	0.36 U	1.1	0.95 I	180
	11/6/2013	10 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	54
	11/11/2014	10 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	17
	11/4/2015	10 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.83 I	38
	11/16/2016	10 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.80 I	27
	11/13/2017	10 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	1.4	34
	9/25/2018	10 - 15	NA	0.82 U	0.76 U	0.89 U	0.73 U	1.1	27
	11/22/2019	10 - 15	NA	1.0 U	0.22 U	0.35 U	0.22 U	0.28 U	13.6
	11/17/2020	10 - 15	NA	NA	0.22 U	0.35 U	0.22 U	0.28 U	9.7
	11/22/2021	10 - 15	NA	NA	0.76 U	0.89 U	0.73 U	0.53 U	7.1
	11/8/2022	10 - 15	NA	NA	0.50 U	0.50 U	0.50 U	0.50 U	5.6

Table 13-2 General Services Administration Seized Property - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

Category			Polynuclear Aromatic Hydrocarbons (PAH) by Method 8270 SIM	Volatile Organic Compounds (VOC) by Method 8260					
Analyte			NAPHTHALENE	NAPHTHALENE	TETRACHLOROETHENE	TRICHLOROETHENE	TRANS-1,2- DICHLOROETHENE	CIS-1,2- DICHLOROETHENE	VINYL CHLORIDE
FDEP GCTLs (µg/L)			14	14	3	3	100	70	1
FDEP NADCs (µg/L)			140	140	300	300	1000	700	100
<b>Location ID</b>	Sample Date	Screened Interval (ft bls)							
GSSP-MW0063	8/25/2010	16 - 21	NA	NA	0.44 U	1.1	0.51 I	3.0	87.2
	10/27/2010	16 - 21	NA	NA	0.25 U	1.2	0.69 I	2.9	93.5
	11/29/2010	16 - 21	NA	NA	0.25 U	0.62 I	1.3	12.9	147
	1/27/2011	16 - 21	NA	NA	0.25 U	0.26 U	2.1	1.1	234
	3/4/2011	16 - 21	NA	NA	0.25 U	0.26 U	1.2	0.64 I	51.6
	6/2/2011	16 - 21	NA	NA	0.25 U	0.84 I	4.4	1.4	38.5
	9/22/2011	16 - 21	NA	NA	0.25 U	0.26 U	8.6	8.3	91.2
	11/1/2012	16 - 21	NA	NA	0.22 U	0.36 U	2.6	6.1	340
	11/6/2013	16 - 21	NA	0.82 U	0.76 U	0.89 U	2.2	2.2	200
	11/11/2014	16 - 21	NA	1.6 U	1.5 U	1.8 U	1.5 U	1.1 U	130
	11/4/2015	16 - 21	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.74 I	61
	11/16/2016	16 - 21	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.90 I	15
	11/13/2017	16 - 21	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.68 I	5.3
	9/25/2018	16 - 21	NA	0.82 U	0.76 U	0.89 U	0.73 U	0.53 U	2.6
	11/22/2019	16 - 21	NA	1.0 U	0.22 U	0.35 U	0.22 U	0.28 U	1.8
	11/17/2020	16 - 21	NA	NA	0.22 U	0.35 U	0.22 U	0.28 U	1.2
	11/22/2021	16 - 21	NA	NA	0.76 U	0.89 U	0.73 U	0.53 U	0.71 U
	11/8/2022	16 - 21	NA	NA	0.50 U	0.50 U	0.50 U	0.50 U	0.74 I

FDEP GCTLs = Florida Department of Environmental Protection Groundwater Cleanup Target Levels, Chapter 62-777 Florida Administrative Code, Table 1 (2005)

FDEP NADCs = Natural Attenuation Default Concentration, Chapter 62-777 Florida Administrative Code, Table V (2005)

ft bls = feet below land surface

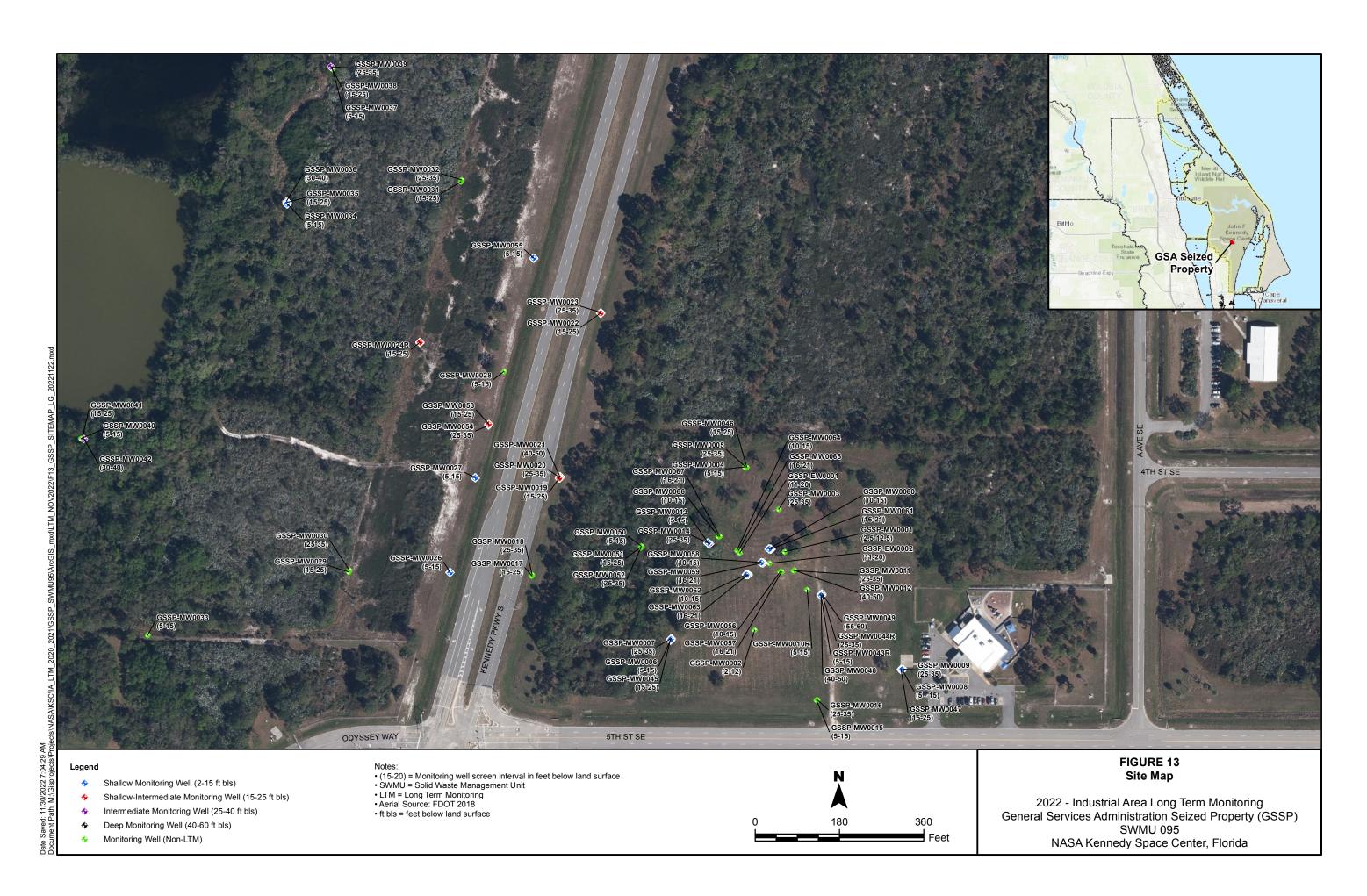
GSSP = General Services Administration Seized Property

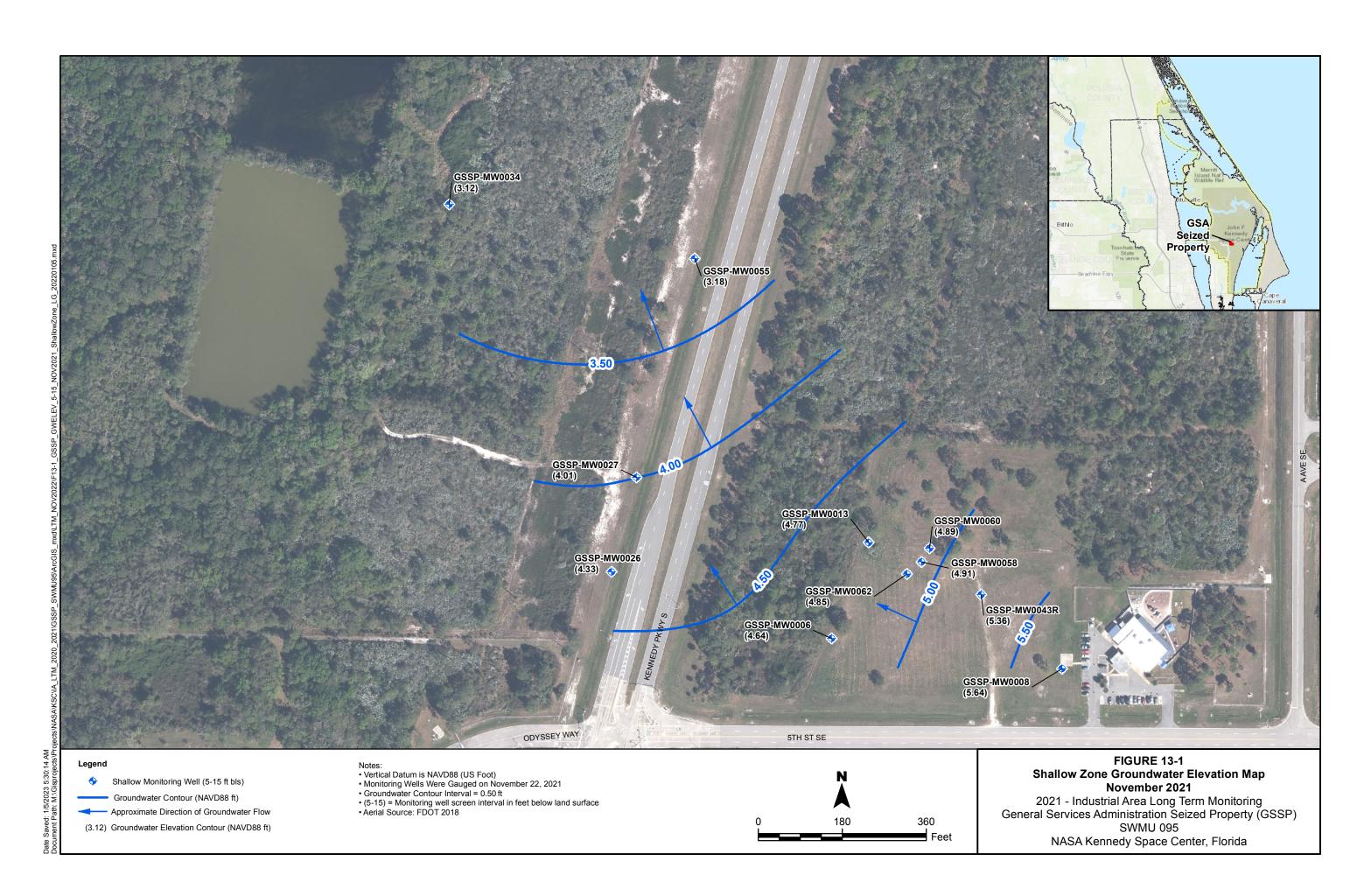
MW = monitoring well

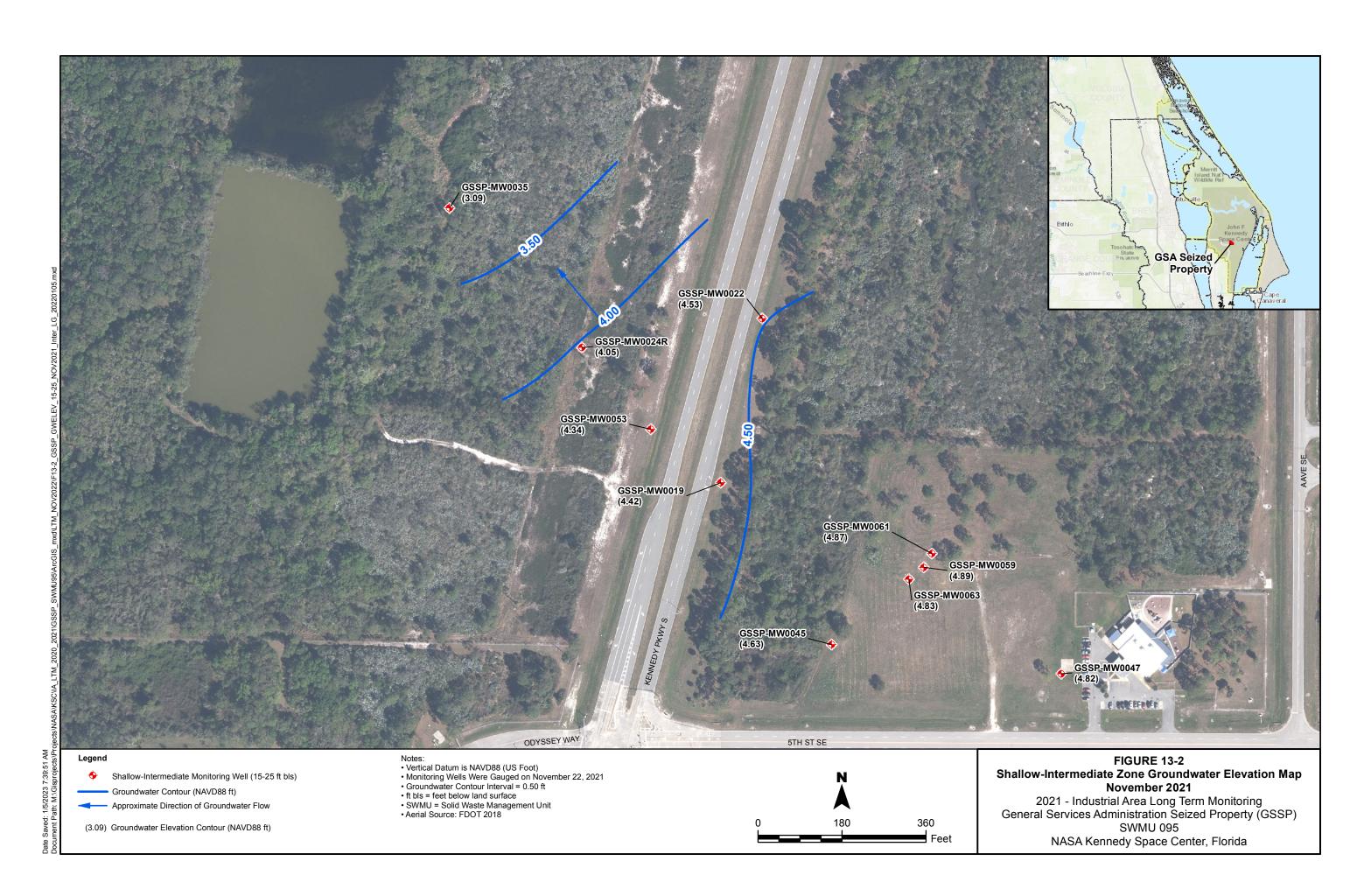
NA = Not Analyzed

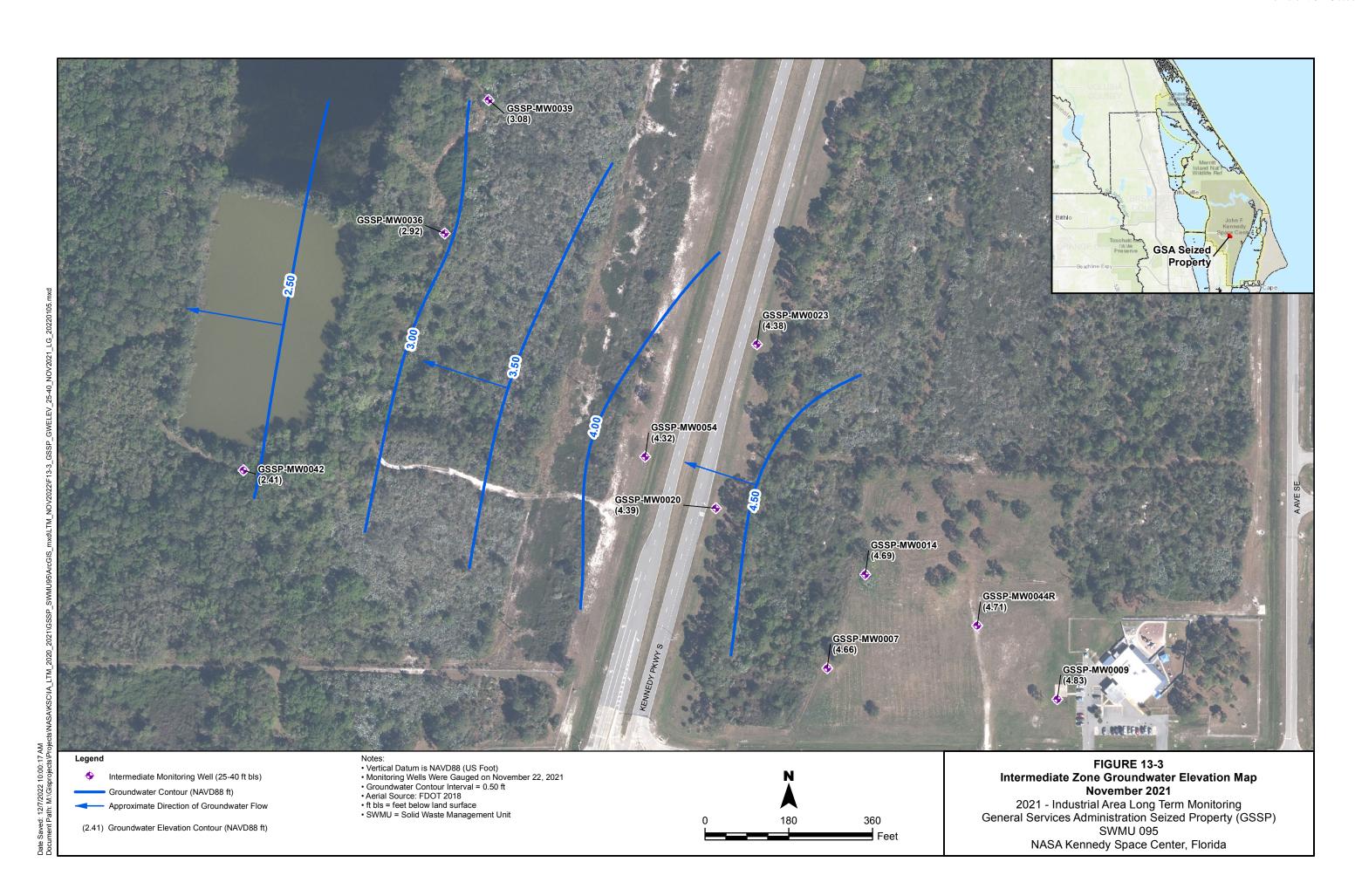
Results and screening criteria presented in µg/L (micrograms per liter)

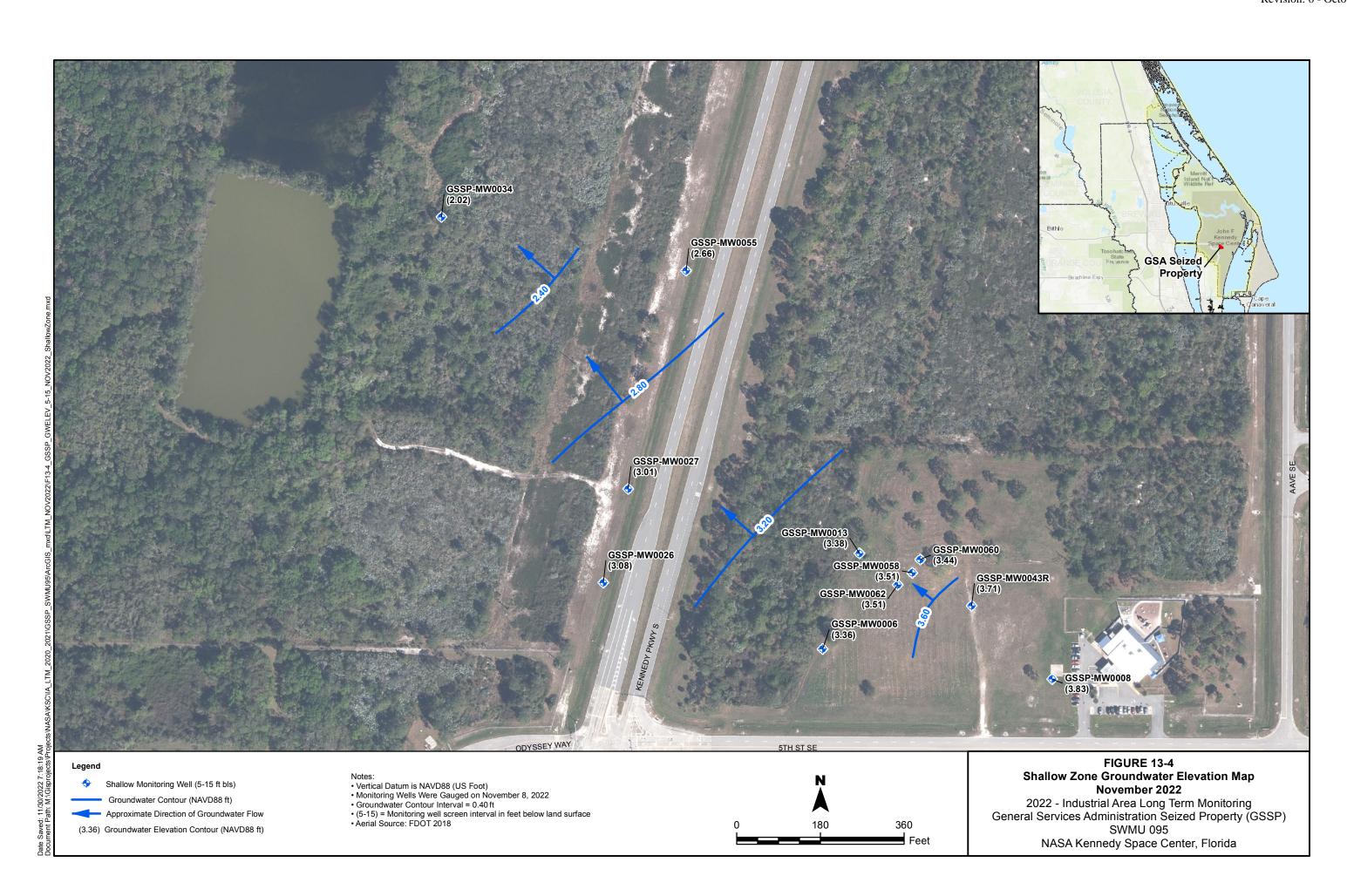
**Bolded** results indicate the presence of an analyte at the specified concentration

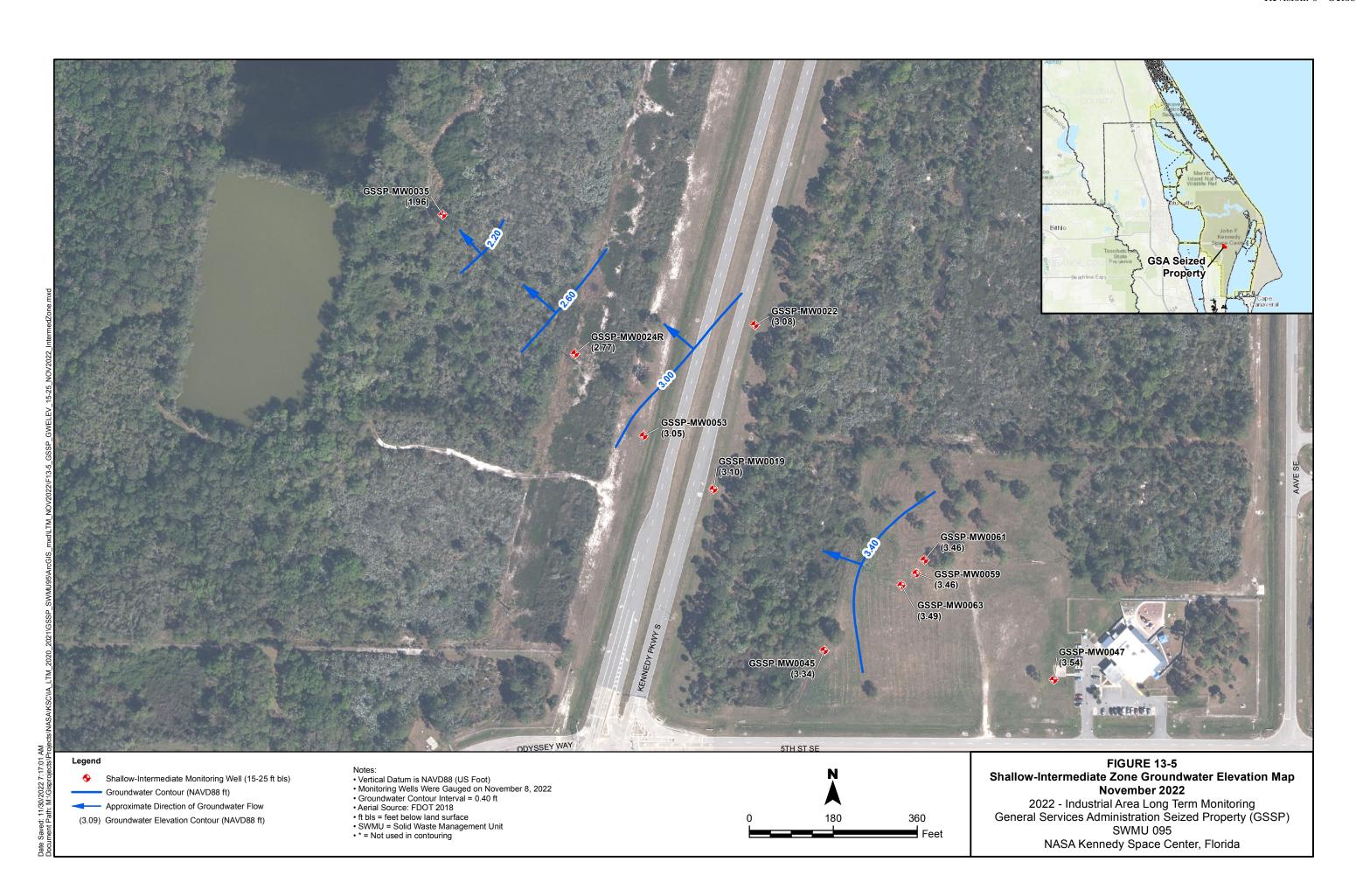

**Red** font indicates an exceedance of FDEP GCTLs

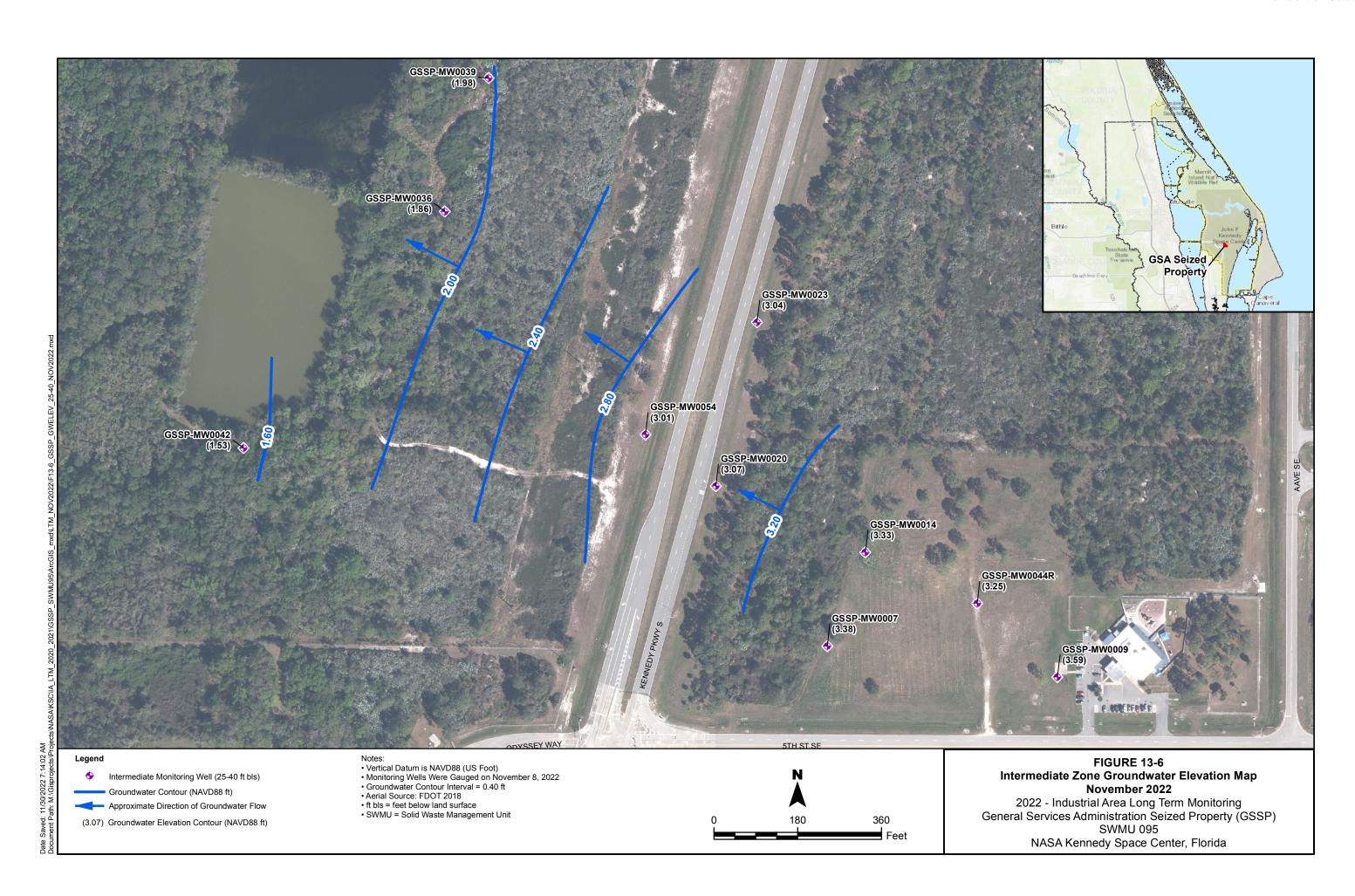

Highlighted cell indicates an exceedance of FDEP NADCs


I = Analyte greater than or equal to the method detection limit, but less than the practical quantitation limit


U = Analyte not detected


The numeric value presented for non-detects is the sample-specific reporting detection limit














NASA Kennedy Space Center, Florida



14. Depth of monitoring well screen interval is presented in feet below land surface.

Approximate Extent of Vinyl Chloride Greater Than NADCs from Monitoring Well Sampling

#### 14. SPACE STATION PROCESSING FACILITY

This section provides a summary of the SSPF site (SWMU 098). Refer to **Figure 14** for a site map.

#### 14.1 SITE DESCRIPTION AND HISTORY

The SSPF is located in the northeast portion of the KSC IA at the southeast corner of the East Avenue South and 1st Street Southeast intersection. The SSPF was constructed in 1994 to service and process elements, payloads, and experiments for the International Space Station. The site is comprised of the SSPF Building, the Ammonia Vapor Containment Building, support buildings, and a hazardous waste storage area. A loading dock is located on the west side of the SSPF Building. Paved parking areas are located north and east of the SSPF Building, and a grassy area with a hiking trail exists north of the north parking lot (NASA 2010).

Under Title V of the Clean Air Act, ammonia handling operations at SSPF are required to report releases of ammonia exceeding 100 pounds per day to FDEP. In 2005, a SWMU Assessment identified releases of anhydrous ammonia in the vicinity of the Ammonia Vapor Containment Building (LFR 2006c). The SWMU assessment stated that during International Space Station payload operations approximately 25 pounds per day of ammonia were released; however, three releases of ammonia that exceeded 100 pounds in a day were reported to FDEP. The first documented release occurred in 1996. Two of these reportable releases were directly related to operator error, and the third release was attributed to venting required for an emergency repair. Approximately 1,440 pounds of ammonia have been released in the vicinity of the Ammonia Vapor Containment Building (NASA 2010).

In 2006, confirmatory sampling was conducted at SSPF, which confirmed the presence of ammonia in groundwater at concentrations exceeding the GCTL. Between 2007 and 2009, an RFI was conducted to delineate the extent of ammonia in groundwater (LFR 2010b). The RFI found ammonia concentrations below the NADC, but exceeded the GCTL. Following the RFI, an ammonia background study was performed center-wide at KSC to establish naturally occurring ammonia concentrations (LFR 2009b). The background study established an ammonia background concentration of 1,860  $\mu$ g/L. A cleanup goal was established for the groundwater at SSPF of 3,720  $\mu$ g/L, which is two times the mean ammonia background concentration. Selection of MNA for groundwater was established to reduce ammonia concentrations below the established site cleanup goal (NASA 2010). The site joined the IA LTM program in 2010 on an annual sampling schedule. In 2012, the sampling frequency was changed to the current biennial groundwater sampling schedule.

#### 14.2 FIELD ACTIVITIES

Field activities were performed at SSPF in May 2022. Groundwater levels were measured at 15 monitoring wells and groundwater samples were collected from five monitoring wells. Monitoring well SSPF-MW0013 was added to the 2022 sampling schedule to verify downgradient delineation. The following table shows the network of wells used for groundwater level measurements and sampling at SSPF.

Well ID	Screen Interval (ft bls)	Analysis
SSPF-MW0001	6-16	WL Only
SSPF-MW0002	6-16	WL Only
SSPF-MW0003	6-16	WL Only
SSPF-MW0004	6-16	WL + Ammonia
SSPF-MW0005	6-16	WL Only
SSPF-MW0006	6-16	WL + Ammonia
SSPF-MW0007	6-16	WL Only
SSPF-MW0010	6-16	WL Only
SSPF-MW0013	16-26	WL + Ammonia
SSPF-MW0014	6-16	WL + Ammonia
SSPF-MW0015	2-12	WL Only
SSPF-MW0016	11-21	WL + Ammonia
SSPF-MW0017	6-16	WL Only
SSPF-MW0018	6-16	WL Only
SSPF-MW0020	6-16	WL Only

Ammonia = ammonia analysis by Method 350.1

ID = identification MW = monitoring well

WL = water level measurement

Groundwater samples collected during the May 2022 sampling event were analyzed for ammonia by Method 350.1. The following table shows the GCTL, NADC, and KSC background concentrations for ammonia.

COC	GCTL	NADC	KSC BKG	2x Mean BKG	KSC Upper ROB
Ammonia as Nitrogen	2,800	28,000	1,860	3,720	9,900

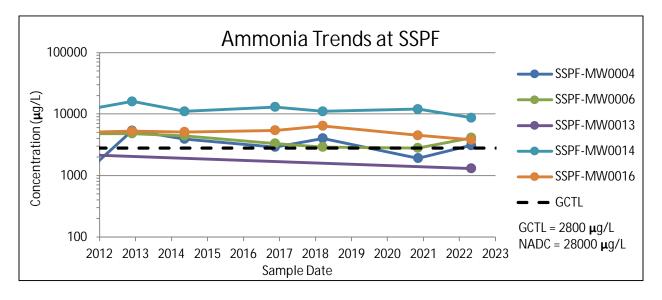
Concentration in µg/L

BKG = Background

ROB = Range of Background

#### 14.3 WATER LEVEL COLLECTION AND GROUNDWATER FLOW DIRECTION

Groundwater levels collected during the May 2022 sampling event were used to calculate groundwater elevations presented in **Table 14-1**. The 2022 shallow aquifer zone (6 ft bls to 16 ft


bls) groundwater flow direction was to the north, consistent with a historical north flow direction at the SSPF. The May 2022 groundwater flow is depicted on **Figure 14-1**.

#### 14.4 ANALYTICAL RESULTS

The groundwater sample from monitoring well SSPF-MW0004 (3,100  $\mu$ g/L) exceeded the GCTL. Groundwater samples from monitoring wells SSPF-MW0006 (4,100  $\mu$ g/L), SSPF-MW0014 (8,700  $\mu$ g/L) and SSPF-MW0016 (3,800  $\mu$ g/L) exceeded the GCTL and KSC treatment goal of 3,720  $\mu$ g/L (two times the KSC background mean ammonia concentration). A summary of the analytical results is presented in **Table 14-2**. Analytical results are depicted on **Figure 14-2**.

#### 14.5 TREND ANALYSIS

During the May 2022 sampling event, five monitoring wells were sampled and compared to historical sampling trends. The five select monitoring wells have exhibited a slow decrease in ammonia concentration, but monitoring wells SSPF-MW0004 and SSPF-MW0006 had a recent increase in ammonia concentration in 2022. Monitoring well SSPF-MW0013 remains below the GCTL and ammonia was detected at a lower concentration in 2022 than its previous sample in 2010. The following trend chart shows the ammonia concentrations at SSPF since 2012.



# 14.6 CONCLUSION AND RECOMMENDATION

Ammonia concentrations continue to exceed the GCTL at monitoring well SSPF-MW0004, and exceed both the GCTL and two times the KSC background mean ammonia concentration at monitoring wells SSPF-MW0006, SSPF-MW0014, and SSPF-MW0016. Biennial sampling in alternating wet/dry seasons is recommended to continue at SSPF. Groundwater levels are recommended to be collected at 15 monitoring wells and five groundwater samples will be analyzed for ammonia.

The following table shows the proposed monitoring wells for water level collection and groundwater sampling for the next sampling event at SSPF scheduled for November 2024.

Well ID	Screen Interval (ft bls)	Analysis
SSPF-MW0001	6-16	WL Only
SSPF-MW0002	6-16	WL Only
SSPF-MW0003	6-16	WL Only
SSPF-MW0004	6-16	WL + Ammonia
SSPF-MW0005	6-16	WL Only
SSPF-MW0006	6-16	WL + Ammonia
SSPF-MW0007	6-16	WL Only
SSPF-MW0010	6-16	WL Only
SSPF-MW0013	16-26	WL + Ammonia
SSPF-MW0014	6-16	WL + Ammonia
SSPF-MW0015	2-12	WL Only
SSPF-MW0016	11-21	WL + Ammonia
SSPF-MW0017	6-16	WL Only
SSPF-MW0018	6-16	WL Only
SSPF-MW0020	6-16	WL Only

Ammonia = ammonia analysis by Method 350.1

ID = identification MW = monitoring well

WL = water level measurement

# Table 14-1 Space Station Processing Facility - Long Term Monitoring (LTM) Monitoring Well Groundwater Elevations

SHALLOW WELL ID:	SSPF-MW0001		SSPF-MW0002		SSPF-MW0003	
Screen Interval (ft bls):	6 -	- 16	6 -	16	6 - 16	
TOC Elevation (ft NAVD88):	11	.17	11	.08	10	.50
Date	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)
May 2014	10.09	1.08	10.03	1.05	9.17	1.33
November 2016	9.39	1.78	9.38	1.70	8.32	2.18
March 2018	9.91	1.26	9.84	1.24	9.03	1.47
November 2020	8.34	2.83	8.33	2.75	6.73	3.77
May 2022	9.80	1.37	9.71	1.37	8.43	2.07

SHALLOW WELL ID:	SSPF-MW0004		SSPF-MW0005		SSPF-MW0006	
Screen Interval (ft bls):	6 -	16	6 -	16	6 - 16	
TOC Elevation (ft NAVD88):	9.	71	10	.55	10	.77
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
May 2014	8.69	1.02	9.58	0.97	9.78	0.99
November 2016	8.02	1.69	8.94	1.61	9.13	1.64
March 2018	8.56	1.15	9.40	1.15	9.61	1.16
November 2020	7.02	2.69	7.90	2.65	8.12	2.65
May 2022	8.38	1.33	9.28	1.27	9.48	1.29

SHALLOW WELL ID:	SSPF-MW0007		SSPF-MW0010		SSPF-MW0014	
Screen Interval (ft bls):	6 -	16	6 -	16	6 - 16	
<b>TOC Elevation (ft NAVD88):</b>	10	.79	10.77		7.90	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
May 2014	9.79	1.00	9.81	0.96	7.11	0.79
November 2016	9.13	1.66	9.18	1.59	6.45	1.45
March 2018	9.63	1.16	9.64	1.13	6.75	1.15
November 2020	8.15	2.64	8.20	2.57	5.37	2.53
May 2022	9.47	1.32	9.47	1.30	6.84	1.06

SHALLOW WELL ID:	SSPF-MW0015		SSPF-MW0017		SSPF-MW0018	
Screen Interval (ft bls):	2 -	12	6 -	16	6 - 16	
TOC Elevation (ft NAVD88):	8.	01	4.	81	8.	15
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
May 2014	6.21	1.80	4.52	0.29	6.84	1.31
November 2016	5.00	3.01	4.06	0.75	5.90	2.25
March 2018	5.77	2.24	4.15	0.66	5.93	2.22
November 2020	4.50	3.51	2.92	1.89	4.83	3.32
May 2022	5.40	2.61	4.31	0.50	6.39	1.76

SHALLOW WELL ID:	SSPF-MW0020		
Screen Interval (ft bls):	6 -	16	
<b>TOC Elevation (ft NAVD88):</b>	8.30		
	Depth to Water	Water Elevation	
Date	(ft BTOC)	(ft NAVD88)	
May 2014	6.71	1.59	
November 2016	6.10	2.20	
March 2018	6.41	1.89	
November 2020	4.70	3.60	
May 2022	6.39	1.91	

INTERMEDIATE WELL ID:	SSPF-MW0013		SSPF-MW0016	
Screen Interval (ft bls):	16	- 26	11 - 21	
<b>TOC Elevation (ft NAVD88):</b>	11	.02	7.99	
	Depth to Water	Depth to Water Water Elevation		Water Elevation
Date	(ft BTOC) (ft NAVD88)		(ft BTOC)	(ft NAVD88)
May 2014	Not Me	easured	6.79	1.20
November 2016	Not Measured		6.20	1.79
March 2018	Not Measured		6.66	1.33
November 2020	Not Measured		5.24	2.75
May 2022	10.04	0.98	6.49	1.50

# **Notes:**

bls = below land surface BTOC = below top of casing

ft = feet

MW = monitoring well

NAVD88 = North American Vertical Datum of 1988

SSPF = Space Station Processing Facility

TOC = top of casing

Table 14-2 Space Station Processing Facility - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

			Ammonia
		Catagamy	Ammonta by Method EPA 350.1
		Category	
		Analyte DEP GCTLs (µg/L)	AMMONIA
		2,800	
	2xKSC	3,720	
	F	28,000	
		<b>Screened Interval</b>	
Location ID	Sample Date	(ft bls)	
SSPF-MW0004	5/22/2007	6 - 16	7,400
	10/29/2008	6 - 16	7,100
	2/12/2009	6 - 16	3,000
	8/12/2009	6 - 16	5,400
	5/19/2010	6 - 16	2,100
	11/2/2010	6 - 16	6,790
	5/9/2011	6 - 16	5,850
	11/2/2011	6 - 16	1,450
	11/28/2012	6 - 16	5,360
	5/15/2014	6 - 16	3,900
	11/21/2016	6 - 16	2,900
	3/21/2018	6 - 16	4,000
	11/13/2020	6 - 16	1,900
	5/10/2022	6 - 16	3,100
SSPF-MW0006	10/29/2008	6 - 16	10,000
	8/12/2009	6 - 16	13,000
	5/19/2010	6 - 16	8,400
	11/2/2010	6 - 16	10,500
	5/9/2011	6 - 16	6,450
	11/2/2011	6 - 16	4,790
	11/28/2012	6 - 16	4,780
	5/15/2014	6 - 16	4,400
	11/21/2016	6 - 16	3,300
	3/21/2018	6 - 16	2,900
	11/11/2020	6 - 16	2,800
	5/10/2022	6 - 16	4,100
SSPF-MW0013	10/29/2008	16 - 26	2,500
	5/19/2010	16 - 26	2,300
dant	5/10/2022	16 - 26	1,300
SSPF-MW0014	10/29/2008	6 - 16	15,000
	8/13/2009	6 - 16	17,000
	5/19/2010	6 - 16	16,000
	11/2/2010	6 - 16	19,200
	5/9/2011	6 - 16	19,400
	11/2/2011	6 - 16	12,300
	11/28/2012	6 - 16	16,000
	5/15/2014	6 - 16	11,000
	11/21/2016	6 - 16	13,000
	3/21/2018	6 - 16	11,000
	11/11/2020	6 - 16	12,000
	5/10/2022	6 - 16	8,700

Table 14-2 Space Station Processing Facility - Long Term Monitoring (LTM) Groundwater Sampling Analytical Results

		Category	Ammonia by Method EPA 350.1
		Analyte	AMMONIA
	F	DEP GCTLs (µg/L)	2,800
	2xKSC	Background (µg/L)	3,720
	F	DEP NADCs (µg/L)	28,000
		<b>Screened Interval</b>	
Location ID	Sample Date	(ft bls)	
SSPF-MW0016	10/29/2008	11 - 21	4,900
	5/19/2010	11 - 21	3,600
	11/2/2010	11 - 21	4,040
	5/9/2011	11 - 21	4,960
	11/2/2011	11 - 21	5,070
	11/28/2012	11 - 21	5,240
	5/16/2014	11 - 21	5,100
	11/21/2016	11 - 21	5,400
	3/21/2018	11 - 21	6,400
	11/11/2020	11 - 21	4,500
	5/10/2022	11 - 21	3,800

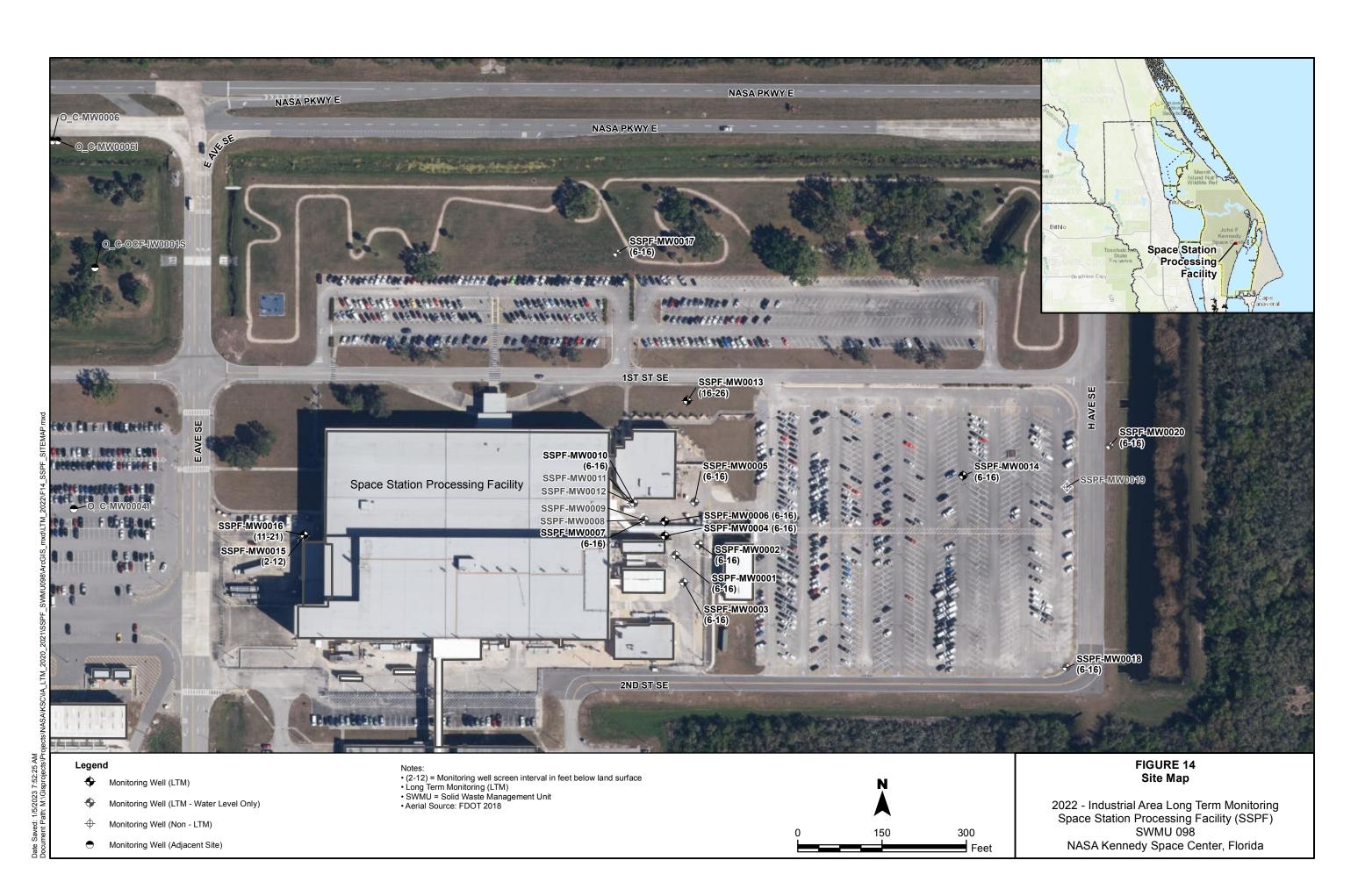
#### Notes:

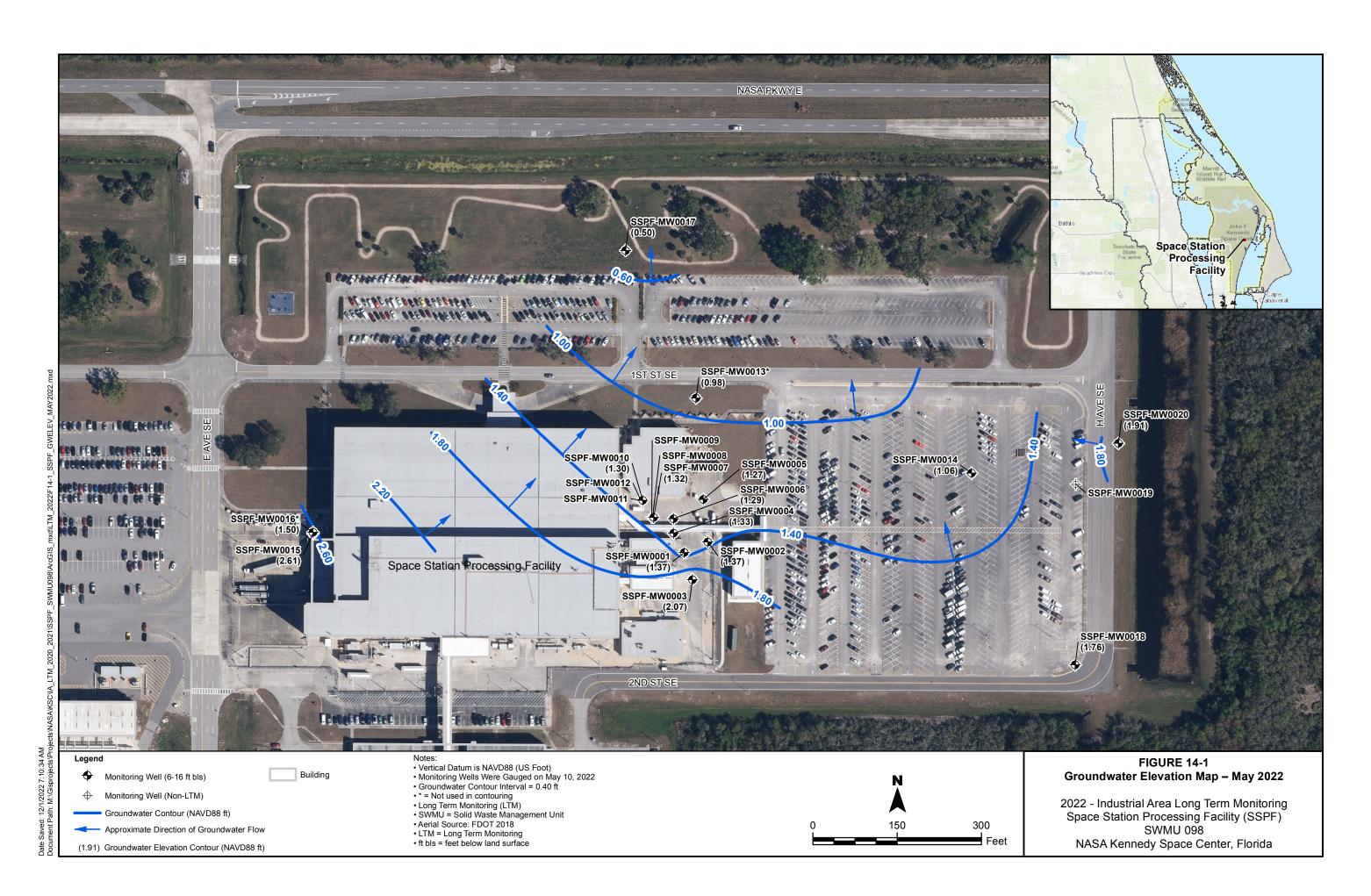
FDEP GCTLs = Florida Department of Environmental Protection Groundwater Cleanup Target Levels, Chapter 62-777 Florida Administrative Code, Table 1 (2005)

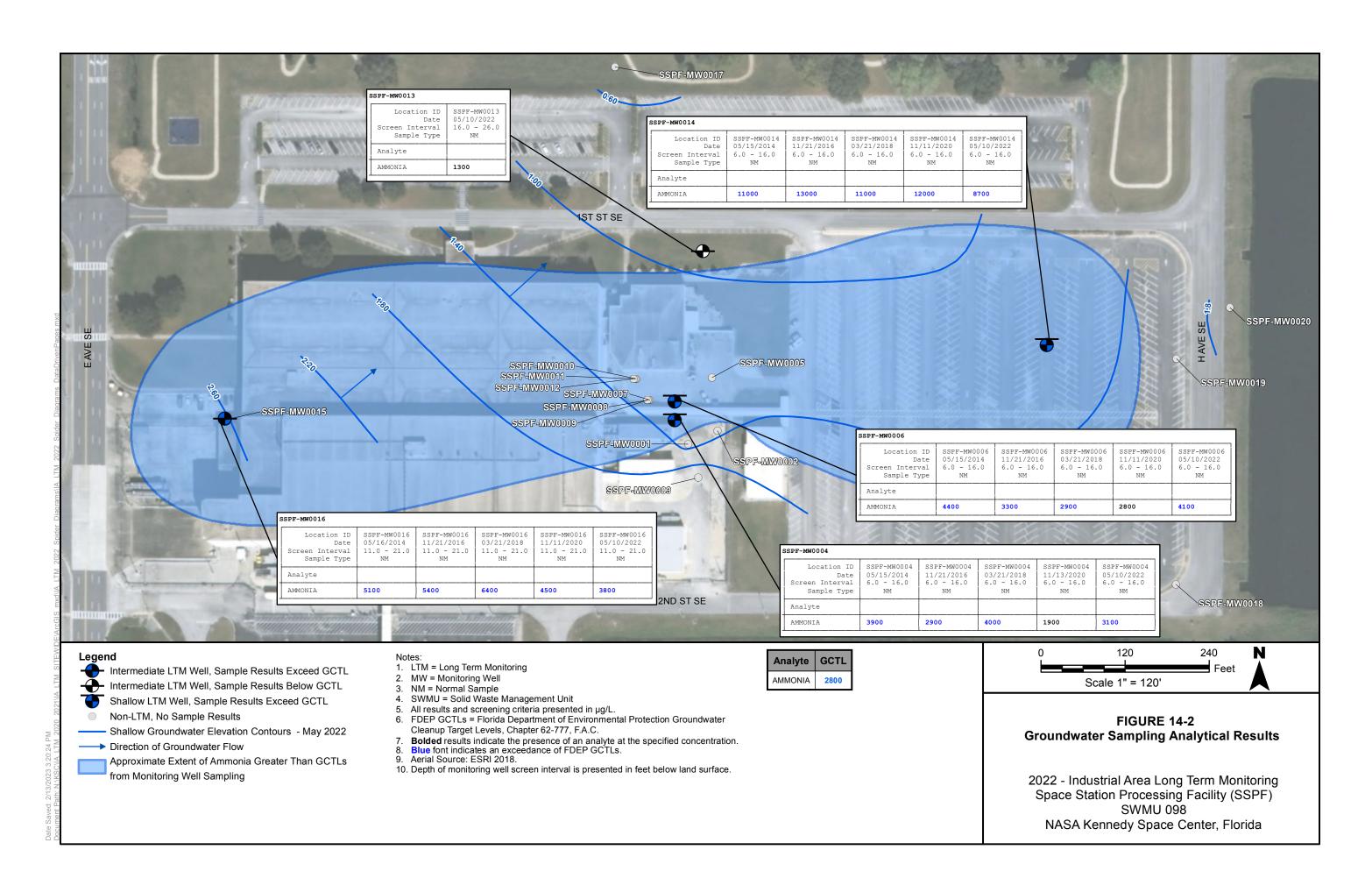
2xKSC Background = two times the background KSC levels, established in 2009

FDEP NADCs = Natural Attenuation Default Concentration, Chapter 62-777 Florida Administrative Code, Table V (2005)

ft bls = feet below land surface


SSPF = Space Station Processing Facility


MW = monitoring well


Results and screening criteria presented in µg/L (micrograms per liter)

Bolded results indicate the presence of an analyte at the specified concentration

**Red** font indicates an exceedance of FDEP GCTLs







# 15. FUEL STORAGE AREA #1 UNDERGROUND STORAGE TANK (BUILDING 1044)

This section provides a summary of the FSA1 site (PRL 157). Refer to **Figure 15** for a site map.

#### 15.1 SITE DESCRIPTION AND HISTORY

The FSA1 site is located on CCSFS, approximately 2 miles south of the CCSFS Industrial Area off of Samuel C Phillips Parkway and is bordered by the Banana River Lagoon to the west. Since the 1950s, the site and surrounding area have been utilized for fuel storage and transfer activities. Current operations at FSA1 include receiving, storing, and dispensing of fuels and oxidizers, including anhydrous hydrazine, monomethyl hydrazine, dimethyl hydrazine, nitrogen tetroxide, jet fuel, and rocket propellant. The former Pump House Building 1044 UST (PRL 157) is located within the boundaries of FSA1 and is part of the IA LTM program.

The area surrounding former Building 1044 is topographically flat except for retention/detention areas that contain stormwater runoff from adjacent paved areas. During its operation, the site was comprised of a tanker loading/unloading area with associated fuel piping within a concrete containment area; Building 1044, which housed pumps for the fueling station; and an associated asphalt drive. A former rocket propellant/jet propellant (RP/JP) storage area, which consisted of five ASTs, was located north of Building 1044. Concrete trenches were constructed to surround the tanker loading/unloading areas for spill containment. In 1990, a double-walled 2,500-gallon UST was installed west of Building 1044. A drain in the pump house (Building 1044) directed fluids to the UST until the drain was removed from service in 2006. Prior to the installation of the UST, the drain outfall was in the vicinity of the contaminant detention area (Tetra Tech 2009).

Several fuel spills have historically occurred at FSA1, resulting in soil and groundwater contamination. In 1989, 3,000 gallons of JP-5 spilled at the RP/JP facility due to an inoperative AST overfill protection device. In 1991, approximately 100 gallons of JP-5 fuel spilled onto the surface at the loading area and then was washed into the perimeter drain trench, which had open valves that directed the fuel into the detention area. In 2006, as a new waste fill container for the 2,500 gallon-UST was being installed, a leaking pipe flange was observed that showed signs of fuel leakage into the surrounding soils. The tank was properly closed in 2009 (Tetra Tech 2009).

From 2007 to 2009, site assessment activities were conducted to evaluate the potential soil and groundwater contamination associated with the UST. Petroleum-impacted soils containing total petroleum hydrocarbons (TPH), ethylbenzene, xylenes, 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene exceeding SCTLs were found in areas west and south of Building 1044. Soil contamination was generally limited to the smear zone and no free product was observed (Tetra Tech 2009). A groundwater plume, limited to the area of the former UST

Long-Term Groundwater Monitoring Report Industrial Area Revision: 0 October 2023

and loading area, corresponded to the area where soil exceeding leachability SCTLs was confirmed by the site assessment (Tetra Tech 2009).

The site assessment recommended NFA for soils due to disruptions that excavation would cause to facility operations, and because the SCTL leachability exceedances were limited to the smear zone in the area of groundwater contamination (Tetra Tech 2009). The site assessment recommended MNA for the groundwater impacts, and LTM sampling began at FSA1 in 2010. From 2010 through 2015, groundwater at FSA1 was sampled on a semi-annual schedule, which was changed to an annual schedule in 2016.

LTM results indicated increasing PAH concentrations at FSA1, so a supplemental DPT investigation was performed in 2013 to 2015. The DPT supplemental investigation discovered free product south of FSA1-MW0002 (DPT location DPT1004). Additionally, the DPT work found petroleum soil contamination in the vicinity of FSA1-MW0001 and FSA1-MW0002 and beneath the loading area structure west of Facility 1044 at concentrations exceeding leachability SCTLs. Corresponding groundwater samples at these locations contained COCs exceeding NADCs. This residual soil contamination below the water table was concluded to be acting as a continuing source for the groundwater contamination present at FSA1. A Free Product Recovery IM, which included limited excavation, was proposed in the vicinity of DPT1004 (Jacobs-CORE 2016).

In summer 2017, the Free Product Recovery IM was performed, which included the construction of a recovery trench with a sump to remove potential free product near DPT location DPT1004, disposal of excavated soils from the recovery trench construction, and vacuum extraction of groundwater from the recovery trench and sump. Concentrations of TPH in previous soil samples were evaluated and used to maximize the effectiveness of the trench location for the IM. The trench location was placed within the TPH source area (defined as TPH concentrations greater than 10,000 mg/kg). A total of 34.05 tons of soil were excavated from the trench area and transported off-site for proper disposal. Approximately 4,421 gallons of groundwater were removed and disposed of at the CCSFS Trident Pretreatment Facility (Geosyntec 2018a).

In October 2017 and March 2018, performance monitoring sampling was conducted to evaluate the effectiveness of the IM. Groundwater results indicated that TPH concentrations increased in monitoring well FSA1-MW0001, which is located upgradient from the IM trench, while the concentrations of TPH decreased, yet remained above the GCTL, in monitoring well FSA1-MW0002, which is located adjacent/downgradient from the IM trench. After the IM, TPH concentrations also decreased to below the GCTL in monitoring well FSA1-MW0021, which is located downgradient of the trench. Some increases in COC concentrations and seasonal fluctuations were also observed during the second performance monitoring event. Following the performance monitoring, FSA1 was moved back into the IA LTM Program on a semi-annual sampling schedule (Geosyntec 2018a). LTM sampling resumed at FSA1 in September 2018.

Building 1044 and its associated piping and containment areas were demolished in April 2020 prior to a supplemental DPT assessment at FSA1. The area was leveled using clean fill and covered with grass. During the May 2020 sampling event, monitoring wells FSA1-MW0012 and FSA1-MW0022 were found damaged, likely from the demolition activities. These monitoring wells were replaced prior to the November 2020 sampling event. The sampling schedule was adjusted to an annual frequency following the November 2020 sampling event.

A historical review was completed in January 2023 to determine the extent of vertical delineation at the site. During a site assessment in 2007, DPT samples collected around the area of monitoring wells FSA1-MW0001, FSA1-MW0002, and FSA1-MW0025 were below GCTLs at an interval between 18 ft bls and 22 ft bls. Additional DPT groundwater assessments were completed in 2014, 2016, and 2017. Some groundwater samples collected between 18 ft bls and 22 ft bls around the same area of the site and downgradient monitoring wells FSA1-MW0021 and FSA1-MW0027 exceeded GCTLs for isopropylbenzene and TPH; however, the groundwater samples between 26 ft bls and 30 ft bls were below GCTLs. A summary of the current and historical DPT analytical results along with a figure and cross-section from 2018 are presented in **Appendix O**.

# 15.2 FIELD ACTIVITIES

Groundwater sampling was conducted at FSA1 in November 2021 and May 2022. Groundwater levels were measured at 18 monitoring wells. Groundwater samples were collected from nine monitoring wells in November 2021 and 10 monitoring wells in May 2022. Monitoring wells FSA1-MW0012R and FSA1-MW0014 were added back into the sampling schedule in 2021 to verify upgradient delineation following the 2020 DPT assessment around the former building 1044 footprint. Monitoring well FSA1-MW0028 was installed in November 2021, in accordance with recommendations from the 2019-2020 IA LTM Report, to verify downgradient delineation in the intermediate zone. Monitoring well construction details are presented in the well installation report (HydroGeoLogic 2021). Monitoring well FSA1-MW0017A was added back into the sampling schedule in 2022 to verify shallow horizontal delineation downgradient of FSA1-MW0001.

The following table shows the network of wells used for groundwater level measurements and sampling at FSA1.

Well ID	Screen Interval (ft bls)	Analysis
FSA1-MW0001	2-12	WL + select VOC, select PAHs, and TPH
FSA1-MW0002	2-12	WL + select VOC, select PAHs, and TPH
FSA1-MW0004	2-12	WL Only
FSA1-MW0012R	3-13	WL + select VOC, select PAHs, and TPH
FSA1-MW0014	2-12	WL + select VOC, select PAHs, and TPH
FSA1-MW0015	3-13	WL Only
FSA1-MW0016A	3-13	WL Only

Well ID	Screen Interval (ft bls)	Analysis
FSA1-MW0017A ^a	3-13	WL + select VOC, select PAHs, and TPH
FSA1-MW0019	2-12	WL Only
FSA1-MW0020	1-11	WL Only
FSA1-MW0021	2-12	WL + select VOC, select PAHs, and TPH
FSA1-MW0022R	3-13	WL + select VOC, select PAHs, and TPH
FSA1-MW0023	2-12	WL + select VOC, select PAHs, and TPH
FSA1-MW0024	2-12	WL Only
FSA1-MW0025	15-25	WL Only
FSA1-MW0026	15-25	WL Only
FSA1-MW0027	15-25	WL + select VOC, select PAHs, and TPH
FSA1-MW0028	15-25	WL + select VOC, select PAHs, and TPH

ID = identification

MW = monitoring well

Select PAHs = 1-methylnaphthalene, 2-methylnaphthalene, naphthalene analysis by Method 8270

Select VOC = isopropylbenzene analysis by Method 8260

TPH = monitoring well sampled for TPH by FL-PRO Method

WL = water level measurement

The groundwater samples were analyzed for select VOCs by Method 8260, select PAHs by Method 8270, and TPH by FL-PRO (Florida Petroleum Range Organics). The following table shows the COCs for FSA1 with their respective GCTLs and NADCs.

COC	GCTL (µg/L)	NADC (µg/L)
Isopropylbenzene	0.8	8
1-Methylnaphthalene	28	280
2-Methylnaphthalene	28	280
Naphthalene	14	140
TPH	5,000	50,000

#### 15.3 WATER LEVEL COLLECTION AND GROUNDWATER FLOW DIRECTION

Groundwater levels collected during the 2021 and 2022 sampling events were used to calculate groundwater elevations presented in **Table 15-1**. Groundwater elevations were used to determine the contours and flow direction for the shallow aquifer zone (1 ft bls to 13 ft bls) in 2021 and 2022, and the intermediate aquifer zone (15 ft bls to 25 ft bls) in 2022. The groundwater flow directions were generally to the west. The historical groundwater flow direction at FSA1 is to the west-northwest. The groundwater flow contours and directions are shown on **Figure 15-1** through **Figure 15-3**.

#### 15.4 ANALYTICAL RESULTS

Groundwater at FSA1 was analyzed for select VOCs, select PAHs, and TPH in 2021 and 2022. A summary of the analytical results is presented in **Table 15-2**. Analytical results are depicted on **Figure 15-4**.

^a monitoring well sampled in May 2022, but not in November 2021

Analytical results for each COC present at FSA1 are discussed below:

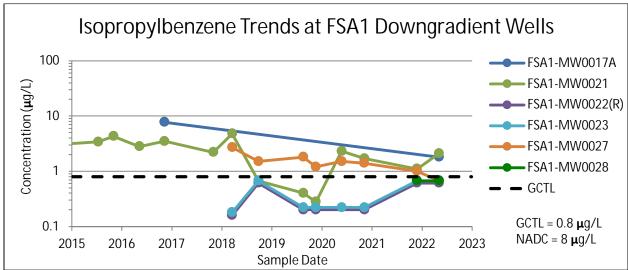
# • Isopropylbenzene

- In November 2021, isopropylbenzene was detected at concentrations above the GCTL in monitoring wells FSA1-MW0001 (4.6 μg/L), FSA1-MW0014 (1.1 μg/L), FSA1-MW0021 (1.1 μg/L), and FSA1-MW0027 (1.0 μg/L).
- In May 2022, isopropylbenzene was detected at concentrations above the GCTL in monitoring wells FSA1-MW0002 (2.9  $\mu$ g/L), FSA1-MW0017A (1.8  $\mu$ g/L), and FSA1-MW0021 (2.1  $\mu$ g/L). The isopropylbenzene concentration in monitoring well FSA1-MW0001 (14  $\mu$ g/L) exceeded both the GCTL and the NADC.
- 1-Methylnaphthalene and 2-Methylnaphthalene
  - In May 2022, 1-methylnaphthalene (33 μg/L) and 2-methylnaphthalene (34 μg/L) were detected above the GCTLs at FSA1-MW0001.

#### Naphthalene

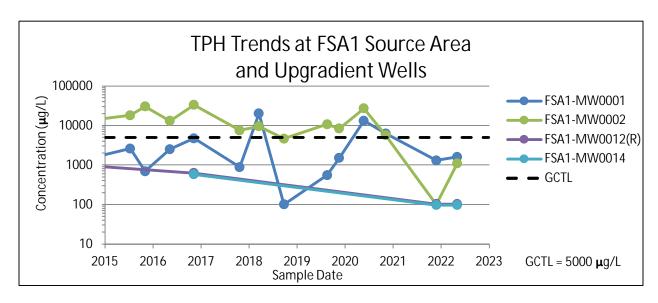
 No concentrations of naphthalene were detected above the GCTL during the 2021 and 2022 sampling events.

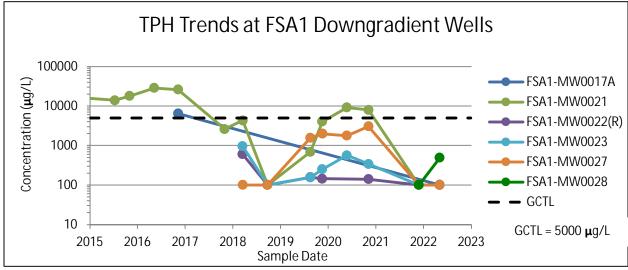

#### TPH


 No concentrations of TPH were detected above the GCTL during the 2021 and 2022 sampling events.

#### 15.5 TREND ANALYSIS

Isopropylbenzene concentrations in monitoring wells FSA1-MW0001, FSA1-MW0002, and FSA1-MW0021 have been recently fluctuating above and below the GCTL, and increased above NADC levels at FSA1-MW0001 in 2022.


The following trend charts show the isopropylbenzene concentration trends since 2015.






PAH concentrations have been decreasing at FSA1-MW0001, but have exceeded GCTLs in 2018 and 2022. TPH concentrations have been consistently detected at the sampled monitoring wells; however, the TPH concentrations were below the GCTL in 2021 and 2022.

The following trend charts show the TPH concentration trends since 2015.





#### 15.6 CONCLUSION AND RECOMMENDATION

Isopropylbenzene concentrations remain above GCTL at four monitoring wells downgradient of the former Building 1044 area. Monitoring well FSA1-MW0001 exceeded the isoproylbenzene NADC and had select PAH GCTL exceedances in May 2022. Naphthalene and TPH concentrations have been below the GCTLs since 2019 and 2021, respectively.

Annual LTM sampling is recommended to continue. Naphthalene and TPH are recommended to be removed from the site COCs based on the past two or more consecutive events below GCTLs. Groundwater levels are recommended to be measured in 18 monitoring wells and groundwater samples collected at 10 monitoring wells for isopropylbenzene and select PAHs (1-methylnaphthalene and 2-methylnaphthalene).

The following table shows the recommended monitoring wells for water level collections and groundwater sampling for the next sampling event at FSA1 scheduled for November 2023.

Well ID	Screen Interval (ft bls)	Analysis
FSA1-MW0001	2-12	WL + Isopropylbenzene and select PAHs
FSA1-MW0002	2-12	WL + Isopropylbenzene and select PAHs
FSA1-MW0004	2-12	WL Only
FSA1-MW0012R	3-13	WL + Isopropylbenzene and select PAHs
FSA1-MW0014	2-12	WL + Isopropylbenzene and select PAHs
FSA1-MW0015	3-13	WL Only
FSA1-MW0016A	3-13	WL Only
FSA1-MW0017A	3-13	WL + Isopropylbenzene and select PAHs
FSA1-MW0019	2-12	WL Only
FSA1-MW0020	1-11	WL Only
FSA1-MW0021	2-12	WL + Isopropylbenzene and select PAHs
FSA1-MW0022R	3-13	WL + Isopropylbenzene and select PAHs
FSA1-MW0023	2-12	WL + Isopropylbenzene and select PAHs
FSA1-MW0024	2-12	WL Only
FSA1-MW0025	15-25	WL Only
FSA1-MW0026	15-25	WL Only
FSA1-MW0027	15-25	WL + Isopropylbenzene and select PAHs
FSA1-MW0028	15-25	WL + Isopropylbenzene and select PAHs

ID = identification

Isopropylbenzene = isopropylbenzene analysis by Method 8260

MW = monitoring well

Select PAHs = 1-methylnaphthalene and 2-methylnaphthalene analysis by Method 8270

WL = water level measurement

Table 15-1
Fuel Storage Area #1 Underground Storage Tank (Building 1044) - Long Term Monitoring (LTM)
Monitoring Well Groundwater Elevations

SHALLOW WELL ID:	FSA1-MW0001		FSA1-N	1W0002	FSA1-MW0004		
Screen Interval (ft bls):	2 -	12	2 -	12	2 - 12		
<b>TOC Elevation (ft NAVD88):</b>	5.	35	4.	59	5.	48	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation	
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	
August 2013	4.48	0.87	3.91	0.68	4.60	0.88	
November 2013	5.14	0.21	4.52	0.07	5.04	0.44	
May 2014	5.20	0.15	4.63	-0.04	5.32	0.16	
November 2014	4.28	1.07	3.53	1.06	4.44	1.04	
July 2015	5.67	-0.32	5.14	-0.55	5.68	-0.20	
November 2015	4.43	0.92	3.77	0.82	4.53	0.95	
May 2016	4.63	0.72	4.20	0.39	4.82	0.66	
November 2017	2.99	2.36	2.56	2.03	2.72	2.76	
March 2018	4.83	0.52	4.24	0.35	4.89	0.59	
September 2018	5.20	0.15	5.23	-0.64	5.30	0.18	
August 2019	3.63	1.72	3.03	1.56	3.59	1.89	
November 2019	3.38	1.97	2.78	1.81	3.25	2.23	
May 2020	4.63	0.72	3.88	0.71	4.72	0.76	
November 2020	3.90	1.45	3.23	1.36	3.98	1.50	
November 2021	4.03	1.32	3.35	1.24	4.10	1.38	
May 2022	4.82	0.53	4.19	0.40	4.93	0.55	

SHALLOW WELL ID:	FSA1-N	MW0012	FSA1-M	W0012R	FSA1-MW0014	
Screen Interval (ft bls):	3 -	13	3 -	13	2 - 12	
<b>TOC Elevation (ft NAVD88):</b>	5.	81	5.	77	6.	04
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
August 2013	4.81	1.00	-	· <b>-</b>	4.86	1.18
November 2013	5.33	0.48	-	· <del>-</del>	5.53	0.51
May 2014	5.51	0.30	-	· <del>-</del>	5.70	0.34
November 2014	4.74	1.07	-	· <del>-</del>	4.86	1.18
July 2015	5.85	-0.04	-		5.97	0.07
November 2015	4.84	0.97	-		4.96	1.08
May 2016	5.06	0.75	-	-	5.13	0.91
November 2017	2.98	2.83	-	-	2.48	3.56
March 2018	5.12	0.69	-	-	5.14	0.90
September 2018	5.40	0.41	-	-	5.30	0.74
August 2019	3.78	2.03	-	-	3.80	2.24
November 2019	3.43	2.38			3.29	2.75
May 2020	Aban	doned	Not Installed		5.07	0.97
November 2020	-		4.20 1.57		4.29	1.75
November 2021			4.32	1.45	4.50	1.54
May 2022	-		5.04	0.73	5.13	0.91

SHALLOW WELL ID:	FSA1-MW0015		FSA1-M	W0016A	FSA1-MW0017A		
Screen Interval (ft bls):	3 -	13	3 -	13	3 - 13		
<b>TOC Elevation (ft NAVD88):</b>	4.	32	5.	60	5.	46	
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation	
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	
August 2013	3.71	0.61	5.09	0.51	5.04	0.42	
November 2013	3.99	0.33	5.29	0.31	5.13	0.33	
May 2014	4.31	0.01	5.71	-0.11	5.55	-0.09	
November 2014	3.37	0.95	4.75	0.85	4.58	0.88	
July 2015	4.62	-0.30	6.06	-0.46	6.04	-0.58	
November 2015	3.52	0.80	4.87	0.73	4.67	0.79	
May 2016	3.87	0.45	5.16	0.44	5.11	0.35	
November 2017	2.38	1.94	3.63	1.97	3.70	1.76	
March 2018	3.98	0.34	5.36	0.24	5.31	0.15	
September 2018	5.45	-1.13	5.80	-0.20	5.80	-0.34	
August 2019	2.90	1.42	3.89	1.71	4.20	1.26	
November 2019	2.59	1.73	3.90	1.70	3.93	1.53	
May 2020	3.58	0.74	5.01	0.59	4.86	0.60	
November 2020	3.04	1.28	4.33	1.27	4.28	1.18	
November 2021	3.17	1.15	4.48	1.12	4.40	1.06	
May 2022	4.00	0.32	5.49	0.11	5.43	0.03	

# Table 15-1 Fuel Storage Area #1 Underground Storage Tank (Building 1044) - Long Term Monitoring (LTM) Monitoring Well Groundwater Elevations

SHALLOW WELL ID:	FSA1-MW0019		FSA1-N	1W0020	FSA1-MW0021	
Screen Interval (ft bls):	2 -	12	1 -	11	2 - 12	
<b>TOC Elevation (ft NAVD88):</b>	7.	49	4.	68	4.	30
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
August 2013	7.15	0.34	4.19	0.49	3.85	0.45
November 2013	7.21	0.28	4.34	0.34	3.97	0.33
May 2014	7.63	-0.14	4.78	-0.10	4.42	-0.12
November 2014	6.74	0.75	3.82	0.86	3.41	0.89
July 2015	8.13	-0.64	5.18	-0.50	4.91	-0.61
November 2015	6.76	0.73	3.91	0.77	3.56	0.74
May 2016	7.16	0.33	4.27	0.41	3.89	0.41
November 2017	6.94	0.55	2.81	1.87	2.45	1.85
March 2018	7.43	0.06	4.45	0.23	4.11	0.19
September 2018	7.80	-0.31	5.74	-1.06	5.70	-1.40
August 2019	6.31	1.18	3.29	1.39	2.74	1.56
November 2019	6.01	1.48	3.05	1.63	2.68	1.62
May 2020	6.97	0.52	4.10	0.58	3.72	0.58
November 2020	6.38	1.11	3.49	1.19	3.05	1.25
November 2021	6.45	1.04	3.63	1.05	3.03	1.27
May 2022	7.55	-0.06	4.57	0.11	4.19	0.11

SHALLOW WELL ID:	FSA1-MW0022		FSA1-M	W0022R	FSA1-MW0023	
Screen Interval (ft bls):		12	3 -	- 13	2 -	12
TOC Elevation (ft NAVD88):	5.	97	5.	73	5.	32
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
March 2018	6.05	-0.08	-	· <del>-</del>	5.26	0.06
September 2018	6.25	-0.28	-	· <b>-</b>	5.42	-0.10
August 2019	4.23	1.74	-	· <del>-</del>	3.68	1.64
November 2019	4.39	1.58	-	· <del>-</del>	3.61	1.71
May 2020	Aban	doned	Not Installed		4.78	0.54
November 2020	-	-	4.65	1.08	3.96	1.36
November 2021	-	-	4.59	1.14	3.85	1.47
May 2022	-		5.83	-0.10	5.05	0.27

SHALLOW WELL ID:	FSA1-MW0024			
Screen Interval (ft bls):	2 -	12		
<b>TOC Elevation (ft NAVD88):</b>	5.	36		
Date	Depth to Water (ft BTOC)	Water Elevation (ft NAVD88)		
March 2018	5.51	-0.15		
September 2018	4.80	0.56		
August 2019	3.10	2.26		
November 2019	2.70	2.66		
May 2020	4.35	1.01		
November 2020	3.61	1.75		
November 2021	3.72	1.64		
May 2022	4.48	0.88		

INTERMEDIATE WELL ID:	FSA1-MW0025		FSA1-N	1W0026	FSA1-MW0027	
Screen Interval (ft bls):	15 -	- 25	15	- 25	15	- 25
<b>TOC Elevation (ft NAVD88):</b>	4.	40	5.	66	5.	97
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)
March 2018	4.30	0.10	5.77	-0.11	6.12	-0.15
September 2018	4.55	-0.15	6.00	-0.34	6.31	-0.34
August 2019	3.85	0.55	4.40	1.26	4.68	1.29
November 2019	2.64	1.76	4.16	1.50	4.50	1.47
May 2020	3.78	0.62	5.20	0.46	5.53	0.44
November 2020	3.15	1.25	4.52	1.14	4.85	1.12
November 2021	3.20	1.20	4.59	1.07	4.85	1.12
May 2022	4.20	0.20	5.75	-0.09	6.15	-0.18

INTERMEDIATE WELL ID:	FSA1-MW0028			
Screen Interval (ft bls):				
TOC Elevation (ft NAVD88):	5.67			
	Depth to Water	Water Elevation		
Date	(ft BTOC)	(ft NAVD88)		
November 2021	4.62	1.05		
May 2022	5.95	-0.28		

# Notes:

bls = below land surface

BTOC = below top of casing

 $FSA1 = Fuel\ Storage\ Area\ \#1\ Underground\ Storage\ Tank\ (Building\ 1044)$ 

ft = feet

MW = monitoring well

NAVD88 = North American Vertical Datum of 1988

TOC = top of casing

Table 15-2
Fuel Storage Area #1 Underground Storage Tank (Building 1044) - Long Term Monitoring (LTM)
Groundwater Sampling Analytical Results

		Polynuclear Aromatic Hydrocarbons (PAH)  Category  Polynuclear Aromatic Hydrocarbons (PAH)  by Method SW8270 SIM  Volatile Organic Compounds (VOC)  by Method 8260					FLO PRO			
		Analyte	1-METHYL NAPTHALENE	2-METHYL NAPHTHALENE	NAPHTHALENE	NAPHTHALENE	BENZENE	ETHYLBENZENE	ISOPROPYL BENZENE	TPH (C08-C40)
	F	DEP GCTLs (µg/L)	28	28	14	14	1	30	0.8	5,000
	F	DEP NADCs (µg/L)	280	280	140	140	100	300	8	
		Screened Interval								
<b>Location ID</b>	Sample Date	(ft bls)								
FSA1-MW0001	1/23/2008	2 - 12	116	131	250	NA	15.9	40.6	NA	9,040
	10/22/2009	2 - 12	140	190	320	NA	0.52 U	14	NA	3,200
	5/18/2010	2 - 12	130	140	310	NA	0.066 U	30	54	3,600
	11/2/2010	2 - 12	100	120	14	NA	0.21 U	8.08	39	3,500 J
	5/3/2011	2 - 12	48.7	49.3	103	NA	0.21 U	1.42	23.1	1,450
	10/31/2011	2 - 12	38.4	8.52	32.5	NA	0.21 U	0.37 I	8.03	11,800
	6/26/2012	2 - 12	52.3	45.6	102	NA	0.21 U	0.40 I	14.1	
	11/27/2012	2 - 12	30.1	28.7	53.1	NA	0.21 U	0.35 I	14	4,270
	8/15/2013	2 - 12	28	20	53	130	0.71 U	0.69 U	14	4,800
	11/5/2013	2 - 12	62	54	140	130	0.71 U	0.69 U	12	3,400
	5/14/2014	2 - 12	80	63	160	130	0.71 U	0.69 U	12	1,200
	7/13/2015	2 - 12	23	1.8	30	91	0.71 U	0.69 U	10	2,600
	11/3/2015	2 - 12	56	12	84	97	0.71 U	0.69 U	16	690
	5/10/2016	2 - 12	41	14	63	59	0.71 U	0.69 U	11	2,500
	11/9/2016	2 - 12	16	7.3	34	NA	0.16 U	0.24 U	19	4,700
	10/23/2017	2 - 12	1.6	0.75	3.4	NA	0.16 U	0.24 U	0.88 I	880
	3/19/2018	2 - 12	40	33	62	NA	0.32 U	0.48 U	7.6	20,000
	9/27/2018	2 - 12	0.047 U	0.044 U	0.057 I	0.82 U	0.71 U	0.69 U	0.67 U	100 U
	8/21/2019	2 - 12	0.79 I	0.49 I	2.0	4.6 I	0.31 U	0.36 U	0.77 I	550
	11/21/2019	2 - 12	4.4	3.0	7.0	8.0	0.31 U	0.36 U	0.44 I	1,500 J
	5/27/2020	2 - 12	16.9	16.5	14.4	NA	0.31 U	0.36 U	11.8	13,100
	11/9/2020	2 - 12	17.6	15.1	12.2	NA	0.31 U	0.36 U	5.8	6,210
	11/30/2021	2 - 12	3.4	3.0	2.9	NA	NA	NA	4.6	1,300
	5/9/2022	2 - 12	33	34	14	NA	NA	NA	14	1,600
FSA1-MW0002	1/23/2008	2 - 12	0.25 U	0.25 U	0.25 U	NA	0.20 U	0.20 U	NA	346
	10/22/2009	2 - 12	14	12	20	NA	0.52 U	0.10 U	NA	3,900 J
	5/18/2010	2 - 12	12	9.0	16	NA	0.066 U	0.52 U	3.3	13,000
	11/2/2010	2 - 12	17	15	43	NA	0.21 U	0.21 U	3.75	39,000
	5/3/2011	2 - 12	16.9	4.97	20.9	NA	0.21 U	0.38 I	3.54	36,500
	10/31/2011	2 - 12	1.7	0.638	2.37	NA	0.21 U	0.21 U	0.81 I	15,400
	6/26/2012	2 - 12	5.3	3.09	11.8	NA	0.21 U	0.21 U	2.2	10.400
	11/27/2012	2 - 12	15.5	7.53	48.7	NA	0.21 U	0.21 U	3.6	19,100
	8/15/2013	2 - 12	16	11	51	110	0.71 U	0.69 U	3.2	54,000
	11/5/2013	2 - 12	13	9.2	50	50	0.71 U	0.69 U	3.3	22,000
	5/14/2014	2 - 12	13	22	41	45	0.71 U	0.69 U	5.3	12,000

Table 15-2
Fuel Storage Area #1 Underground Storage Tank (Building 1044) - Long Term Monitoring (LTM)
Groundwater Sampling Analytical Results

Category			Polynuclear Aromatic Hydrocarbons (PAH) by Method SW8270 SIM			Volatile Organic Compounds (VOC) by Method 8260				FLO PRO
			1-METHYL NAPTHALENE	2-METHYL NAPHTHALENE	NAPHTHALENE	NAPHTHALENE	BENZENE	ETHYLBENZENE	ISOPROPYL BENZENE	TPH (C08-C40)
FDEP GCTLs (µg/L)		1 -	28	28	14	14	100	30	0.8	5,000
	<u> </u>	DEP NADCs (µg/L)	280	280	140	140	100	300	8	
T d' ID	GI. D. 4	Screened Interval								
Location ID	7/13/2015	(ft bls) 2 - 12	20	11	52	7.4	0.71 U	0.69 U	2.6	10.000
FSA1-MW0002 (continued)	11/3/2015	2 - 12	20 5.8	11	53	74 40	0.71 U	0.69 U	3.6	18,000 30,000
(continuea)	5/10/2016	2 - 12	17	3.6 7.1	40 39	44	0.71 U	0.69 U	2.5 4.2	
	11/9/2016	2 - 12		0.53	3.8	NA	0.64 U	0.96 U	0.56 U	13,000 33,000
	10/23/2017	2 - 12	1.1	0.55	6.4	NA NA	0.16 U	0.96 U	2.3	7,500
	3/19/2018	2 - 12	15		18	NA NA	0.10 U	0.48 U	2.9	9,500
	9/27/2018	2 - 12	29	9.1 28	53	78	0.32 U 0.71 U	0.48 U	11	4,600
	8/21/2019	2 - 12	0.33 U	0.33 U	0.33 U	1.0 U	0.71 U	0.36 U	0.22 U	10,700
	11/21/2019	2 - 12	2.6	1.1	1.3	1.0 U	0.31 U	0.36 U	1.8	8270 J
	5/27/2020	2 - 12	1.6 U	1.6 U	1.6 U	NA NA	0.31 U	0.36 U	1.7	27,000
	11/9/2020	2 - 12	0.32 U	0.32 U	0.32 U	NA NA	0.31 U	0.36 U	0.22 U	5,610
	11/30/2021	2 - 12	0.050 U	0.050 U	0.13	NA	NA	NA NA	0.67 U	100 U
	5/9/2022	2 - 12	0.50	0.28	1.6	NA	NA	NA	2.9	1,100
FSA1-MW0012	5/23/2007	3 - 13	0.96 U	0.96 U	0.96 U	NA	0.5 U	0.5 U	NA	4,110
	11/8/2016	3 - 13	0.20 U	0.20 U	0.19 U	NA	NA	NA NA	0.14 U	600 U
FSA1-MW0012R	11/30/2021	3 - 13	0.050 U	0.050 U	0.050 U	NA	NA	NA	0.67 U	100 U
15/11-W100012K	5/9/2022	3 - 13	0.050 U	0.050 U	0.050 U	NA	NA	NA	0.67 U	100 U
FSA1-MW0014	11/8/2016	2 - 12	0.20 U	0.20 U	0.19 U	NA	NA	NA	0.14 U	600 U
	11/30/2021	2 - 12	0.050 U	0.050 U	0.23	NA	NA	NA	1.1	100 U
	5/9/2022	2 - 12	0.074 I	0.057 I	0.080 I	NA	NA	NA	0.67 U	100 U
FSA1-MW0017A	11/9/2016	3 - 13	0.20 U	0.20 U	0.19 U	NA	NA	NA	7.7	6,500
	5/9/2022	3 - 13	0.050 U	0.050 U	0.20	NA	NA	NA	1.8	100 U
FSA1-MW0021	8/15/2013	2 - 12	0.047 U	0.044 U	0.035 U	0.82 U	0.71 U	0.69 U	0.67 U	100 U
	11/5/2013	2 - 12	0.047 U	0.080 I	0.78	1.4	0.71 U	0.69 U	0.84 I	1,300
	5/14/2014	2 - 12	5.9	3.1	62	57	0.71 U	0.69 U	2.9	18,000
	7/13/2015	2 - 12	16	6.7	32	37	0.71 U	0.69 U	3.4	14,000
	11/3/2015	2 - 12	20	9.2	52	77	0.71 U	0.69 U	4.3	18,000
	5/10/2016	2 - 12	22	22	69	42	0.71 U	0.69 U	2.8	29,000
	11/9/2016	2 - 12	5.0	1.4	15	NA	0.48 U	0.72 U	3.5	26,000
	11/2/2017	2 - 12	3.6	0.39	3.7	4.0	0.71 U	0.69 U	2.2	2,600
	3/20/2018	2 - 12	12	4.1	15	18	0.71 U	0.69 U	4.8	4,300
	9/27/2018	2 - 12	0.047 U	0.044 U	0.13	0.82 U	0.71 U	0.69 U	0.67 U	100 U
	8/21/2019	2 - 12	0.33 U	0.33 U	0.33 U	1.0 U	0.31 U	0.36 U	0.40 I	689
	11/21/2019	2 - 12	0.36 U	0.36 U	0.36 U	1.0 U	0.31 U	0.36 U	0.28 I	4,050 J
	5/27/2020	2 - 12	1.2	0.49 I	2.0	NA	0.31 U	0.36 U	2.3	9,200
	11/9/2020	2 - 12	0.32 U	0.32 U	0.46 I	NA	0.31 U	0.36 U	1.7	7,990
	11/30/2021	2 - 12	0.050 U	0.050 U	0.091 I	NA	NA	NA	1.1	100 U
	5/9/2022	2 - 12	0.050 U	0.050 U	0.11	NA	NA	NA	2.1	100 U

Table 15-2
Fuel Storage Area #1 Underground Storage Tank (Building 1044) - Long Term Monitoring (LTM)
Groundwater Sampling Analytical Results

Category			Polynuclear Aromatic Hydrocarbons (PAH) by Method SW8270 SIM			Volatile Organic Compounds (VOC) by Method 8260				FLO PRO
Analyte			1-METHYL NAPTHALENE	2-METHYL NAPHTHALENE	NAPHTHALENE	NAPHTHALENE	BENZENE	ETHYLBENZENE	ISOPROPYL BENZENE	TPH (C08-C40)
FDEP GCTLs (µg/L)			28	28	14	14	1	30	0.8	5,000
FDEP NADCs (µg/L)			280	280	140	140	100	300	8	,
Location ID	Sample Date	Screened Interval (ft bls)								
FSA1-MW0022	3/19/2018	2 - 12	0.20 U	0.20 U	0.19 U	NA	0.16 U	0.24 U	0.18 U	600 U
	9/27/2018	2 - 12	0.047 U	0.044 U	0.035 U	0.82 U	0.71 U	0.69 U	0.67 U	100 U
	8/21/2019	2 - 12	0.33 U	0.33 U	0.33 U	1.0 U	0.31 U	0.36 U	0.22 U	157 I
	11/21/2019	2 - 12	0.32 U	0.32 U	0.32 U	1.0 U	0.31 U	0.36 U	0.22 U	144 IJ
FSA1-MW0022R	11/9/2020	3 - 13	0.32 U	0.32 U	0.32 U	NA	0.31 U	0.36 U	0.22 U	140 U
	11/30/2021	3 - 13	0.050 U	0.050 U	0.050 U	NA	NA	NA	0.67 U	100 U
	5/9/2022	3 - 13	0.050 U	0.050 U	0.050 U	NA	NA	NA	0.67 U	100 U
FSA1-MW0023	3/19/2018	2 - 12	0.20 U	0.20 U	0.25	NA	0.16 U	0.24 U	0.18 U	970
	9/27/2018	2 - 12	0.047 U	0.044 U	0.035 U	0.82 U	0.71 U	0.69 U	0.67 U	100 U
	8/21/2019	2 - 12	0.32 U	0.32 U	0.32 U	1.0 U	0.31 U	0.36 U	0.22 U	156 I
	11/21/2019	2 - 12	0.33 U	0.33 U	0.33 U	1.0 U	0.31 U	0.36 U	0.22 U	249 IJ
	5/27/2020	2 - 12	0.33 U	0.33 U	0.33 U	NA	0.31 U	0.36 U	0.22 U	565
	11/9/2020	2 - 12	0.33 U	0.33 U	0.33 U	NA	0.31 U	0.36 U	0.22 U	340
	11/30/2021	2 - 12	0.050 U	0.050 U	0.050 U	NA	NA	NA	0.67 U	100 U
	5/9/2022	2 - 12	0.050 U	0.050 U	0.11	NA	NA	NA	0.67 U	100 U
FSA1-MW0027	3/20/2018	14.5 - 24.5	0.091 I	0.044 U	0.035 U	0.82 U	0.71 U	0.69 U	2.7	100 U
	9/27/2018	14.5 - 24.5	0.047 U	0.044 U	0.15	0.82 U	0.71 U	0.69 U	1.5	100 U
	8/21/2019	14.5 - 24.5	0.33 U	0.33 U	0.33 U	1.0 U	0.31 U	0.36 U	1.8	1,570 V
	11/21/2019	14.5 - 24.5	0.32 U	0.32 U	0.32 U	1.0 U	0.31 U	0.36 U	1.2	1,990 J
	5/27/2020	14.5 - 24.5	0.33 U	0.33 U	0.33 U	NA	0.31 U	0.36 U	1.5	1,780
	11/9/2020	14.5 - 24.5	0.32 U	0.32 U	0.32 U	NA	0.31 U	0.36 U	1.4	3,040
	11/30/2021	14.5 - 24.5	0.050 U	0.050 U	0.24	NA	NA	NA	1.0	100 U
	5/9/2022	14.5 - 24.5	0.050 U	0.050 U	0.080 I	NA	NA	NA	0.67 U	100 U
FSA1-MW0028	11/30/2021	15 - 25	0.050 U	0.050 U	0.050 U	NA	NA	NA	0.67 U	100 U
	5/9/2022	15 - 25	0.050 U	0.050 U	0.050 U	NA	NA	NA	0.67 U	490 I

### Notes:

FDEP GCTLs = Florida Department of Environmental Protection Groundwater Cleanup Target Levels, Chapter 62-777 Florida Administrative Code, Table 1 (2005)

FDEP NADCs = Natural Attenuation Default Concentration, Chapter 62-777 Florida Administrative Code, Table V (2005)

ft bls = feet below land surface

FSA1 = Fuel Storage Area #1 Underground Storage Tank (Building 1044)

MW = monitoring well

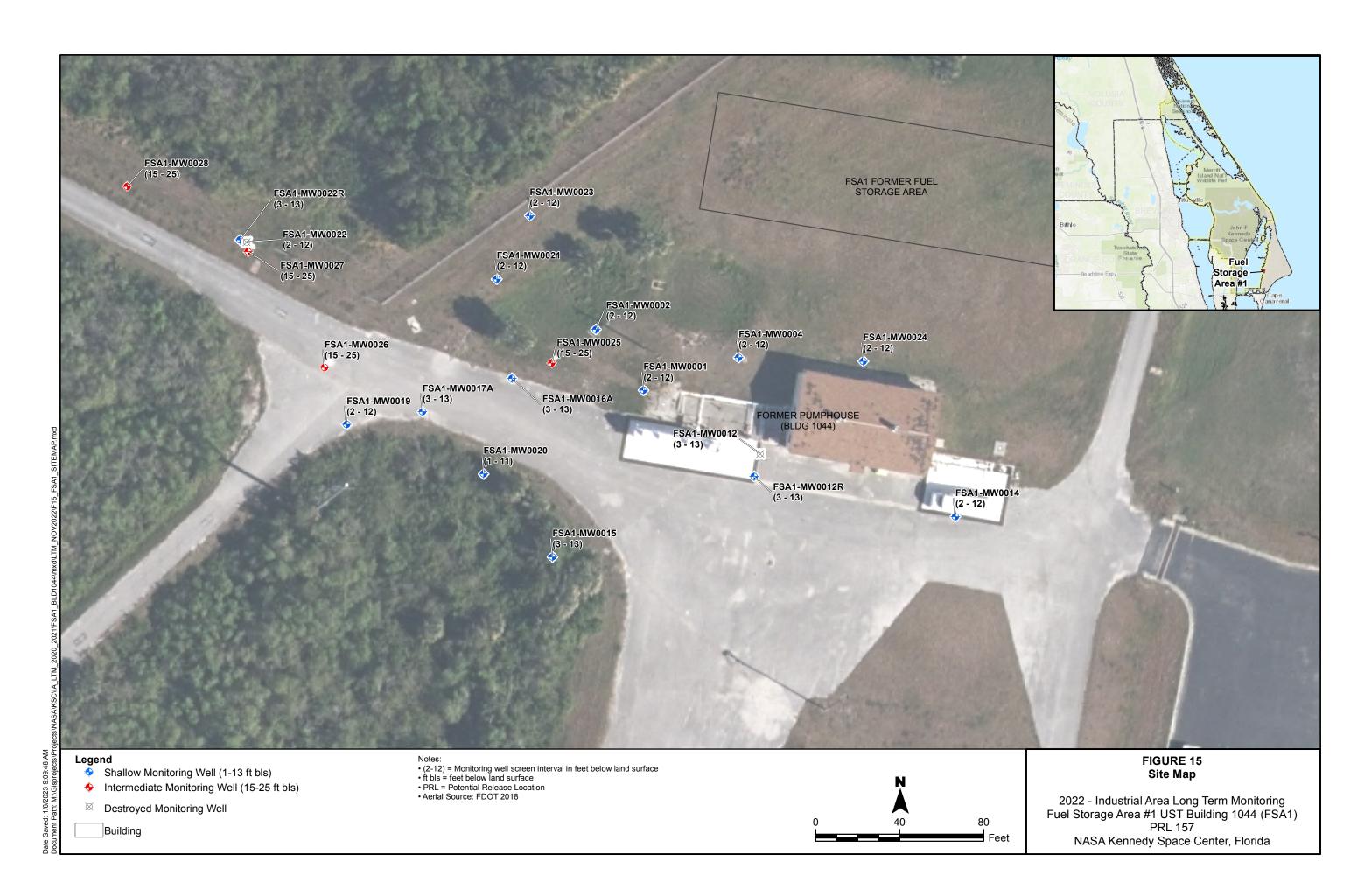
NA = Not Analyzed

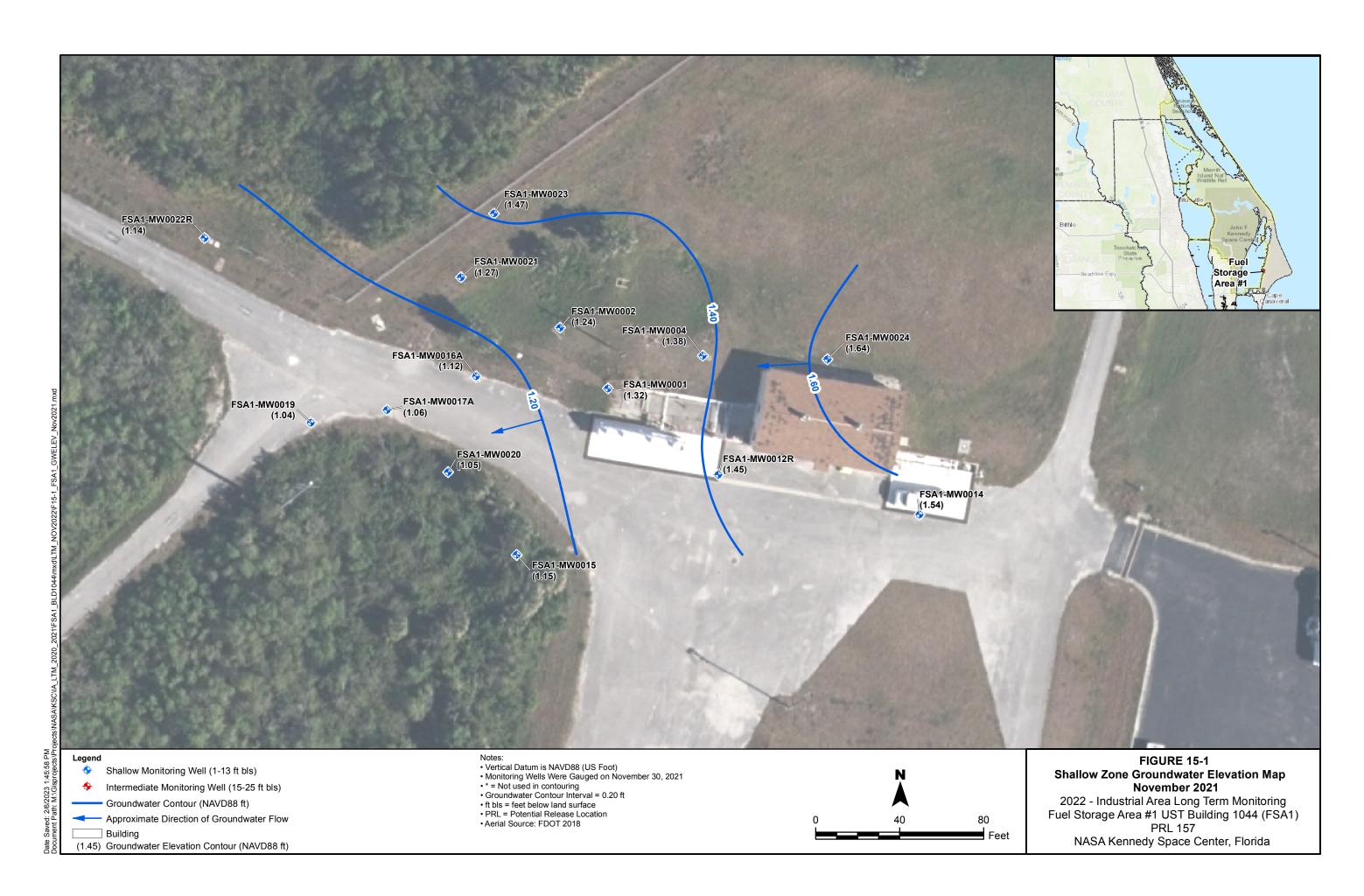
Results and screening criteria presented in µg/L (micrograms per liter)

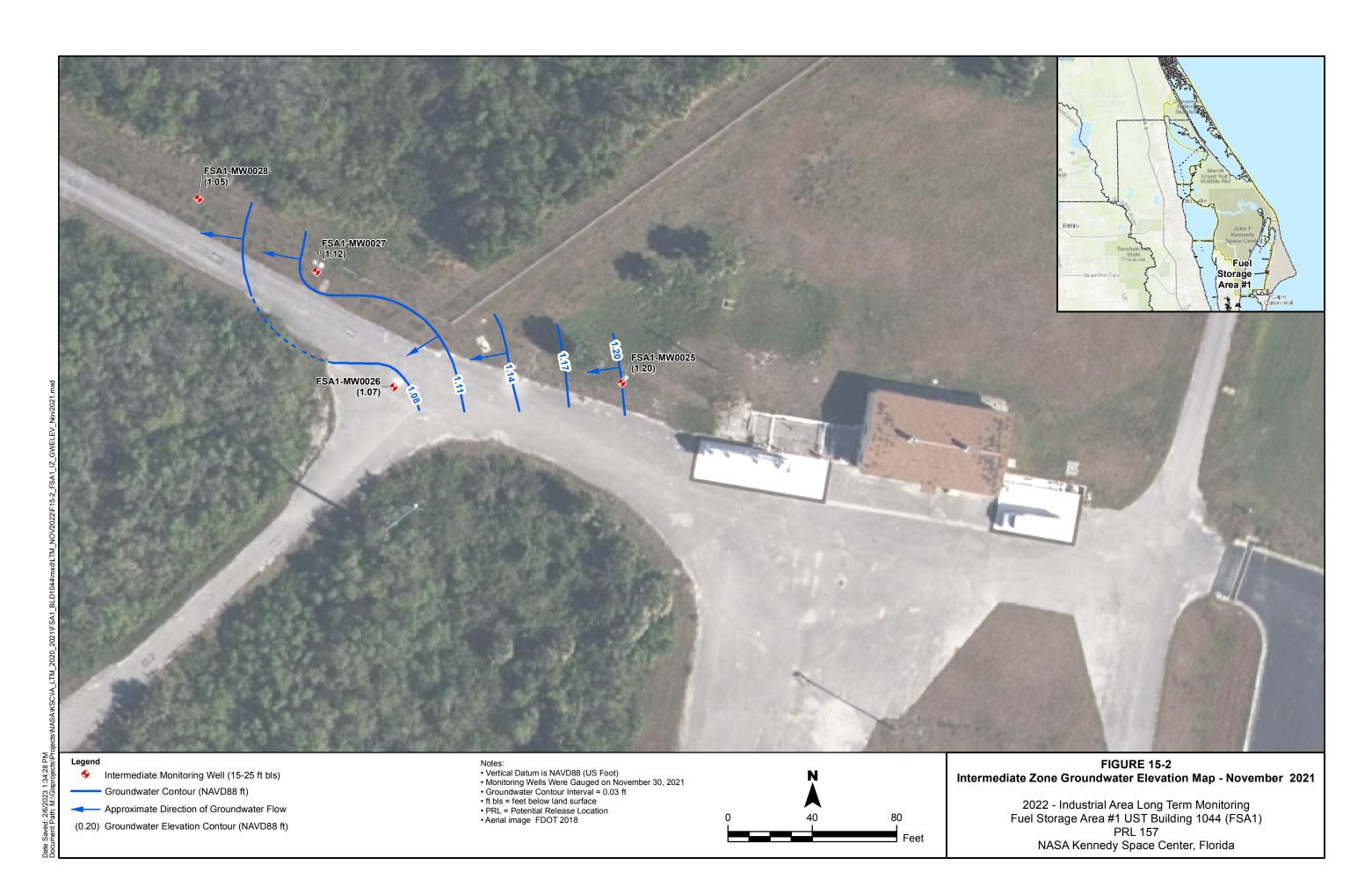
**Bolded** results indicate the presence of an analyte at the specified concentration

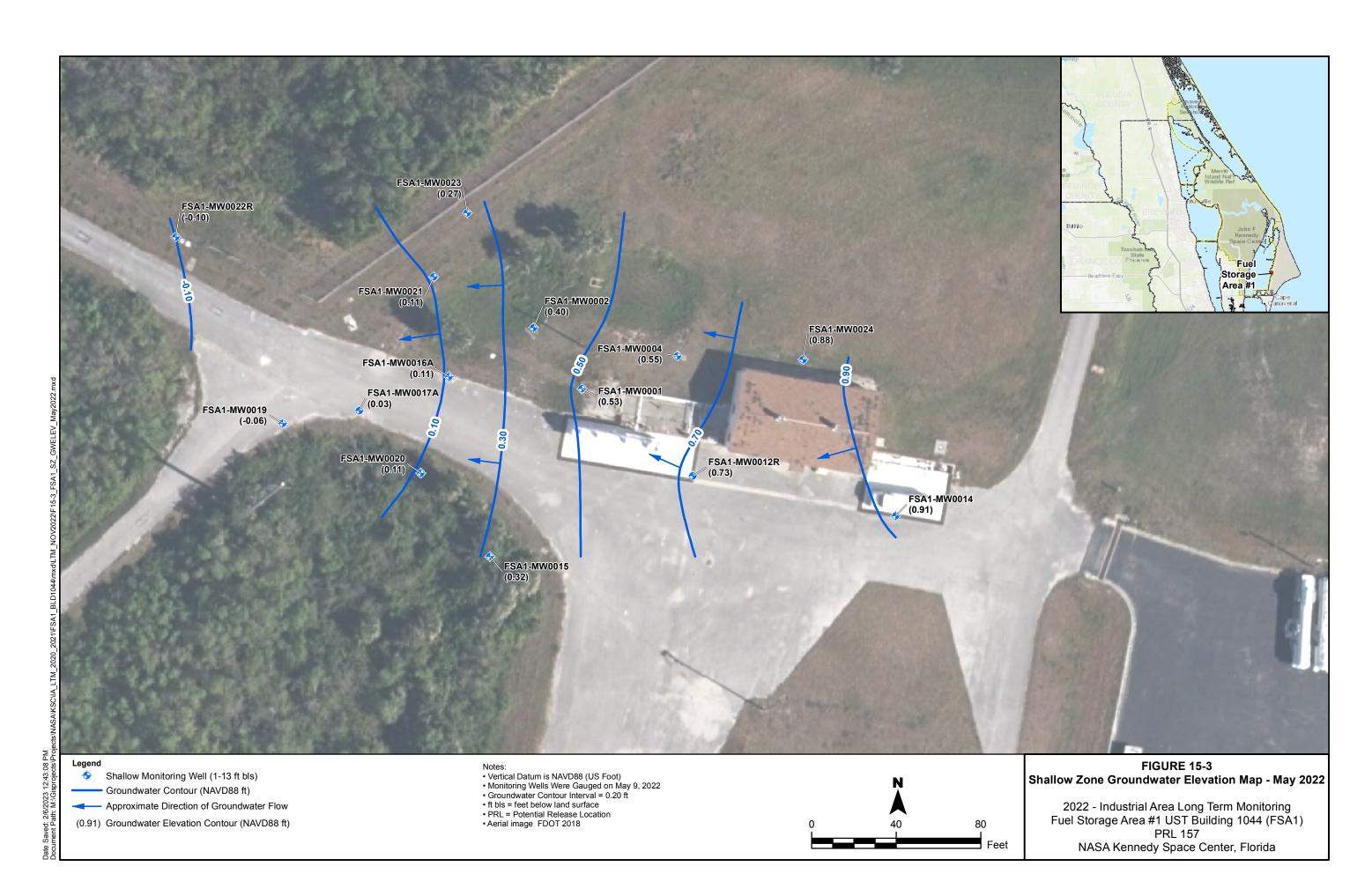
**Red** font indicates an exceedance of FDEP GCTLs

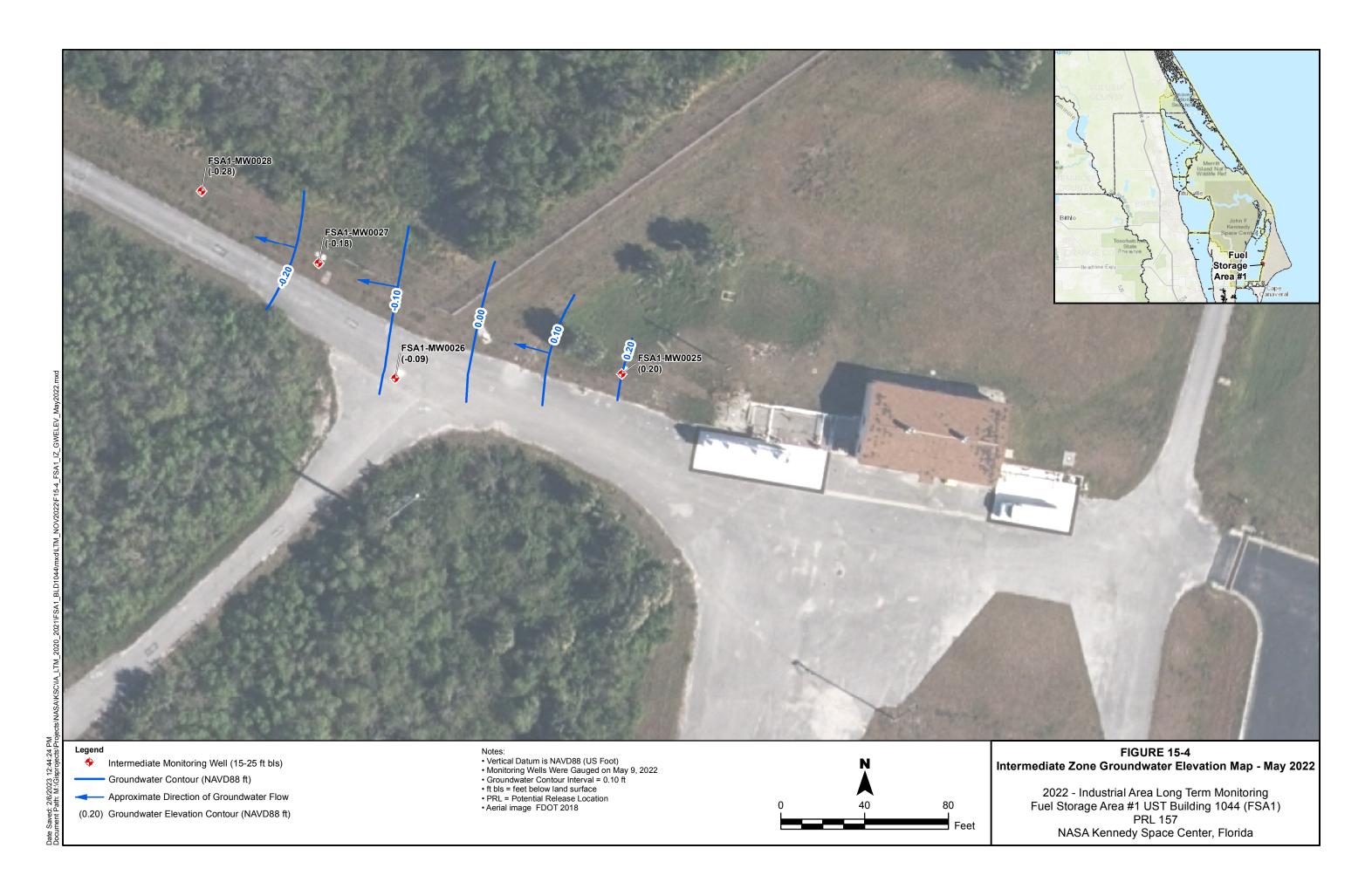
Highlighted cell indicates an exceedance of FDEP NADCs

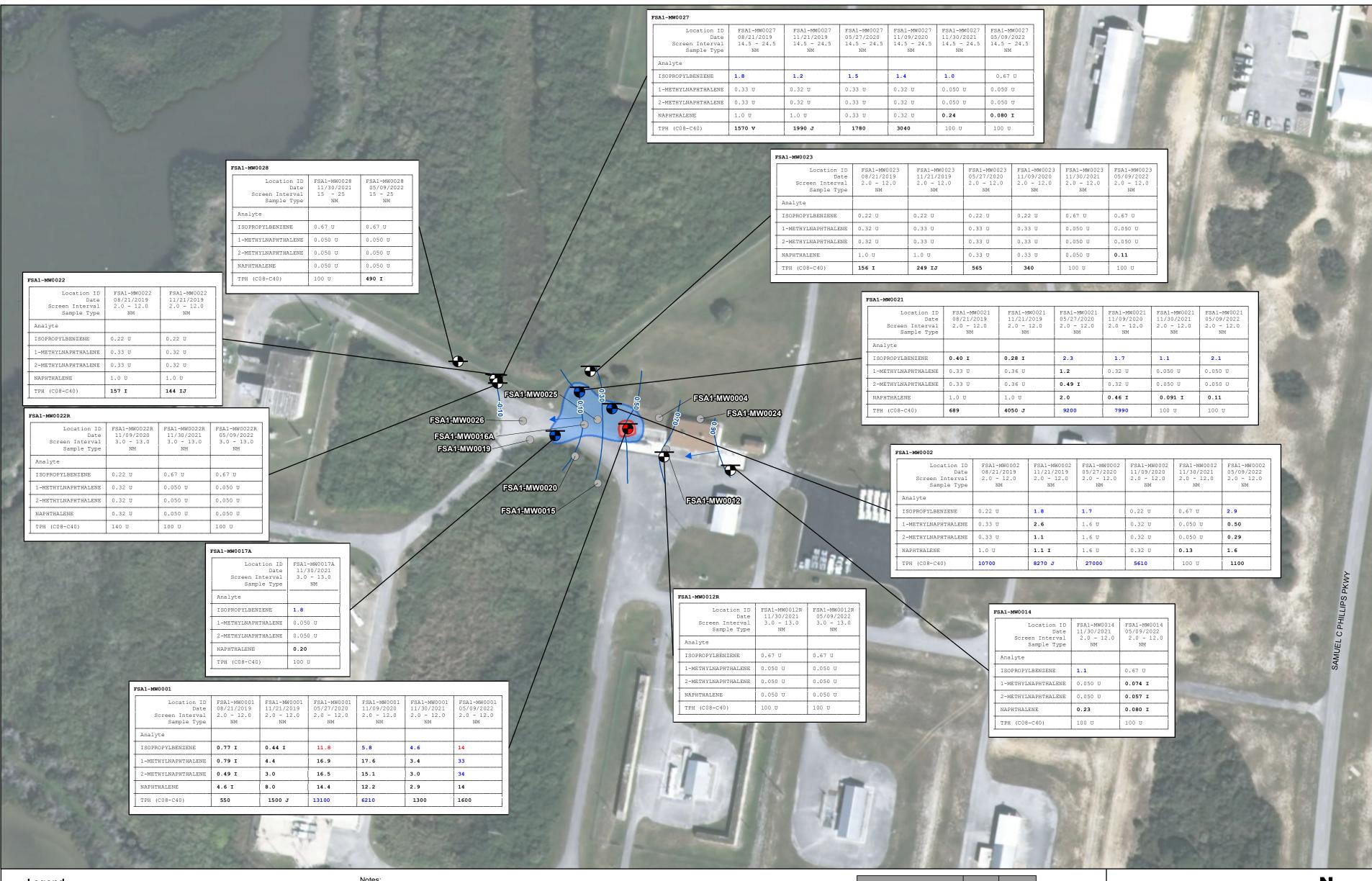

I = Analyte greater than or equal to the method detection limit, but less than the practical quantitation limit


J = Estimated value


U = Analyte not detected


V = Analyte found in associated method blank


The numeric value presented for non-detects is the sample-specific reporting detection limit














# Legend

Intermediate LTM Well, Sample Results Below GCTL

Shallow LTM Well, Sample Results Exceed NADC Shallow LTM Well, Sample Results Exceed GCTL Shallow LTM Well, Sample Results Below Screen

Non-LTM Well, No Sample Results

—— Shallow Groundwater Elevation Contours - May2022

Direction of Groundwater Flow

Approximate Extent of Multiple Contaminants Greater Than GCTLs from Monitoring Well Sampling

Approximate Extent of Isopropylbenzene Greater Than NADCs from Monitoring Well Sampling

Notes:
1. LTM = Long Term Monitoring
2. MW = Monitoring Well

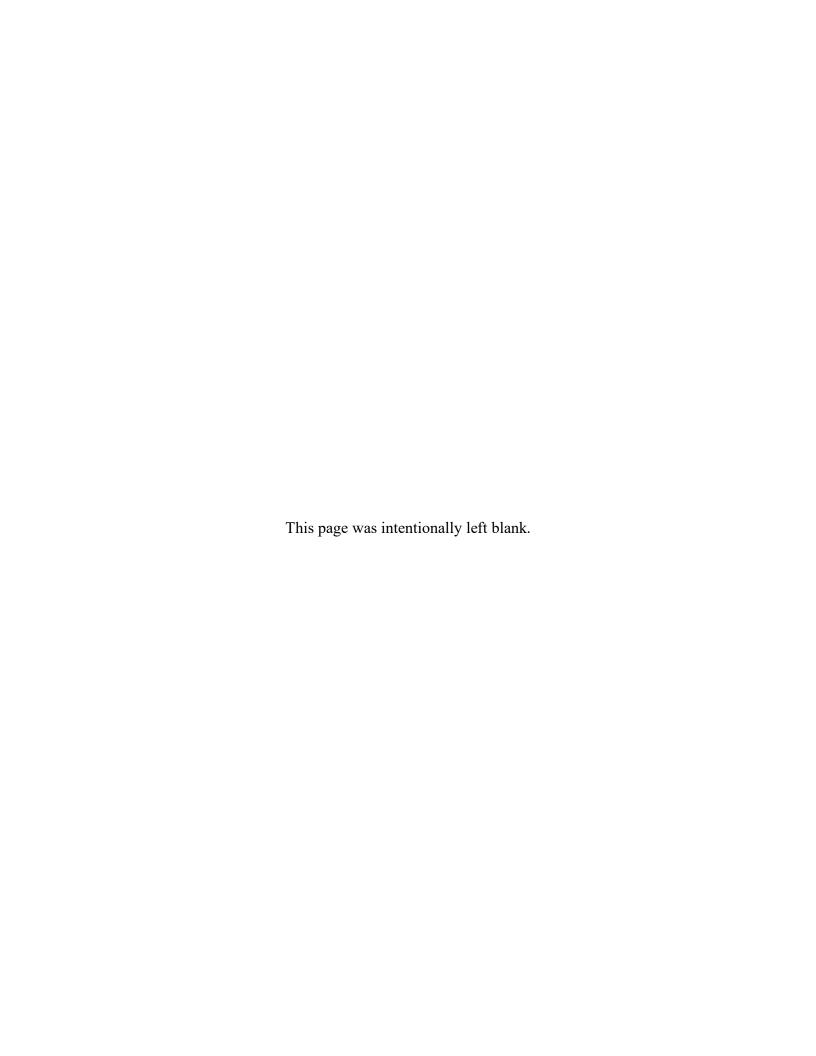
3. NM = Normal Sample 4. PRL = Potential Release Location

5. All results and screening criteria presented in μg/L.
6. I = Result is greater than or equal to the Method Detection Limit (MDL) but less than the

Practical Quantitation Limit (PQL).

Practical Quantitation Limit (PQL).
7. J = Estimated Concentration.
8. U = Result was below the laboratory MDL.
9. V = Analyte found in associated method blank.
10. FDEP GCTLs = Florida Department of Environmental Protection Groundwater Cleanup Target Levels, Chapter 62-777, F.A.C.
11. FDEP NADCs = Natural Attenuation Default Concentration, Chapter 62-777, F.A.C.
12. Bolded results indicate the presence of an analyte at the specified concentration.
13. Blue font indicates an exceedance of FDEP GCTLs.
14. Red font indicates an exceedance of FDEP NADCs.
15. Acrial Source: EDCT 2018.

15. Aerial Source: FDOT 2018.


16. Depth is presented in feet below land surface. 17. Depth of monitoring well screen interval is presented in feet below land surface.

Analyte	GCTL	NADC
ISOPROPYLBENZENE	0.8	8
1-METHYL NAPHTHALENE	28	280
2-METHYL NAPHTHALENE	28	280
NAPHTHALENE	14	140
TPH (C08-C40)	5000	500000

0	100	200 Feet	N
	Scale 1" = 100'		

# **FIGURE 15-5 Groundwater Sampling Analytical Results**

2022 - Industrial Area Long Term Monitoring Fuel Storage Area #1 UST Building 1044 (FSA1) PRL 157 NASA Kennedy Space Center, Florida



#### 16. CONCLUSIONS AND RECOMMENDATIONS

The facilities included in the NASA IA LTM program have shown overall stable or decreasing trends in COC concentrations.

It is recommended that the LTM sampling program continue at the LTM sites included in this report until COCs have decreased below the GCTLs for two consecutive sampling events. Conclusions and recommendations from the 2021-2022 IA LTM monitoring program are summarized in the following sections.

**Table 16-1** details the recommendations and changes that were proposed for the IA LTM program during the June 2023 KSCRT meeting. **Table 16-2** details the proposed IA LTM program schedule for 2023-2024.

#### 16.1 RANSOM ROAD LANDFILL

VC persists at concentrations above the GCTL in monitoring wells RRLF-MW0033, RRLF-MW0038I, and RRLF-MW0040I. VC concentrations were also detected above the GCTL at DPT locations RRLF-DPT0022, RRLF-DPT0023, and RRLF-DPT0024.

A new downgradient stick-up monitoring well, RRLF-MW0043, is recommended at the location of RRLF-DPT0024 to serve as a horizontal point of compliance well. The recommended screen interval for RRLF-MW0043 is 15 ft bls to 25 ft bls to capture the aquifer conditions within and below the four ft screen interval of RRLF-DPT0024, which slightly exceeded the VC GCTL.

The biennial sampling frequency in alternating wet/dry seasons is recommended to continue at monitoring wells RRLF-MW0033, RRLF-MW0038I, RRLF-MW0039I, RRLF-MW0040I, and new monitoring well RRLF-MW0043 for VC analysis. Groundwater level data are recommended to be collected from 16 monitoring wells. A historical review is recommended to determine the location of RRLF-MW0015. The next sampling event is scheduled for November 2024.

#### 16.2 ORSINO STORAGE YARD

A letter report detailing the ORSY site history and September 2021 sampling activities was submitted to FDEP on July 10, 2023. Groundwater COC concentrations have remained below GCTLs for two consecutive sampling events in November 2020 and September 2021; therefore, long-term groundwater monitoring at ORSY is recommended to discontinue. The LUC for soil will remain in place at the site.

#### 16.3 BUILDING M7-0505 TREATMENT TANK AREA

COC concentrations at M505 exceeded GCTLs in three of the eight monitoring wells sampled in May 2022. There have been no analyte detections exceeding NADCs since the AS system

shutdown in 2015, and the overall COC concentrations in the monitoring well network continue to show a decreasing or stable trend except for a small increase in cis-1,2-DCE and VC at M505-MW0055.

AECOM recommends adding downgradient monitoring well M505-MW0029 to the sampling network because of the recent increases in COC concentrations at monitoring well M505-MW0055. Biennial LTM sampling is recommended to continue with groundwater level measurements at 35 monitoring wells and samples collected from nine monitoring wells for select VOCs (TCE, cis-1,2-DCE, and VC). The next sampling event is scheduled for November 2024.

#### 16.4 HYPERGOL MAINTENANCE FACILITY HAZARDOUS WASTE SOUTH STAGING AREA

The updated TOC elevations confirm a south to southeast groundwater flow direction, similar to historical trends. TCFM concentrations at HMF South have shown a decreasing trend since 2015, and for the second consecutive sampling event, concentrations were below the GCTL in September 2021. TCFM concentrations continue to be non-detect at the downgradient monitoring well HMF-MW0006IR, and have historically been below GCTLs at the remaining HMF South monitoring wells. Therefore, long-term groundwater monitoring at HMF South is recommended to discontinue. The LUC for groundwater is recommended to be removed, and a Site Rehabilitation Completion Report is recommended to be completed for NFA without controls.

With FDEP agreement during the April 2023 KSCRT meeting (Appendix A), the HMF South monitoring well network was abandoned in May 2023 (HydroGeoLogic 2023) to support construction activities at the site.

#### 16.5 OPERATIONS AND CHECKOUT BUILDING

VC concentrations in monitoring wells O_C-MW0005I and O_C-MW0007I exceed the GCTL. Biennial sampling in alternating wet/dry seasons is recommended to continue at O&C with downgradient monitoring well O_C-MW0006I added for VC analysis by Method 8260. Groundwater samples are recommended to be collected at three monitoring wells and groundwater levels measured at five wells. The next sampling event at O&C is scheduled for November 2024.

#### 16.6 VERTICAL PROCESSING FACILITY

TCE concentrations have persisted above the GCTL in three monitoring wells, and VC concentrations exceeded the GCTL in two monitoring wells; therefore, LTM is recommended to continue at VPF.

A new flush-mount shallow monitoring well, screened 3 ft bls to 13 ft bls, is recommended to be installed adjacent to VPF-MW0023 to verify horizontal delineation in the shallow zone

Long-Term Groundwater Monitoring Report Industrial Area Revision: 0 October 2023

downgradient of VPF-MW0022. Monitoring well VPF-MW0010I is recommended to be added into the sampling schedule to verify horizontal delineation in the intermediate zone downgradient of VPF-MW0018I. Monitoring well VPF-MW0008D is recommended to be added into the sampling schedule to verify vertical delineation around VPF-MW0008I.

The biennial sampling schedule is recommended to continue with 35 groundwater level measurements and eight monitoring wells sampled for select VOCs (TCE, cis-1,2-DCE, and VC). The next sampling event at VPF is scheduled for November 2024.

#### 16.7 Environmental Health Facility

VC concentrations dropped below the GCTL at monitoring well EHF-MW0001 for the first event since assessment began in 2004; however, low level concentrations of VC remain above the GCTL at monitoring well EHF-MW0004. VC concentrations were also analyzed above the GCTL at DPT locations EHF-DPT0002, EHF-DPT0004, EHF-DPT0005, and EHF-DPT0006.

A new upgradient flush-mount monitoring well, EHF-MW0009, is recommended to be installed at the location of EHF-DPT0005 to serve as a horizontal point of compliance well. The screen interval for EHF-MW0009 will be 15 ft bls to 25 ft bls to capture the aquifer conditions across both the intervals of EHF-DPT0005 that exceeded the VC GCTL. VC concentrations at each step-out location were found to be less than EHF-DPT0002, suggesting that the low level contamination plume is centered around EHF-DPT0002 and EHF-MW0004.

The biennial sampling frequency is recommended to continue at monitoring wells EHF-MW0001, EHF-MW0004, EHF-MW0005, and new monitoring well EHF-MW0009 for VC analysis. Groundwater levels are recommended to be measured at seven wells. The next sampling event at EHF is scheduled for November 2024.

#### 16.8 KENNEDY ATHLETIC, RECREATION, AND SOCIAL PARK I

Total lead concentrations at monitoring well KP1-MW0022 were slightly elevated in September 2021, but were not detected in May 2022. Monitoring wells KP1-MW0003 and KP1-MW0035 are recommended to be removed from the sampling schedule because concentrations of total lead in these two monitoring wells have been below the GCTL for the last two consecutive sampling events. The 5-year LTM frequency is recommended to be accelerated to May 2023 at LOC 9 with 16 monitoring wells used for groundwater level measurements and a groundwater sample collected from KP1-MW0022. Pending continued analytical data below the GCTL in May 2023, long-term groundwater monitoring at KARS Park 1 LOC 9 is recommended to discontinue and the LUC is recommended to be removed.

#### 16.9 ENGINEERING DEVELOPMENT LABORATORY

The southern boundary at EDL has been horizontally delineated south of EDL-MW0004 by DPT sampling in January 2023; however, concentrations of VC at select EDL monitoring wells

remain slightly above the GCTL. The biennial LTM frequency is recommended to continue at monitoring wells EDL-MW0004 and EDL-MW0006R for VC analysis. Groundwater level measurements are recommended to continue at four wells. The next sampling event at EDL is scheduled for November 2024.

#### 16.10 LAUNCH EQUIPMENT TEST FACILITY

VC concentrations continue to exceed the GCTL at monitoring well LETF-MW0001; therefore, the biennial sampling frequency is recommended to continue at LETF. However, with the consecutive non-detect and low-level VC concentrations at the remaining sampled monitoring wells, it is recommended that the sampling scope be reduced to two monitoring wells (LETF-MW0001 and downgradient LETF-PSB-MW0001) for VC analysis. Groundwater levels are recommended to continue to be measured at 14 monitoring wells. The next sampling event at LETF is scheduled for May 2023.

#### 16.11 MOBIL SERVICE STATION

The analytes at monitoring wells CGO-MW0006 and CGO-MW0019 were below GCTLs in May 2022. MTBE and 1,2,4-TMB concentrations at monitoring well CGO-MW0018 remain above GCTLs, but are continuing to decrease.

Eight historically clean monitoring wells are recommended to be abandoned. During assessment and early LTM activities, these eight monitoring wells were installed before the plume was determined to be isolated in the intermediate zone at this site. The eight monitoring wells proposed for abandonment, located around the perimeter of the site, are screened above or below the monitored plume, and not used for plume delineation.

The biennial LTM sampling frequency is recommended to continue at MOBIL with monitoring wells CGO-MW0005, CGO-MW0023, and CGO-MW0024 added into the sampling program to verify downgradient VOC concentrations. Six monitoring wells will be analyzed for select VOCs (benzene, 1,2,4-TMB, xylenes, and MTBE), and monitoring well CGO-MW0006 will also be analyzed for select PAHs (naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene). Groundwater levels are recommended to continue to be measured at nine monitoring wells. The next sampling event is scheduled for November 2024.

#### 16.12 GENERAL SERVICES ADMINISTRATION SEIZED PROPERTY

Concentrations of select COCs exceeded GCTLs in nine monitoring wells sampled in November 2021 and in five monitoring wells in November 2022. VC concentrations exceeded the NADC at monitoring well GSSP-MW0020 in 2021 and 2022, but continue to show an overall declining trend along with geotechnical parameters indicative of favorable conditions for reductive dechlorination (analyzed in 2019).

Long-Term Groundwater Monitoring Report Industrial Area Revision: 0 October 2023

Site COCs are recommended to be reduced to VC only for each sampled well and retain naphthalene analysis at monitoring wells GSSP-MW0024R, GSSP-MW0035 and GSSP-MW0053. Select VOC concentrations, other than VC, have not exceeded GCTLs in the past four annual sampling events.

The annual LTM sampling frequency is recommended to continue with an expanded sampling event every five years. The next sampling event, scheduled for November 2023, will include water level measurements at 33 monitoring wells and groundwater samples from 14 monitoring wells. The next expanded sampling event is scheduled for November 2024.

#### 16.13 SPACE STATION PROCESSING FACILITY

Ammonia concentrations continue to exceed the GCTL at monitoring well SSPF-MW0004, and exceed both the GCTL and two times the KSC background mean ammonia concentration at monitoring wells SSPF-MW0006, SSPF-MW0014 and SSPF-MW0016. Biennial sampling in alternating wet/dry seasons is recommended to continue at SSPF. Groundwater levels are recommended to be collected at 15 monitoring wells and five groundwater samples will be analyzed for ammonia. The next sampling event at SSPF is scheduled for November 2024.

#### 16.14 FUEL STORAGE AREA #1 UNDERGROUND STORAGE TANK (BUILDING 1044)

Isopropylbenzene concentrations remain above GCTL at four monitoring wells downgradient of the former Building 1044 area. Monitoring well FSA1-MW0001 exceeded the isoproylbenzene NADC and had select PAH GCTL exceedances in May 2022. Naphthalene and TPH concentrations have been below the GCTLs since 2019 and 2021, respectively.

Annual LTM sampling is recommended to continue. Naphthalene and TPH are recommended to be removed from the site COCs following two or more consecutive events below GCTLs. Groundwater levels are recommended to be measured in 18 monitoring wells and groundwater samples collected at 10 monitoring wells for isopropylbenzene and select PAHs (1-methylnaphthalene and 2-methylnaphthalene). The next sampling event at FSA1 is scheduled for November 2023.

## Table 16-1 Industrial Area - Long Term Monitoring IA LTM Recommendations

Site	Recommendations for the NASA KSC IA LTM	Sampling Frequency	Next Sampling Event(s)
RRLF (SWMU 003)	Install downgradient horizontal compliance well at the location of RRLF-DPT0024 with a screen interval of 15-25 ft bls.  Sample five monitoring wells for VC and measure water levels at 16 monitoring wells.	Biennial Alternating Wet/Dry	November 2024
ORSY (SWMU 004)	Groundwater MNA sampling at ORSY is recommended to discontinue. The land use control for soil will remain in place at the site.	NA	NA
<b>M505</b> (SWMU 039)	Add monitoring well M505-MW0029 into the sampling schedule.  Sample nine monitoring wells for select VOCs (TCE, cis-1,2-DCE, and VC) and measure water levels at 35 monitoring wells.	Biennial Alternating Wet/Dry	November 2024
HMF South (SWMU 070)	Groundwater MNA sampling at HMF South is recommended to discontinue. The LUC for groundwater is recommended to be removed, and a Site Rehabilitation Completion Report is recommended to be completed for NFA without controls.	NA	NA
<b>O&amp;C</b> (SWMU 076)	Add monitoring well O_C-MW0006I into the sampling and gauging schedule.  Sample three monitoring wells for VC and measure water levels at five monitoring wells.	Biennial Alternating Wet/Dry	November 2024
VPF (SWMU 077)	Install shallow monitoring well adjacent to VPF-MW0023, and add monitoring wells VPF-MW0008D and VPF-MW0010I into the sampling schedule.  Sample nine monitoring wells for select VOCs (TCE, cis-1,2-DCE, and VC) and measure water levels at 35 monitoring wells.	Biennial Alternating Wet/Dry	November 2024
<b>EHF</b> (SWMU 079)	Install upgradient horizontal compliance well at the location of EHF-DPT0005 with a screen interval of 15-25 ft bls.  Sample four monitoring wells for VC and measure water levels at seven monitoring wells.	Biennial Wet Season	November 2024

# Table 16-1 Industrial Area - Long Term Monitoring IA LTM Recommendations

Site	Recommendations for the NASA KSC IA LTM	Sampling Frequency	Next Sampling Event(s)
<b>KP1 LOC 9</b> (SWMU 084)	Monitoring wells KP1-MW0003 and KP1-MW0035 are recommended to be removed from the sampling schedule. because concentrations of total lead in these two monitoring wells have been below the GCTL for the last two consecutive sampling events. The 5-year LTM frequency is recommended to be accelerated to May 2023 at LOC 9 with 16 monitoring wells used for groundwater level measurements and a groundwater sample collected from KP1-MW0022. Pending continued analytical data below the GCTL in May 2023, groundwater MNA sampling at KARS Park 1 LOC 9 is recommended to discontinue and the LUC is recommended to be removed.	5-Year (accelerated May 2023 event due to COCs <gctls)< td=""><td>May 2023</td></gctls)<>	May 2023
EDL (SWMU 085)	Sample monitoring wells EDL-MW0004 and EDL-MW0006R for VC and measure water levels at four monitoring wells.	Biennial Wet Season	November 2024
LETF (SWMU 091)	The LTM sampling network is recommended to be reduced to two monitoring wells (LETF-MW0001 and downgradient LETF-PSB-MW0001I) for VC analysis. Groundwater levels should continue to be measured at 14 monitoring wells.	Biennial Alternating Wet/Dry	May 2023
MOBIL (SWMU 093)	Abandon eight historically clean perimeter monitoring wells. Add monitoring wells CGO-MW0005, CGO-MW0023, and CGO-MW0024 to the sampling schedule. Sample five monitoring wells for select VOCs (benzene, 1,2,4-TMB, xylenes, and MTBE), and monitoring well CGO-MW0006 for select VOCs and select PAHs (1-methylnaphthalene, 2-methylnaphthalene and naphthalene). Groundwater levels should continue to be measured at nine monitoring wells.	Biennial Alternating Wet/Dry	November 2024
<b>GSSP</b> (SWMU 095)	The annual LTM sampling frequency is recommended to continue with an expanded sampling event every five years. The next sampling event will include water level measurements at 33 monitoring wells and groundwater samples from 14 monitoring wells. Site COCs are recommended to be reduced to VC only by Method 8260 for each sampled well and retain naphthalene analysis by Method 8270 at monitoring wells GSSP-MW0024R, GSSP-MW0035, and GSSP-MW0053.	Annual Wet Season	November 2023 and November 2024 (expanded event)

## Table 16-1 Industrial Area - Long Term Monitoring IA LTM Recommendations

Site	Recommendations for the NASA KSC IA LTM	Sampling Frequency	Next Sampling Event(s)
SSPF (SWMU 098)	Sample five monitoring wells for ammonia and measure water levels at 15 monitoring wells.	Biennial Alternating Wet/Dry	November 2024
<b>FSA1</b> (PRL 157)	Discontinue analyzing for naphthalene and TPH. Sample 10 monitoring wells for isopropylbenzene and select PAHs (1-methylnaphthalene and 2-methylnaphthalene), and measure water levels at 18 monitoring wells.	Annual Alternating Wet/Dry	November 2023 and May 2024

#### Notes:

CGO = Citgo Service Station

COC = contaminant of concern

DCE = dichloroethene

EDL = Engineering Development Laboratory

EHF = Environmental Health Facility

FSA1 = Fuel Storage Area #1 Underground Storage Tank (Building 1044)

ft bls = feet below land surface

GCTL = Groundwater Cleanup Target Level

GSSP = General Services Administration Seized Property

HMF = Hypergol Maintenance Facility South

IA = Industrial Area

KP1 = Kennedy, Athletic, Recreation, and Social Park 1

KSC = Kennedy Space Center

LETF = Launch Equipment Test Facility

LOC = location of concern

LTM = long-term monitoring

M505 = Building M7-0505 Treatment Tank Area

MNA = monitored natural attenuation

MOBIL = Mobil Service Station

MTBE = methyl tert-butyl ether

MW = monitoring well

NA = not applicable

NASA = National Aeronautics and Space Administration

O&C = Operations and Checkout Building

ORSY = Orsino Storage Yard

PAH = polynuclear aromatic hydrocarbon

PRL = Potential Release Location

RRLF = Ransom Road Landfill

SSPF = Space Station Processing Facility

SWMU = Solid Waste Management Unit

TCE = trichloroethene

TMB = trimethylbenzene

TPH = total petroleum hydrocarbons

VC = vinyl chloride

VOC = volatile organic compound

VPF = Vertical Processing Facility

Table 16-2 Industrial Area - Long Term Monitoring 2023/2024+ Program Monitoring Schedule

	Monitoring Wells for	Monitoring Wells for		May	November	May	November	Other	Water	Wells	Sample
Site	Groundwater Level Measurements		Sample Analysis	2023	2023	2024	2024	Date	Levels	Sampled	Frequency
	MW0012 MW0037	MW0033		2020	2020	2021	2021	Dute	Zevers	Sumpreu	rrequency
	MW0015 MW0038S	MW0038I									
	MW0029 MW0038I	MW0039I									
RRLF	MW0030 MW0039S	MW0040I	VC Only by								Biennial
	MW0030 MW00393 MW0031 MW0039I	MW00401 MW0043*	Method 8260B				X		16	5	Alternating
	MW0033 MW0040I	W W 00+3	Weiner 6266B								Wet/Dry
	MW0034 MW0042I										
	MW0036 MW0043*										
	MW0003S MW0030	MW0013									
	MW0007S MW0031	MW0029									
	MW0007I MW0032	MW0032									
	MW0008S MW0033	MW0033									
	MW0009S MW0035	MW0039									
	MW0009I MW0039	MW0049									
	MW0012I MW0042	MW0051									
	MW0013 MW0045	MW0055									
M505	MW0013 MW0043 MW0014 MW0046	MW0059	Select VOCs by								Biennial
	MW0017 MW0049	WI W 0037	Method 8260B				X		35	9	Alternating
	MW0020 MW0050		Wichiod 0200B								Wet/Dry
	MW0020 MW0050 MW0022 MW0051										
	MW0024 MW0054										
	MW0024 MW0034 MW0025 MW0055										
	MW0025 MW0055 MW0026 MW0057										
	MW0027 MW0057 MW0027 MW0058										
	MW0027 MW0038 MW0028 MW0059										
	MW0029										
	MW0003I MW0006I	MW0005I									Biennial
O&C	MW0004I MW0007I	MW0006I	VC Only by				X		5	3	Alternating
(SWMU 076)	MW0005I	MW0007I	Method 8260B				71				Wet/Dry
	IW0001S IW0015I	IW0008I									1100219
	IW0002I IW0016I	IW0008D									
	IW0002S IW0017I	IW0010I									
	IW0003I IW0018I	IW0018I									
	IW0003S MW0020	MW0021									
	IW0004I MW0021	MW0022									
	IW0004S MW0022	MW0025									
	IW0005S MW0023	MW0027									
	IW0006S MW0024	MW0032*	Select VOCs by								Biennial
	IW0007I MW0025		Method 8260B				X		35	9	Alternating
	IW0008D MW0026										Wet/Dry
	IW0008I MW0027										
	IW0009I MW0028										
	IW0010I MW0029										
	IW0011I MW0030										
	IW0012I MW0031										
	IW0013I MW0032*										
	IW0014I										

Table 16-2 Industrial Area - Long Term Monitoring 2023/2024+ Program Monitoring Schedule

Site	Monitoring Wells for Groundwater Level Measurements	Monitoring Wells for	Sample Analysis	May	November	May	November	Other	Water	Wells	Sample
	MW0001 MW0006	Groundwater Samples MW0001		2023	2023	2024	2024	Date	Levels	Sampled	Frequency
EHF (SWMU 079)	MW0001 MW0006 MW0003 MW0007 MW0004 MW0009* MW0005	MW0001 MW0004 MW0005 MW0009*	VC Only by Method 8260B				X		7	4	Biennial Wet Season
KARS Park 1 LOC7 (SWMU 084)	MW0011 MW0031 MW0012 MW0032 MW0013	MW0013 MW0032	Arsenic by Method 6020A					Nov 2025	5	2	5-Year
KARS Park 1 LOC9 (SWMU 084)	MW0001         MW0022           MW0003         MW0023           MW0004         MW0024           MW0005         MW0027           MW0015         MW0028           MW0016         MW0035           MW0017         MW0036           MW0019         MW0037	MW0022	Lead by Method 6010C	X					16	1	5-Year
EDL (SWMU 085)	MW0004 MW0007 MW0005 MW006R	MW0004 MW0006R	VC Only by Method 8260B				X		4	2	Biennial Wet Season
LETF (SWMU 091)	MW0001         MW0008           MW0002         MW0009           MW0003         MW0010           MW0004         MW0011           MW0005         PSB-MW0001I           MW0006         PSB-MW0002I           MW0007         PSB-MW0003I	MW0001 PSB-MW0001I	VC Only by Method 8260B	X					14	2	Biennial Alternating Wet/Dry
MOBIL (SWMU 093)	MW0005 MW0019 MW0006 MW0023 MW0007 MW0024 MW0014 MW0015 MW0018	MW0006  MW0005 MW0023  MW0018 MW0024  MW0019	Select VOCs (Method 8260B) and Select PAHs (Method 8270D) Select VOCs by Method 8260B				X		9	6	Biennial Alternating Wet/Dry

Table 16-2 Industrial Area - Long Term Monitoring 2023/2024+ Program Monitoring Schedule

Site		oring Wells for Level Measurements		oring Wells for dwater Samples	Sample Analysis	May 2023	November 2023	May 2024	November 2024	Other Date	Water Levels	Wells Sampled	Sample Frequency
	MW0006	MW0047	MW0024R	iwater Samples	VC Only	2023	2023	2024	2024	Date	Levels	Sampleu	Frequency
	MW0007	MW0049	MW0035		(Method 8260B) and Select								
	MW0008	MW0053	MW0053		PAHs (Method 8270D)								
	MW0009	MW0054	MW0013	MW0059	,								
	MW0013	MW0055	MW0019	MW0060			X		X		33	14	
	MW0014	MW0058	MW0020	MW0061	VC Only by								
	MW0019	MW0059	MW0034	MW0062	Method 8260B								
	MW0020	MW0060	MW0036	MW0063									
	MW0021	MW0061	MW0044R										
	MW0022	MW0062	MW0014	MW0027					•				
GSSP	MW0023	MW0063	MW0021	MW0039	VC Only by								Annual
(SWMU 095)	MW0024R		MW0022	MW0042	Method 8260B								Wet Season
	MW0026		MW0023	MW0043R	(Expanded Event)								
	MW0027		MW0026										
	MW0034		MW0019	MW0059	MEE by	F	andad Eiva Va	on Commina E	vomt				
	MW0035		MW0020	MW0062	Method RSK 175	EX		ear Sampling Evans 2024)	vent		33	23	
	MW0036		MW0053		(Expanded Event)		(1101	2024)					
	MW0039		MW0020	MW0062	Dhc Analysis								
	MW0042		MW0053		(Expanded Event)								
	MW0043R		MW0019	MW0059	Total Organic Carbon by								
	MW0044R		MW0020	MW0062	Method SM5310								
	MW0045		MW0053		(Expanded Event)			_	_				
	MW0001	MW0013	MW0004										
	MW0002	MW0014	MW0006										
	MW0003	MW0015	MW0013										Biennial
SSPF	MW0004	MW0016	MW0014		Ammonia by				X		15	5	Alternating
(SWMU 098)	MW0005	MW0017	MW0016		Method 350.1				11		13		Wet/Dry
	MW0006	MW0018											,, 00, 21,
	MW0007	MW0020											
	MW0010												

Table 16-2 Industrial Area - Long Term Monitoring 2023/2024+ Program Monitoring Schedule

Site		oring Wells for Level Measurements	Monitoring Wells for Groundwater Samples		Sample Analysis	May 2023	November 2023	May 2024	November 2024	Other Date	Water Levels	Wells Sampled	Sample Frequency
<b>FSA1</b> (PRL 157)	MW0001 MW0002 MW0004 MW0012R MW0014 MW0015 MW0016A MW0017A MW0019	MW0021 MW0022R MW0023 MW0024 MW0025 MW0026 MW0027	MW0001 MW0002 MW0012R MW0014 MW0017A MW0021 MW0022R MW0023 MW0027	MW0028	Select VOCs (Method 8260B) and Select PAHs (Method 8270D)		X	X			18	10	Annual Alternating Wet/Dry

#### Note:

* indicates proposed monitoring well

Dhc = dehalococcoides

EDL = Engineering Development Laboratory

EHF = Environmental Health Facility

FSA1 = Fuel Storage Area #1 Underground Storage Tank (Building 1044)

GSSP = General Services Administration Seized Property

HMF = Hypergol Maintenance Facility South

KP1 = Kennedy, Athletic, Recreation, and Social Park 1

LETF = Launch Equipment Test Facility

M505 = Building M7-0505 Treatment Tank Area

MEE = methane, ethane, and ethene

MOBIL = Mobil Service Station

MW = monitoring well

O&C = Operations and Checkout Building

ORSY = Orsino Storage Yard

PAH = polynuclear aromatic hydrocarbon

PRL = Potential Release Location

RRLF = Ransom Road Landfill

SSPF = Space Station Processing Facility

SWMU = Solid Waste Management Unit

VC = vinyl chloride

VOC = volatile organic compound

VPF = Vertical Processing Facility

	May 2023	November 2023	May 2024	November 2024
Total water levels to be collected	30	51	18	159
Total wells to be sampled	3	24	10	66

#### 17. REFERENCES

AECOM Technical Services, 2021. Long-Term Groundwater Monitoring Report, Industrial Area, Kennedy Space Center, Florida. Orlando, Florida.

ARCADIS. 2010. Engineering Evaluation – Step 1, Building M7-0505 Treatment Tank, SWMU 39, Kennedy Space Center, Florida. Tampa, Florida.

ARCADIS. 2011a. RCRA Facility Investigation, Launch Equipment Test Facility/M7-505 Area SWMU 91 (Formerly PRL 126), Kennedy Space Center, Florida. Tampa, Florida.

ARCADIS. 2011b. 2010 Annual Long-Term Monitoring Report, Citgo Service Station, PRL 129, Kennedy Space Center, Florida. Tampa, Florida.

ARCADIS. 2014. 2013 Groundwater Status Report and Long-Term Monitoring Work Plan, Launch Equipment Test Facility/M7-505 Area, SWMU 91, Kennedy Space Center, Florida. Tampa, Florida.

FDEP. 2017. DEP-SOP-001/01, FS 2200 Groundwater Sampling.

Geosyntec. 2002a. RCRA Facility Investigation, Hazardous Waste South Staging Areas, SWMU 70, Kennedy Space Center, Florida. Boca Raton, Florida.

Geosyntec. 2002b. RCRA Facility Work Plan, Operations and Checkout (O&C) Building (SWMU #76), Kennedy Space Center, Florida. Kennedy Space Center, Florida.

Geosyntec. 2003a. RCRA Facility Investigation, Addendum/Long-Term monitoring Work Plan for the Ransom Road Landfill (SWMU No.3), Kennedy Space Center, Florida. Kennedy Space Center, Florida.

Geosyntec. 2003b. RCRA Facility Investigation Report for Orsino Storage Yard Storage Facility (SWMU No.4), Kennedy Space Center, Florida. Kennedy Space Center, Florida.

Geosyntec. 2004a. Corrective Measures Study, Hazardous Waste South Staging Areas, SWMU 70, Kennedy Space Center, Florida. Boca Raton, Florida.

Geosyntec. 2004b. Year One Annual Long-Term Monitoring Report, Operations and Checkout Building, SWMU 76, Kennedy Space Center, Florida. Boca Raton, Florida.

Geosyntec. 2005a. RCRA Facility Investigation Report Addendum, Orsino Storage Yard Storage Facility (SWMU No.4), Kennedy Space Center, Florida. Boca Raton, Florida.

Geosyntec. 2005b. *Interim Measures Work Plan, Vertical Processing Facility (SWMU No.77), Kennedy Space Center, Florida*. Boca Raton, Florida.

Geosyntec. 2007. RCRA Facility Investigation Report / Corrective Measures Study Work Plan, GSA Seized Property SWMU 095, Kennedy Space Center, Florida. Titusville, Florida.

Geosyntec. 2010. RCRA Facility Investigation Addendum, GSA Seized Property SWMU 095, Kennedy Space Center, Florida. Titusville, Florida.

Geosyntec. 2011. Interim Measures Implementation and Supplemental Assessment Results Report, Vertical Processing Facility, SWMU 077, Kennedy Space Center, Florida. Titusville, Florida.

Geosyntec. 2012. Enhanced Reductive Dechlorination and Interim Long-Term Monitoring Annual Report, GSA Seized Property SWMU 95, Kennedy Space Center, Florida. Titusville, Florida.

Geosyntec. 2017. Sampling and Analysis Plan for the RCRA Corrective Action Program at the Kennedy Space Center, Florida. Boca Raton, Florida.

Geosyntec. 2018a. Performance Monitoring Report, Fuel Storage Area #1 Underground Storage Tank (Building 1044) PRL#157, Cape Canaveral Air Force Station, Florida. Titusville, Florida.

Geosyntec. 2018b. 2017 Year 4 Annual Interim Measure Report: Summary of Air Sparge System Operation and Maintenance, Vertical Processing Facility SWMU 77, Kennedy Space Center, Florida. Titusville, Florida.

HSW. 1999. RCRA Facility Investigation/Interim Corrective Measures Report for the M7-505 Waste Treatment Tank, Building M7-0505 (SWMU #039), Kennedy Space Center, Florida. Tampa, Florida.

HSW. 2000. RCRA Corrective Measures Study Report, M7-505 Waste Treatment Tank (SWMU #39), Kennedy Space Center, Florida. Tampa, Florida.

HSW. 2004. Statement of Basis, M7-505 Waste Treatment Tank SWMU 39, Kennedy Space Center, Brevard County, Florida.

HSW. 2005. RCRA Facility Investigation Report, Vertical Processing Facility, SWMU No. 77, Kennedy Space Center, Florida. Orlando, Florida.

HydroGeoLogic, Inc. 2021. Phase 2 Monitoring Well Abandonment and Installation Completion Report for Various Sites, Kennedy Space Center, Florida. Merritt Island, Florida.

HydroGeoLogic, Inc. 2023. Monitoring Well Abandonment Completion Report, Hypergol Maintenance Facility Hazardous Waste South Staging Area, SWMU 070, Kennedy Space Center, Florida. Merritt Island, Florida.

Jacobs Engineering and CORE Engineering and Construction, Inc. 2016. Summary Report for Supplemental Investigation, PRL#157 Fuel Storage Area #1 Underground Storage Tank (Building 1044), Cape Canaveral Air Force Station, Florida. Merritt Island, Florida.

J-BOSC. 2003. Florida SWMU Assessment, Engineering Development Laboratory (EDL) (M7-409), Kennedy Space Center. Kennedy Space Center, Florida.

J-BOSC. 2006. Confirmatory Sampling Report (Revision 0), Citgo Service Station #407 (CGO)(M6-0596) PRL #129 Kennedy Space Center, Florida. Kennedy Space Center, Florida.

Jacobs Engineering and CORE Engineering and Construction, Inc. 2017a. *Groundwater Monitoring Report, Building M7-0505, SWMU 039, Kennedy Space Center, Florida*. Merritt Island, Florida.

Jacobs Engineering and CORE Engineering and Construction, Inc. 2017b. 2015-2016 Long-Term Monitoring Report, NASA Industrial Area, Kennedy Space Center, Florida. Merritt Island, Florida.

Jacobs Engineering and CORE Engineering and Construction, Inc. 2019a. 2017-2018 Long-Term Monitoring Report, NASA Industrial Area, Kennedy Space Center, Florida. Merritt Island, Florida.

Jacobs Engineering and CORE Engineering and Construction, Inc. 2019b. Well Installation at Launch Complex 39B, Wilson Corners, and General Services Administration Seized Property, Kennedy Space Center, Florida. Merritt Island, Florida.

LFR. 2005. RCRA Facility Investigation, Environmental Health Facility, SWMU 79, Kennedy Space Center, Florida. Tampa, Florida.

LFR. 2006a. RCRA Facility Investigation Report and Long-Term Monitoring Work Plan, Engineering Development Laboratory, SWMU NO.85, Kennedy Space Center, Florida. Tampa, Florida.

LFR. 2006b. Confirmatory Sampling Report Addendum, Citgo, PRL NO.129, Kennedy Space Center, Florida. Tampa, Florida.

LFR. 2006c. SWMU Assessment Report, Space Station Processing Facility, Kennedy Space Center, Florida. Tampa, Florida.

LFR. 2009a. Centerwide Ammonia in Groundwater Background Study for Kennedy Space Center, Florida. Tampa, Florida.

LFR. 2009b. Pilot Study Report and Remedial Alternatives Evaluation, Citgo Service Station, PRL. 129, Kennedy Space Center. Tampa, Florida.

LFR. 2010a. Annual Groundwater Monitoring Status Report, Building M7-0505 Treatment Tank, SWMU 39, Kennedy Space Center, Florida. Tampa, Florida.

LFR. 2010b. RCRA Facility Investigation Report and Long-term Monitoring Work Plan, Space Station Processing Facility, SWMU 098 [Formerly PRL 142], Kennedy Space Center, Florida. Tampa, Florida.

LFR. 2011. Step 2 – Engineering Evaluation, Building M7-505 Treatment Tank Area, SWMU 39, Kennedy Space Center, Florida. Tampa, Florida.

NASA. 2004a. Statement of Basis, Ransom Road Landfill, SWMU 3. Kennedy Space Center, Florida.

NASA. 2004b. Statement of Basis, Hypergol Maintenance Facility Facility Hazardous Waste South Staging Areas, SWMU 70. Kennedy Space Center, Florida.

NASA. 2004c. Statement of Basis, Operations and Checkout Building, SWMU 76. Kennedy Space Center, Florida.

NASA. 2005a. Statement of Basis, Orsino Storage Yard, SWMU 4. Kennedy Space Center, Florida.

NASA. 2005b. Statement of Basis, Environmental Health Facility, SWMU 79. Kennedy Space Center, Florida.

NASA. 2005c. Statement of Basis, Engineering Development Laboratory, SWMU 85. Kennedy Space Center, Florida.

NASA. 2006. Sampling and Analysis Plan for the RCRA Corrective Action Program at the John F. Kennedy Space Center, Florida (Revision 3), prepared by Geosyntec Consultants, NASA Document Number KSC-TA-6169.

NASA. 2008. Statement of Basis, Kennedy Athletic Recreation and Social Park 1, SWMU 84. Kennedy Space Center, Florida.

NASA. 2010. Statement of Basis, Space Station Processing Facility, SWMU 98. Kennedy Space Center, Florida.

NASA. 2012. Statement of Basis, Citgo Service Station, PRL 129. Kennedy Space Center, Florida.

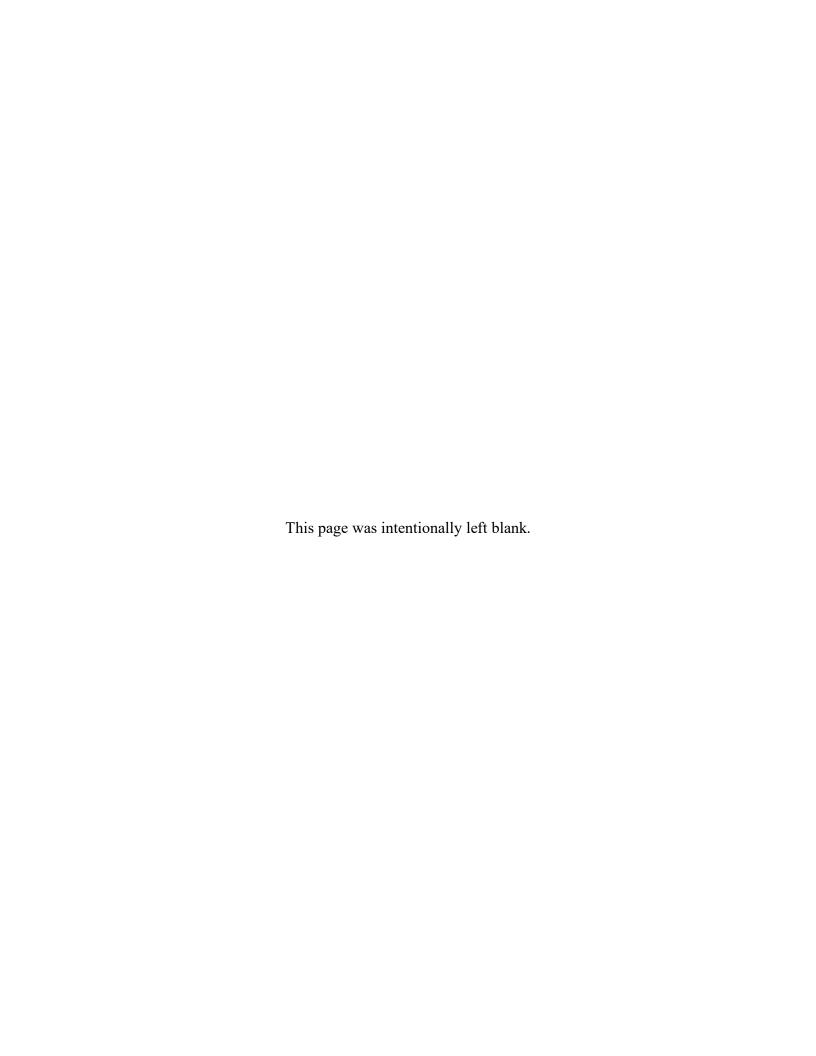
National Oceanic and Atmospheric Administration (n.d.). National Weather Service. Weather.gov. <a href="https://www.weather.gov/wrh/Climate?wfo=mlb">https://www.weather.gov/wrh/Climate?wfo=mlb</a>

Tetra Tech NUS, Inc. 2005. RCRA Facility Investigation Report, Kennedy Athletic Recreation and Social Park I (KARS Park I), Kennedy Space Center, Florida. Pittsburgh, Pennsylvania.

Tetra Tech NUS, Inc. 2006. Corrective Measures Implementation Annual Report, Hypergol Maintenance Facility Hazardous Waste South Staging Areas, SWMU NO.70, Kennedy Space Center, Florida. Pittsburgh, Pennsylvania.

Tetra Tech NUS, Inc. 2007a. Corrective Measures Implementation, System Expansion Construction Completion and Second Semi-Annual Report, Hypergol Maintenance Facility Hazardous Waste South Staging Areas, SWMU NO.70, Kennedy Space Center, Florida. Pittsburgh, Pennsylvania.

Tetra Tech NUS, Inc. 2007b. Corrective Measures Study, Pilot-Scale Study Report, and Interim Measures Work Plan for the Kennedy Athletic Recreation and Social Park 1 (KARS Park 1), Kennedy Space Center, Florida. Pittsburgh, Pennsylvania.


Tetra Tech NUS, Inc. 2009. Site Assessment Report, Fuel Storage Area #1, SWMU 109, Kennedy Space Center, Florida. Pittsburgh, Pennsylvania.

Tetra Tech NUS, Inc. 2010a. Corrective Measures Implementation Annual Report, Year 5, Hypergol Maintenance Facility Hazardous Waste South Staging Areas, SWMU NO.70, Kennedy Space Center, Florida. Pittsburgh, Pennsylvania.

Tetra Tech NUS, Inc. 2010b. *Interim Measure Report, Vertical Processing Facility, SWMU NO.77, Kennedy Space Center, Florida*. Pittsburgh, Pennsylvania.

Tetra Tech NUS, Inc. 2013. 2013 Annual Groundwater Monitoring Report, Kennedy Athletic Recreation and Social Park 1, SWMU 84, Kennedy Space Center, Florida. Pittsburgh, Pennsylvania.

Tetra Tech, Inc. 2016. Corrective Measures Implementation Annual Report, Hypergol Maintenance Facility Hazardous Waste South Staging Areas, SWMU 070, Year 10, Kennedy Space Center, Florida. Pittsburgh, Pennsylvania.



## APPENDIX A

KENNEDY SPACE CENTER REMEDIATION TEAM MEETING MINUTES

#### Revision 1 Meeting Minutes for March 8th & 9th, 2022

#### Attendees:

- 1. Bruce Moore/FDEP
- 2. Ryan O'Meara/NASA
- 3. Deda Johansen/NASA
- 4. Anne Chrest/NASA
- 5. Natasha Darre/NASA
- 6. Michelle Moore/NEMCON
- 7. Mark Speranza/Tetra Tech
- 8. Mark Jonnet/Tetra Tech
- 9. Sarah Damphousse/Tetra Tech

- 10. Debbie Wilson/Tetra Tech
- 11. Jennifer Joyal/AECOM
- 12. Randy Sillan/AECOM
- 13. Linnea King Clark/AECOM
- 14. Chris Marshall/AECOM
- 15. Richard Smith/HGL
- 16. Scott Starr/HGL
- 17. Carol Cady/HGL

#### 2203-M01 Michelle Moore/NEMCON

#### **Meeting Minutes and Miscellaneous Items**

Team consensus was reached that Revision 1 of the meeting minutes and action/decision items for the January 2022 Team meeting will become final. Team members acknowledged and did not object to the fact that these meeting minutes may become public as part of a final report at a later date (2203-D01).

Open action items were reviewed and updated. No action items were closed at that time.

**Results: Decision Item 2203-D01** 

#### 2203-M02 Bruce Moore /FDEP

#### FDEP Program Update, March 2022

**Goal:** The objective is to summarize any changes at the Florida Department of Environmental Protection (FDEP) and provide pertinent news since the last Kennedy Space Center (KSC) Remediation Team (KSCRT) meeting.

**Discussion:** Bruce Moore provided a quick update on the program.

As an update to partners, FDEP has two staff vacancies: one for a professional engineer and another for a professional geologist as a

NASA informed the Team that the updates to these documents are a lower priority.

**Results: Decision Item 2203-D36** 

#### 2203-M09 Chris Marshall/AECOM

#### Industrial Area (IA) Long-Term Monitoring (LTM) Update, March 2022

Goal: The purpose is to present activities and data associated with six IA LTM sites: Orsino Storage Yard (ORSY) (SWMU 004); Hypergol Maintenance Facility Hazardous Waste South Staging Area (HMF South) (SWMU 070); Kennedy Athletic, Recreation, and Social Park 1 (KARS Park 1) (SWMU 084); Launch Equipment Test Facility (LETF) (SWMU 091); General Services Administration Seized Property (GSSP) (SWMU 095); Fuel Storage Area #1 (FSA1) Underground Storage Tank (UST) (Potential Release Location [PRL] 157).

#### **Discussion:**

Field efforts summarized in the ADP include LTM sampling from September 2021 through November 2021. The objective of the ADP is to evaluate the groundwater quality based on current data and trends to determine if modifications to the sampling schedule and/or additional measures are warranted.

The remaining contaminants of concern (COCs) at ORSY are 1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene. Results for both were below the respective groundwater cleanup target levels (GCTLs), which is 70  $\mu$ g/L for both, for at least the second consecutive event. The Team reached consensus to discontinue MNA of groundwater at the Orsino Storage Yard (SWMU 004) (2203-D37).

FDEP inquired if NASA will seek closure for this site? NASA responded they will not because soil concerns are still present here. This site was included as part of the KSCRT's action item for historical review of the IA LTM sites, and NASA has provided additional information to FDEP under separate cover. Based upon historical records review (including past direct push groundwater

sampling results) and monitoring well (MW) results, NASA is recommending the discontinuance of MNA at the site.

FDEP requested a brief letter report with the findings to support discontinuing the MNA at this site for groundwater. NASA confirmed it would provide this (2203-A05).

Trichlorofluoromethane is the COC at HMF South. Two MWs were sampled in 2021: IW0004I and MW0006R. MW0006R was intended to be downgradient from the single well with remaining exceedances for TCFM IW0004I) but appears to have been upgradient based on concurrent water level measurements. The 2021 results for both wells were below the GCTL of 2,100  $\mu$ g/L. Based upon a review, AECOM suspects that there may be some error in MW elevation survey data. The Team reached consensus to conduct a relative TOC elevation survey and collect water levels from 11 wells to verify groundwater flow at HMF South (SWMU 070) (2203-D38).

KARS Park I has two locations of concern (LOC) in LTM, but only LOC 9 was sampled in 2021. The COC is lead. Lead results exceeded its GCTL of 15  $\mu$ g/L in one of the three wells sampled. The Team reached consensus to continue LTM at KARS Park I (SWMU 084) on a 5-year interval at monitoring wells KP1-MW0003, KP1-MW0022, and KP1-MW0035 with 16 water level measurements (2203-D39).

The Team reached consensus to re-develop and sample KP1-MW0022 in May 2022 to confirm lead concentration at KARS Park I (SWMU 084) (2203-D40).

NASA added if we confirm the lead concentration, we are aware we will need a downgradient well for this location. FDEP inquired if there is a wet/dry seasonality to this sampling program? AECOM responded that the sampling interval is stated as every 5 years without specifying wet or dry season. NASA stated that we have seasonal data prior to going to the 5-year plan. FDEP responded that it isn't necessary to provide it at this time; let's wait for the May 2022 sample result.

FDEP observed that the lead concentration increased up 5-fold. AECOM responded that this may be influence of water level.

Vinyl chloride (VC) is the COC at LETF. VC was above its GCTL (1  $\mu$ g/L) in one of six MWs sampled in 2021. The Team reached consensus to continue biennial sampling frequency at the LETF (SWMU 091) (2203-D41).

The Team reached consensus to reduce sampling scope to two monitoring wells (LETF-MW0001 and LETF-PSB-MW0001I) and collect 14 water level measurements in May 2023 at the LETF (SWMU 091) (2203-D42). FDEP noted that MW001I0 is preferable to MW0007 as a downgradient well based on groundwater flow direction.

At GSSP, VC is the only of the volatile organic compound COCs that remains in concentrations above its GCTL (1  $\mu$ g/L). In 2021, VC results exceeded the GCTL in 9 of 14 samples, one of which also exceeded the natural attenuation default concentration of 100  $\mu$ g/L. Naphthalene is also a site COC and monitored in a subset of 3 wells. It was detected below its GCTL of 14  $\mu$ g/L in one sample in 2021.

The Team reached consensus to continue annual LTM sampling of 14 monitoring wells for select VOCs (tetrachloroethene [PCE], trichloroethene [TCE], cis-1,2-dichloroethene [cis-1,2-DCE], trans-1,2-DCE, and VC), and three monitoring wells for naphthalene, and collect 33 water level measurements in November 2022 at the GSSP (SWMU 095) (2203-D43).

The COCs for FSA1 and their respective GCTLs are: benzene (1  $\mu g/L$ ), ethylbenzene (30  $\mu g/L$ ), isopropylbenzene (0.8  $\mu g/L$ ), 1-methylnaphthalene (28  $\mu g/L$ ), 2-methylnaphthalene (28  $\mu g/L$ ), naphthalene (14  $\mu g/L$ ), and total petroleum hydrocarbons [TPH] (5,000  $\mu g/L$ ). In 2021, nine MWs were sampled for those compounds. A new downgradient well, MW0028, was included in the sampling event. Isopropylbenzene was the only analyte detected above its GCTL, with exceedances in four samples.

The Team reached consensus to continue annual LTM sampling with addition of FSA-MW0017A to the existing monitoring network for a total of 10 wells. Samples will be analyzed for select VOCs (benzene, ethylbenzene, and isopropylbenzene), select PAHs (naphthalene, 1-mehtylnapthalene, and 2-methylnapthalene), and TPH. Water level measurements will be collected from 18 wells.

The next sampling event will be in May 2022 for FSA1, alternating wet and dry seasons (PRL 157) (2203-D44).

Slide 56 of the advanced data package (ADP) outlines the upcoming sampling schedule for reference.

Results: Decision Item 2203 D37 through D44 Action Item 2203-A05

#### 2203-M09 Anne Chrest/NASA

#### <u>CAMP Deliverables Look-Ahead and Document Requirements,</u> <u>March 2022</u>

**Goal:** This is a new recurring topic. The purpose is to present a deliverables look-ahead and review document requirements.

#### **Discussion:**

Specific comments related to CAMP documents and submittal dates were noted by NASA for incorporation into the CAMP schedule. A quick review of the CAMP was given by NASA, noting that there were a few revisions to the version that was sent earlier in March. For clarity, active sites and closed sites are now on separate tabs. Summary information for the 57 PFAS Locations of Concern/Areas of Potential Concern is presented on one tab, with a cross-reference to assigned Solid Waste Management (SWMU) or Potential Release Location (PRL) numbers where appropriate.

General note: While all KSCRT members are provided PDF versions of each set of KSCRT meeting minutes, some members requested that the minutes be uploaded to the Remediation Information System (RIS). This will be done. The NASA RPMs should also upload any final ADPs to the RIS Document Management System for the records as well.

FDEP inquired if the CAMP document being presented is the document sent around March 1? NASA confirmed that it was, but that it was revised since then. For PRL 237, there were two errors on dates (inadvertently switched), but will send this after the meeting (2203-A06).

NASA inquired if FDEP needs an update monthly; is there a required frequency for review? FDEP stated there is not a set frequency for CAMP submittals, but noted they find it useful to talk

	22 Decision Items Rev 1	Decision
Decision No.	Minutes Reference	
2203-D35	2203-M07	Launch Complexes 39A (SWMU 008) and 39B (SWM U009) Groundwater Remediation Update,  March 2022: The Team reached consensus to complete Hot Spot 2 evaluation pending data assessment.
2203-D36	2203-M08	Firex Water Tank (FWT) Site (SWMU 069) Confirmatory Sampling Results and Path Forward, March 2022: The Team reached consensus to update the LUCIP and Statement of Basis to remove arsenic as a site COC from the Firex Water Tank (SWMU 069).
2203-D37	2203-M09	Industrial Area (IA) Long-Term Monitoring (LTM) Update, March 2022: The Team reached consensus to discontinue MNA of groundwater at the Orsino Storage Yard (SWMU 004).
2203-D38	2203-M09	Industrial Area (IA) Long-Term Monitoring (LTM) Update, March 2022: The Team reached consensus to conduct a relative TOC elevation survey and collect water levels from 11 wells to verify groundwater flow at HMF South (SWMU 070).
2203-D39	2203-M09	Industrial Area (IA) Long-Term Monitoring (LTM) Update, March 2022: The Team reached consensus to continue LTM at KARS Park I (SWMU 084) on a 5-year interval at monitoring wells KP1-MW0003, KP1-MW0022, and KP1-MW0035 with 16 water level measurements.
2203-D40	2203-M09	Industrial Area (IA) Long-Term Monitoring (LTM) Update, March 2022: The Team reached consensus to re-develop and sample KP1-MW0022 in May 2022 to confirm lead concentration at KARS Park I (SWMU 084).
2203-D41	2203-M09	Industrial Area (IA) Long-Term Monitoring (LTM) Update, March 2022: The Team reached consensus to continue biennial sampling frequency at the LETF (SWMU 091).
2203-D42	2203-M09	Industrial Area (IA) Long-Term Monitoring (LTM) Update, March 2022: The Team reached consensus to reduce sampling scope to two monitoring wells (LETF-MW0001 and LETF-PSB-MW00011), and collect 14 water level measurements in May 2023 at the LETF (SWMU 091).
2203-D43	2203-M09	Industrial Area (IA) Long-Term Monitoring (LTM) Update, March 2022: The Team reached consensus to continue annual LTM sampling of 14 monitoring wells for select VOCs (tetrachloroethene [PCE], trichloroethene [TCE], cis-1,2-dichloroethene [cis-1,2-DCE], trans-1,2-DCE, and VC), and three monitoring wells for naphthalene, and collect 33 water level measurements in November 2022 at the GSSP (SWMU 095).
2203-D44	2203-M09	Industrial Area (IA) Long-Term Monitoring (LTM) Update, March 2022: The Team reached consensus to continue annual LTM sampling with addition of FSA-MW0017A to the existing monitoring network for a total of 10 wells. Samples will be analyzed for select VOCs (benzene, ethylbenzene, and isopropylbenzene), select PAHs (naphthalene, 1-mehtylnapthalene, and 2-methylnapthalene), and TPH. Water level measurements will be collected from 18 wells. The next sampling event will be in May 2022 for FSA1, alternating wet and dry seasons (PRL 157).

#### Revision 1 Meeting Minutes for the KSCRT Meeting - April 5th, 2023

#### Attendees:

- 1. Evan Miller/FDEP
- 2. Jason French/FDEP
- 3. Ryan O'Meara/NASA
- 4. Deda Johansen/NASA
- 5. Natasha Darre/NASA
- 6. Anne Chrest/NASA
- 7. Michelle Moore/NEMCON
- 8. Mark Jonnet/Tetra Tech
- 9. Mark Speranza/Tetra Tech
- 10. Andrew Walters/Tetra Tech

- 11. Sarah Damphousse/Tetra Tech
- 12. Jennifer Gootee/AECOM
- 13. Chad Lee/AECOM
- 14. Chris Marshall/AECOM
- 15. Greg Kusel/AECOM
- 16. Richard Smith/HGL
- 17. Jason Bublitz/HGL
- 18. Robert Lynch/HGL

#### 2304-M01 Michelle Moore/NEMCON

#### **Meeting Minutes and Miscellaneous Items**

#### **Objective:**

Test team consensus on February 2023 KSCRT meeting minutes and review open action items.

#### **Discussion:**

Team consensus was reached that Revision 1 of the February 2023 KSCRT meeting minutes and action items are final. Team members are aware that meeting minutes and decision/action items may become public as part of a report at a later date (2304-D01).

Open action items were reviewed and the following were closed out:

C-5 Electrical Substation (SWMU #066) Groundwater

Monitoring Report and Long-Term Monitoring Work Plan: The Florida Department of Environmental Protection (FDEP) requested the team construct an east/west cross-section of the plume to show vertical delineation of the site and put data points on the figure. A figure like this already exists and was developed during the site characterization. NASA will send this figure to FDEP.

The figure was included in the C-5 Electrical Substation Groundwater Monitoring Report that was sent to FDEP on January 23, 2023 (2210-A02).

completed for the site and identified four LOCs. Confirmation sampling (CS) results were presented in May 2022 and Team consensus was obtained for no further action for soil and groundwater at LOCs 3 and LOC 4, perform an IM for arsenic-impacted soil exceeding the industrial Soil Cleanup Target Levels (iSCTL), develop land use controls for arsenic and iron impacts above the residential SCTL at LOC 1 and LOC 2, and install one monitoring well at LOC 1 following soil IM activities at LOC 1.

Based upon CS results, it is recommended that arsenic-impacted soil exceeding the FDEP (iSCTL) from 0 to 0.5 feet below land surface (810 square feet) at LOC 1 be excavated and disposed of off-site at an approved landfill.

Team consensus was reached on the Interim Measure excavation boundary (bounded by sample locations below iSCTL: SB0026, SB0029, SB0018, SB0020, SB0031, SB0030, SB0048, SB0047, SB0046, SB0045, SB0043, SB0003, SB0042) (2304-D12).

FDEP inquired where the groundwater sample was going to be taken from; where was the highest soil contamination detected at on the site? HGL responded that the highest detection was at SB0001. FDEP stated that groundwater sampling anywhere in that vicinity would be acceptable.

**Results: Decision Items 2304-D12** 

#### 2304-M06 Greg Kusel/AECOM

#### Hypergol Maintenance Facility (HMF) South (SWMU #070) Groundwater No Further Action (NFA) Request, April 2023

**Objective:** The HMF South area is soon to be re-developed. The purpose of this briefing is to summarize the site's remediation history, present the recent efforts to verify recent groundwater flow direction, and seek consensus on the path forward.

#### **Discussion:**

The 1999 Confirmation Sampling Report for HMF South identified polychlorinated biphenyls (PCBs) > Industrial Soil Cleanup Targets Levels (SCTLs); and aluminum, trichlorofluoromethane (TCFM) and other volatile organic compounds (VOCs) > Groundwater Cleanup Target Levels (GCTLs). The Resource Conservation and

Recovery Act (RCRA) Facility Investigation (RFI) conducted from 1999 through 2002 delineated soil and groundwater for identified contaminants of concern (COCs) and recommended an interim measure (IM) for soil. A Corrective Measures Study (CMS) recommended an Interim Measure (IM) for soil removal, which was completed in December 2003. An additional CMS for groundwater in February 2004 recommended monitored natural attenuation (MNA) for aluminum and vinyl chloride (VC), and utilization of air sparging (AS) to treat TCFM; documented in August 2004 Statement of Basis (SB).

The AS system was installed in September 2005 and expanded in 2007 and 2012. The system operated through March 2013, and again for five months in 2014. In September 2006, No Further Action (NFA) for aluminum in groundwater was attained. In October 2010, NFA was granted for VC in groundwater (Tetra Tech, October 2011 ADP). The 2016 sampling frequency changed to biennially for TCFM, following ten years of data consistently exceeding GCTLs in one well (HMF-NLP-IW0004I).

Two consecutive sampling events were below GCTLs at IW0004I (2020 and 2021). Continued decreasing TCFM concentrations were observed following air sparge (AS) system shut-down. MW0006IR was picked up in 2021 based on its downgradient location.

In November 2022, groundwater elevation measurements were collected from 10 monitoring wells (MWs). Relative top of casing (TOC) survey was completed at 10 MWs.

Updated 2021 and 2022 groundwater flow maps confirmed groundwater flow is consistent with the historical flow direction, so MW0006IR is representative of downgradient conditions. TCFM concentrations were less than GCTL for two consecutive sampling events in November 2020 and September 2021. Recommend discontinuing monitored natural attenuation (MNA) of groundwater and abandoning site monitoring wells.

NASA added that they want to get the wells abandoned by July 2023 for support of an upcoming construction project. FDEP inquired if TCFM was the only contaminant in these wells? NASA confirmed that was correct; other site COCs were sampled for and obtained NFA consensus previously. FDEP inquired if there were only the

two wells sampled. NASA noted that was true for the most recent sampling events. Other wells were previously dropped from the monitoring program (IW003I and IW005I) since results were below the GCTL for years following the air sparge system remedy. NASA added that, given the impending construction, if a concern arises after the wells are abandoned, they are willing to go back and install post-construction. FDEP inquired if the pond there was clay-lined? NASA stated they did not believe it was clay-lined; it likely has a sandy bottom.

Team consensus was reached for No Further Action for groundwater at HMF South and to abandon all site monitoring wells (2304-D13).

**Results: Decision Items 2304-D13** 

#### 2304-M07 KSCRT

#### **Miscellaneous Discussion**

#### **AECOM**

- 1. Industrial Area LTM (Chris Marshall) (45 min)
- 2. Q6 Interim Measure (Chad Lee) (30 min)
- 3. South Repeater ADP and Potential pilot study IMWP (Megan Garcia) (1 hour)
- 4. VAB LTM (Chad Lee) (1 hour)

**HGL** 

- 1. CRHEA RAE (Megan or Cindy) (1 hour total)
- 2. GSRY West SWMU #036 IMWP

Tetra Tech

1. CCB SWMU #030 - Annual Performance Monitoring Update (Andrew Walters) (45 min)

2023 Meeting Dates (continues to be hybrid option in 2023)

June 8th and 9th

August 3rd and 4th

October 5th and 6th

November 30th and December 1st

	Decision Items Rev 1	- · ·
Decision No.	Minutes Reference	- Decision
2304-D01	2304-M01	Meeting Minutes and Miscellaneous Items: Test team consensus was reached that Revision 1 of the February 2023 KSCRT meeting minutes and action items are final. Team members are aware that meeting minutes and decision/action items may become public as part of a report at a later date.
2304-D02	2304-M02	CRHEA Groundwater Monitoring Update: Team consensus was reached continue annual sampling as follows:  *Sample 15 wells for VOCs. That includes Hot Spot 1: MW0025, MW0027, MW0029, MW0047, MW0048, and MW0058; Hot Spot 2: MW0031, MW0032, and MW0042; Northern Area: MW0017I, MW0019I, and MW0034; and down gradient: MW0035, MW0039, and MW0041.  *Sample 4 wells for 1,4-dioxane within HS1: MW0025 and downgradient: MW0035, MW0039, and MW0041.  *Sample 3 wells for TRPH within HS1 at MW0044, MW0047, and MW0056.  *Sample 1 well for sodium within HS1 at MW0047 and eliminate MW0044 since last 2 consecutive events were less than GCTL.  *Sample 6 wells for TDS (biennial) within HS1 at MW0025, MW0043, MW0044, MW0056, MW0057, and MW0058.  *Collect depth to water measurements from 48 site-wide monitoring wells. Abandon monitoring well IW0004S if obstruction at 2 to 3 ft. btoc cannot be repaired, and abandon IW0014I and IW0015I due to obstructions at 17.2 and 5 ft. btoc, respectively.  *Make one final attempt to locate IW0016I, IW0018I, and IW0020I. Determine viability and properly abandon any wells that are located but cannot be repaired.
2304-D03	2304-M02	CRHEA Groundwater Monitoring Update: Team consensus was reached to sample 10 monitoring wells for PFAS: IW0001S, IW0002S, IW00041, IW0009S, IW0013S, IW0017I, IW0019I, MW0024, MW0025, and MW0030
2304-D04	2304-M02	CRHEA Groundwater Monitoring Update: Team consensus was reached to conduct sub slab soil gas sampling event for CVOCs in June and December 2023, to evaluate if there are changes in sub slab soil gas in the four vapor probes due to previous interim measure activities or plume movement.
2304-D05	2304-M03	GSA Reclamation Yard (GSRY) 2022 Groundwater Monitoring Results: Team consensus was reached to conduct annual water level measurements at 55 monitoring wells in 2023 (Slide 22).
2304-D06	2304-M03	GSA Reclamation Vard (GSRY) 2022 Groundwater Monitoring Results: Test consensus to discontinue monitoring for VOCs at 18 monitoring wells and one surface water location due to at least two consecutive events in which site VOC concentrations were below GCTLs.
2304-D07	2304-M03	GSA Reclamation Yard (GSRY) 2022 Groundwater Monitoring Results: Test consensus to discontinue monitoring for polychlorinated biphenyls (PCBs) at 20 monitoring wells and one surface water location due to at least two consecutive events in which PCB concentrations were below GCTLs.
2304-D08	2304-M03	GSA Reclamation Yard (GSRY) 2022 Groundwater Monitoring Results: Test consensus to perform annual monitoring at 12 monitoring wells; samples from four to be analyzed for VOCs and PCBs, one for PCBs, and seven for VOCs.
2304-D09	2304-M03	GSA Reclamation Yard (GSRY) 2022 Groundwater Monitoring Results: Test consensus to continue annual UIC monitoring at GSRY-MW0049 for sulfate, iron, manganese, and sodium, and at GSRY-MW0050, and GSRY-MW0066 for sulfate, iron, sodium, and TDS.
2304-D10	2304-M03	GSA Reclamation Yard (GSRY) 2022 Groundwater Monitoring Results: Team consensus was reached to perform annual UIC groundwater monitoring at GSRY-MW0067 for iron, and at GSRY-MW0071 and GSRY-MW0073 for iron and TDS.
2304-D11	2304-M04	CCB SWMU #089 - MW21 Area Groundwater IMWP: Team consensus was reached on the Interim Measure Work Plan (IMWP) design for in situ reductive dechlorination injection treatment of the high concentration plume (HCP)/ Hot Spot (HS) / Source Zone (SZ) at the MW21 Area and to proceed with the develop of an Implementation Work Plan to plan and facilitate the Interim Measure.
2304-D12	2304-M05	Corrosion Atmospheric Exposure Facility (PRL 239) Interim Measure (IM) Work Plan: Team consensus was reached on the Interim Measure excavation boundary (bounded by sample locations below iSCTL: SB0026, SB0029, SB0018, SB0020, SB0031, SB0030, SB0048, SB0047, SB0046, SB0045, SB0043, SB0003, SB0042).
2304-D13	2304-M06	Hypergol Maintenance Facility (HMF) South (SWMU #070) Groundwater No Further Action (NFA) Request: Team consensus was reached for No Further Action for groundwater at HMF South and to abandon all site monitoring wells.

## **APPENDIX B**

**DAILY FIELD ACTIVITY LOGS** 

# SEPTEMBER 2021 GROUNDWATER SAMPLING EVENT DRY SEASON ORSY, HMF, and KP1

9/16/21 NASA KSC - IA LTM Groundwater sampling at KARS and orsy Vehicles: AECOM F-150'S # 275, 405 personnel: Greg Kusel + Dustin Slater Equipment: DTW meter, In Situ Aqua Troll, Geopump, backup Hach 2100p, IPAd. PPE: Level 0 + Nitrile gloves 0800 GK + DS Meet at KARS park #1 - go over sow - organize + cal equipment - Safety meeting. Begin to Locate and gauge wells. 0830 - Depths on gauging Sheet. 1027 Collect Kp1-MW0022-003.5-20210916 1048 COLLECT Kp1-MW0035-003.0-20210916 Collect Kp1-MW0003-003.5-20210916 1109 More to the ORSY site. 1115 1135 Begin locating and gauging wells. Collect ORSY-EXC-MW0003I-022.5- 2021 1213 1235 Collect ORSY-EXC-MW0001I-022,5-0916 1255 Drop OFF IDW at the CCF. Drum ID: 222843 Paller ID: 222842 1300 crew offsite. GK dropped OFF Samples at ENCO. 1340 9/14/21 6

```
BF/DS
              Well Sampling - IA LTM
9/22/21
                     HMF South
0700 Britary Follett arrives at depot to pick up
     Sample Cooler
0710 BF deports depot for KSC
0800 BF arrives on-site to meet Dustin Slater
         vehicles. Ford F-150 #905 and #275
         Equipment: (2) Aqua Troils, (2) i Pads, (2) seopumps
          (2) DTW meters, tobing
         Sow open 7 wells and collect DTW measurement
            Collect groundwater samples for Z wells
        Weather: 80°F H. 88°F Lo: 73°F Partly Cloudy
                 Humidity: 65% Pressure: 29,9" Hz
         H+S meeting: Biologicals, Weather
 0810 Begin opining wells
         -HMF-MW0007I under water
 0010 Begin Scopling HMF-NLP-TWOOD 4I
            Sample collected e 0937
 0950 Move to HMF-MW0000 IR
           Sample collected e 1019
 1025 Move to CCF to som dump purge water and
     Sample IDW drum e
             - Sample collected e 1045 8070 full pH 7.29
1050 DS depart site for depot
1150 DS arrives at depot and drops sample cooler off.
```

	Hypergol Maintenance Facility South												
Well ID Screen Interval Sampling DTW (ft) DTB (ft) Well Dia. (in) Notes													
HMF-NLP-IW0001I	35	40											
HMF-NLP-IW0002I	37	42			*								
HMF-NLP-IW0003I	35.5	40.5											
HMF-NLP-IW0004I	35	40	X										
HMF-MW00051	35	40	1777		7								
HMF-MW0006IR	35	40	X										
HMF-MW0007I	35	40											

	Orsino Storage Yard 9/16/2021												
Well ID	Screen	Interval	Sampling	DTW (ft)	DTB (ft)	Well Dia. (in)		Notes					
ORSY-DRM-MW00011	20	25		4.33	24.65	2	1145	Hotes					
ORSY-EXC-MW00011	20	25	x	3.38	23.45	2	1146	Sample B. 1235					
ORSY-EXC-MW00021	20	25		7.21	27.55	1	1140	sample of 1237					
ORSY-EXC-MW00031	20	25	x	6.72	27.58	1	1148	Sample @ 1213					
ORSY-EXC-MW00041	20	30	7-1-1	3.98	24.40	1	1143	7213					

						KARS Park 1	4/10	6/2021	
Well ID		Screen Interval		Sampling DTW (ft)		DTB (ft)	Well Dia. (in)	Notes	
MW0001	0918	2	12		4.58	14.70	1	hard to get to	
MW0003	0833	2	12	Х	2.01	11.82	1	Sample & 1109	
MW0004	2924	2	12	-	4.25	14.73	1		
MW0005	0421	2	12		4.53	obstruction	j	hard to get to	
MW0015	0830	2	12		2.03	11.03	)	3	
MW0016	0847	2	12		2.78	11-19	1		
MW0017	0855	2	12		2.51	10.76	1	The second secon	
MW0019	0947	2	12		2.29	11.98	1		
MW0022	0958	2	12	x	2.63	obstruction	,	Samula & 1027 265+000 == 05 311	
MW0023	0903	2	12		3.70	13.47	1	Sample @ 1027 obstruction at 3.4; tubing placed 3.5. maybe a root,	
MW0024	0950	2	12		2.15	11.95	,		
MW0027	0908	2	12		4.43	11-97	,		
MW0028	0955	2	12	1	2.43	11.43	2		
MW0035	0945	2	12	X	1.88	11.62	Î	Sample @ 1048	
MW0036	0942	2	12		the first to work the same with a second state of	11,63	1	Sample & The same of the same	
MW0037	0927	2	12		1.92	14.69	1		

Hypergol Maintenance Facility South									
Well ID	Screen	Interval	Sampling	DTW (ft)	DTB (ft)	Well Dia. (in)	Notes		
HMF-NLP-IW0001I	35	40		0.73 0852	3.5 (1.6)				
HMF-NLP-IW00021	37	42	The special section	3.55 0859		<u> </u>	and the second s		
HMF-NLP-IW00031	35.5	40.5	7 (0.00)	5.10 0851					
HMF-NLP-IW00041	35	40	×	3 00 0849			037.7 6 0937		
HMF-MW00051	35	40		2 43 0849					
HMF-MW00061R	35	40	×	4 08 0850			037, 50 1019		
HMF-MW00071	35	40	1	conder water			Under water		

IOW @ 1045 pt=7.29

				Orsi	no Storage	e Yard	· .
Well ID	Screen	Interval	Sampling	DTW (ft)	DTB (ft)	Well Dia. (in)	Notes
ORSY-DRM-MW00011	20	25					
ORSY-EXC-MW0001I	20	25	×				the state of the s
ORSY-EXC-MW00021	20	25					
ORSY-EXC-MW00031	20	25	x				The second secon
ORSY-EXC-MW00041	20	30					

	KARS Park 1										
Well ID	Screen Interval		Sampling	DTW (ft)	DTB (ft)	Well Dia. (in)	Notes				
MW0001	2	12									
MW0003	2	12	x		-						
MW0004	2	12									
MW0005	2	12					The second section of the section of the second section of the second section of the second section of the section of the second section of the secti				
MW0015	2	12		-							
MW0016	2	12	Section Section - 1	out - hard the second		or and a commission of the second contract					
MW0017	2	12									
MW0019	2	12									
MW0022	2	12	X								
MW0023	2	12									
MW0024	2	12		ayaa dagaa aa ah da a		in a little communication or many of the constraints of	e dilimento de la companiona del companiona del companiona del companiona del companiona de				
MW0027	2	12					3.				
MW0028	2	12		and the second of the second							
MW0035	2	12	×								
MW0036	2	12									
MW0037	2	12									



Instrument Aqua TROLL 600

Serial Number 606696 Created 9/16/2021

Sensor RDO

Serial Number 658928 Last Calibrated 6/23/2021

Calibration Details

Slope 1.047443 Offset 0.00 mg/L

Calibration point 100%

Concentration 8.06 mg/L
Pre Measurement 99.92 %Sat
Post Measurement 100.00 %Sat
Temperature 22.71 °C
Barometric Pressure 992.79 mbar

Sensor Conductivity

Serial Number 672308 Last Calibrated 9/16/2021

Calibration Details

TDS Conversion Factor (ppm) 0.65
Cell Constant 0.857
Reference Temperature 25.00 °C

Pre Measurement

Actual Conductivity 8,992.7 µS/cm Specific Conductivity 8,508.6 µS/cm

Post Measurement

Actual Conductivity 8,455.2 µS/cm Specific Conductivity 8,000.0 µS/cm

Sensor	pH/ORP
Serial Number	704529
Last Calibrated	9/16/2021

# Calibration Details

#### Calibration Point 1

pH of Buffer 6.98 pH pH mV -9.4 mV Temperature 27.98 °C

## Pre Measurement

pH 6.96 pH pH mV -9.4 mV

# Post Measurement

pH 6.98 pH pH mV -9.5 mV

# Slope and Offset 1

Slope -59.75 mV/pH Offset -10.6 mV

#### **ORP**

ORP Solution Quick-Cal
Offset 66.0 mV
Temperature 27.98 °C
Pre Measurement 216.8 mV
Post Measurement 219.0 mV

### Sensor **Turbidity**

Serial Number 780942 Last Calibrated 6/23/2021

# Calibration Details

Slope 1.173604 Offset -0.02 NTU

#### Calibration Point 1

Pre Measurement 0.00 NTU
Post Measurement 0.00 NTU

### Calibration Point 2

Pre Measurement 123.02 NTU Post Measurement 126.00 NTU

Sensor	Barometric Pressure
Serial Number	606696
Last Calibrated	Factory Defaults

Instrument Aqua TROLL 600

Serial Number 606696 Created 9/22/2021

Sensor RDO

Serial Number 658928 Last Calibrated 6/23/2021

Calibration Details

Slope 1.047443 Offset 0.00 mg/L

Calibration point 100%

Concentration 8.06 mg/L
Pre Measurement 99.92 %Sat
Post Measurement 100.00 %Sat
Temperature 22.71 °C
Barometric Pressure 992.79 mbar

Sensor Conductivity

Serial Number 672308 Last Calibrated 9/22/2021

Calibration Details

TDS Conversion Factor (ppm) 0.65
Cell Constant 0.807
Reference Temperature 25.00 °C

Pre Measurement

Actual Conductivity 8,052.5 µS/cm Specific Conductivity 8,172.5 µS/cm

Post Measurement

Actual Conductivity 7,882.5 µS/cm Specific Conductivity 8,000.0 µS/cm

Sensor	pH/ORP
Serial Number	704529
Last Calibrated	9/22/2021

# Calibration Details

#### Calibration Point 1

pH of Buffer 7.00 pH pH mV -11.4 mV Temperature 24.23 °C

#### Pre Measurement

pH 7.00 pH pH mV -11.5 mV

#### Post Measurement

pH 7.00 pH pH mV -11.4 mV

# Slope and Offset 1

Slope -59.01 mV/pH Offset -11.4 mV

#### **ORP**

ORP Solution Quick-Cal
Offset 69.5 mV
Temperature 24.23 °C
Pre Measurement 224.0 mV
Post Measurement 224.7 mV

#### Sensor **Turbidity**

Serial Number 780942 Last Calibrated 6/23/2021

# Calibration Details

Slope 1.173604 Offset -0.02 NTU

#### Calibration Point 1

Pre Measurement 0.00 NTU
Post Measurement 0.00 NTU

### Calibration Point 2

Pre Measurement 123.02 NTU Post Measurement 126.00 NTU

Sensor	Barometric Pressure
Serial Number	606696
Last Calibrated	Factory Defaults

# **NOVEMBER 2021 GROUNDWATER SAMPLING EVENT**

WET SEASON

LETF, GSSP, and FSA1

6KDS 11/22/21 NASA KSC- IA LTM project # 60610905 vehicles: A ECOM F-150'S # 275, 905 personnel: Grea Kusel + Dustin Slater Equipment: DTW meters, In situ Aqua trolls, Geopumps, backup Hack 2100p, Ipads. PPE: Level D + Nitrite gloves. 0645 GK + DS at AECOM depot 0730 GK + DS leave depor FOT KSC 0830 onsite at 655p - go over sow + safety meeting 0850 Begin water level collection 1000 Utility pole installation along Kennedy pkwy has silt fence up along corridor. I No driving acess to Wells West of it, continue on foot. 1035 complete water level collection. Trais back to WEST wells very overgrown and Flooded. Begin Calibrating equipment. Need more batteries For Aqua trous. DS to buy batteries. 1110 GK complete Calibration. Heavy vain at the site. Waiting inside truck organize samples. 1140 Ds onsite again. Finish calibraring second aquatroll and distribute Samples. pg. 1 of 3

11/22/2	ı NA	SA KS	6 - IA	LTM	GK _{DS}
1200	Begin	Sampin	a Sele	ct wells	ат СББр.
1450	Continue		imple G		115, load
	cart	to Sam,	100	34,35,	
	655P	DTW'S	and Sa	mple tin	es.
Well ID	Driv Sample	Well ID	Broken	Well ID	Drw sample
mw x	3.29 ×	mw 24R	2.27 1726	MW 47	1.47 x
MW X	3.24 ×	MW 26	1.55 ×	mw 49	2.42 x
MW X8	0.65 ×	MW 27	1.59 x	MW 53	1.43 1650
MW FOR	1.47 ×	mw 34	4.18 1650	m 54	1.78 x
	0.83 1940	MW 35	4.10 1620	AW 55	2.21 X
MW 15/14	0.69 x	MW 36	4.23 1550	MW 54	2.28 X
MW 16 A	1.88	AW 39	4.74 ×	mw 59	2.45
MW +7A	1.91 1617	MW 42	3.76 ×	MW 60	2.70
MW 19	1.60 ×	MW 43 R	2.18 ×	MW 61	2.89
MW 22	0.44 ×	MW 44R	2.44	nw 62	1.65
MW 21	0.44 ×	AW 45	2.44 3.28 x	mw 63	1.74 1505
1				•	
(1/23/21)	LETA	DTW	's and	Sample:	-imes,
Well ID	Drugampie	Well ID	Drw Samplent	Well ID	DIW Sample
MW I	5.45 1010	AW6	2.60	mw 11	4.56 x
MW 2	5.34 1135	MW7	5.28 1050	PSB-MWII	4.75
nw 3	5.27 ×	MW 8	5.03 ×	PSB-MW2I	2.66 1016
MW 4	5.48 ×	nw g	5.31 x	PS8-MW31	3.11 ×
MW 5	5.55 1130	NW 10	5.48 ×		
		pg. 2	e 3		
		, )			

11/23/21 NASA KSC - IA LTM 0600 GK at AECOM TO load truck 0615 GK leaves depor For KSC 0740 GK at ORSY to Take shoros and DS at CCF to unload IDW water into previously used IA LTM Drum. GK + BS ansite at LETF. sign in 0800 at the office. Safety meeting. 0825 Begin collecting water levels. 0900 Finished collecting water levels. Begin Calibrating equipment. 0930 Begin Sampling Scient wells at LETF. GK inside LETF, DS outside area. 1150 GK+ DS complete sampling at LETT. - Sign out of office. 1200 GK+ DS leave IA LTM area to Sample LES (VAB Area) and a Monitor Well North of VAB For PFAS. GK+DS at the CCF to unload IDW 1500 - Will Sample drum next week after Sampling FSA 1. 1515 GK + DS off Site. 11/23/21 GK Pg. 3 of 3

11/30/2	, NAS	A KS	C- IA	LTM	GK DS
ргојест	# 606199	C. (C.O.O.)			T.
	: AECOM		15 # 2	75, 905	
	1: Greg	100	5019		
	17: 2 DTW				
	2 Agua	tro115,	2 1	pads, 2	3copumps
PPE:	Level 2	) and	nitrile	glove	s .
0645	6R ax	AECON	to 1	oad Equ	cipment.
0700	OGK 1				/
0800	6K + D	s at	FSA1		
			t offic	e, Safery	meeting
0820	Calibrat	e equ	pment		
0845	Castron Co.	1 1	Wells	-	
0900	Besin	,			15.
0925	Begin Si	-			
1200	Sampling				
1210	brive 7	o CCF	то роп	out i	DW .
	and s	Sample	Ibw d	rum.	
	Drum 1	H 22:	2843	Ta.	
	Shell \$	1 222	842	s I	
	Drum c	apacity:	80 %	Fun	
	ρH :	7.09			
1300	GK + DS	offsin	e. DS	To dro	o off
	Sample	s ar	ENCO.		
			6.		
-		11/30	21 GK		
		1 08 2	<b>)</b>		
The same of the sa			SV MILLON	Maries Alicentin	

11/30	/21		NASA	K56	- I1	1 L;	TM		6
	FS	AI	DTW'S	and	Sa	male		tim	es
vell		Dtw	Camal	e w	ell.	/			mole Ine
nw	1	4.03	1053	2 n	w 20	3.	63		×
MW	2	3,34	5 1119	Mi	w 21	3.	.03	-11	50
MW	4	4.10	×	MI	v 22.	R 4	.59	1 7	10
nw	12R	4. 3:	102	7 m	V 23	3.	85	11	59
mw !	14	4.50	0950	n m	124	3.	72		×
MW	5	3.17	' ×	Mu	1 25	3.	20		×
mw 1	6 A	4.48	×	MI	26	4.	59		×
MW 1	7 A	4.40	×	m	~ 27	4.	85	10	35
MW.	19	6.45	х	M	v 28	4.	62	0	150
		-							
411 1	dtw	me	asurene	ints in	r Fe	et	bel	ow	top
		sing							
							1		
			1						
			35						
				2					
					6				
				9	1				
- 8									
					•				1
				2 08	2				

		-	. +		Wel	I Gauging Novemb	per 2021	
-	Well ID	Screen	Interval	Sampling	DTW (ft)	DTB (ft)	Well Dia. (in)	Notes
	GSSP-MW0006	5	15		3.29		t	0929 Stick up
8	GSSP-MW0007	25	35		3.24		1	0928 STICK UP
	GSSP-MW0008	5	15		0.65		1	0915
2	GSSP-MW0009	25	35		1.47	=	1	0914
1440	GSSP-MW00013	5	15	x	0.83		1	0926
	GSSP-MW00014	25	35		0.69		1	0927
	GSSP-MW00019	15	25	x	1.88		I	0433
	GSSP-MW00020	25	35	x	1.41	2	1	0432
	GSSP-MW00021	40	50		1.60		1	0431
	GSSP-MW00022	15	25	20	0.44		- 1	0935
	GSSP-MW00023	25	35		0.44		1	0934
	GSSP-MW00024R	15	25	x	0.27		t	1005
	GSSP-MW00026	5	15		1.55		1	0943
	GSSP-MW00027	5	15		1.59		1	0944
1650	GSSP-MW00034	5	15	х	4.18		1	1020 Stick no
1620	GSSP-MW00035	15	25	х	4.10		· ·	1020 Stick up
1550	GSSP-MW00036	30	40	Χ	4.23		7	1022
	GSSP-MW00039	ء 25	35		4.74		1	1025 1025 V
	GSSP-MW00042	30	40		3.76	1 4	1	1012 Stick up 0918 0917 0930 Stick up
	GSSP-MW00043R	5	15		2.18		1	09/8
	GSSP-MW00044R	25	35	x	2.44	Joseph I.		0917
	GSSP-MW00045	15	25		3.28		1	0930 STICK Up
	GSSP-MW00047	15	25		1.47			0916
	GSSP-MW00049	55	60		2.42		1	0919
	GSSP-MW00053	15	25	x	1.83		(	0948
	GSSP-MW00054	25	35		1.78		1	2000
	GSSP-MW00055	5	15		2.21	_	1	0451 Cracked pad (double with 5
	GSSP-MW00058	10	15		2.28		1	0121
1400	GSSP-MW00059	16	21	x	2.45		1	0920
1316	GSSP-MW00060	10	15	x	2.70		)	0922
1244	GSSP-MW00061	16	21	x	2.89		1	0923
	GSSP-MW00062	10	15	x	1.65		1	0 125
	GSSP-MW00063	16	21	x	1.74		. 1	0924

	1.5			Fuel	Storage A	rea #1	11/30/21		
Well Gauging November 2021									
Well ID	Screen	Interval	Sampling	DTW (ft)	DTB (ft)	Well Dia. (in)	Notes		
FSA1-MW0001	2	12	x	4.03		3/4	0406		
FSA1-MW0002	2	12	x	3.35	_ =	3/4	0405		
FSA1-MW0004 [©]	2	12		4.10		2	0910		
FSA1-MW0012R	3	13	×	4.32		1 1	0907		
SA1-MW0014	2	12	χ -	4.50		2	0908		
SA1-MW0015	3	13		3.17		2	0922		
SA1-MW0016A	3	13		4.48		2	0912		
SA1-MW0017A	3	13		4.40		2	913		
SA1-MW0019	2	12		6.45		2	09/4		
SA1-MW0020	1	11		3.63		2	0921		
SA1-MW0021	2	12	x	3.03		1	09/9		
SA1-MW0022R	2	12	x	4.59		1	0916		
SA1-MW0023	2	12	×	3.85		1	0920		
SA1-MW0024	2	12	3 2	3.72		7	0909		
SA1-MW0025	15	25		3.20		1	9911		
SA1-MW0026	15	25		4.59		1	0914		
SA1-MW0027	15	25	x	4.85	•	1	0915		
SA1-MW0028	15	25	×	4.62		1	917		

Launch Equipment Testing Facility 11/23 /21										
		4		Well	Gauging Novemb	er 2021	-4			
Well ID	Well ID Screen Interval Sampling DTW (ft) DTB (ft) W			Well Dia. (in)		No	otes			
LETF-MW0001	22.5	27.5	x	5.45		1	0830	he well	in pal	with MW4
LETF-MW0002	22.5	27.5	x	5.34		1	0834	- won	111 /40	W174 J 4
LETF-MW0003	22.5	27.5		5.27		1	0826			
LETF-MW0004	33.5	38.5	-	5.48	37.77	, X	0829	E WOUL	in n	cluster
LETF-MW0005	22.5	27.5	x	5.55		1 200	0850		111	Ciusi V
LETF-MW0006	33.5	38.5		2.62		1 3	0842			
LETF-MW0007	33.5	38.5	x	5.28		10-	0827			
LETF-MW0008	22.5	27.5		5.03			0832			
LETF-MW0009	22.5	27.5		5.31		3 -	0833			
LETF-MW0010	22.5	27.5		5.48		-1	0831			
LETF-MW0011	22.5	27.5		4.56		1	0848	STILK	40	
LETF-PSB-MW0001I	22	27	x	4.75		1	0847	STICK STICK	-9-	
LETF-PSB-MW00021	22	27	x	2.66		1 1	0843	SIICK	up	
LETF-PSB-MW00031	20	25	- 1000	3.11	<u> </u>	1	2839 0	1841		

Instrument Aqua TROLL 600

Serial Number 808878 Created 11/22/2021

Sensor Conductivity

Serial Number 803640 Last Calibrated 11/22/2021

Calibration Details

TDS Conversion Factor (ppm) 0.65
Cell Constant 0.971
Reference Temperature 25.00 °C

Pre Measurement

Actual Conductivity 1,456.8 μS/cm Specific Conductivity 1,454.1 μS/cm

Post Measurement

Actual Conductivity 1,415.6 μS/cm Specific Conductivity 1,413.0 μS/cm

Sensor RDO
Serial Number 849125

Last Calibrated Factory Defaults

Sensor pH/ORP

Serial Number 778862 Last Calibrated 11/22/2021

#### Calibration Details

Calibration Point 1

pH of Buffer 4.00 pH pH mV 157.4 mV Temperature 25.70 °C

Pre Measurement

pH 3.97 pH pH mV 157.4 mV

Post Measurement

pH 4.00 pH pH mV 157.8 mV

Calibration Point 2

pH of Buffer 7.00 pH pH mV -13.2 mV

Temperature	25.26	°C
-------------	-------	----

6.85 pH рН -13.2 mV pH mV

### Post Measurement

pН 7.00 pH pH mV -13.3 mV

#### Calibration Point 3

pH of Buffer 10.00 pH pH mV -178.7 mV Temperature 25.04 °C

#### Pre Measurement

рН 9.64 pH pH mV -178.8 mV

#### Post Measurement

Hq 10.00 pH pH mV -178.7 mV

#### Slope and Offset 1

Slope -56.89 mV/pH Offset -13.2 mV

# Slope and Offset 2

Slope -55.14 mV/pH Offset -13.2 mV

#### **ORP**

**ORP Solution ORP Standard** Offset -139.4 mV Temperature 32.64 °C Pre Measurement 163.9 mV Post Measurement 100.0 mV

#### Sensor **Turbidity**

Serial Number 804275 Last Calibrated 7/15/2021

#### Calibration Details

Slope

1 Offset -1.73 NTU

### Calibration Point 1

Pre Measurement 1.10 NTU Post Measurement 0.00 NTU

#### **Barometric Pressure** Sensor

Serial Number 808878

Instrument Aqua TROLL 600

Serial Number 808878 Created 11/23/2021

Sensor Conductivity

Serial Number 803640 Last Calibrated 11/23/2021

Calibration Details

TDS Conversion Factor (ppm) 0.65
Cell Constant 1.046
Reference Temperature 25.00 °C

Pre Measurement

Actual Conductivity 1,135.6 μS/cm Specific Conductivity 1,329.7 μS/cm

Post Measurement

Actual Conductivity 1,206.8 μS/cm Specific Conductivity 1,413.0 μS/cm

Sensor RDO
Serial Number 849125

Last Calibrated Factory Defaults

Sensor pH/ORP

Serial Number 778862 Last Calibrated 11/23/2021

#### Calibration Details

Calibration Point 1

pH of Buffer 4.00 pH pH mV 146.1 mV Temperature 17.34 °C

Pre Measurement

pH 4.12 pH pH mV 146.2 mV

Post Measurement

pH 4.00 pH pH mV 142.3 mV

Calibration Point 2

pH of Buffer 7.02 pH pH mV -19.5 mV

Temperature 17.41 C	Temperature	17.41	°C
---------------------	-------------	-------	----

рН 7.13 pH pH mV -20.1 mV

#### Post Measurement

pН 7.02 pH pH mV -19.0 mV

### Calibration Point 3

pH of Buffer 10.08 pH pH mV -187.2 mV Temperature 17.32 °C

#### Pre Measurement

рН 10.25 pH pH mV -187.1 mV

#### Post Measurement

Hq 10.08 pH pH mV -182.4 mV

#### Slope and Offset 1

Slope -54.84 mV/pH Offset -18.4 mV

# Slope and Offset 2

-54.79 mV/pH Slope Offset -18.4 mV

#### **ORP**

**ORP Solution ORP Standard** 

Offset 26.5 mV Temperature 17.41 °C Pre Measurement 208.2 mV Post Measurement 229.0 mV

#### Sensor **Turbidity**

Serial Number 804275 Last Calibrated 7/15/2021

### Calibration Details

Slope

1 Offset -1.73 NTU

## Calibration Point 1

Pre Measurement 1.10 NTU Post Measurement 0.00 NTU

#### **Barometric Pressure** Sensor

Serial Number 808878

Instrument Aqua TROLL 600

Serial Number 808878 Created 11/30/2021

Sensor Conductivity

Serial Number 803640 Last Calibrated 11/30/2021

Calibration Details

TDS Conversion Factor (ppm) 0.65
Cell Constant 0.96
Reference Temperature 25.00 °C

Pre Measurement

Actual Conductivity 1,318.3 μS/cm Specific Conductivity 1,538.5 μS/cm

Post Measurement

Actual Conductivity 1,210.8 μS/cm Specific Conductivity 1,413.0 μS/cm

Sensor RDO

Serial Number 849125 Last Calibrated 11/30/2021

Calibration Details

Slope 1.059108 Offset 0.00 mg/L

Calibration point 100%

Concentration 9.37 mg/L
Pre Measurement 94.17 %Sat
Post Measurement 100.00 %Sat
Temperature 19.26 °C
Barometric Pressure 1,087.5 mbar

Sensor pH/ORP

Serial Number 778862 Last Calibrated 11/30/2021

# Calibration Details

Calibration Point 1

pH of Buffer 4.00 pH pH mV 135.7 mV Temperature 15.48 °C

pH 4.17 pH pH mV 135.8 mV

#### Post Measurement

pH 4.00 pH pH mV 131.3 mV

# Calibration Point 2

pH of Buffer 7.02 pH pH mV -29.0 mV Temperature 15.84 °C

### Pre Measurement

pH 7.20 pH pH mV -29.2 mV

### Post Measurement

pH 7.02 pH pH mV -28.2 mV

### Calibration Point 3

pH of Buffer 10.08 pH pH mV -197.8 mV Temperature 16.10 °C

#### Pre Measurement

pH mV -198.3 mV

### Post Measurement

pH 10.08 pH pH mV -191.9 mV

# Slope and Offset 1

Slope -54.54 mV/pH Offset -28.0 mV

# Slope and Offset 2

Slope -55.14 mV/pH Offset -27.9 mV

# ORP

ORP Solution ZoBell's
Offset 28.4 mV
Temperature 18.52 °C
Pre Measurement 236.0 mV
Post Measurement 237.6 mV

# Sensor **Turbidity**

Serial Number

804275

# Last Calibrated 7/15/2021

Calibration Details

Slope

Offset -1.73 NTU

Calibration Point 1

Pre Measurement 1.10 NTU
Post Measurement 0.00 NTU

Sensor Barometric Pressure

Serial Number 808878

Instrument Aqua TROLL 600

Serial Number 606696 Created 11/22/2021

Sensor RDO

Serial Number 658928 Last Calibrated 6/23/2021

Calibration Details

Slope 1.047443 Offset 0.00 mg/L

Calibration point 100%

Concentration 8.06 mg/L
Pre Measurement 99.92 %Sat
Post Measurement 100.00 %Sat
Temperature 22.71 °C
Barometric Pressure 992.79 mbar

Sensor Conductivity

Serial Number 672308 Last Calibrated 11/22/2021

Calibration Details

TDS Conversion Factor (ppm) 0.65
Cell Constant 0.947
Reference Temperature 25.00 °C

Pre Measurement

Actual Conductivity 992.65 μS/cm Specific Conductivity 1,004.4 μS/cm

Post Measurement

Actual Conductivity 1,396.4 µS/cm Specific Conductivity 1,413.0 µS/cm

Sensor pH/ORP

Serial Number 704529 Last Calibrated 11/22/2021

# Calibration Details

Calibration Point 1

pH of Buffer 4.00 pH pH mV 156.7 mV Temperature 24.11 °C

pH 4.05 pH pH mV 156.5 mV

#### Post Measurement

pH 4.00 pH pH mV 156.3 mV

# Calibration Point 2

pH of Buffer 7.00 pH pH mV -10.4 mV Temperature 24.19 °C

#### Pre Measurement

pH 6.88 pH pH mV -10.2 mV

#### Post Measurement

pH 7.00 pH pH mV -10.4 mV

#### Calibration Point 3

pH of Buffer 10.00 pH pH mV -184.9 mV Temperature 24.03 °C

# Pre Measurement

pH 9.84 pH pH mV -184.5 mV

### Post Measurement

pH 10.00 pH pH mV -184.3 mV

# Slope and Offset 1

Slope -55.7 mV/pH Offset -10.4 mV

# Slope and Offset 2

Slope -58.17 mV/pH Offset -10.4 mV

# ORP

ORP Solution ZoBell's
Offset 25.6 mV
Temperature 24.75 °C
Pre Measurement 266.7 mV
Post Measurement 229.4 mV

# Sensor **Turbidity**

Serial Number 780942

# Last Calibrated 6/23/2021

Calibration Details

Slope 1.173604 Offset -0.02 NTU

Calibration Point 1

Pre Measurement 0.00 NTU
Post Measurement 0.00 NTU

Calibration Point 2

Pre Measurement 123.02 NTU
Post Measurement 126.00 NTU

Sensor Barometric Pressure

Serial Number 606696

Instrument Aqua TROLL 600

Serial Number 606696 Created 11/23/2021

Sensor RDO

Serial Number 658928 Last Calibrated 6/23/2021

Calibration Details

Slope 1.047443 Offset 0.00 mg/L

Calibration point 100%

Concentration 8.06 mg/L
Pre Measurement 99.92 %Sat
Post Measurement 100.00 %Sat
Temperature 22.71 °C
Barometric Pressure 992.79 mbar

Sensor Conductivity

Serial Number 672308 Last Calibrated 11/23/2021

Calibration Details

TDS Conversion Factor (ppm) 0.65
Cell Constant 0.937
Reference Temperature 25.00 °C

Pre Measurement

Actual Conductivity 1,274.5 µS/cm Specific Conductivity 1,428.5 µS/cm

Post Measurement

Actual Conductivity 1,260.7 µS/cm Specific Conductivity 1,413.0 µS/cm

Sensor pH/ORP

Serial Number 704529 Last Calibrated 11/23/2021

# Calibration Details

Calibration Point 1

pH of Buffer 4.00 pH pH mV 154.6 mV Temperature 18.65 °C

pH 3.99 pH pH mV 154.6 mV

#### Post Measurement

pH 4.00 pH pH mV 151.3 mV

#### Calibration Point 2

pH of Buffer 7.02 pH pH mV -13.4 mV Temperature 17.61 °C

#### Pre Measurement

pH 7.06 pH pH mV -13.4 mV

# Post Measurement

pH 7.02 pH pH mV -13.1 mV

#### Calibration Point 3

pH of Buffer 10.04 pH pH mV -184.4 mV Temperature 19.19 °C

#### Pre Measurement

pH 10.06 pH pH mV -185.1 mV

### Post Measurement

pH 10.04 pH pH mV -180.8 mV

# Slope and Offset 1

Slope -55.62 mV/pH Offset -12.3 mV

# Slope and Offset 2

Slope -56.63 mV/pH Offset -12.2 mV

# ORP

ORP Solution ZoBell's
Offset 25.6 mV
Temperature 24.75 °C
Pre Measurement 266.7 mV
Post Measurement 229.4 mV

# Sensor **Turbidity**

Serial Number

780942

# Last Calibrated 6/23/2021

Calibration Details

Slope 1.173604 Offset -0.02 NTU

Calibration Point 1

Pre Measurement 0.00 NTU
Post Measurement 0.00 NTU

Calibration Point 2

Pre Measurement 123.02 NTU
Post Measurement 126.00 NTU

Sensor Barometric Pressure

Serial Number 606696

Instrument Aqua TROLL 600

Serial Number 606696 Created 11/30/2021

Sensor RDO

Serial Number 658928 Last Calibrated 11/30/2021

Calibration Details

Slope 1.033445 Offset 0.00 mg/L

Calibration point 100%

Concentration 9.74 mg/L
Pre Measurement 101.59 %Sat
Post Measurement 100.00 %Sat
Temperature 15.54 °C
Barometric Pressure 1,022.8 mbar

Sensor Conductivity

Serial Number 672308 Last Calibrated 11/30/2021

Calibration Details

TDS Conversion Factor (ppm) 0.65
Cell Constant 0.842
Reference Temperature 25.00 °C

Pre Measurement

Actual Conductivity 1,140.8 µS/cm Specific Conductivity 1,394.8 µS/cm

Post Measurement

Actual Conductivity 1,155.6 μS/cm Specific Conductivity 1,413.0 μS/cm

Sensor pH/ORP

Serial Number 704529 Last Calibrated 11/30/2021

# Calibration Details

Calibration Point 1

pH of Buffer 4.00 pH pH mV 151.6 mV Temperature 14.74 °C

pH 4.02 pH pH mV 151.6 mV

#### Post Measurement

pH 4.00 pH pH mV 146.4 mV

#### Calibration Point 2

pH of Buffer 7.06 pH pH mV -13.2 mV Temperature 14.09 °C

#### Pre Measurement

pH 7.03 pH pH mV -13.0 mV

#### Post Measurement

pH 7.06 pH pH mV -12.7 mV

# Calibration Point 3

pH of Buffer 10.08 pH pH mV -186.0 mV Temperature 14.87 °C

# Pre Measurement

pH 10.16 pH pH mV -186.3 mV

### Post Measurement

pH 10.08 pH pH mV -179.7 mV

# Slope and Offset 1

Slope -53.84 mV/pH Offset -10.0 mV

# Slope and Offset 2

Slope -57.22 mV/pH

Offset -9.8 mV

# ORP

ORP Solution ZoBell's
Offset 21.2 mV
Temperature 15.32 °C
Pre Measurement 240.6 mV
Post Measurement 241.8 mV

# Sensor Turbidity

Serial Number 780942

# Last Calibrated 6/23/2021

Calibration Details

Slope 1.173604 Offset -0.02 NTU

Calibration Point 1

Pre Measurement 0.00 NTU
Post Measurement 0.00 NTU

Calibration Point 2

Pre Measurement 123.02 NTU
Post Measurement 126.00 NTU

Sensor Barometric Pressure

Serial Number 606696

# **MAY 2022 GROUNDWATER SAMPLING EVENT**

**DRY SEASON** 

RRLF, M505, O&C, VPF, KP1 LOC9, SSPF, CGO, and FSA1

5/9/22	NASA KSC - IA LTM	ds ds
	# 606 10905	
Vehicles	: AEcom F-150" # 905, 275	-
personne	1: Greg Kusel and Dustin Slater	
	it: 2 DTW meters, 2 aquarroll	- 1
	2 Ipads, 2 geopumps	
PPE:	Level D + Nitrile gloves	
0750	OK + DS ONSITE FOR EOR/EL	SA
	training at K6-0791.	
0830	GK + DS at FSA-1. Check in at	dfice.
0845	open well and callbrate equip	
1000	Begin Sampling the Select	
	monitoring Wells.	
1300	End sampling at FSAI. Check our	- 4
	with the office. Drive TO Q+C.	
1320	open and gauge monitoring well	15.
1350	Begin Sampling Select Monitoring	_
	Wells. MW 7I was turbid at beg.	inning
	of purge, but cleared up.	
1440	DS drives to CCF to Set up I	on
	drum while GK samples MW 7	
1515	GK at CCF TO unload IDW. ora	anize
	Coolers to be dropped off at El	VCO.
1540	GK + DS OFF Site.	-
	5/4/22	-
	GK	- 4
	pg. 1 of y	
		Name and Address of the Owner, where

5/10/22 NASA KSC- IA LTM 0800 GK + DS at KARS Park 1, Safety tailgate meeting. brive to mw 22. 0830 Begin development at MW 22. Start: light brownish tan, turbid End: Clear. purged 10 gal. pumped at one spm. 0900 GK + DS drive to RRLF. 0915 GK calls KSC Security To open gate at E Ave and Ransom Rd. - Calibrate equipment while waiting. 1000 GK + DS at RRLF. begin to locate and open monitoring wells. 1100 Begin Sampling Select monitoring wells. 1230 Done Sampling LRLF. Drive TO SSPF. 1250 Bogin grening Monitoring wells at SSPE. 1340 Drive to Badging office to add SSpf access to our bodges. 1420 Finish gauging SSPF Monitoring wers. 1440 Begin Sampling Select monitoring webs. 1620 GK + DS Finished Samuling SSPF, and offsite of KSC. 10 (22) Pg. 2 of 4

5/11/2	2 NASA KSC - IA LTM GK	DS
0800	GK + DS onsite at the CCF.	2
	Safety meeting and unload IDW we	iter.
0830	Drive to M505 - open wells	<i>s.</i>
0940	Begin gauging monitoring wells	
1020	Begin Sampling Scleer wells.	
1250	complete sampling at M 505.	
	Drive to 060.	
1255	open monitoring wells at CGO.	
1300	Begin gauging monitoring wells.	
1310	Begin Sampling Select wells.	
1400	Complete Sampling at 660.	
F	Drive to CCF.	
1415	unload IDW into drum at CCI	-
1430	GK + DS OFFSITE. GK to drop	
	Samples OFF AT ENCO.	1
	,	
	50	
	9	
	96	
	Pg. 3 of 4	

5/12/22 NASA KSC - IA LTM 0730 DS onsire, begin Calibration and purging MW 22 at KARS Park 1 0745 GK onsite - safety tailgate 0758 Sample MW 22 0805 STIVE TO UPF. 0830 GK calibrate equipment and both open monitoring wells. 0930 Begin gauging monitoring wens. 1015 Begin Samyling Select wells. 1250 Drive to CCF, unload IDW into Drums. Begin to purge water from both drums into 5 gas backet. 1315 Collect IDN Sample. PH= 7.14 Clamshell: 220 930 Drum # 222332 pH: 7.08 % Full: 80% Drum # 222 333 pH: 7.16 % Full: 25% 1330 Calibrate out equipment. 1350 GK + DS SEASITE GK to drop Samples off at ENCO. pg. 4 of 4

# IA LTM Water Levels May 2022

Well ID	Date	Top of Casing (ft)	Depth to Water (ft BTOC)	GWE (ft NAVD88)	Comments
CGO-MW0005	5/11/2022		3.49		
CGO-MW0006	5/11/2022	8.7	5.5	3.2	
CGO-MW0007	5/11/2022		3.62		
CGO-MW0014	5/11/2022		4.58		
CGO-MW0015	5/11/2022		3.64		
CGO-MW0018	5/11/2022		3.39		
CGO-MW0019	5/11/2022		2.84		
CGO-MW0023	5/11/2022	6.75	3.57	3.18	
CGO-MW0024	5/11/2022		3.54		
FSA1-MW0001	5/9/2022		4.82		
FSA1-MW0002	5/9/2022		4.19		
FSA1-MW0004	5/9/2022		4.93		
FSA1-MW0012R	5/9/2022		5.04		
FSA1-MW0014	5/9/2022		5.13		
FSA1-MW0015	5/9/2022		4		
FSA1-MW0016A	5/9/2022		5.49		
FSA1-MW0017A	5/9/2022		5.43		
FSA1-MW0019	5/9/2022		7.55		
FSA1-MW0020	5/9/2022		4.57		
FSA1-MW0021	5/9/2022	4.3	4.19	0.11	
FSA1-MW0022R	5/9/2022		5.83		
FSA1-MW0023	5/9/2022	5.32	5.05	0.27	
FSA1-MW0024	5/9/2022	5.36	4.48	0.88	
FSA1-MW0025	5/9/2022	4.4	4.2	0.2	
FSA1-MW0026	5/9/2022	5.66	5.75	-0.09	
FSA1-MW0027	5/9/2022	5.97	6.15	-0.18	
FSA1-MW0028	5/9/2022	5.67	5.95	-0.28	
KP1-MW0022	5/12/2022		3.38		,

Well ID	Date	Top of Casing (ft)	Depth to Water (ft BTOC)	GWE (ft NAVD88)	Comments
M505-MW0003S	5/11/2022		6.56		
M505-MW0007I	5/11/2022	2.11	6.59	-4.48	
M505-MW0007S	5/11/2022		5.9		
M505-MW0008S	5/11/2022		6.38		
M505-MW0009I	5/11/2022	2.11	6.84	-4.73	9IS
M505-MW0009S	5/11/2022	2.11	6.8	-4.69	
M505-MW0012I	5/11/2022	2.11	6.25	-4.14	
M505-MW0013	5/11/2022	2.11	6.82	-4.71	
M505-MW0014	5/11/2022		6.97		
M505-MW0017	5/11/2022	9.3	6.96	2.34	
M505-MW0020	5/11/2022	9.45	6.58	2.87	
M505-MW0022	5/11/2022	9.28	6.98	2.3	
M505-MW0024	5/11/2022		6.41		
M505-MW0025	5/11/2022		8.52		
M505-MW0026	5/11/2022		8.51		
M505-MW0027	5/11/2022		7.27		
M505-MW0028	5/11/2022		3.49		
M505-MW0029	5/11/2022		5.26		
M505-MW0030	5/11/2022		8.1		
M505-MW0031	5/11/2022		8.6		
M505-MW0032	5/11/2022		8.78		
M505-MW0033	5/11/2022		8.7		
M505-MW0035	5/11/2022		4.69		
M505-MW0039	5/11/2022		5.88		
M505-MW0042	5/11/2022		6.67		
M505-MW0045	5/11/2022		6.5		
M505-MW0046	5/11/2022		6.48		
M505-MW0049	5/11/2022		8.2		
M505-MW0050	5/11/2022		8.7		
M505-MW0051	5/11/2022		7.77		
M505-MW0054	5/11/2022		8.3		

Well ID	Date	Top of Casing (ft)	Depth to Water (ft BTOC)	GWE (ft NAVD88)	Comments
M505-MW0055	5/11/2022		7.72		
M505-MW0057	5/11/2022		4.73		
M505-MW0058	5/11/2022		3.61		
M505-MW0059	5/11/2022		4.74		
O_C-MW0003I	5/9/2022		7.58		
O_C-MW0004I	5/9/2022		6.88		
O_C-MW0005I	5/9/2022		7.88		
O_C-MW0007I	5/9/2022	5.95	4.76	1.19	
RRLF-MW0012	5/10/2022		2.1		
RRLF-MW0029	5/10/2022		4.4		
RRLF-MW0030	5/10/2022		4.48		
RRLF-MW0031	5/10/2022		4.52		Loose cap
RRLF-MW0033	5/10/2022		4.81		
RRLF-MW0034	5/10/2022		4.89		
RRLF-MW0036	5/10/2022		5.3		
RRLF-MW0037	5/10/2022		5.12		
RRLF-MW0038I	5/10/2022	5.07	5.34	-0.27	
RRLF-MW0038S	5/10/2022		5		
RRLF-MW0039I	5/10/2022	4.61	4.8	-0.19	
RRLF-MW0039S	5/10/2022		4.92		
RRLF-MW0040I	5/10/2022	4.61	5.3	-0.69	
RRLF-MW0042I	5/10/2022	3.99	5.03	-1.04	
SSPF-MW0001	5/10/2022	11.17	9.8	1.37	
SSPF-MW0002	5/10/2022	11.08	9.71	1.37	
SSPF-MW0003	5/10/2022	10.51	8.43	2.08	
SSPF-MW0004	5/10/2022	9.71	8.38	1.33	
SSPF-MW0005	5/10/2022	10.55	9.28	1.27	
SSPF-MW0006	5/10/2022	10.77	9.48	1.29	
SSPF-MW0007	5/10/2022	10.79	9.47	1.32	
SSPF-MW0010	5/10/2022	10.77	9.47	1.3	
SSPF-MW0013	5/10/2022	11.02	10.04	0.98	

Well ID	Date	Top of Casing (ft)	Depth to Water (ft BTOC)	GWE (ft NAVD88)	Comments
SSPF-MW0014	5/10/2022	7.9	6.84	1.06	
SSPF-MW0015	5/10/2022	8.01	5.4	2.61	
SSPF-MW0016	5/10/2022	8	6.49	1.51	
SSPF-MW0017	5/10/2022	4.81	4.31	0.5	
SSPF-MW0018	5/10/2022		6.39		
SSPF-MW0020	5/10/2022		6.39		
IW0001s	5/12/2022		6.46		
IW0002s	5/12/2022		3.92		
IW0002I	5/12/2022		4.35		
IW0003s	5/12/2022		3.65		
IW0003I	5/12/2022		4.61		
IW0004s	5/12/2022		5.93		
IW0004I	5/12/2022		7.48		
IW0005s	5/12/2022		3.45		
IW0006S	5/12/2022		4.28		
IW0007I	5/12/2022		2.97		
IW0008D	5/12/2022		2.1		
IW0008I	5/12/2022		2.78		
IW0009I	5/12/2022		3.5		
IW0010I	5/12/2022		2.22		
IW0011I	5/12/2022		5.03		
IW0012I	5/12/2022		6.58		
IW0013I	5/12/2022		6.13		
IW0014I	5/12/2022		5.37		
IW0015I	5/12/2022		5.21		
IW0016I	5/12/2022		6.18		
IW0017I	5/12/2022		5.25		
VPF-IW0018I	5/12/2022		4.65		
IW0019	5/12/2022		5.62		
VPF-MW0020	5/12/2022		4.59		
VPF-MW0021	5/12/2022		4.7		

### IA LTM Water Levels May 2022

Well ID	Date	Top of Casing (ft)	Depth to Water (ft BTOC)	GWE (ft NAVD88)	Comments
VPF-MW0022	5/12/2022		6.61		
VPF-MW0023	5/12/2022		3.85		
VPF-MW0024	5/12/2022		6.5		
VPF-MW0025	5/12/2022		6.06		
VPF-MW0026	5/12/2022		5.6		
VPF-MW0027	5/12/2022		5.8		
VPF-MW0028	5/12/2022		2.63		
VPF-MW0029	5/12/2022		2.31		
VPF-MW0030	5/12/2022		2.61		
VPF-MW0031	5/12/2022	2.86	2.98	-0.12	

DEP-SOP-001/01: Form FD 9000-8 (June 20, 2001)

#### Field Instrument Calibration Records

INSTRUMENT

HACH 2100P # 3

Serial # 31373

PARAMETER: Turbidity

STANDARDS: [Specify the type(s) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased]

Standard A _____ GELEX 0-10 NTU (+/- 10%) Standard B GELEX 10-100 NTU (+/- 6.5%)

GELEX 100-1000 NTU (+/- 5%) Standard C

	ara C			100-1000 1416	7 1.7 070			
DATE (mm/dd/yy)	TIME (hr:min)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
5922	2190	Α	5.59	5.58		NO	INITIAL	R
66	66	В	53.1	53.0		66	EE	66
"	66	С	601	601		ce	66	"
Sider	1114	Α	5.59	5.59		NO	ICY	20
66	66	В	53.1	72.8		56		66
66	66	С	601	599		"	66	66
51422	1023	Α	5.59	5.58		NO	CCV	8
31 100	1	В	531	52.9		66		ſ
4	1	С	601	600		"	4	V
5/12/22	0723	Α	5,59	5.58		NO	col	pg
	1	В	53.1	53.0		"		I J
+	+	С	601	600		66	4	4
5/12/22	1300	Α	5,59	5.59		NO	CCV	n
1	1	В	53.1	52.7		66		
*	1	С	601	598		66	7	1
		Α				NO		
		В				66		
		С				66		

Boldly X this box if there is analified data on this page

### Form FD9000-8 CALIBRATION LOG (FDEP SOP FT 1000-FT 1500, FD 1000-FD 4000) 11-10-05

Date: 5/9/22- 5/11/22 KCC IALTM Meter# 21L102002 Project/Site: in log book For Date of Last Temperature Verification see Temperature (Quarterly) Saturation Pass or Probe Probe DEP SOP mg/L Temp °C % DO Dissolved Oxygen Time mq/L Initials Date Fail Charge Gain FT 1500 (from chart) Acceptance Criteria:+/-0.3ml/l 0918 DA 100]-8,746 CAL ICV CCV F 8:49 12.20 100 8,570 3 (0/72 1117 CAL ICV CCV Ø F 1007 8.77 2.7. 2 693 CAL ICV CCV dinha 1075 P CAL ICV CCV P F CAL ICV CCV P Г CAL ICV CCV PF CAL ICV CCV Cell Pass or Reading **DEP SOP** Standard Specific Lot# Bottle # Exp. Date Initials Date Time Fail Constant umhos/cm µmhos/cm FT 1200 Conductance Acceptance Criteria: +/- 5% 2106108 Ð 0918 1413 1413 F ICV CCV 0 F 1408 CAL (CV CCV Tid77 1111 B F 1405 CAL ICV COV 5/11/22 102 1413 P CAL ICV CCV P CAL ICV CCV F CAL ICV CCV P F CAL ICV CCV Reading Pass or DEP SOP Standard Bottle # Slope Exp. Date Lot# Time Date Initials На SU Faii SU FT 1100 Acceptance Criteria: +/- 0.2 \$U 5922 2108312 Þ 0918 7:00 7.00 ICV CCV F B 10/00 LIDVISE 400 U,00 ICV CCV P toreo Dido 3/23 2108315 ICV CCV 6 702 PEV EV 5/14/27 1117 7.00 CAL CCV (9) F 4,01 4.00 CCV CAL P 10.02 LEY 10,60 CAL CCV D F 6198 1025 CAL ICV 7,0 p 4.02 4,00 CAL ICV (8) 10.04 CAL ICV COV 10-0 Specific Conductance Probe Cleaned? Yes No Dissolved Oxygen Membrane Changed: Yes No Maintenance: Weekly pH Slope: Notes: 1220 210 100633 3/26 0918 238 the 0 CAH ONP 236.7 20 1117 (CV) 238 P 234.6 DS 1025 238 (C)

Perform only in Calibrate Mode: Perform only in Run Mode:

CAL - Calibrate -

Perform only in Run Mode:

ICV - Initial Calibration Verification CCV - Continuing Calibration Verification

Boldly X this box if there is qualified data on this page

# Form FD9000-8 CALIBRATION LOG (FDEP SOP FT 1000-FT 1500, FD 1000-FD 4000) 11-10-05

Meter # 211/02057 VSC IA LAM Date: Project/Site: in log book For Date of Last Temperature Verification see Temperature (Quarterly) Saturation Pass or Probe Probe **DEP SOP** % DO Temp °C mg/L ma/L Initials Date Time Fail Dissolved Oxygen Gain Charge FT 1500 (from chart) Acceptance Criteria: +/-0.3mg/l 9.47 18.3 Ŕ F 9.409 106% 12/22 572 CAL ICV COV B F 8-47 100 8.446 72.2 1207 CAL ICV CCV P F CAL ICV CCV Р F CAL ICV CCV P CAL ICV CCV P := CAL ICV CCV F Р CAL ICV CCV Pass or Cell Reading Standard **DEP SOP** Bottle # Specific Lot# Exp. Date Time umhos/cm Fail Initials Date Constant umhos/cm FT 1200 Conductance Acceptance Criteria: +/- 5% B IVa CAL ICV COV F 1401 Ð CAL ICV CCV 200 P F CAL ICV CCV F P CAL ICV CCV Reading Pass or Standard **DEP SOP** Bottle # Slope Lot# Exp. Date Time SU Fail Date Initials pH SU FT 1100 Acceptance Criteria: +/- 0.2 SU 0 F 7.01 Some es 7,00 0125 CCV CAL ICV F 4.02 4.00 CAL ICV 6 F 10 JK 10.00 CAL ICV 0 F TOOY 7.00 1307 CAL ICV P F 400 4.00 CAL ICV 0 F 10.07 10.0 CAL ICV P F ICV CCV CAL P F CAL ICV CCV Р CAL ICV CCV Dissolved Oxygen Membrane Changed: Yes No Specific Conductance Probe Cleaned? Yes No Maintenance: Weekly pH Slope: Some as first page 0125 5/12/22 Notes: 8 DUP 228 1702

Perform only in Calibrate Mode: Perform only in Run Mode: Perform only in Run Mode: CAL - Calibrate -

ICV - Initial Calibration Verification
CCV - Continuing Calibration Verification

Page ___

Instrument Aqua TROLL 600

Serial Number 518550 Created 5/9/2022

Sensor Conductivity

Serial Number 775877 Last Calibrated 5/9/2022

Calibration Details

TDS Conversion Factor (ppm) 0.65
Cell Constant 0.958
Reference Temperature 25.00 °C

Pre Measurement

Actual Conductivity 7,697.1 μS/cm Specific Conductivity 8,027.1 μS/cm

Post Measurement

Actual Conductivity 7,671.1 μS/cm Specific Conductivity 8,000.0 μS/cm

Sensor pH/ORP

Serial Number 758735 Last Calibrated 5/9/2022

### Calibration Details

Calibration Point 1

pH of Buffer 7.00 pH pH mV -20.6 mV Temperature 22.85 °C

Pre Measurement

pH 7.00 pH pH mV -20.6 mV

Post Measurement

pH 7.00 pH pH mV -20.4 mV

Slope and Offset 1

Slope -58.73 mV/pH Offset -20.6 mV

ORP

ORP Solution Quick-Cal Offset 16.0 mV Temperature 22.85 °C Pre Measurement 151.9 mV Post Measurement 226.8 mV

Sensor **Turbidity** 

Serial Number 786838 Last Calibrated 12/8/2021

Calibration Details

Slope 12.15755 Offset -29.32 NTU

Calibration Point 1

Pre Measurement 2.83 NTU
Post Measurement 0.00 NTU

Calibration Point 2

Pre Measurement 64.63 NTU
Post Measurement 100.00 NTU

Sensor Barometric Pressure

Serial Number 518550

Instrument Aqua TROLL 600

Serial Number 606696 Created 5/10/2022

Sensor RDO

Serial Number 658928 Last Calibrated 5/10/2022

Calibration Details

Slope 1.089823 Offset 0.00 mg/L

Calibration point 100%

Concentration 7.99 mg/L
Pre Measurement 95.46 %Sat
Post Measurement 100.00 %Sat
Temperature 24.74 °C
Barometric Pressure 1,060.6 mbar

Sensor Conductivity

Serial Number 672308 Last Calibrated 5/10/2022

Calibration Details

TDS Conversion Factor (ppm) 0.65
Cell Constant 1.007
Reference Temperature 25.00 °C

Pre Measurement

Actual Conductivity 7,481.5 µS/cm Specific Conductivity 7,889.2 µS/cm

Post Measurement

Actual Conductivity 7,586.5 μS/cm Specific Conductivity 8,000.0 μS/cm

Sensor pH/ORP

Serial Number 704529 Last Calibrated 5/10/2022

### Calibration Details

Calibration Point 1

pH of Buffer 7.00 pH pH mV -22.7 mV Temperature 22.29 °C

### Pre Measurement

pH 6.94 pH pH mV -23.8 mV

#### Post Measurement

pH 7.00 pH pH mV -22.5 mV

### Slope and Offset 1

Slope -58.62 mV/pH Offset -22.7 mV

#### **ORP**

ORP Solution Quick-Cal
Offset -68.4 mV
Temperature 22.29 °C
Pre Measurement 226.3 mV
Post Measurement 227.6 mV

### Sensor **Turbidity**

Serial Number 780942 Last Calibrated 6/23/2021

### Calibration Details

Slope 1.173604 Offset -0.02 NTU

#### Calibration Point 1

Pre Measurement 0.00 NTU
Post Measurement 0.00 NTU

#### Calibration Point 2

Pre Measurement 123.02 NTU
Post Measurement 126.00 NTU

### Sensor Barometric Pressure

Serial Number 606696

Instrument Aqua TROLL 600

Serial Number 606696 Created 5/11/2022

Sensor RDO

Serial Number 658928 Last Calibrated 5/11/2022

Calibration Details

Slope 1.042885 Offset 0.00 mg/L

Calibration point 100%

Concentration 7.77 mg/L
Pre Measurement 104.51 %Sat
Post Measurement 100.00 %Sat
Temperature 26.37 °C
Barometric Pressure 1,018.4 mbar

Sensor Conductivity

Serial Number 672308 Last Calibrated 5/11/2022

Calibration Details

TDS Conversion Factor (ppm) 0.65
Cell Constant 0.975
Reference Temperature 25.00 °C

Pre Measurement

Actual Conductivity 8,199.8 µS/cm Specific Conductivity 8,269.4 µS/cm

Post Measurement

Actual Conductivity 7,932.6 µS/cm Specific Conductivity 8,000.0 µS/cm

Sensor pH/ORP

Serial Number 704529 Last Calibrated 5/11/2022

### Calibration Details

Calibration Point 1

pH of Buffer 7.00 pH pH mV -22.4 mV Temperature 24.56 °C

#### Pre Measurement

pH 7.00 pH pH mV -22.7 mV

#### Post Measurement

pH 7.00 pH pH mV -22.3 mV

### Slope and Offset 1

Slope -59.07 mV/pH Offset -22.4 mV

#### **ORP**

ORP Solution Quick-Cal
Offset -64.9 mV
Temperature 24.56 °C
Pre Measurement 216.5 mV
Post Measurement 224.2 mV

### Sensor **Turbidity**

Serial Number 780942 Last Calibrated 6/23/2021

### Calibration Details

Slope 1.173604 Offset -0.02 NTU

#### Calibration Point 1

Pre Measurement 0.00 NTU
Post Measurement 0.00 NTU

#### Calibration Point 2

Pre Measurement 123.02 NTU
Post Measurement 126.00 NTU

### Sensor Barometric Pressure

Serial Number 606696

Instrument Aqua TROLL 600

Serial Number 606696 Created 5/12/2022

Sensor RDO

Serial Number 658928 Last Calibrated 5/12/2022

Calibration Details

Slope 1.041736 Offset 0.00 mg/L

Calibration point 100%

Concentration 8.38 mg/L
Pre Measurement 100.10 %Sat
Post Measurement 100.00 %Sat
Temperature 22.22 °C
Barometric Pressure 1,015.5 mbar

Sensor Conductivity

Serial Number 672308 Last Calibrated 5/12/2022

Calibration Details

TDS Conversion Factor (ppm) 0.65
Cell Constant 0.999
Reference Temperature 25.00 °C

Pre Measurement

Actual Conductivity 7,257.5 µS/cm Specific Conductivity 7,801.8 µS/cm

Post Measurement

Actual Conductivity 7,441.9 μS/cm Specific Conductivity 8,000.0 μS/cm

Sensor pH/ORP

Serial Number 704529 Last Calibrated 5/12/2022

### Calibration Details

Calibration Point 1

pH of Buffer 7.00 pH pH mV -25.3 mV Temperature 21.35 °C

### Pre Measurement

pH 7.06 pH pH mV -25.6 mV

#### Post Measurement

pH 7.00 pH pH mV -25.0 mV

### Slope and Offset 1

Slope -58.44 mV/pH Offset -25.3 mV

#### **ORP**

ORP Solution Quick-Cal
Offset -65.0 mV
Temperature 21.35 °C
Pre Measurement 229.1 mV
Post Measurement 229.0 mV

### Sensor Turbidity

Serial Number 780942 Last Calibrated 6/23/2021

### Calibration Details

Slope 1.173604 Offset -0.02 NTU

#### Calibration Point 1

Pre Measurement 0.00 NTU
Post Measurement 0.00 NTU

#### Calibration Point 2

Pre Measurement 123.02 NTU
Post Measurement 126.00 NTU

### Sensor Barometric Pressure

Serial Number 606696

Instrument Aqua TROLL 600

Serial Number 606696 Created 5/12/2022

Sensor RDO

Serial Number 658928 Last Calibrated 5/12/2022

Calibration Details

Slope 1.046236 Offset 0.00 mg/L

Calibration point 100%

Concentration 7.67 mg/L
Pre Measurement 99.79 %Sat
Post Measurement 100.00 %Sat
Temperature 26.75 °C
Barometric Pressure 1,015.7 mbar

Sensor Conductivity

Serial Number 672308 Last Calibrated 5/12/2022

Calibration Details

TDS Conversion Factor (ppm) 0.65
Cell Constant 0.988
Reference Temperature 25.00 °C

Pre Measurement

Actual Conductivity 8,245.1 µS/cm Specific Conductivity 8,085.9 µS/cm

Post Measurement

Actual Conductivity 8,157.6 µS/cm Specific Conductivity 8,000.0 µS/cm

Sensor pH/ORP

Serial Number 704529 Last Calibrated 5/12/2022

### Calibration Details

Calibration Point 1

pH of Buffer 6.98 pH pH mV -26.8 mV Temperature 26.03 °C

#### Pre Measurement

pH 7.03 pH pH mV -27.7 mV

### Post Measurement

pH 6.98 pH pH mV -26.9 mV

### Slope and Offset 1

Slope -59.36 mV/pH Offset -28.0 mV

### ORP

ORP Solution Quick-Cal
Offset -39.4 mV
Temperature 26.03 °C
Pre Measurement 210.4 mV
Post Measurement 222.0 mV

### Sensor **Turbidity**

Serial Number 780942 Last Calibrated 6/23/2021

### Calibration Details

Slope 1.173604 Offset -0.02 NTU

#### Calibration Point 1

Pre Measurement 0.00 NTU
Post Measurement 0.00 NTU

#### Calibration Point 2

Pre Measurement 123.02 NTU
Post Measurement 126.00 NTU

### Sensor Barometric Pressure

Serial Number 606696

# NOVEMBER 2022 SURVEYING EVENT HMF SOUTH

GK cm 11/7/22 NASA KSC- IA L+M project # 60610905 Vehicles: AECOM F-150's: 903, 932 personnel: Grea Kusel + Chris Marshall Equipment: Survey Kit and Dru meter. reather: Sunny, \$2° + High temp. GK + CM leave the AECam depot 1000 GK + CM onsite at HMF South. -tailgate meeting - prep equipment 1025 locate and open wells. break for incoming weather. 1055 Continue opening wells. 1110 Begin Collecting DTW measurements 1120 - measurements found on elevation paper. prep Survey equipment and 1225 begin surveying select wells. - Survey elevations on separate log. GK + CM offsite, Drive To Healquit+ 1300 headquarters building and calculate TOC Elevations From relative survey. GK + CM drive around to recon 1400 Future DPT areas. CM offsite. GK remains 1515 onsite to check sampling equipment GK OFFSITE. 1645

### **NOVEMBER 2022 GROUNDWATER SAMPLING EVENT**

WET SEASON

EHF, EDL, and GSSP

11/8/22 NASA KSC - IA LTM GK DS DID JECT # 60610905 vehicles: AECON F- 150'S # 403, 275 personnel: Grea Kusel and Dustin Slater. Equipment: 2 aguatroll 600's, 2 Dru meres, 2 geopumps, 2 IPABS. PPE: Level b + Witrile gloves. Weather: Sunny and windy, high 810 F. 0730 GK onsite. organize papendonk. 0745 DS onsite Tailgate meeting. 0755 Begin grening and gauging wells. 1015 Finished Collecting water levels. - Begin calibrating equipment 1045 Begin Sampling monitoring wells. 1530 Finished Sampling wells. Drive to CCF to pour IDW into drum # 228463 in Shell # 220341. 1630 GK + DS OFFSITE.

cm

n

por

uth.

s agoer,

10g.

urvey.

oment.

NASA-KSCITA LTM P. 1 of 1 11/15/22 OZ Project & Loblogos Vehide # 275 (Onlando 4-150) Pensannel. Auston Slaten Egripment - 1 Agrostroll 600, | 6,00 promp, PPE-Level D Nitrile gloves
Neather: Sunny 7904 high 8504.
0910- Unstin Slaten onsite at EHF. 0915 - Locate & open wells 0940- Boyin gauging water levels 0955 - Calibrate Equipment-1002 - Begin Sompling wells with EHF-MWOODI Head to EDL site to sample those 700wells. 1345 - Finished Sampling at EDL. Hend to Cct to dump weeter & Collect I'M Sample. 1417 - Colloct IDW-2022/115@ PH=7.67 1930 - OS offsite. Will dup gamples off at Eurofing a Noto: Brun approx 40% full

# **General Services Administration Seized Property**

11/8/22

	Well Gauging November 2022							
Well ID	Screen	Interval	Sampling	Time Opened	Time Gauged	DTW (ft)	Notes	
GSSP-MW0006	5	15		0807	0837	4.57		
GSSP-MW0007	25	35		0808	0838	4.52		
GSSP-MW0008	5	15		0759	0829	2.46		
GSSP-MW0009	25	35		0759	0829	2.71	_	
GSSP-MW00013	5	15	x	0805	0835	2.22		
GSSP-MW00014	25	35		0805	0835	2.05	23.12	
GSSP-MW00019	15	25	x	0840	0110	3.20		
GSSP-MW00020	25	35	x	0840	0910	3.23		
GSSP-MW00021	40	50		0840	0911	2.92		
GSSP-MW00022	15	25		0842	0913	1.89		
GSSP-MW00023	25	35		0842	0913	1.78		
GSSP-MW00024R	15	215	x	0196 0930	1000	1.55		
GSSP-MW00026	5	15		0847	0922	2.80		
GSSP-MW00027	5	15		0848	0923	2.59		
GSSP-MW00034	5	15	х	0936	1008	5.28		
GSSP-MW00035	15	25	х	0936	1008	5.23	A STATE OF THE STA	
GSSP-MW00036	30	40	х	9936	1009	5,29		
GSSP-MW00039	25	35		0 438	1011	5.84		
GSSP-MW00042	30	40		9433	1003	4.64		
GSSP-MW00043R	5	15		2755	0825	3.83		
GSSP-MW00044R	25	35	x	0756	0826	3.90		
GSSP-MW00045	15	25		0808	0838	4.57	40	
GSSP-MW00047	15	25		0758	0828	2.75		
GSSP-MW00049	55	60		0757	0827	3.82		
GSSP-MW00053	15	25	х	0855	0925	3.12		
GSSP-MW00054	25	35		0 855	0425	3.09		
GSSP-MW00055	5	15		0857	0927	2.73		
GSSP-MW00058	10	15		0801	0831	3.68		
GSSP-MW00059	16	21	×	0801	0831	3.88		
GSSP-MW00060	10	15	x	0900	0830	4.15		
GSSP-MW00061	16	21	×	0400	0830	4.30		
GSSP-MW00062	10	15	x	2802	0833	2.99		
GSSP-MW00063	16	21	X	0802	0833	3.08		

Environmental Health Facility							
				We	ell Gauging Nove	mber 2022	
Well ID	Screen	Interval	Sampling	Time Opened	Time Gauged	DTW (ft)	Notes
EHF-MW0001	20	30	x	0915	6945	4.21	
EHF-MW0003	25	30		0917	6946	2.15	
EHF-MW0004	15	20	x	0918	0946	0.49	
EHF-MW0005	15	25	x	0920	6947	0.69	
EHF-MW0006	30	35		2921	- C19		
EHF-MW0007	30	35		0922	0943	1.70	

Well Gauging November 2022							
Well ID	Screen	Interval	Sampling	Time Opened	Time Gauged	DTW (ft)	Notes
DL-MW0004	30	40	x	12.05	1224	5.62	
EDL-MW0005	30	40		1206	1226	4.25	
EDL-MW0006R	30	40	x	12.07	1227	6.45	
EDL-MW0007	- 20	40					
DE-WW0007	30	40		1208	127,9	₹. <del>₹</del> ₹	

Instrument Aqua TROLL 600

Serial Number 518550 Created 11/8/2022

Sensor RDO

Serial Number 960945 Last Calibrated 11/8/2022

Calibration Details

Slope 1.072696 Offset 0.00 mg/L

Calibration point 100%

Concentration 6.89 mg/L
Pre Measurement 93.22 %Sat
Post Measurement 100.00 %Sat
Temperature 31.69 °C
Barometric Pressure 1,019.7 mbar

Sensor Conductivity

Serial Number 692436 Last Calibrated 11/8/2022

Calibration Details

TDS Conversion Factor (ppm) 0.65
Cell Constant 0.883
Reference Temperature 25.00 °C

Pre Measurement

Actual Conductivity 8,613.6 µS/cm Specific Conductivity 8,216.1 µS/cm

Post Measurement

Actual Conductivity 8,387.0 µS/cm Specific Conductivity 8,000.0 µS/cm

Sensor Turbidity

Serial Number 641465

Last Calibrated Factory Defaults

Sensor pH/ORP

Serial Number 723502 Last Calibrated 11/8/2022

Calibration Details

### Calibration Point 1

pH of Buffer 6.98 pH pH mV 5.3 mV Temperature 27.53 °C

### Pre Measurement

pH 6.97 pH pH mV 5.2 mV

### Post Measurement

pH 6.98 pH pH mV 5.3 mV

### Slope and Offset 1

Slope -59.66 mV/pH Offset 4.1 mV

### ORP

ORP Solution Quick-Cal
Offset -87.7 mV
Temperature 27.53 °C
Pre Measurement 313.8 mV
Post Measurement 219.7 mV

### Sensor Barometric Pressure

Serial Number 518550

Instrument Aqua TROLL 600

Serial Number 606696 Created 11/8/2022

Sensor RDO

Serial Number 911003 Last Calibrated 11/8/2022

Calibration Details

Slope 1.034703 Offset 0.00 mg/L

Calibration point 100%

Concentration 7.67 mg/L
Pre Measurement 98.21 %Sat
Post Measurement 100.00 %Sat
Temperature 27.71 °C
Barometric Pressure 1,021.8 mbar

Sensor Conductivity

Serial Number 673517 Last Calibrated 11/8/2022

Calibration Details

TDS Conversion Factor (ppm) 0.65
Cell Constant 0.921
Reference Temperature 25.00 °C

Pre Measurement

Actual Conductivity 8,831.7 µS/cm Specific Conductivity 8,548.9 µS/cm

Post Measurement

Actual Conductivity 8,264.7 µS/cm Specific Conductivity 8,000.0 µS/cm

Sensor pH/ORP

Serial Number 723210 Last Calibrated 11/8/2022

### Calibration Details

Calibration Point 1

pH of Buffer 6.98 pH pH mV -5.8 mV Temperature 26.73 °C

### Pre Measurement

pH 6.74 pH pH mV -6.3 mV

### Post Measurement

pH 6.98 pH pH mV -5.9 mV

### Slope and Offset 1

Slope -59.5 mV/pH Offset -7.0 mV

### ORP

ORP Solution Quick-Cal
Offset -87.8 mV
Temperature 26.73 °C
Pre Measurement 254.2 mV
Post Measurement 220.9 mV

### Sensor **Turbidity**

Serial Number 759683

Last Calibrated Factory Defaults

### Sensor Barometric Pressure

Serial Number 606696

Instrument Aqua TROLL 600

Serial Number 606696 Created 11/15/2022

### Sensor RDO

Serial Number 911003 Last Calibrated 11/15/2022

### Calibration Details

Slope 1.021057 Offset 0.00 mg/L

### Calibration point 100%

Concentration 8.14 mg/L
Pre Measurement 101.18 %Sat
Post Measurement 100.00 %Sat
Temperature 25.12 °C
Barometric Pressure 1,021.4 mbar

### Sensor Conductivity

Serial Number 673517 Last Calibrated 11/15/2022

#### Calibration Details

TDS Conversion Factor (ppm) 0.65
Cell Constant 0.936
Reference Temperature 25.00 °C

#### Pre Measurement

Actual Conductivity 7,589.4 µS/cm Specific Conductivity 7,869.3 µS/cm

#### Post Measurement

Actual Conductivity 7,715.4 μS/cm Specific Conductivity 8,000.0 μS/cm

### Sensor pH/ORP

Serial Number 723210 Last Calibrated 11/15/2022

### Calibration Details

### Calibration Point 1

pH of Buffer 7.00 pH pH mV -7.6 mV Temperature 23.14 °C

### Pre Measurement

pH 7.01 pH pH mV -7.7 mV

### Post Measurement

pH 7.00 pH pH mV -7.6 mV

### Slope and Offset 1

Slope -58.79 mV/pH

Offset -7.6 mV

### ORP

ORP Solution Quick-Cal
Offset -70.9 mV
Temperature 23.14 °C
Pre Measurement 209.4 mV
Post Measurement 226.3 mV

### Sensor **Turbidity**

Serial Number 759683

Last Calibrated Factory Defaults

### Sensor Barometric Pressure

Serial Number 606696

# APPENDIX C GROUNDWATER SAMPLING LOGS

# **GROUNDWATER SAMPLING LOG**

Event: IA LTM Sept 2021 Kennedy Athletic, Recreational, and Social Park 1

Site Name: Industrial Area/Kennedy Athletic Recreation and Social (KARS) Park 1 (SWMU 084)

Sample Info	Sample Information						
Sample ID:	KP1-MW0003-003.5-20210916	Date:	9/16/2021 11:09:00 AM				
Well ID:	KP1-MW0003	Location Type:	MONITORING WELL				
Duplicate ID:		Sampler:	Dustin Slater				
Analysis:	Lead						
Comments:							

Water Level			
Date:	9/16/2021 10:52:00 AM	Static Water Level (ft-BTOR):	2.01 FT
Top of Screen (ft-BTOR):	2	Bottom of Screen (ft-BTOR):	12
Measured Well Depth:	NE	Total Depth (ft-BTOR):	12
Is Well Dry?	No	Well Diameter (in):	1
Notes:			

Purge Information			
Begin Date and Time:	9/16/2021 10:53:00 AM	End Date and Time:	9/16/2021 11:09:00 AM
Purge Method:	Peristaltic Pump	Sample Method:	Peristaltic Pump
Notes:			

Time	Cumulative Volume Purged (gal)	Purge Rate (gal/min)	Volume Purged (gal)	TEMPERATURE (C)	Specific conductivity (FLD) (US/CM)	рн (S.U.)	OXIDATION REDUCTION POTENTIAL (MV)	Turbidity (FLD) (NTU)	SALINITY (PSU)	DISSOLVED OXYGEN (MG/L)	
10:53 AM	0										
11:03 AM	0.5	0.05	0.5	28.97	607	6.26	-156.11	1.57	0.3	0.19	
11:05 AM	0.6	0.05	0.1	28.93	597	6.24	-157.78	1.69	0.29	0.18	
11:07 AM	0.7	0.05	0.1	28.88	585	6.21	-158.84	1.72	0.29	0.16	
11:09 AM	8.0	0.05	0.1	28.86	584	6.22	-158.91	1.57	0.29	0.14	

# **GROUNDWATER SAMPLING LOG**

Event: IA LTM Sept 2021 Kennedy Athletic, Recreational, and Social Park 1

Site Name: Industrial Area/Kennedy Athletic Recreation and Social (KARS) Park 1 (SWMU 084)

Sample Information						
Sample ID:	KP1-MW0022-003.5-20210916	Date:	9/16/2021 10:27:00 AM			
Well ID:	KP1-MW0022	Location Type:	MONITORING WELL			
Duplicate ID:		Sampler:	Dustin Slater			
Analysis:	Lead					
Comments:						

Water Level			
Date:	9/16/2021 10:09:00 AM	Static Water Level (ft-BTOR):	2.63 FT
Top of Screen (ft-BTOR):	2	Bottom of Screen (ft-BTOR):	12
Measured Well Depth:	NE	Total Depth (ft-BTOR):	12
Is Well Dry?	No	Well Diameter (in):	1
Notes:			

Purge Information			
Begin Date and Time:	9/16/2021 10:10:00 AM	End Date and Time:	9/16/2021 10:26:00 AM
Purge Method:	Peristaltic Pump	Sample Method:	Peristaltic Pump
Notes:			

Time	Cumulative Volume Purged (gal)	Purge Rate (gal/min)	Volume Purged (gal)	TEMPERATURE (C)	Specific conductivity (FLD) (US/CM)	рн (S.U.)	OXIDATION REDUCTION POTENTIAL (MV)	Turbidity (FLD) (NTU)	SALINITY (PSU)	DISSOLVED OXYGEN (MG/L)	
10:10 AM	0										
10:20 AM	0.1	0.05	0.1	29.06	2925	5.49	-138.59	17.4	1.54	0.13	
10:22 AM	0.2	0.05	0.1	29.05	2925	5.49	-141.52	1.55	1.54	0.13	
10:24 AM	0.3	0.05	0.1	29.01	2927	5.49	-141.9	1.65	1.54	0.12	
10:26 AM	0.4	0.05	0.1	29.04	2934	5.48	-141.64	1.3	1.55	0.12	

# **GROUNDWATER SAMPLING LOG**

Event: IA LTM Sept 2021 Kennedy Athletic, Recreational, and Social Park 1

Site Name: Industrial Area/Kennedy Athletic Recreation and Social (KARS) Park 1 (SWMU 084)

Sample Information						
Sample ID:	KP1-MW0035-003.0-20210916	Date:	9/16/2021 10:48:00 AM			
Well ID:	KP1-MW0035	Location Type:	MONITORING WELL			
Duplicate ID:		Sampler:	Dustin Slater			
Analysis:	Lead					
Comments:						

Water Level			
Date:	9/16/2021 10:30:00 AM	Static Water Level (ft-BTOR):	1.88 FT
Top of Screen (ft-BTOR):	2	Bottom of Screen (ft-BTOR):	12
Measured Well Depth:	NE	Total Depth (ft-BTOR):	-9999
Is Well Dry?	No	Well Diameter (in):	1
Notes:			

Purge Information			
Begin Date and Time:	9/16/2021 10:31:00 AM	End Date and Time:	9/16/2021 10:45:00 AM
Purge Method:	Peristaltic Pump	Sample Method:	Peristaltic Pump
Notes:			

Time	Cumulative Volume Purged (gal)	Purge Rate (gal/min)	Volume Purged (gal)	TEMPERATURE (C)	Specific conductivity (FLD) (US/CM)	рн (s.U.)	OXIDATION REDUCTION POTENTIAL (MV)	Turbidity (FLD) (NTU)	SALINITY (PSU)	DISSOLVED OXYGEN (MG/L)	
10:31 AM	0										
10:41 AM	0.5	0.05	0.5	28.19	1121	6.38	-145.78	3.07	0.56	0.15	
10:43 AM	0.7	0.05	0.1	28.37	1117	6.39	-149.28	1.76	0.56	0.13	
10:45 AM	8.0	0.05	0.1	28.35	1120	6.39	-148.4	1.44	0.56	0.13	

# **AECOM** GROUNDWATER SAMPLING LOG

Event: IA LTM Sept 2021 Orsino Storage Yard

Site Name: Industrial Area/Orsino Storage Yard (SWMU 004)

Sample Information						
Sample ID:	ORSY-EXC-MW0001I-022.5-20210916	Date:	9/16/2021 12:35:00 PM			
Well ID:	ORSY-EXC-MW0001I	Location Type:	MONITORING WELL			
Duplicate ID:		Sampler:	Dustin Slater			
Analysis: 1,2,3-TCB,1,2,3-TCB,1,2,3-TCB,1,2,4-TCB						
Comments:						

Water Level			
Date:	9/16/2021 12:17:00 PM	Static Water Level (ft-BTOR):	3.38 FT
Top of Screen (ft-BTOR):	20	Bottom of Screen (ft-BTOR):	25
Measured Well Depth:	NE	Total Depth (ft-BTOR):	25.3
Is Well Dry?	No	Well Diameter (in):	2
Notes:			

Purge Information			
Begin Date and Time:	9/16/2021 12:18:00 PM	End Date and Time:	9/16/2021 12:34:00 PM
Purge Method:	Peristaltic Pump	Sample Method:	Peristaltic Pump
Notes:			

Time	Cumulative Volume Purged (gal)	Purge Rate (gal/min)	Volume Purged (gal)	TEMPERATURE (C)	Specific conductivity (FLD) (US/CM)	рн (S.U.)	OXIDATION REDUCTION POTENTIAL (MV)	Turbidity (FLD) (NTU)	SALINITY (PSU)	DISSOLVED OXYGEN (MG/L)	
12:18 PM	0										
12:28 PM	0.1	0.05	0.1	27.56	170	7.54	-153.67	3.25	0.08	0.14	
12:30 PM	0.2	0.05	0.1	27.48	178	7.48	-158.13	10.91	0.08	0.12	
12:32 PM	0.3	0.05	0.1	27.36	180	7.48	-159.48	18.87	0.09	0.11	
12:34 PM	0.4	0.05	0.1	27.38	181	7.48	-159.89	10.72	0.09	0.11	

# AECOM GROUNDWATER SAMPLING LOG

Event: IA LTM Sept 2021 Orsino Storage Yard

Site Name: Industrial Area/Orsino Storage Yard (SWMU 004)

Sample Information						
Sample ID:	ORSY-EXC-MW0003I-022.5-20210916	Date:	9/16/2021 12:13:00 PM			
Well ID:	ORSY-EXC-MW0003I	Location Type:	MONITORING WELL			
Duplicate ID:		Sampler:	Dustin Slater			
Analysis: 1,2,3-TCB,1,2,3-TCB,1,2,3-TCB,1,2,4-TCB						
Comments:						

Water Level			
Date:	9/16/2021 11:54:00 AM	Static Water Level (ft-BTOR):	6.72 FT
Top of Screen (ft-BTOR):	20	Bottom of Screen (ft-BTOR):	25
Measured Well Depth:	NE	Total Depth (ft-BTOR):	25
Is Well Dry?	No	Well Diameter (in):	1
Notes:			

Purge Information			
Begin Date and Time:	9/16/2021 11:55:00 AM	End Date and Time:	9/16/2021 12:12:00 PM
Purge Method:	Peristaltic Pump	Sample Method:	Peristaltic Pump
Notes:			

Time	Cumulative Volume Purged (gal)	Purge Rate (gal/min)	Volume Purged (gal)	TEMPERATURE (C)	Specific conductivity (FLD) (US/CM)	рн (S.U.)	OXIDATION REDUCTION POTENTIAL (MV)	Turbidity (FLD) (NTU)	SALINITY (PSU)	DISSOLVED OXYGEN (MG/L)	
11:56 AM	0										
12:06 PM	0.5	0.05	0.5	27.21	823	6.99	-81.18	1.91	0.41	0.33	
12:08 PM	0.6	0.05	0.1	27.19	820	6.99	-85.78	1.71	0.41	0.3	
12:10 PM	0.7	0.05	0.1	27.23	814	7.02	-29.26	2.75	0.4	0.71	
12:12 PM	8.0	0.05	0.1	27.38	811	7.01	-43.27	1.35	0.4	0.43	

# **GROUNDWATER SAMPLING LOG**

Event: IA LTM Sept 2021 Hypergol Maintenance Facility South

Site Name: Industrial Area/Hypergol Module Facility South Hazardous Waste Staging Area (SWMU 070)

Sample Information								
Sample ID:	HMF-MW0006IR-037.5-20210922	Date:	9/22/2021 10:19:00 AM					
Well ID:	HMF-MW0006IR	Location Type:	MONITORING WELL					
Duplicate ID:		Sampler:	Dustin Slater					
Analysis:	Select VOCs							
Comments:								

Water Level			
Date:	9/22/2021 9:50:00 AM	Static Water Level (ft-BTOR):	4.08 FT
Top of Screen (ft-BTOR):	35	Bottom of Screen (ft-BTOR):	40
Measured Well Depth:	NE	Total Depth (ft-BTOR):	
Is Well Dry?	No	Well Diameter (in):	1
Notes:			

Purge Information			
Begin Date and Time:	9/22/2021 9:52:00 AM	End Date and Time:	9/22/2021 10:18:00 AM
Purge Method:	Peristaltic Pump	Sample Method:	Peristaltic Pump
Notes:			

Time	Cumulative Volume Purged (gal)	Purge Rate (gal/min)	Volume Purged (gal)	TEMPERATURE (C)	Specific conductivity (FLD) (US/CM)	рн (S.U.)	OXIDATION REDUCTION POTENTIAL (MV)	Turbidity (FLD) (NTU)	SALINITY (PSU)	DISSOLVED OXYGEN (MG/L)	
9:52 AM	0										
10:12 AM	1	0.05	1	31.98	7987	6.43	-81.97	5.77	3.88	0.98	
10:14 AM	1.1	0.05	0.1	32	8022	6.5	-87.54	4.54	3.92	0.97	
10:16 AM	1.2	0.05	0.1	32.06	8058	6.51	-90.65	4.06	3.93	1.05	
10:18 AM	1.3	0.05	0.1	32.11	8077	6.52	-91.65	4.65	3.98	1.02	

# **GROUNDWATER SAMPLING LOG**

Event: IA LTM Sept 2021 Hypergol Maintenance Facility South

Site Name: Industrial Area/Hypergol Module Facility South Hazardous Waste Staging Area (SWMU 070)

Sample Information								
Sample ID:	HMF-NLP-IW0004I-037.5-20210922	Date:	9/22/2021 9:37:00 AM					
Well ID:	HMF-NLP-IW0004I	Location Type:	MONITORING WELL					
Duplicate ID:		Sampler:	Dustin Slater					
Analysis:	Select VOCs							
Comments:								

Water Level			
Date:	9/22/2021 9:08:00 AM	Static Water Level (ft-BTOR):	3.08 FT
Top of Screen (ft-BTOR):	35	Bottom of Screen (ft-BTOR):	40
Measured Well Depth:	40.00 ft	Total Depth (ft-BTOR):	40
Is Well Dry?	No	Well Diameter (in):	1
Notes:			

Purge Information				
Begin Date and Time:	9/22/2021 9:10:00 AM	End Date and Time:	9/22/2021 9:36:00 AM	
Purge Method:	Peristaltic Pump	Sample Method:	Peristaltic Pump	
Notes:				

Time	Cumulative Volume Purged (gal)	Purge Rate (gal/min)	Volume Purged (gal)	TEMPERATURE (C)	Specific conductivity (FLD) (US/CM)	рн (S.U.)	OXIDATION REDUCTION POTENTIAL (MV)	Turbidity (FLD) (NTU)	SALINITY (PSU)	DISSOLVED OXYGEN (MG/L)	
9:10 AM	0										
9:30 AM	1	0.05	1	31.1	8539	6.63	-78.71	7.87	4.82	1.38	
9:32 AM	1.1	0.05	0.1	32.49	8509	6.65	-55.69	7.12	4.8	1.47	
9:34 AM	1.2	0.05	0.1	32.65	8397	6.65	-31.17	7.98	4.73	1.53	
9:36 AM	1.3	0.05	0.1	32.56	8397	6.65	-28.41	6.54	4.73	1.5	



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0013-010.0-20211122

Sampler: Greg Kusel

Well ID: GSSP-MW0013 Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	0.83
Top of Screen (ft-BTOR):	5	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	15	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	15	Sample Analysis:	Select VOCs

Purge Infor	mation	l												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)		S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/22/2021	14:15				0.83									
11/22/2021	14:35	0.05	1	1	0.9	6.75	576.8	0.29	1.84	22.82	-247.4	0.28		
11/22/2021	14:37	0.05	0.1	1.1	0.9	6.75	579.6	0.34	2.13	22.89	-245.2	0.28		
11/22/2021	14:39	0.05	0.1	1.2	0.9	6.64	510.3	0.47	1.87	22.89	-242.9	0.25		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	
14:15	14:39	24	1.2	6.64	510.3	0.47	1.87	22.89	-242.9	



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0019-020.0-20211122

Sampler: Dustin Slater

Well ID: GSSP-MW0019

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	1.88
Top of Screen (ft-BTOR):	15	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	25	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	24.26	Sample Analysis:	Select VOCs

Purge Infor	mation													
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	•	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/22/2021	15:14			0	1.88									
11/22/2021	15:34	0.05	1	1	1.9	6.79	829.4	0.13	2.76	25.45	-143.9	0.41		
11/22/2021	15:36	0.05	0.1	1.1	1.9	6.75	798.2	0.09	1.78	25.41	-149.2	0.40		
11/22/2021	15:38	0.05	0.1	1.2	1.9	6.74	797.7	0.08	1.87	25.45	-150.9	0.40		
11/22/2021	15:40	0.05	0.1	1.3	1.9	6.72	797.4	0.08	1.71	25.41	-151.0	0.40		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
15:14	15:40	26	1.3	6.72	797.4	0.08	1.71	25.41	-151.0



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0020-030.0-20211122

Sampler: Dustin Slater

Well ID: GSSP-MW0020

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	1.91
Top of Screen (ft-BTOR):	25	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	35	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	34.23	Sample Analysis:	Select VOCs

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/22/2021	15:49			0	1.91									
11/22/2021	16:09	0.05	1	1	1.97	6.74	850.5	0.06	5.72	24.92	-174.5	0.42		
11/22/2021	16:11	0.05	0.1	1.1	1.97	6.74	850.5	0.06	6.52	24.92	-175.5	0.42		
11/22/2021	16:13	0.05	0.1	1.2	1.97	6.74	850.0	0.06	3.96	24.87	-176.8	0.42		
11/22/2021	16:15	0.05	0.1	1.3	1.97	6.75	849.8	0.06	4.91	24.85	-177.1	0.42		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
15:49	16:15	26	1.3	6.75	849.8	0.06	4.91	24.85	-177.1



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0024R-020.0-20211122

Sampler: Dustin Slater

Well ID: GSSP-MW0024R

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	0.27
Top of Screen (ft-BTOR):	15	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	25	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	25	Sample Analysis:	Select VOCs, Select PAHs

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/22/2021	16:59			0	0.27									
11/22/2021	17:19	0.05	1	1	1.24	6.17	109.5	1.43	11.06	21.36	-39.8	0.05		
11/22/2021	17:21	0.05	0.1	1.1	1.24	6.16	109.5	1.42	9.46	21.31	-39.9	0.05		
11/22/2021	17:23	0.05	0.1	1.2	1.24	6.17	109.4	1.41	5.83	21.32	-39.9	0.05		
11/22/2021	17:25	0.05	0.1	1.3	1.24	6.16	109.5	1.41	7.18	21.32	-40.1	0.05		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
16:59	17:25	26	1.3	6.16	109.5	1.41	7.18	21.32	-40.1



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0034-010.0-20211122

Sampler: Greg Kusel

Well ID: GSSP-MW0034

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	4.18
Top of Screen (ft-BTOR):	5	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	15	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	15	Sample Analysis:	Select VOCs

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/22/2021	16:25				4.18									
11/22/2021	16:45	0.05	1	1	4.19	6.51	433.3	0.05	1.11	22.77	-161.2	0.21		
11/22/2021	16:47	0.05	0.1	1.1	4.19	6.52	440.6	0.05	0.98	22.82	-164.1	0.21		
11/22/2021	16:49	0.05	0.1	1.2	4.19	6.53	441.9	0.05	0.95	22.80	-166.6	0.22		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
16:25	16:49	24	1.2	6.53	441.9	0.05	0.95	22.80	-166.6



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0035-020.0-20211122

Sampler: Greg Kusel

Well ID: GSSP-MW0035 Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	4.1
Top of Screen (ft-BTOR):	15	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	25	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	25	Sample Analysis:	Select VOCs, Select PAHs

Purge Infor	mation	l												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)		S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/22/2021	15:55				4.1									
11/22/2021	16:15	0.05	1	1	4.11	7.26	844.4	0.06	4.11	22.62	-127.7	0.42		
11/22/2021	16:17	0.05	0.1	1.1	4.11	7.27	843.1	0.07	2.08	22.58	-128.2	0.42		
11/22/2021	16:19	0.05	0.1	1.2	4.11	7.26	844.0	0.06	2.43	22.59	-128.8	0.42		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
15:55	16:19	24	1.2	7.26	844.0	0.06	2.43	22.59	-128.8



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0036-035.0-20211122

Sampler: Greg Kusel

Well ID: GSSP-MW0036 Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	4.23
Top of Screen (ft-BTOR):	30	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	40	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	40	Sample Analysis:	Select VOCs

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/22/2021	15:25				4.23									
11/22/2021	15:45	0.05	1	1	4.24	7.33	1085.5	0.08	0.77	22.46	-111.1	0.54		
11/22/2021	15:47	0.05	0.1	1.1	4.24	7.34	1092.6	0.08	0.93	22.41	-113.2	0.55		
11/22/2021	15:49	0.05	0.1	1.2	4.24	7.34	1120.6	0.07	0.17	22.46	-115.0	0.56		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
15:25	15:49	24	1.2	7.34	1120.6	0.07	0.17	22.46	-115.0



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0044R-030.0-20211122

Sampler: Dustin Slater

Well ID: GSSP-MW0044R

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	2.44
Top of Screen (ft-BTOR):	25	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	35	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	34.05	Sample Analysis:	Select VOCs

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/22/2021	12:06			0	2.44									
11/22/2021	12:26	0.05	1	1	2.52	6.76	799.0	0.11	1.61	25.04	-148.9	0.40		
11/22/2021	12:28	0.05	0.1	1.1	2.52	6.76	790.0	0.11	1.62	24.98	-153.2	0.39		
11/22/2021	12:30	0.05	0.1	1.2	2.52	6.76	791.0	0.11	1.62	25.07	-154.9	0.39		
11/22/2021	12:32	0.05	0.1	1.3	2.52	6.76	790.9	0.10	1.58	25.09	-156.4	0.39		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
12:06	12:32	26	1.3	6.76	790.9	0.10	1.58	25.09	-156.4



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0053-020.0-20211122

Sampler: Dustin Slater

Well ID: GSSP-MW0053

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	1.93
Top of Screen (ft-BTOR):	15	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	25	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	24.12	Sample Analysis:	Select VOCs, Select PAHs

Purge Infor	mation													
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/22/2021	16:25			0	1.93									
11/22/2021	16:40	0.05	0.75	0.75	1.99	6.85	887.7	0.07	18.07	25.39	-189.7	0.44		
11/22/2021	16:45	0.05	0.25	1	1.99	6.85	889.6	0.07	18.68	25.41	-186.8	0.44		
11/22/2021	16:47	0.05	0.1	1.1	1.99	6.86	887.0	0.07	19.94	25.44	-190.8	0.44		
11/22/2021	16:49	0.05	0.1	1.2	1.99	6.87	887.1	0.07	14.52	25.41	-191.4	0.44		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
16:25	16:49	24	1.2	6.87	887.1	0.07	14.52	25.41	-191.4



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0059-018.5-20211122

GSSP-MW0059 Well Type: Monitoring Well

Sampler:

**Greg Kusel** 

Remark:

Well ID:

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	2.45
Top of Screen (ft-BTOR):	16	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	21	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	21	Sample Analysis:	Select VOCs

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/22/2021	13:35				2.45									
11/22/2021	13:55	0.05	1	1	2.46	6.99	1121.8	0.07	1.45	25.20	-292.0	0.56		
11/22/2021	13:57	0.05	0.1	1.1	2.46	6.99	1122.5	0.07	1.03	25.23	-294.2	0.56		
11/22/2021	13:59	0.05	0.1	1.2	2.46	6.98	1128.7	0.07	1.05	25.19	-296.7	0.57		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	рН (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
13:35	13:59	24	1.2	6.98	1128.7	0.07	1.05	25.19	-296.7



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0060-012.5-20211122

Sampler: Greg Kusel

Well ID: GSSP-MW0060

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	2.7
Top of Screen (ft-BTOR):	10	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	15	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	15	Sample Analysis:	Select VOCs

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/22/2021	12:51				2.7									
11/22/2021	13:11	0.05	1	1	2.71	6.36	351.3	0.65	4.45	23.66	-107.1	0.12		
11/22/2021	13:13	0.05	0.1	1.1	2.71	6.35	357.5	0.68	3.4	23.73	-131.3	0.15		
11/22/2021	13:15	0.05	0.1	1.2	2.71	6.44	366.1	0.68	2.63	23.73	-152.1	0.18		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
12:51	13:15	24	1.2	6.44	366.1	0.68	2.63	23.73	-152.1



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0061-018.5-20211122

Sampler: Greg Kusel

Well ID: GSSP-MW0061

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	2.89
Top of Screen (ft-BTOR):	16	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	21	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	21	Sample Analysis:	Select VOCs

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Purged	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/22/2021	12:19				2.89									
11/22/2021	12:39	0.05	1	1	2.9	7.13	839.8	0.15	1.35	23.26	-115.9	0.42		
11/22/2021	12:41	0.05	0.1	1.1	2.9	7.14	850.5	0.13	1.45	23.20	-125.0	0.42		
11/22/2021	12:43	0.05	0.1	1.2	2.9	7.13	861.4	0.09	1.37	23.35	-130.2	0.43		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
12:19	12:43	24	1.2	7.13	861.4	0.09	1.37	23.35	-130.2



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0062-012.5-20211122

Sampler: Dustin Slater

Well ID: GSSP-MW0062 Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	1.65
Top of Screen (ft-BTOR):	10	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	15	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	14.16	Sample Analysis:	Select VOCs

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/22/2021	13:20			0	1.65									
11/22/2021	14:00	0.05	2	2	1.7	7.09	205.8	4.79	251.25	24.35	44.2	0.10		
11/22/2021	14:20	0.05	1	3	1.7	6.89	529.8	0.07	19.39	24.39	-189.7	0.26		
11/22/2021	14:22	0.05	0.2	3.2	1.7	6.89	543.4	0.07	19.05	24.57	-191.4	0.27		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
13:20	14:22	62	3.2	6.89	543.4	0.07	19.05	24.57	-191.4



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0063-018.5-20211122

Sampler: Dustin Slater

Well ID: GSSP-MW0063 Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	1.74
Top of Screen (ft-BTOR):	16	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	21	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	19.98	Sample Analysis:	Select VOCs

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/22/2021	14:38			0	1.74									
11/22/2021	14:58	0.05	1	1	1.77	7.85	184.0	0.19	11.27	24.75	-31.5	0.09		
11/22/2021	15:00	0.05	0.1	1.1	1.77	7.86	184.7	0.18	11.00	24.76	-31.9	0.09		
11/22/2021	15:02	0.05	0.1	1.2	1.77	7.85	185.4	0.18	10.96	24.79	-31.8	0.09		
11/22/2021	15:04	0.05	0.1	1.3	1.77	7.86	186.0	0.19	10.38	24.75	-32.2	0.09		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
14:38	15:04	26	1.3	7.86	186.0	0.19	10.38	24.75	-32.2



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/Launch Equipment Test Facility (SWMU 91)

Project No: 60610905

Sample ID: LETF-MW0001-025.0-20211123

Sampler: Greg Kusel

Well ID: LETF-MW0001 W

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	5.45
Top of Screen (ft-BTOR):	22.5	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	27.5	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	27.5	Sample Analysis:	VC Only

Purge Infor	mation	l												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/23/2021	9:45				5.45									
11/23/2021	10:05	0.05	1	1	5.7	6.58	2958.5	0.08	7.89	25.66	-96.2	1.56		
11/23/2021	10:07	0.05	0.1	1.1	5.7	6.57	2944.1	0.08	1.96	25.64	-96.8	1.55		
11/23/2021	10:09	0.05	0.1	1.2	5.7	6.57	2983.8	0.07	4.87	25.66	-96.8	1.57		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
9:45	10:09	24	1.2	6.57	2983.8	0.07	4.87	25.66	-96.8



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/Launch Equipment Test Facility (SWMU 91)

Project No: 60610905

Sample ID: LETF-MW0002-025.0-20211123

.0-20211123 Sampler: Greg Kusel

Well ID: LETF-MW0002

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	5.34
Top of Screen (ft-BTOR):	22.5	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	27.5	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	27.5	Sample Analysis:	VC Only

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/23/2021	11:10				5.34									
11/23/2021	11:30	0.05	1	1	5.45	6.77	1323.7	0.13	1.01	21.45	-43.9	0.67		
11/23/2021	11:32	0.05	0.1	1.1	5.45	6.77	1320.7	0.15	2.17	21.62	-44.9	0.67		
11/23/2021	11:34	0.05	0.1	1.2	5.45	6.77	1329.4	0.13	2.35	21.62	-45.9	0.67		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
11:10	11:34	24	1.2	6.77	1329.4	0.13	2.35	21.62	-45.9



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/Launch Equipment Test Facility (SWMU 91)

Project No: 60610905

Sample ID: LETF-MW0005-025.0-20211123

LETF-MW0005

Sampler: Dustin Slater

Well Type: Monitoring Well

Well ID: Remark:

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	5.55
Top of Screen (ft-BTOR):	22.5	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	27.5	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	27.5	Sample Analysis:	VC Only

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/23/2021	11:03			0	5.55									
11/23/2021	11:23	0.05	1	1	5.78	6.53	975.6	0.07	1.92	25.37	-64.7	0.49		
11/23/2021	11:25	0.05	0.1	1.1	5.78	6.55	973.8	0.07	2.03	25.39	-66.0	0.49		
11/23/2021	11:27	0.05	0.1	1.2	5.78	6.55	977.9	0.07	1.85	25.27	-66.8	0.49		
11/23/2021	11:29	0.05	0.1	1.3	5.78	6.54	977.5	0.07	1.97	25.38	-66.8	0.49		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
11:03	11:29	26	1.3	6.54	977.5	0.07	1.97	25.38	-66.8



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/Launch Equipment Test Facility (SWMU 91)

Project No: 60610905

Sample ID: LETF-MW0007-036.0-20211123

Sampler: Greg Kusel

Well ID: LETF-MW0007 Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	5.28
Top of Screen (ft-BTOR):	33.5	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	38.5	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	38.5	Sample Analysis:	VC Only

Purge Infor	mation													
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/23/2021	10:25				5.28									
11/23/2021	10:45	0.05	1	1	5.63	6.71	3589.8	0.23	6.66	25.81	-64.5	1.91		
11/23/2021	10:47	0.05	0.1	1.1	5.63	6.70	3596.1	0.15	2.95	25.68	-65.0	1.92		
11/23/2021	10:49	0.05	0.1	1.2	5.63	6.71	3607.2	0.09	5.87	25.74	-66.1	1.92		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
10:25	10:49	24	1.2	6.71	3607.2	0.09	5.87	25.74	-66.1



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/Launch Equipment Test Facility (SWMU 91)

Project No: 60610905

Sample ID: LETF-PSB-MW0001I-024.5-20211123

Sampler: Dustin Slater

Well ID: LETF-PSB-MW0001I Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	4.75
Top of Screen (ft-BTOR):	20	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	25	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	25	Sample Analysis:	VC Only

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/23/2021	10:28			0	4.75									
11/23/2021	10:48	0.05	1	1	5.11	6.39	2809.7	0.05	15.32	21.83	-123.4	1.48		
11/23/2021	10:50	0.05	0.1	1.1	5.11	6.39	2813.1	0.05	14.18	22.19	-124.4	1.48		
11/23/2021	10:52	0.05	0.1	1.2	5.11	6.39	2800.3	0.04	10.53	22.15	-125.2	1.47		
11/23/2021	10:54	0.05	0.1	1.3	5.11	6.39	2821.7	0.04	7.55	21.99	-124.8	1.48		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
10:28	10:54	26	1.3	6.39	2821.7	0.04	7.55	21.99	-124.8



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/Launch Equipment Test Facility (SWMU 91)

Project No: 60610905

Sample ID: LETF-PSB-MW0002I-024.5-20211123

Sampler: Dustin Slater

Well ID: LETF-PSB-MW0002I Well Type:

/ell Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	2.66
Top of Screen (ft-BTOR):	20	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	25	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	25	Sample Analysis:	VC Only

Purge Information														
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/23/2021	9:41			0	2.66									
11/23/2021	10:01	0.05	1	1	2.8	6.73	1052.9	0.10	24.88	23.46	-95.2	0.53		
11/23/2021	10:11	0.05	0.5	1.5	2.8	6.74	1068.4	0.09	7.02	23.18	-94.8	0.54		
11/23/2021	10:13	0.05	0.1	1.6	2.8	6.73	1079.0	0.09	16.05	23.21	-94.5	0.54		
11/23/2021	10:15	0.05	0.1	1.7	2.8	6.73	1066.1	0.09	17.51	23.32	-97.1	0.53		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
9:41	10:15	34	1.7	6.73	1066.1	0.09	17.51	23.32	-97.1



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/Fuel Storage Area #1 Underground Storage Tank (SWMU C057)

Project No: 60610905

Sample ID: FSA1-MW0001-005.0-20211130

Sampler: Dustin Slater

Well ID: FSA1-MW0001

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	0.75	Static Water Level (ft-BTOR):	4.05
Top of Screen (ft-BTOR):	2	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	12	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	11.63	Sample Analysis:	Select VOCs, Select PAHs, TPH

Purge Infor	mation	l												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/30/2021	10:35			0	4.05									
11/30/2021	10:45	0.05	0.5	0.5	N/A	6.74	693.8	0.44	1.89	25.70	-117.2	0.34		
11/30/2021	10:47	0.05	0.1	0.6	N/A	6.76	693.5	0.38	1.95	25.78	-119.4	0.34		
11/30/2021	10:49	0.05	0.1	0.7	N/A	6.74	702.7	0.34	2.64	25.82	-120.3	0.35		
11/30/2021	10:51	0.05	0.1	0.8	N/A	6.77	695.6	0.34	1.95	25.80	-122.1	0.34		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
10:35	10:51	16	0.8	6.77	695.6	0.34	1.95	25.80	-122.1



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/Fuel Storage Area #1 Underground Storage Tank (SWMU C057)

Project No: 60610905

Sample ID: FSA1-MW0002-004.5-20211130

Sampler: Dustin Slater

Well ID: FSA1-MW0002

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	0.75	Static Water Level (ft-BTOR):	3.35
Top of Screen (ft-BTOR):	2	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	12	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	11.73	Sample Analysis:	Select VOCs, Select PAHs, TPH

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/30/2021	11:02			0	3.35									
11/30/2021	11:12	0.05	0.5	0.5	N/A	6.72	589.4	0.22	2.30	25.06	-66.9	0.29		
11/30/2021	11:14	0.05	0.1	0.6	N/A	6.75	600.5	0.21	2.02	24.99	-69.2	0.29		
11/30/2021	11:16	0.05	0.1	0.7	N/A	6.77	599.8	0.19	1.95	25.02	-70.1	0.29		
11/30/2021	11:18	0.05	0.1	8.0	N/A	6.77	599.9	0.19	1.98	25.01	-70.9	0.29		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
11:02	11:18	16	0.8	6.77	599.9	0.19	1.98	25.01	-70.9



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/Fuel Storage Area #1 Underground Storage Tank (SWMU C057)

Project No: 60610905

Sample ID: FSA1-MW0012R-005.5-20211130

Sampler: Dustin Slater

Well ID: FSA1-MW0012R

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	4.32
Top of Screen (ft-BTOR):	3	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	13	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	13	Sample Analysis:	Select VOCs, Select PAHs, TPH

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/30/2021	10:00			0	4.32									
11/30/2021	10:20	0.05	1	1	4.61	7.07	421.8	0.11	2.17	26.33	-129.5	0.20		
11/30/2021	10:22	0.05	0.1	1.2	4.61	7.11	422.9	0.11	3.04	26.35	-133.8	0.21		
11/30/2021	10:24	0.05	0.1	1.3	4.61	7.08	423.2	0.11	1.95	26.34	-132.7	0.21		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
10:00	10:24	24	1.3	7.08	423.2	0.11	1.95	26.34	-132.7



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/Fuel Storage Area #1 Underground Storage Tank (SWMU C057)

Project No: 60610905

Sample ID: FSA1-MW0014-005.5-20211130

Sampler: Dustin Slater

Well ID: FSA1-MW0014

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	2	Static Water Level (ft-BTOR):	4.5
Top of Screen (ft-BTOR):	2	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	12	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	12	Sample Analysis:	Select VOCs, Select PAHs, TPH

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/30/2021	9:25			0	4.5									
11/30/2021	9:43	0.07	1.25	1.25	4.58	7.06	365.4	0.12	17.68	26.62	-118.1	0.18		
11/30/2021	9:45	0.07	0.14	1.39	4.58	7.05	363.6	0.11	2.74	26.46	-118.2	0.18		
11/30/2021	9:47	0.07	0.14	1.53	4.58	7.04	364.4	0.11	2.29	26.46	-120.3	0.18		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
9:25	9:47	22	1.53	7.04	364.4	0.11	2.29	26.46	-120.3



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/Fuel Storage Area #1 Underground Storage Tank (SWMU C057)

Project No: 60610905

Sample ID: FSA1-MW0021-004.0-20211130

Sampler: Greg Kusel

Well ID: FSA1-MW0021

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	3.03
Top of Screen (ft-BTOR):	2	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	12	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	11.65	Sample Analysis:	Select VOCs, Select PAHs, TPH

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/30/2021	11:25				3.03									
11/30/2021	11:45	0.05	1	1	3.63	7.01	808.7	0.40	0.16	24.43	-126.5	0.40		
11/30/2021	11:47	0.05	0.1	1.1	3.63	7.02	797.3	0.49	0.07	24.26	-126.2	0.40		
11/30/2021	11:49	0.05	0.1	1.2	3.63	7.02	793.7	0.39	0.26	24.44	-126.9	0.39		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
11:25	11:49	24	1.2	7.02	793.7	0.39	0.26	24.44	-126.9



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/Fuel Storage Area #1 Underground Storage Tank (SWMU C057)

Project No: 60610905

Sample ID: FSA1-MW0022R-005.0-20211130

Sampler: Greg Kusel

Well ID: FSA1-MW0022R Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	4.59
Top of Screen (ft-BTOR):	3	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	13	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	12.55	Sample Analysis:	Select VOCs, Select PAHs, TPH

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/30/2021	10:45		0.1	1.2	4.59	7.28	631.9	0.47	7.21	24.47	-123.6	0.31		
11/30/2021	11:05	0.05	1	1	4.75	7.28	635.1	0.25	7.94	24.47	-126.2	0.31		
11/30/2021	11:07	0.05	0.1	1.1	4.75	7.29	631.6	0.60	6.74	24.32	-126.3	0.31		
11/30/2021	11:09	0.05	0.1	1.2	4.75	7.28	631.9	0.47	7.21	24.47	-123.6	0.31		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
10:45	11:09	24	1.2	7.28	631.9	0.47	7.21	24.47	-123.6



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/Fuel Storage Area #1 Underground Storage Tank (SWMU C057)

Project No: 60610905

Sample ID: FSA1-MW0023-005.5-20211130

Sampler: Dustin Slater

Well ID: FSA1-MW0023

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	3.85
Top of Screen (ft-BTOR):	2	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	12	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	11.81	Sample Analysis:	Select VOCs, Select PAHs, TPH

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/30/2021	11:32			0	3.85									
11/30/2021	11:52	0.05	1	1	4.78	7.01	479.1	0.66	1.71	24.81	-87.2	0.23		
11/30/2021	11:54	0.05	0.1	1.1	4.78	7.02	475.3	0.65	1.73	24.80	-88.2	0.23		
11/30/2021	11:56	0.05	0.1	1.2	4.78	7.04	473.3	0.62	1.75	24.72	-87.8	0.23		
11/30/2021	11:58	0.05	0.1	1.3	4.78	7.03	473.6	0.62	1.77	24.68	-88.1	0.23		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
11:32	11:58	26	1.3	7.03	473.6	0.62	1.77	24.68	-88.1



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/Fuel Storage Area #1 Underground Storage Tank (SWMU C057)

Project No: 60610905

Sample ID: FSA1-MW0027-020.0-20211130

FSA1-MW0027

Sampler: Greg Kusel
Well Type: Monitoring Well

Remark:

Well ID:

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	4.85
Top of Screen (ft-BTOR):	14.5	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	24.5	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	23.92	Sample Analysis:	Select VOCs, Select PAHs, TPH

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Purged	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/30/2021	10:10				4.85									
11/30/2021	10:30	0.05	1	1	4.92	7.32	913.5	0.09	6.71	24.78	-156.3	0.46		
11/30/2021	10:32	0.05	0.1	1.1	4.92	7.32	931.9	0.09	3.06	24.93	-155.6	0.46		
11/30/2021	10:34	0.05	0.1	1.2	4.92	7.32	919.6	0.09	3.56	24.81	-155.8	0.46		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
10:10	10:34	24	1.2	7.32	919.6	0.09	3.56	24.81	-155.8



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/Fuel Storage Area #1 Underground Storage Tank (SWMU C057)

Project No: 60610905

Sample ID: FSA1-MW0028-020.0-20211130

Sampler: Greg Kusel

Well ID: FSA1-MW0028

Well Type: Monitoring Well

Remark: Well coordinates and TOC elevation TBD

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	4.62
Top of Screen (ft-BTOR):	15	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	25	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	25	Sample Analysis:	Select VOCs, Select PAHs, TPH

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/30/2021	9:25				4.62									
11/30/2021	9:45	0.05	1	1	4.68	7.60	3416.4	0.07	3.70	24.50	-213.9	1.82		
11/30/2021	9:47	0.05	0.1	1.1	4.68	7.59	3465.2	0.08	3.50	24.50	-219.0	1.84		
11/30/2021	9:49	0.05	0.1	1.2	4.68	7.58	3470.1	0.07	1.16	24.55	-234.7	1.85		

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
9:25	9:49	24	1.2	7.58	3470.1	0.07	1.16	24.55	-234.7



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Ransom Road Landfill (SWMU 003)

Project No: 60610905

Sample ID: RRLF-MW0033-027.5-20220510

Sampler: Dustin Slater

Well ID: RRLF-MW0033

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	2	Static Water Level (ft-BTOR):	4.81
Top of Screen (ft-BTOR):	25	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	30	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	32.51	Sample Analysis:	VC Only

Purge Infor	Purge Information													
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/10/2022	11:21			0	4.82								Clear	None
5/10/2022	11:41	0.05	1	1	4.89	6.76	415.1	0.86	1.38	22.4	-47.1	3.52	Clear	None
5/10/2022	11:43	0.05	0.1	1.1	4.89	6.76	419.9	0.63	1.14	22.4	-53.1	3.55	Clear	None
5/10/2022	11:45	0.05	0.1	1.2	4.89	6.75	423.3	0.5	1.08	22.4	-55.5	3.58	Clear	None
5/10/2022	11:47	0.05	0.1	1.3	4.89	6.75	426.5	0.45	0.98	22.5	-57.9	3.61	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	
11:21	11:47	26	1.3	6.75	426.5	0.45	0.98	22.5	-57.9	

Sampler:

**Greg Kusel** 



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Ransom Road Landfill (SWMU 003)

Project No: 60610905

Sample ID: RRLF-MW0038I-024.5-20220510

RRLF-MW0038I Well Type: Monitoring Well

Remark:

Well ID:

Well Information			
Well Diameter (in.):	2	Static Water Level (ft-BTOR):	5.34
Top of Screen (ft-BTOR):	22	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	27	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	29.81	Sample Analysis:	VC Only

Purge Infor	mation	l												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/10/2022	11:20	0.05		0	5.34								Clear	None
5/10/2022	11:30	0.05	0.5	0.5	5.42	6.77	7309.4	0.14	8.28	22.63	-32.2	4.08	Clear	None
5/10/2022	11:32	0.05	0.1	0.6	5.42	6.76	7308.5	0.13	18.82	22.64	-41.6	4.08	Clear	None
5/10/2022	11:34	0.05	0.1	0.7	5.42	6.76	7288.6	0.13	11.87	22.60	-51.9	4.07	Clear	None
5/10/2022	11:36	0.05	0.1	0.8	5.42	6.76	7294.6	0.12	4.72	22.71	-58.6	4.07	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
11:20	11:36	16	0.8	6.76	7294.6	0.12	4.72	22.71	-58.6

Sampler:

**Greg Kusel** 



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Ransom Road Landfill (SWMU 003)

Project No: 60610905

Sample ID: RRLF-MW0039I-024.5-20220510

RRLF-MW0039I Well Type: Monitoring Well

Remark:

Well ID:

Well Information			
Well Diameter (in.):	2	Static Water Level (ft-BTOR):	4.8
Top of Screen (ft-BTOR):	22	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	27	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	29.95	Sample Analysis:	VC Only

Purge Info	Purge Information													
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/10/2022	11:50	0.5		0	4.8								Clear	None
5/10/2022	12:05	0.05	0.75	0.75	4.87	7.03	8255.8	6.33	5.84	24.05	106.2	4.65	Clear	None
5/10/2022	12:07	0.05	0.1	0.85	4.87	7.03	8260.5	6.35	3.70	24.21	107.3	4.65	Clear	None
5/10/2022	12:09	0.05	0.1	0.95	4.87	7.03	8260.8	6.33	5.69	24.38	107.8	4.65	Clear	None
5/10/2022	12:11	0.05	0.1	1.05	4.87	7.03	8264.0	6.37	5.54	24.39	109.0	4.66	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
11:50	12:11	21	1.05	7.03	8264.0	6.37	5.54	24.39	109.0



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Ransom Road Landfill (SWMU 003)

Project No: 60610905

Sample ID: RRLF-MW0040I-024.5-20220510

Sampler: Dustin Slater

Well ID: RRLF-MW0040I Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	2	Static Water Level (ft-BTOR):	5.31
Top of Screen (ft-BTOR):	22	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	27	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	30.4	Sample Analysis:	VC Only

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/10/2022	12:02			0	5.31								Clear	None
5/10/2022	12:22	0.05	1	1	5.36	6.85	7130	0.33	6.03	25.2	88.5	3.91	Clear	None
5/10/2022	12:24	0.05	0.1	1.1	5.36	6.78	7164	0.31	4.77	25.3	80.7	3.92	Clear	None
5/10/2022	12:26	0.05	0.1	1.2	5.36	6.74	7187	0.37	3.99	25.3	68.4	4	Clear	None
5/10/2022	12:28	0.05	0.1	1.3	5.36	6.7	7195	0.3	3.32	25.3	54	4	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	
12:02	12:28	26	1.3	6.7	7195	0.3	3.32	25.3	54	



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Building M7-505 (SWMU 039)

Project No: 60610905

Sample ID: M505-MW0013-025.5-20220511

Sampler: Greg Kusel

Well ID: M505-MW0013 Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	2	Static Water Level (ft-BTOR):	6.82
Top of Screen (ft-BTOR):	23	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	28	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	28.02	Sample Analysis:	Select VOCs

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/11/2022	10:30	0.05		0	6.82								Clear	None
5/11/2022	10:40	0.05	0.5	0.5	6.96	6.93	235.4	0.20	16.12	25.70	-61.6	0.11	Clear	None
5/11/2022	10:42	0.05	0.1	0.6	6.96	6.92	232.6	0.16	4.19	25.82	-150.2	0.11	Clear	None
5/11/2022	10:44	0.05	0.1	0.7	6.96	6.89	233.5	0.15	5.94	25.86	-153.3	0.11	Clear	None
5/11/2022	10:46	0.05	0.1	0.8	6.96	6.88	232.3	0.12	2.80	25.99	-162.1	0.11	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
10:30	10:46	16	0.8	6.88	232.3	0.12	2.80	25.99	-162.1



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Building M7-505 (SWMU 039)

Project No: 60610905

Sample ID: M505-MW0032-035.0-20220511

Sampler: Dustin Slater

Well ID: M505-MW0032

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	8.78
Top of Screen (ft-BTOR):	32.5	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	37.5	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	40.61	Sample Analysis:	Select VOCs

Purge Infor	urge Information													
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/11/2022	11:30			0	8.78								Clear	None
5/11/2022	11:45	0.05	0.75	0.75	8.94	6.98	2813	0.46	5.63	25.5	-105.4	1.44	Clear	None
5/11/2022	11:47	0.05	0.1	0.85	8.94	6.98	2828	0.37	5.11	25.6	-104.3	1.45	Clear	None
5/11/2022	11:49	0.05	0.1	0.95	8.94	6.99	2832	0.34	3.66	25.6	-103.9	1.45	Clear	None
5/11/2022	11:51	0.05	0.1	1.05	8.94	6.99	2833	0.34	3.21	25.6	-103.5	1.45	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
11:30	11:51	21	1.05	6.99	2833	0.34	3.21	25.6	-103.5



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Building M7-505 (SWMU 039)

Project No: 60610905

Sample ID: M505-MW0033-025.0-20220511

Sampler: Dustin Slater

Well ID: M505-MW0033

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	8.7
Top of Screen (ft-BTOR):	22.5	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	27.5	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	30.72	Sample Analysis:	Select VOCs

Purge Infor	mation													
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/11/2022	11:58			0	8.7								Clear	None
5/11/2022	12:08	0.05	0.5	0.5	8.79	6.49	2209	0.43	5.33	25.2	-76.8	1.13	Clear	None
5/11/2022	12:10	0.05	0.1	0.6	7.89	6.49	2220	0.41	4.96	25.2	-74.6	1.13	Clear	None
5/11/2022	12:12	0.05	0.1	0.7	7.89	6.48	2227	0.39	3.65	25.3	-73	1.13	Clear	None
5/11/2022	12:14	0.05	0.1	0.8	7.89	6.47	2234	0.36	3.09	25.4	-72.2	1.13	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
11:58	12:14	16	0.8	6.47	2234	0.36	3.09	25.4	-72.2



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Building M7-505 (SWMU 039)

Project No: 60610905

Sample ID: M505-MW0039-032.5-20220511

Sampler: Greg Kusel

Well ID: M505-MW0039 Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	5.88
Top of Screen (ft-BTOR):	30	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	35	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	38.02	Sample Analysis:	Select VOCs

Purge Infor	mation	l												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/11/2022	11:18	0.05		0	5.88								Clear	None
5/11/2022	11:28	0.05	0.5	0.5	6.26	7.38	710.7	8.05	9.07	26.56	-138.6	0.35	Clear	None
5/11/2022	11:30	0.05	0.1	0.6	6.26	6.79	964.8	0.21	14.43	25.62	-196.5	0.48	Clear	None
5/11/2022	11:32	0.05	0.1	0.7	6.96	6.77	1000.2	0.18	10.69	25.60	-197.3	0.50	Clear	None
5/11/2022	11:34	0.05	0.1	0.8	6.96	6.76	1002.9	0.14	10.53	25.61	-194.3	0.51	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
11:18	11:34	16	0.8	6.76	1002.9	0.14	10.53	25.61	-194.3



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Building M7-505 (SWMU 039)

Project No: 60610905

Sample ID: M505-MW0049-009.0-20220511

Sampler: Dustin Slater

Well ID: M505-MW0049

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	8.2
Top of Screen (ft-BTOR):	20	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	35	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	32.95	Sample Analysis:	Select VOCs

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/11/2022	10:31			0	8.2								Clear	None
5/11/2022	10:56	0.05	1.25	1.25	5.29	6.84	2221	0.4	4.94	25.1	-119.2	1.13	Clear	None
5/11/2022	11:02	0.05	0.3	1.55	5.29	6.83	2230	0.41	3.76	25.2	-119.6	1.14	Clear	None
5/11/2022	11:08	0.05	0.3	1.85	5.29	6.82	2241	0.37	2.98	25.2	-123.8	1.15	Clear	None
5/11/2022	11:14	0.05	0.3	2.15	5.29	6.82	2244	0.34	2.54	25.3	-124.6	1.15	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	
10:31	11:14	43	2.15	6.82	2244	0.34	2.54	25.3	-124.6	



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Building M7-505 (SWMU 039)

Project No: 60610905

Sample ID: M505-MW0051-025.0-20220511

Sampler: Dustin Slater

Well ID: M505-MW0051

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	7.77
Top of Screen (ft-BTOR):	22.5	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	27.5	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	31.38	Sample Analysis:	Select VOCs

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/11/2022	12:22			0	7.77								Clear	None
5/11/2022	12:32	0.05	0.5	0.5	8.09	6.71	2693	0.92	3.48	25	-80	1.4	Clear	None
5/11/2022	12:34	0.05	0.1	0.6	8.09	6.7	2711	0.79	3.07	25	-81.4	1.4	Clear	None
5/11/2022	12:36	0.05	0.1	0.7	8.09	6.7	2719	0.86	2.98	25.1	-83	1.41	Clear	None
5/11/2022	12:38	0.05	0.1	0.8	8.09	6.68	2724	0.85	2.9	25.1	-82.1	1.41	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
12:22	12:38	16	0.8	6.68	2724	0.85	2.9	25.1	-82.1



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Building M7-505 (SWMU 039)

Project No: 60610905

Sample ID: M505-MW0055-025.0-20220511

Sampler: Greg Kusel

Well ID: M505-MW0055 Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	7.72
Top of Screen (ft-BTOR):	22.5	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	27.5	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	27.93	Sample Analysis:	Select VOCs

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/11/2022	12:18	0.05		0	7.72								Clear	None
5/11/2022	12:28	0.05	0.5	0.5	8.07	6.67	2645.1	0.66	4.19	24.09	-161.3	1.39	Clear	None
5/11/2022	12:30	0.05	0.1	0.6	8.07	6.69	2654.7	0.21	7.98	23.84	-169.3	1.39	Clear	None
5/11/2022	12:32	0.05	0.1	0.7	8.07	6.63	2646.4	0.15	10.20	23.98	-171.9	1.39	Clear	None
5/11/2022	12:36	0.05	0.1	0.8	8.07	6.64	2640.9	0.15	9.19	24.00	-141.6	1.38	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
12:18	12:36	18	0.8	6.64	2640.9	0.15	9.19	24.00	-141.6



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Building M7-505 (SWMU 039)

Project No: 60610905

Sample ID: M505-MW0059-025.0-20220511

Sampler: Greg Kusel

Well ID: M505-MW0059 Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	4.74
Top of Screen (ft-BTOR):	22.5	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	27.5	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	26.6	Sample Analysis:	Select VOCs

Purge Infor	mation													
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/11/2022	11:50	0.05		0	4.74								Clear	None
5/11/2022	12:00	0.05	0.1	0.1	4.9	6.68	1149.5	0.18	13.82	25.80	-154.5	0.58	Clear	None
5/11/2022	12:02	0.05	0.1	0.2	4.9	6.74	1156.7	0.29	10.09	25.86	-144.6	0.58	Clear	None
5/11/2022	12:04	0.05	0.1	0.3	4.9	6.68	1156.5	0.20	7.93	25.81	-153.4	0.58	Clear	None
5/11/2022	12:06	0.05	0.1	0.4	4.9	6.66	1148.0	0.17	10.21	25.70	-158.6	0.58	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
11:50	12:06	16	0.4	6.66	1148.0	0.17	10.21	25.70	-158.6



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Operations and Checkout Building (SWMU 076)

Project No: 60610905

Sample ID: O_C-MW0005I-042.5-20220509

Sampler: Dustin Slater

O_C-MW0005I

Well Type: Monitoring Well

Remark:

Well ID:

Well Information			
Well Diameter (in.):	2	Static Water Level (ft-BTOR):	7.88
Top of Screen (ft-BTOR):	40	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	45	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	43.72	Sample Analysis:	VC Only

Purge Info	rmation	l e												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/9/2022	13:51			0	7.88								Clear	None
5/9/2022	14:11	0.05	1	1	7.9	6.7	1007	0.76	3.47	27.7	-62.8	0.45	Clear	None
5/9/2022	14:13	0.05	0.1	1.1	7.9	6.69	1013	0.65	2.97	27.6	-70.4	0.46	Clear	None
5/9/2022	14:15	0.05	0.1	1.2	7.9	6.68	1025	0.65	2.99	27.5	-74.1	0.51	Clear	None
5/9/2022	14:17	0.05	0.1	1.3	7.9	6.68	1028	0.74	2.76	27.5	-77	0.52	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
13:51	14:17	26	1.3	6.68	1028	0.74	2.76	27.5	-77



Kennedy Space Center IA LTM Event:

Industrial Area / Operations and Checkout Building (SWMU 076) Site Name:

60610905 Project No:

Sample ID: O_C-MW0007I-042.5-20220509

O_C-MW0007I

**Greg Kusel** Well Type: Monitoring Well

Sampler:

Remark:

Well ID:

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	4.76
Top of Screen (ft-BTOR):	40	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	45	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	45	Sample Analysis:	VC Only

Purge Info	mation													
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/9/2022	13:57			0	4.76								Gray	None
5/9/2022	14:12	0.1	1.5	1.5	5.03								Gray	None
5/9/2022	14:27	0.1	1.5	3.0	5.03	6.68	1434.2	0.21	456.81	26.71	-204.0	0.73	Gray	None
5/9/2022	14:42	0.05	0.75	3.75	4.87	7.15	1255.7	7.84	23.29	26.93	-183.7	0.63	Clear	None
5/9/2022	14:44	0.05	0.1	3.85	4.87	6.69	1408.6	0.24	18.41	26.80	-179.6	0.71	Clear	None
5/9/2022	14:46	0.05	0.1	3.95	4.87	6.65	1407.9	0.22	13.11	26.76	-184.1	0.71	Clear	None
5/9/2022	14:48	0.05	0.1	4.05	4.87	6.64	1408.5	0.16	7.60	26.68	-189.6	0.71	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
13:57	14:48	51	4.05	6.64	1408.5	0.16	7.60	26.68	-189.6



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Vertical Processing Facility (SWMU 077)

Project No: 60610905

Sample ID: VPF-IW0008I-020.0-20220512

Sampler: Greg Kusel

Well ID: VPF-IW0008I Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	2	Static Water Level (ft-BTOR):	2.78
Top of Screen (ft-BTOR):	15	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	25	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	23.43	Sample Analysis:	Select VOCs

Purge Info	mation	ı												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/12/2022	12:25	0.05		0	2.78								Clear	None
5/12/2022	12:35	0.05	0.5	0.5	2.91	6.51	11117.5	0.10	6.59	24.51	-226.0	6.40	Clear	None
5/12/2022	12:37	0.05	0.1	0.6	2.91	6.53	11300.9	0.09	6.55	24.58	-235.6	6.52	Clear	None
5/12/2022	12:39	0.05	0.1	0.7	2.91	6.53	11432.8	0.09	5.55	24.51	-243.0	6.6	Clear	None
5/12/2022	12:41	0.05	0.1	0.8	2.91	6.53	11561.9	0.08	5.55	24.58	-253.7	6.68	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	
12:25	12:41	16	0.8	6.53	11561.9	0.08	5.55	24.58	-253.7	



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Vertical Processing Facility (SWMU 077)

Project No: 60610905

Sample ID: VPF-IW0018I-023.0-20220512

Sampler: Greg Kusel

Well ID: VPF-IW0018I

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	4.65
Top of Screen (ft-BTOR):	18	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	28	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	30.04	Sample Analysis:	Select VOCs

Purge Infor	mation													
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH S (S.U.) (μS	5.C. 5/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/12/2022	11:03	0.05		0	4.65								Clear	None
5/12/2022	11:13	0.05	0.5	0.5	6.05	6.49 15	037.9	0.14	7.45	23.71	-135.7	8.87	Clear	None
5/12/2022	11:15	0.05	0.1	0.6	6.05	6.50 15	054.3	0.11	7.3	23.69	-141.6	8.88	Clear	None
5/12/2022	11:17	0.05	0.1	0.7	6.05	6.51 14	862.3	0.09	5.65	23.72	-145.2	8.76	Clear	None
5/12/2022	11:19	0.05	0.1	0.8	6.05	6.51 14	972.4	0.09	7.32	23.74	-145.6	8.83	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
11:03	11:19	16	0.8	6.51	14972.4	0.09	7.32	23.74	-145.6



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Vertical Processing Facility (SWMU 077)

Project No: 60610905

Sample ID: VPF-MW0021-030.0-20220512

Sampler: Dustin Slater

Well ID: VPF-MW0021

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	4.7
Top of Screen (ft-BTOR):	25	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	35	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	37.48	Sample Analysis:	Select VOCs

Purge Infor	mation	l .												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/12/2022	10:25			0	4.7								Clear	None
5/12/2022	10:45	0.05	1	1	4.75	6.71	27375	0.22	4.58	24.6	-77.2	16.93	Clear	None
5/12/2022	10:47	0.05	0.1	1.1	4.75	6.71	27355	0.21	4.07	24.7	-77.3	16.91	Clear	None
5/12/2022	10:49	0.05	0.1	1.2	4.75	6.71	27356	0.21	3.23	24.6	-77.3	16.93	Clear	None
5/12/2022	10:51	0.05	0.1	1.3	4.75	6.71	27344	0.2	2.87	24.6	-77.3	16.94	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
10:25	10:51	26	1.3	6.71	27344	0.2	2.87	24.6	-77.3



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Vertical Processing Facility (SWMU 077)

Project No: 60610905

Sample ID: VPF-MW0022-007.5-20220512

Sampler: Greg Kusel

Well ID: VPF-MW0022 Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	6.61
Top of Screen (ft-BTOR):	5	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	15	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	13.85	Sample Analysis:	Select VOCs

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/12/2022	10:33	0.05		0	6.61								Clear	None
5/12/2022	10:43	0.05	0.5	0.5	7.42	6.70	556.2	0.19	3.90	25.42	-165.0	0.27	Clear	None
5/12/2022	10:45	0.05	0.1	0.6	7.42	6.68	557.1	0.17	3.92	25.38	-165.9	0.27	Clear	None
5/12/2022	10:47	0.05	0.1	0.7	7.42	6.66	558.3	0.13	3.17	25.50	-169.3	0.27	Clear	None
5/12/2022	10:49	0.05	0.1	0.8	7.42	6.64	556.9	0.12	3.40	25.41	-171.2	0.27	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
10:33	10:49	16	0.8	6.64	556.9	0.12	3.40	25.41	-171.2



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Vertical Processing Facility (SWMU 077)

Project No: 60610905

Sample ID: VPF-MW0025-040.0-20220512

Sampler: Dustin Slater

VPF-MW0025 Well Type: Monitoring Well

Well ID: Remark:

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	6.06
Top of Screen (ft-BTOR):	35	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	45	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	44.76	Sample Analysis:	Select VOCs

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/12/2022	11:02			0	6.06								Clear	None
5/12/2022	11:22	0.05	1	1	6.31	6.73	44366	0.26	1.74	25.5	-50.7	28.34	Clear	None
5/12/2022	11:24	0.05	0.1	1.1	6.31	6.79	44320	0.26	1.65	25.4	-50.7	28.35	Clear	None
5/12/2022	11:26	0.05	0.1	1.2	6.31	6.79	44295	0.25	1.23	25.4	-50.8	28.36	Clear	None
5/12/2022	11:28	0.05	0.1	1.3	6.31	6.79	44309	0.25	1.07	25.4	-50.8	28.37	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
11:02	11:28	26	1.3	6.79	44309	0.25	1.07	25.4	-50.8



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Vertical Processing Facility (SWMU 077)

Project No: 60610905

Sample ID: VPF-MW0027-040.0-20220512

Sampler: Dustin Slater

Well ID: VPF-MW0027

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	5.8
Top of Screen (ft-BTOR):	35	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	45	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	44.20	Sample Analysis:	Select VOCs

Purge Infor	mation	l												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/12/2022	11:38			0	5.8								Clear	None
5/12/2022	11:58	0.05	1	1	5.97	6.85	42799	0.18	2.54	23.1	-110.1	28.8	Clear	None
5/12/2022	12:00	0.05	0.1	1.1	5.97	6.84	42976	0.18	2.09	23.1	-108.6	28.94	Clear	None
5/12/2022	12:02	0.05	0.1	1.2	5.97	6.84	43211	0.18	1.87	23.2	-107.8	29.11	Clear	None
5/12/2022	12:04	0.05	0.1	1.3	5.97	6.83	43223	0.18	1.43	23.2	-106.9	29.28	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
11:38	12:04	26	1.3	6.83	43223	0.18	1.43	23.2	-106.9



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Kennedy Athletic Recreation and Social (KARS) Park 1 (SWMU 084)

Project No: 60610905

Sample ID: KP1-MW0022-004.5-20220512

Sampler: Dustin Slater

Well ID: KP1-MW0022

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	3.38
Top of Screen (ft-BTOR):	2	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	12	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	12	Sample Analysis:	Lead

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/12/2022	7:31			0	3.38								Clear	None
5/12/2022	7:51	0.05	1	1	3.55	6.04	6613	0.34	8	23.2	-199.1	3.75	Clear	None
5/12/2022	7:53	0.05	0.1	1.1	3.55	6.04	6563	0.29	5.77	23.3	-200.6	3.72	Clear	None
5/12/2022	7:55	0.05	0.1	1.2	3.55	6.04	6561	0.26	6.44	23.4	-201.7	3.71	Clear	None
5/12/2022	7:57	0.05	0.1	1.3	3.55	6.03	6569	0.28	5.07	23.4	-203.1	3.7	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
7:31	7:57	26	1.3	6.03	6569	0.28	5.07	23.4	-203.1



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Space Station Processing Facility (SWMU 098)

Project No: 60610905

Sample ID: SSPF-MW0004-009.5-20220510

Sampler: Dustin Slater

Well ID: SSPF-MW0004

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	8.38
Top of Screen (ft-BTOR):	6	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	16	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	15.52	Sample Analysis:	Ammonia

Purge Infor	mation													
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/10/2022	15:03			0	8.38								Clear	None
5/10/2022	15:13	0.05	0.5	0.5	8.54	6.04	552	0.12	2.88	26.5	-220	0.26	Clear	None
5/10/2022	15:15	0.05	0.1	0.6	8.54	6.05	553	0.1	2.23	26.5	-223.2	0.26	Clear	None
5/10/2022	15:17	0.05	0.1	0.7	8.54	6.06	554	0.09	1.87	26.4	-225.2	0.26	Clear	None
5/10/2022	15:19	0.05	0.1	0.8	8.54	6.06	555	0.09	1.76	26.6	-228	0.26	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
15:03	15:19	16	0.8	6.06	555	0.09	1.76	26.6	-228



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Space Station Processing Facility (SWMU 098)

Project No: 60610905

Sample ID: SSPF-MW0006-010.0-20220510

Sampler: Greg Kusel

Well ID: SSPF-MW0006 Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	9.48
Top of Screen (ft-BTOR):	6	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	16	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	15.71	Sample Analysis:	Ammonia

Purge Info	mation	ı												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/10/2022	14:25	0.05		0	9.48								Clear	None
5/10/2022	14:35	0.05	0.5	0.5	9.61	6.24	930.1	0.48	15.09	25.78	-183.6	0.46	Clear	None
5/10/2022	14:37	0.05	0.1	0.6	9.61	6.27	928.2	0.19	9.11	25.79	-201.6	0.46	Clear	None
5/10/2022	14:39	0.05	0.1	0.7	9.61	6.42	915.7	1.48	16.42	25.65	-176.4	0.46	Clear	None
5/10/2022	14:41	0.05	0.1	0.8	9.61	6.40	911.3	0.34	11.52	25.62	-193.1	0.45	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
14:25	14:41	16	0.8	6.40	911.3	0.34	11.52	25.62	-193.1



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Space Station Processing Facility (SWMU 098)

Project No: 60610905

Sample ID: SSPF-MW0013-021.0-20220510

Sampler: Greg Kusel

Well ID: SSPF-MW0013 Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	10.04
Top of Screen (ft-BTOR):	16	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	26	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	26	Sample Analysis:	Ammonia

Purge Info	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/10/2022	15:43	0.05		0	10.04								Clear	None
5/10/2022	15:53	0.05	0.5	0.5	10.12	7.10	0.1	8.14	51.38	25.01	-165.5	0	Clear	None
5/10/2022	15:55	0.05	0.1	0.6	10.13	6.77	777.7	0.37	55.19	24.86	-190.4	0.39	Clear	None
5/10/2022	15:57	0.05	0.1	0.7	10.13	6.76	749.6	0.16	55.55	24.82	-201.2	0.37	Clear	None
5/10/2022	15:59	0.05	0.1	0.8	10.13	6.76	742.2	0.17	54.44	24.85	-205.2	0.37	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
15:43	15:59	16	0.8	6.76	742.2	0.17	54.44	24.85	-205.2



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Space Station Processing Facility (SWMU 098)

Project No: 60610905

Sample ID: SSPF-MW0014-008.0-20220510

Sampler: Dustin Slater

Well ID: SSPF-MW0014

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	6.83
Top of Screen (ft-BTOR):	6	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	16	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	15.71	Sample Analysis:	Ammonia

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/10/2022	15:30			0	6.83								Clear	None
5/10/2022	15:52	0.07	1.5	1.5	7.04	6.37	776	0.32	2.82	27.5	-288.3	0.36	Clear	None
5/10/2022	15:54	0.07	0.14	1.64	7.04	6.37	774	0.29	2.14	27.5	-288.5	0.36	Clear	None
5/10/2022	15:56	0.07	0.14	1.78	7.04	6.37	773	0.28	1.87	27.6	-288.5	0.36	Clear	None
5/10/2022	15:58	0.07	0.14	1.92	7.04	6.36	773	0.27	1.65	27.7	-288.9	0.36	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
15:30	15:58	28	1.92	6.36	773	0.27	1.65	27.7	-288.9



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Space Station Processing Facility (SWMU 098)

Project No: 60610905

Sample ID: SSPF-MW0016-016.0-20220510

Sampler: Greg Kusel

Well ID: SSPF-MW0016 Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	6.49
Top of Screen (ft-BTOR):	11	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	21	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	20.48	Sample Analysis:	Ammonia

Purge Info	mation	ı												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/10/2022	15:10	0.05		0	6.49								Clear	None
5/10/2022	15:20	0.05	0.5	0.5	6.55	6.14	641.0	0.12	19.11	25.77	-351.8	0.32	Clear	None
5/10/2022	15:22	0.05	0.1	0.6	6.55	6.16	644.9	0.10	15.72	26.04	-355.4	0.32	Clear	None
5/10/2022	15:24	0.05	0.1	0.7	6.55	6.18	643.4	0.09	11.40	26.03	-358.0	0.32	Clear	None
5/10/2022	15:26	0.05	0.1	0.8	6.55	6.20	647.5	0.11	11.57	26.08	-362.7	0.32	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
15:10	15:26	16	0.8	6.20	647.5	0.11	11.57	26.08	-362.7



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / CITGO Service Station (SWMU 093)

Project No: 60610905

Sample ID: CGO-MW0006-025.0-20220511

Sampler: Greg Kusel

Well ID: CGO-MW0006 Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	5.5
Top of Screen (ft-BTOR):	22.5	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	27.5	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	26.59	Sample Analysis:	Select VOCs and Select PAHs

Purge Info	mation	ı												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/11/2022	13:18	0.05		0	5.5								Clear	None
5/11/2022	13:28	0.05	0.5	0.5	5.74	6.33	217.7	0.11	7.19	25.82	-151.4	0.10	Clear	None
5/11/2022	13:30	0.05	0.1	0.6	5.74	6.26	218.1	0.10	7.58	25.77	-158.4	0.10	Clear	None
5/11/2022	13:37	0.05	0.1	0.7	5.74	6.22	219.4	0.11	8.92	25.73	-162.0	0.11	Clear	None
5/11/2022	13:39	0.05	0.1	0.8	5.74	6.19	223.4	0.10	8.50	25.70	-174.5	0.11	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
13:18	13:39	21	0.8	6.19	223.4	0.10	8.50	25.70	-174.5



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / CITGO Service Station (SWMU 093)

Project No: 60610905

Sample ID: CGO-MW0018-025.0-20220511

Sampler: Dustin Slater

Well ID: CGO-MW0018

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	3.39
Top of Screen (ft-BTOR):	22.5	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	27.5	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	26.85	Sample Analysis:	Select VOCs

Purge Infor	mation	l												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/11/2022	13:10			0	3.39								Clear	None
5/11/2022	13:20	0.05	0.1	0.1	3.52	5.86	249.5	0.33	2.78	27.5	-125.4	0.12	Clear	None
5/11/2022	13:22	0.05	0.1	0.2	3.52	5.88	262.4	0.37	2.11	27.6	-131.1	0.12	Clear	None
5/11/2022	13:24	0.05	0.1	0.3	3.52	5.9	270.7	0.38	1.76	27.7	-135.3	0.13	Clear	None
5/11/2022	13:26	0.05	0.1	0.4	3.52	5.91	273.5	0.42	1.43	27.7	-136.4	0.13	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
13:10	13:26	16	0.4	5.91	273.5	0.42	1.43	27.7	-136.4



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / CITGO Service Station (SWMU 093)

Project No: 60610905

Sample ID: CGO-MW0019-025.0-20220511

Sampler: Dustin Slater

Well ID: CGO-MW0019

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	2.84
Top of Screen (ft-BTOR):	22.5	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	27.5	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	26.81	Sample Analysis:	Select VOCs

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/11/2022	13:32			0	2.87								Clear	None
5/11/2022	13:52	0.05	1	1	3.8	6.28	270.7	0.39	10.5	26.9	-100.5	0.13	Clear	None
5/11/2022	13:54	0.05	0.1	1.1	3.8	6.26	273.6	0.43	10.4	26.9	-104.6	0.13	Clear	None
5/11/2022	13:56	0.05	0.1	1.2	3.8	6.24	274.2	0.43	6.12	26.8	-106.1	0.13	Clear	None
5/11/2022	13:58	0.05	0.1	1.3	3.8	6.24	274.5	0.41	4.56	26.8	-106.1	0.13	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	
13:32	13:58	26	1.3	6.24	274.5	0.41	4.56	26.8	-106.1	



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Fuel Storage Area #1 Underground Storage Tank [Building 1044] (PRL 157)

Project No: 60610905

Sample ID: FSA1-MW0001-005.5-20220509

Sampler: Dustin Slater

Well ID: FSA1-MW0001

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	0.75	Static Water Level (ft-BTOR):	4.82
Top of Screen (ft-BTOR):	2	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	12	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	11.63	Sample Analysis:	Select VOCs, Select PAHs, TPH

Purge Infor	mation	l												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/9/2022	11:44			0	4.85								Clear	None
5/9/2022	11:54	0.05	0.5	0.5	N/A	6.7	1160	0.67	4.66	27.3	-124.9	55	Clear	None
5/9/2022	11:56	0.05	0.1	0.6	N/A	6.7	1170	0.69	4.12	27.4	-125.1	0.55	Clear	None
5/9/2022	11:58	0.05	0.1	0.7	N/A	6.7	1173	0.68	3.76	27.3	-125.3	0.56	Clear	None
5/9/2022	12:00	0.05	0.1	0.8	N/A	6.7	1179	0.66	1.93	27.3	-125.6	0.56	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
11:44	12:00	16	0.8	6.7	1179	0.66	1.93	27.3	-125.6



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Fuel Storage Area #1 Underground Storage Tank [Building 1044] (PRL 157)

Project No: 60610905

Sample ID: FSA1-MW0002-005.0-20220509

Sampler: Dustin Slater

Well ID: FSA1-MW0002

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	0.75	Static Water Level (ft-BTOR):	4.19
Top of Screen (ft-BTOR):	2	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	12	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	11.73	Sample Analysis:	Select VOCs, Select PAHs, TPH

Purge Info	rmation													
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/9/2022	12:12			0	4.2								Clear	None
5/9/2022	12:27	0.05	0.75	0.75	N/A	6.77	963	0.79	9.61	26.8	-115.3	0.46	Clear	None
5/9/2022	12:29	0.05	0.1	0.85	N/A	6.76	962	0.69	6.87	27.1	-114.3	0.45	Clear	None
5/9/2022	12:31	0.05	0.1	0.95	N/A	6.75	955	0.62	5.98	27.2	-114	0.45	Clear	None
5/9/2022	12:33	0.05	0.1	1.05	N/A	6.75	954	0.55	4.87	27.2	-113.9	0.45	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
12:12	12:33	21	1.05	6.75	954	0.55	4.87	27.2	-113.9



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Fuel Storage Area #1 Underground Storage Tank [Building 1044] (PRL 157)

Project No: 60610905

Sample ID: FSA1-MW0012R-006.0-20220509

Sampler: Dustin Slater

Well ID: FSA1-MW0012R

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	5.04
Top of Screen (ft-BTOR):	3	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	13	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	12.60	Sample Analysis:	Select VOCs, Select PAHs, TPH

Purge Info	rmation													
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/9/2022	10:25			0	5.02								Clear	None
5/9/2022	10:45	0.05	1	1	5.18	7.38	419.3	0.36	13.1	26.7	-135	0.2	Clear	None
5/9/2022	10:47	0.05	0.1	1.1	5.18	7.38	419.4	0.33	4	26.7	-137.9	0.2	Clear	None
5/9/2022	10:49	0.05	0.1	1.2	5.18	7.38	419.2	0.27	3.54	26.6	-140.3	0.2	Clear	None
5/9/2022	10:51	0.05	0.1	1.3	5.18	7.38	418.3	0.25	3.82	26.5	-142	0.2	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
10:25	10:51	26	1.3	7.38	418.3	0.25	3.82	26.5	-142



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Fuel Storage Area #1 Underground Storage Tank [Building 1044] (PRL 157)

Project No: 60610905

Sample ID: FSA1-MW0014-006.0-20220509

Sampler: Dustin Slater

Well ID: FSA1-MW0014

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	2	Static Water Level (ft-BTOR):	5.13
Top of Screen (ft-BTOR):	2	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	12	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	12.08	Sample Analysis:	Select VOCs, Select PAHs, TPH

Purge Info	rmation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/9/2022	11:02			0	5.15								Clear	None
5/9/2022	11:27	0.05	1.25	1.25	5.2	6.95	441.1	0.62	5.32	27.2	-111.7	0.2	Clear	None
5/9/2022	11:29	0.05	0.1	1.35	5.2	6.96	441.7	0.61	4.55	27.2	-112.2	0.2	Clear	None
5/9/2022	11:31	0.05	0.1	1.45	5.2	6.96	442.7	0.58	4.07	27.3	-112.4	0.2	Clear	None
5/9/2022	11:33	0.05	0.1	1.55	5.2	6.96	443.8	0.62	3.65	27.4	-112.6	0.2	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
11:02	11:33	31	1.55	6.96	443.8	0.62	3.65	27.4	-112.6



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Fuel Storage Area #1 Underground Storage Tank [Building 1044] (PRL 157)

Project No: 60610905

Sample ID: FSA1-MW0017A-006.5-20220509

Sampler: Dustin Slater

Well ID: FSA1-MW0017A

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	2	Static Water Level (ft-BTOR):	5.43
Top of Screen (ft-BTOR):	3	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	13	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	13.26	Sample Analysis:	Select VOCs, Select PAHs, TPH

Purge Info	rmation	l												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/9/2022	9:46			0	5.45								Clear	None
5/9/2022	10:06	0.06	1.25	1.25	5.58	6.81	798	0.28	16	26.9	-133.2	0.38	Clear	None
5/9/2022	10:08	0.06	0.12	1.37	5.58	6.81	802	0.25	11.5	27	-132	0.38	Clear	None
5/9/2022	10:10	0.06	0.12	1.49	5.58	6.81	807	0.26	9.87	27	-132.2	0.38	Clear	None
5/9/2022	10:12	0.06	0.12	1.61	5.58	6.81	811	0.31	8.65	27.1	-132	0.38	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	
9:46	10:12	26	1.61	6.81	811	0.31	8.65	27.1	-132	



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Fuel Storage Area #1 Underground Storage Tank [Building 1044] (PRL 157)

Project No: 60610905

Sample ID: FSA1-MW0021-005.0-20220509

Sampler: Greg Kusel

Well ID: FSA1-MW0021 Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	4.19
Top of Screen (ft-BTOR):	2	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	12	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	11.65	Sample Analysis:	Select VOCs, Select PAHs, TPH

Purge Info	mation													
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/9/2022	11:40			0	4.19								Clear	None
5/9/2022	11:50	0.05	0.5	0.5	4.91	6.78	761.2	0.57	23.55	25.70	-219.1	0.38	Clear	None
5/9/2022	11:52	0.05	0.1	0.6	4.91	6.76	759.4	0.26	46.46	25.72	-224.1	0.38	Clear	None
5/9/2022	11:54	0.05	0.1	0.7	4.91	6.73	748.4	0.16	7.52	25.82	-228.9	0.37	Clear	None
5/9/2022	11:56	0.05	0.1	0.8	4.91	6.71	739.5	0.11	16.83	25.90	-233.8	0.37	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
11:40	11:56	16	0.8	6.71	739.5	0.11	16.83	25.90	-233.8



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Fuel Storage Area #1 Underground Storage Tank [Building 1044] (PRL 157)

Project No: 60610905

Sample ID: FSA1-MW0022R-006.5-20220509

FSA1-MW0022R

Sampler: Greg Kusel
Well Type: Monitoring Well

Well ID: Remark:

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	5.83
Top of Screen (ft-BTOR):	3	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	13	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	12.55	Sample Analysis:	Select VOCs, Select PAHs, TPH

Purge Info	mation													
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/9/2022	10:35			0	5.83								Clear	None
5/9/2022	10:45	0.05	0.5	0.5	6.11	7.07	648.2	0.23	32.47	25.45	-242.2	0.32	Clear	None
5/9/2022	10:47	0.05	0.1	0.6	6.11	7.08	645.4	0.29	248.46	25.44	-237.1	0.32	Clear	None
5/9/2022	10:49	0.05	0.1	0.7	6.11	7.08	639.7	0.17	82.95	25.43	-239.1	0.31	Clear	None
5/9/2022	10:51	0.05	0.1	0.8	6.11	7.08	637.6	0.18	33.20	25.38	-238.4	0.31	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
10:35	10:51	16	0.8	7.08	637.6	0.18	33.20	25.38	-238.4



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Fuel Storage Area #1 Underground Storage Tank [Building 1044] (PRL 157)

Project No: 60610905

Sample ID: FSA1-MW0023-006.0-20220509

Sampler: Greg Kusel

Well ID: FSA1-MW0023 Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	5.05
Top of Screen (ft-BTOR):	2	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	12	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	11.81	Sample Analysis:	Select VOCs, Select PAHs, TPH

Purge Info	mation	l e												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/9/2022	12:10	0.05		0	5.05								Clear	None
5/9/2022	12:20	0.05	0.05	0.05	5.9	6.68	664.6	0.68	8.97	25.22	-214.8	0.33	Clear	None
5/9/2022	12:22	0.05	0.1	0.15	5.9	6.66	655.9	0.23	7.96	25.19	-222.7	0.32	Clear	None
5/9/2022	12:24	0.05	0.1	0.25	5.9	6.66	633.4	0.18	11.86	25.18	-226.9	0.31	Clear	None
5/9/2022	12:26	0.05	0.1	0.35	5.9	6.65	624.4	0.16	7.28	25.13	-229.7	0.31	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
12:10	12:26	16	0.35	6.65	624.4	0.16	7.28	25.13	-229.7



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Fuel Storage Area #1 Underground Storage Tank [Building 1044] (PRL 157)

Project No: 60610905

Sample ID: FSA1-MW0027-020.0-20220509

Sampler: Greg Kusel

Well ID: FSA1-MW0027 Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	6.15
Top of Screen (ft-BTOR):	14.5	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	24.5	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	23.92	Sample Analysis:	Select VOCs, Select PAHs, TPH

Purge Info	mation	l												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/9/2022	11:05			0	6.15								Clear	None
5/9/2022	11:15	0.05	0.5	0.5	6.25	7.05	840.2	0.13	31.24	25.66	-317.3	0.42	Clear	None
5/9/2022	11:17	0.05	0.1	0.6	6.25	7.05	864.7	0.11	22.44	25.68	-324.9	0.43	Clear	None
5/9/2022	11:19	0.05	0.1	0.7	6.25	7.03	869.3	0.10	15.21	25.70	-329.8	0.43	Clear	None
5/9/2022	11:21	0.05	0.1	0.8	6.25	7.05	870.1	0.09	12.07	25.81	-333.4	0.43	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
11:05	11:21	16	0.8	7.05	870.1	0.09	12.07	25.81	-333.4



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area / Fuel Storage Area #1 Underground Storage Tank [Building 1044] (PRL 157)

Project No: 60610905

Sample ID: FSA1-MW0028-020.0-20220509

Sampler: Greg Kusel

Well ID: FSA1-MW0028 Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	5.95
Top of Screen (ft-BTOR):	15	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	25	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	25	Sample Analysis:	Select VOCs, Select PAHs, TPH

Purge Info	mation													
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
5/9/2022	10:00			0	5.95								Clear	None
5/9/2022	10:10	0.05	0.5	0.5	6.01	7.33	2014.8	0.20	16.96	25.18	-329.3	1.04	Clear	None
5/9/2022	10:12	0.05	0.1	0.6	6.01	7.33	2137.1	0.15	14.90	25.27	-335.8	1.11	Clear	None
5/9/2022	10:14	0.05	0.1	0.7	6.01	7.34	2207.7	0.12	8.17	25.19	-344.6	1.15	Clear	None
5/9/2022	10:16	0.05	0.1	0.8	6.01	7.35	2280.5	0.10	6.50	25.22	-349.7	1.18	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
10:00	10:16	16	0.8	7.35	2280.5	0.10	6.50	25.22	-349.7



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0013-003.5-20221108

Sampler: Dustin Slater

Well ID: GSSP-MW0013

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	2.22
Top of Screen (ft-BTOR):	5	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	15	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	15	Sample Analysis:	Select VOCs

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/8/2022	14:11			0	2.22								Clear	None
11/8/2022	14:31	0.05	1	1	2.57	6.44	481.6	0.16	4.67	26.41	-361.7	0.23	Clear	None
11/8/2022	14:34	0.05	0.15	1.15	2.57	6.45	484.3	0.18	5.75	26.14	-362.5	0.24	Clear	None
11/8/2022	14:37	0.05	0.15	1.30	2.57	6.45	488.3	0.20	8.25	26.07	-362.9	0.24	Clear	None
11/8/2022	14:40	0.05	0.15	1.45	2.57	6.48	491.6	0.13	9.64	26.01	-358.4	0.24	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
14:11	14:40	29	1.45	6.48	491.6	0.13	9.64	26.01	-358.4

Sampler:

**Greg Kusel** 



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0019-020.0-20221108

GSSP-MW0019 Well Type: Monitoring Well

Remark:

Well ID:

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	3.2
Top of Screen (ft-BTOR):	15	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	25	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	25	Sample Analysis:	Select VOCs

Purge Infor	mation													
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/8/2022	15:08	0.1		0	3.2								Clear	None
11/8/2022	15:18	0.1	1	1	3.21	6.94	731.8	0.07	1.86	27.04	-219.0	0.36	Clear	None
11/8/2022	15:20	0.1	0.2	1.2	3.21	6.94	732.7	0.07	1.69	27.14	-218.4	0.36	Clear	None
11/8/2022	15:22	0.1	0.2	1.4	3.21	6.96	732.7	0.06	1.69	27.06	-220.6	0.36	Clear	None
11/8/2022	15:24	0.1	0.2	1.6	3.21	6.96	732.7	0.06	1.68	26.93	-223.3	0.36	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	
15:08	15:24	16	1.6	6.96	732.7	0.06	1.68	26.93	-223.3	



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0020-030.0-20221108

Sampler: Greg Kusel

Well ID: GSSP-MW0020 Well Type:

e: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	3.23
Top of Screen (ft-BTOR):	25	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	35	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	35	Sample Analysis:	Select VOCs

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/8/2022	14:39	0.1		0	3.23								Clear	None
11/8/2022	14:49	0.1	1	1	3.24	6.92	763.9	0.09	15.65	25.87	-212.5	0.38	Clear	None
11/8/2022	14:51	0.1	0.2	1.2	3.24	6.92	764.2	0.09	17.43	25.80	-213.0	0.38	Clear	None
11/8/2022	14:53	0.1	0.2	1.4	3.24	6.93	764.8	0.09	12.12	25.82	-214.7	0.38	Clear	None
11/8/2022	14:55	0.1	0.2	1.6	3.24	6.92	764.6	0.09	14.36	25.79	-212.8	0.38	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	
14:39	14:55	16	1.6	6.92	764.6	0.09	14.36	25.79	-212.8	



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0024R-020.0-20221108

Sampler: Greg Kusel

Well ID: GSSP-MW0024R Well T

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):		Static Water Level (ft-BTOR):	1.55
Top of Screen (ft-BTOR):	15	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	25	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	25	Sample Analysis:	Select VOCs, Naphthalene

Purge Infor	mation	l												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/8/2022	13:20	0.1		0	1.55								Clear	None
11/8/2022	13:30	0.1	1	1	N/A	6.79	625.0	0.14	1.52	25.30	-240.4	0.31	Clear	None
11/8/2022	13:32	0.1	0.2	1.2	N/A	6.79	624.5	0.10	1.65	25.27	-242.4	0.31	Clear	None
11/8/2022	13:34	0.1	0.2	1.4	N/A	6.79	616.6	0.09	1.44	25.26	-243.3	0.30	Clear	None
11/8/2022	13:36	0.1	0.2	1.6	N/A	6.80	622.6	0.09	1.40	25.30	-246.2	0.31	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
13:20	13:36	16	1.6	6.80	622.6	0.09	1.40	25.30	-246.2

Sampler:

**Greg Kusel** 



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0034-006.0-20221108

GSSP-MW0034 Well Type: Monitoring Well

Remark:

Well ID:

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	5.28
Top of Screen (ft-BTOR):	5	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	15	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	15	Sample Analysis:	Select VOCs

Purge Infor	mation													
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/8/2022	12:13	0.1		0	5.28								Clear	None
11/8/2022	12:23	0.1	1	1	5.51	6.00	391.1	0.10	1.17	24.79	-214.9	0.19	Clear	None
11/8/2022	12:25	0.1	0.2	1.2	5.51	5.99	392.0	0.10	1.11	24.70	-220.2	0.19	Clear	None
11/8/2022	12:27	0.1	0.1	1.3	5.51	6.00	392.0	0.09	1.10	24.86	-215.0	0.19	Clear	None
11/8/2022	12:29	0.1	0.2	1.5	5.51	5.99	383.0	0.09	1.10	24.79	-217.8	0.19	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	
12:13	12:29	16	1.5	5.99	383.0	0.09	1.10	24.79	-217.8	



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0035-020.0-20221108

Sampler: Greg Kusel

Well ID: GSSP-MW0035

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	5.23
Top of Screen (ft-BTOR):	15	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	25	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	25	Sample Analysis:	Select VOCs, Naphthalene

Purge Infor	mation													
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/8/2022	12:39	0.1		0	5.23								Clear	None
11/8/2022	12:49	0.1	1	1	5.24	6.71	728.1	0.08	1.43	24.17	-197.5	0.36	Clear	None
11/8/2022	12:51	0.1	0.2	1.2	5.24	6.72	728.2	0.08	1.71	24.21	-199.0	0.36	Clear	None
11/8/2022	12:53	0.1	0.2	1.4	5.24	6.72	728.3	0.08	1.45	24.23	-199.6	0.36	Clear	None
11/8/2022	12:55	0.1	0.2	1.6	5.24	6.73	727.0	0.08	1.78	24.13	-201.4	0.36	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
12:39	12:55	16	1.6	6.73	727.0	0.08	1.78	24.13	-201.4



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0036-035.0-20221108

Sampler: Greg Kusel

Well ID: GSSP-MW0036 Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	5.29
Top of Screen (ft-BTOR):	30	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	40	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	40	Sample Analysis:	Select VOCs

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/8/2022	11:50	0.1		0	5.29								Clear	None
11/8/2022	12:00	0.1	1	1	5.3	6.72	942.9	0.10	1.24	23.83	-168.2	0.47	Clear	None
11/8/2022	12:02	0.1	0.2	1.2	5.3	6.70	946.8	0.09	1.32	23.82	-168.7	0.47	Clear	None
11/8/2022	12:04	0.1	0.2	1.4	5.3	6.70	949.7	0.09	1.57	23.87	-168.8	0.47	Clear	None
11/8/2022	12:06	0.1	0.2	1.6	5.3	6.70	951.6	0.08	5.17	23.80	-169.3	0.47	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
11:50	12:06	16	1.6	6.70	951.6	0.08	5.17	23.80	-169.3



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0044R-030.0-20221108

Sampler: Dustin Slater

Well ID: GSSP-MW0044R

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	3.9
Top of Screen (ft-BTOR):	25	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	35	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	35	Sample Analysis:	Select VOCs

Purge Infor	mation	l												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/8/2022	14:47			0	3.9								Clear	None
11/8/2022	15:07	0.05	1	1	4.04	7.01	573.4	0.16	0.97	26.18	-208.5	0.28	Clear	None
11/8/2022	15:09	0.05	0.1	1.1	4.04	7.00	579.2	0.14	0.85	26.37	-211.0	0.28	Clear	None
11/8/2022	15:11	0.05	0.1	1.2	4.04	6.99	579.6	0.14	0.79	26.38	-211.2	0.28	Clear	None
11/8/2022	15:13	0.05	0.1	1.3	4.04	6.98	580.3	0.14	0.65	26.42	-211.4	0.28	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
14:47	15:13	26	1.3	6.98	580.3	0.14	0.65	26.42	-211.4



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0053-020.0-20221108

Sampler: Greg Kusel

Well ID: GSSP-MW0053

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	3.12
Top of Screen (ft-BTOR):	15	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	25	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	25	Sample Analysis:	Select VOCs, Naphthalene

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/8/2022	13:54	0.1		0	3.12								Clear	None
11/8/2022	14:21	0.1	0.2	0.2	3.13	6.95	837.3	0.11	11.21	26.58	-238.7	0.42	Clear	None
11/8/2022	14:22	0.1	0.2	0.8	3.13	6.95	836.8	0.06	13.16	26.61	-239.4	0.42	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
13:54	14:22	28	0.8	6.95	836.8	0.06	13.16	26.61	-239.4



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0059-018.5-20221108

Sampler: Dustin Slater

Well ID: GSSP-MW0059 Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	3.88
Top of Screen (ft-BTOR):	16	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	21	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	21	Sample Analysis:	Select VOCs

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/8/2022	12:27			0	3.88								Clear	None
11/8/2022	12:47	0.05	1	1	3.99	6.82	791.1	0.11	5.52	26.85	-356.3	0.39	Clear	None
11/8/2022	12:49	0.05	0.1	1.1	3.99	6.82	790.7	0.11	7.39	26.89	-357.4	0.39	Clear	None
11/8/2022	12:51	0.05	0.1	1.2	3.99	6.83	791.0	0.11	5.69	26.91	-358.5	0.39	Clear	None
11/8/2022	12:53	0.05	0.1	1.3	3.99	6.82	789.6	0.11	4.80	26.83	-359.1	0.39	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
12:27	12:53	26	1.3	6.82	789.6	0.11	4.80	26.83	-359.1



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0060-012.5-20221108

Sampler: Dustin Slater

GSSP-MW0060 Well Type: Monitoring Well

Remark:

Well ID:

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	4.15
Top of Screen (ft-BTOR):	10	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	15	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	15	Sample Analysis:	Select VOCs

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/8/2022	13:03			0	4.15								Clear	None
11/8/2022	13:23	0.05	1	1	4.27	6.37	498.9	0.20	4.77	26.78	-311.8	0.24	Clear	None
11/8/2022	13:25	0.05	0.1	1.1	4.27	6.36	488.1	0.20	5.91	26.75	-313.0	0.24	Clear	None
11/8/2022	13:27	0.05	0.1	1.2	4.27	6.37	504.9	0.21	5.60	26.79	-314.0	0.25	Clear	None
11/8/2022	13:29	0.05	0.1	1.3	4.27	6.37	508.0	0.20	3.65	26.87	-314.2	0.25	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
13:03	13:29	26	1.3	6.37	508.0	0.20	3.65	26.87	-314.2



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0061-018.5-20221108

Sampler: Dustin Slater

Well ID: GSSP-MW0061

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	4.3
Top of Screen (ft-BTOR):	16	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	21	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	21	Sample Analysis:	Select VOCs

Purge Infor	mation	l												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/8/2022	13:37			0	4.3								Clear	None
11/8/2022	13:57	0.05	1	1	4.42	6.82	769.4	0.13	1.77	26.67	-328.7	0.38	Clear	None
11/8/2022	13:59	0.05	0.1	1.1	4.42	6.82	765.5	0.13	1.54	26.61	-327.8	0.38	Clear	None
11/8/2022	14:01	0.05	0.1	1.2	4.42	6.82	763.8	0.13	1.23	26.62	-327.7	0.38	Clear	None
11/8/2022	14:03	0.05	0.1	1.3	4.42	6.82	760.3	0.13	1.16	26.62	-338.0	0.38	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	
13:37	14:03	26	1.3	6.82	760.3	0.13	1.16	26.62	-338.0	



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0062-012.5-20221108

Sampler: Dustin Slater

Well ID: GSSP-MW0062 Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	2.99
Top of Screen (ft-BTOR):	10	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	15	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	15	Sample Analysis:	Select VOCs

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/8/2022	10:38			0	2.99								Clear	None
11/8/2022	10:58	0.05	1	1	3.08	6.82	545.1	0.18	4.61	27.31	-272.8	0.27	Clear	None
11/8/2022	11:00	0.05	0.1	1.1	3.08	6.82	548.4	0.16	4.23	27.31	-277.3	0.27	Clear	None
11/8/2022	11:02	0.05	0.1	1.2	3.08	6.83	529.0	0.16	3.67	27.22	-278.7	0.26	Clear	None
11/8/2022	11:04	0.05	0.1	1.3	3.08	6.83	531.2	0.14	3.17	27.25	-282.8	0.27	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	
10:38	11:04	26	1.3	6.83	531.2	0.14	3.17	27.25	-282.8	



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/General Services Administration Seized Property (SWMU 95)

Project No: 60610905

Sample ID: GSSP-MW0063-018.5-20221108

Sampler: Dustin Slater

Well ID: GSSP-MW0063

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	3.08
Top of Screen (ft-BTOR):	16	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	21	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	21	Sample Analysis:	Select VOCs

Purge Infor	mation													
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/8/2022	11:45			0	3.08								Clear	None
11/8/2022	12:05	0.05	1	1	3.31	6.94	616.0	0.16	1.18	26.46	-261.6	0.30	Clear	None
11/8/2022	12:07	0.05	0.1	1.1	3.31	6.91	617.8	0.15	3.00	26.69	-262.1	0.30	Clear	None
11/8/2022	12:09	0.05	0.1	1.2	3.31	6.91	617.7	0.15	0	26.63	-262.7	0.30	Clear	None
11/8/2022	12:11	0.05	0.1	1.3	3.31	6.90	616.3	0.15	0	26.60	-263.4	0.30	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
11:45	12:11	26	1.3	6.90	616.3	0.15	0	26.60	-263.4



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/Environmental Health Facility (SWMU 079)

Project No: 60610905

Sample ID: EHF-MW0001-025.0-20221115

Sampler: Dustin Slater

Well ID: EHF-MW0001

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	2	Static Water Level (ft-BTOR):	4.21
Top of Screen (ft-BTOR):	20	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	30	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	30	Sample Analysis:	Vinyl Chloride

Purge Infor	mation	l												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/15/2022	10:04			0	4.21								Clear	None
11/15/2022	10:24	0.05	1	1	4.32	6.92	779.4	0.18	6.41	26.76	-235.1	0.39	Clear	None
11/15/2022	10:26	0.05	0.1	1.1	4.32	6.92	781.1	0.17	4.33	26.73	-237.6	0.39	Clear	None
11/15/2022	10:28	0.05	0.1	1.2	4.32	6.91	783.2	0.17	3.09	26.80	-239.6	0.39	Clear	None
11/15/2022	10:30	0.05	0.1	1.3	4.32	6.92	783.6	0.17	3.80	26.81	-239.7	0.39	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
10:04	10:30	26	1.3	6.92	783.6	0.17	3.80	26.81	-239.7



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/Environmental Health Facility (SWMU 079)

Project No: 60610905

Sample ID: EHF-MW0004-017.5-20221115

Sampler: Dustin Slater

EHF-MW0004

Well Type: Monitoring Well

Well ID: Remark:

Well Information			
Well Diameter (in.):	0.75	Static Water Level (ft-BTOR):	0.99
Top of Screen (ft-BTOR):	15	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	20	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	20	Sample Analysis:	Vinyl Chloride

Purge Infor	mation													
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/15/2022	11:22			0	0.99								Clear	None
11/15/2022	11:42	0.05	1	1	1.23	7.04	3065.0	0.13	18.50	26.12	-273.2	1.62	Clear	None
11/15/2022	11:44	0.05	0.1	1.1	1.23	7.04	3037.1	0.13	12.27	26.10	-273.8	1.60	Clear	None
11/15/2022	11:46	0.05	0.1	1.3	1.23	7.04	3097.6	0.12	10.31	25.98	-276.4	1.64	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
11:22	11:46	24	1.3	7.04	3097.6	0.12	10.31	25.98	-276.4



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/Environmental Health Facility (SWMU 079)

Project No: 60610905

Sample ID: EHF-MW0005-020.0-20221115

Sampler: Dustin Slater

Well ID: EHF-MW0005

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	0.75	Static Water Level (ft-BTOR):	0.69
Top of Screen (ft-BTOR):	15	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	25	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	25	Sample Analysis:	Vinyl Chloride

Purge Infor	mation	1												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/15/2022	10:43			0	0.69								Clear	None
11/15/2022	11:03	0.05	1	1	1.13	6.90	718.7	0.14	0.16	25.54	-240.2	0.35	Clear	None
11/15/2022	11:05	0.05	0.1	1.1	1.13	6.92	720.5	0.14	0	25.63	-241.5	0.36	Clear	None
11/15/2022	11:07	0.05	0.1	1.2	1.13	6.91	723.5	0.13	0	25.76	-242.8	0.36	Clear	None
11/15/2022	11:09	0.05	0.1	1.3	1.13	6.91	724.4	0.14	0	25.78	-242.9	0.36	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
10:43	11:09	26	1.3	6.91	724.4	0.14	0	25.78	-242.9



Event: Kennedy Space Center IA LTM

Site Name: Industrial Area/Engineering Development Laboratory (SWMU 085)

Project No: 60610905

Sample ID: EDL-MW0004-035.0-20221115

Sampler: Dustin Slater

Well ID: EDL-MW0004

Well Type: Monitoring Well

Well Information			
Well Diameter (in.):	0.75	Static Water Level (ft-BTOR):	5.03
Top of Screen (ft-BTOR):	30	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	40	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	40	Sample Analysis:	Vinyl Chloride

Purge Infor	mation													
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)		Depth To Water (ft)	pH (S.U.)	S.C. (μS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/15/2022	12:33			0	5.03								Clear	None
11/15/2022	12:53	0.05	1	1	5.17	7.14	4418.3	0.24	0	26.18	-185.1	2.39	Clear	None
11/15/2022	12:55	0.05	0.1	1.1	5.17	7.13	4421.2	0.21	0.28	26.39	-185.4	2.39	Clear	None
11/15/2022	12:57	0.05	0.1	1.2	5.17	7.12	4448.6	0.21	0	26.49	-185.5	2.40	Clear	None
11/15/2022	12:59	0.05	0.1	1.3	5.17	7.13	4434.3	0.21	0	26.49	-185.6	2.39	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
12:33	12:59	26	1.3	7.13	4434.3	0.21	0	26.49	-185.6



Event: Kennedy Space Center IA LTM

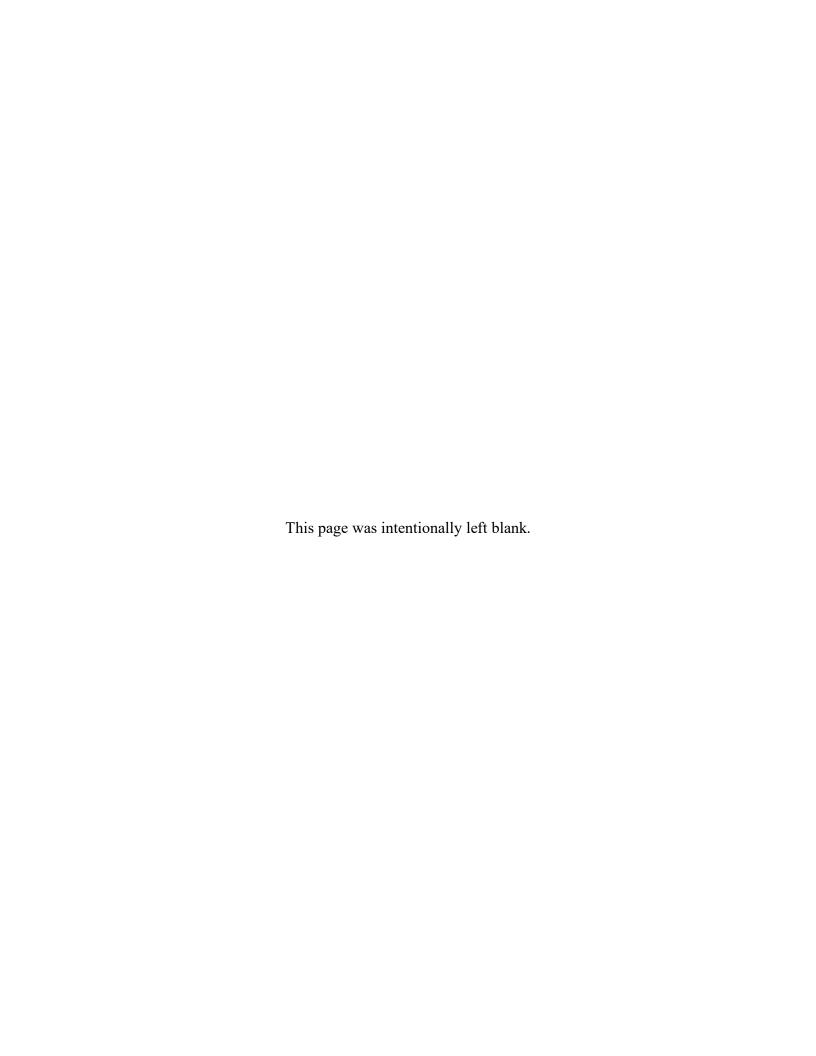
Site Name: Industrial Area/Engineering Development Laboratory (SWMU 085)

Project No: 60610905

Sample ID: EDL-MW0006R-035.0-20221115

Sampler: Dustin Slater

EDL-MW0006R


Well Type: Monitoring Well

Well ID: Remark:

Well Information			
Well Diameter (in.):	1	Static Water Level (ft-BTOR):	6.45
Top of Screen (ft-BTOR):	30	H/S PID Monitor Reading (ppm):	0
Bottom of Screen (ft-BTOR):	40	Purge/Sample Method:	Low flow - peristalic
Total Depth of Well (ft-BTOR):	40	Sample Analysis:	Vinyl Chloride

Purge Infor	mation	l												
Date	Time	Purge Rate (gal/min)	Volume Purged (gal)	Cum Vol Purged (gal)	Depth To Water (ft)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)	Salinity (S.U.)	Color	Odor
11/15/2022	13:09			0	6.45								Clear	None
11/15/2022	13:29	0.05	1	1	6.67	7.45	3667.6	0.24	7.32	26.97	-221.8	1.96	Clear	None
11/15/2022	13:31	0.05	0.1	1.1	6.67	7.44	3700.3	0.21	0.24	26.93	-224.2	1.98	Clear	None
11/15/2022	13:33	0.05	0.1	1.2	6.67	7.44	3720.7	0.21	0.04	26.88	-225.1	1.99	Clear	None
11/15/2022	13:35	0.05	0.1	1.3	6.67	7.43	3727.0	0.20	1.43	26.91	-225.2	1.99	Clear	None

Start Purge	End Purge	Duration (min)	Total Vol (gal)	pH (S.U.)	S.C. (µS/cm)	DO (mg/l)	Turbidity (NTUs)	Temp (C)	ORP (mV)
13:09	13:35	26	1.3	7.43	3727.0	0.20	1.43	26.91	-225.2



### APPENDIX D

RIS COMPLETION TICKETS

**Completion Ticket** 

On 10/15/2021 at 10:40 AM the following files were submitted to Tetra Tech

COMPLETION_AECOM_IA_20211014.txt

LITHOLOGY_AECOM_IA_20211014.txt

LOCATION_AECOM_IA_20211014.txt

PROJECT_AECOM_IA_20211014.txt

RESULT_AECOM_IA_20211014.txt

SAMPLE_AECOM_IA_20211014.txt

WATER_AECOM_IA_20211014.txt

The following comment was provided with this submission:

Hello - attached is the September 2021 Industrial Area LTM data for ORSY, KP1, HMF, and IDW. If you have any questions let me know. thanks! Jennifer Chastain

If you need to identify this session at a later date you may use the Ticket Key:

TetraTechExternalClientsProtectedDataRepository20211015_5855713810_kedd_AECOM

You may print this page by clicking on the "Print This Page" button
Thank you for using the Data Checker, to upload more files click the "Data Checker" link in the
menu.

Print this Page

© 2021 - Tetra Tech Inc.

### **Completion Ticket**

On 5/23/2023 at 10:43 AM the following files were submitted to Tetra Tech

COMPLETION_AECOM_IA_20230523.txt

LITHOLOGY_AECOM_IA_20230523.txt

LOCATION_AECOM_IA_20230523.txt

PROJECT_AECOM_IA_20230523.txt

RESULT_AECOM_IA_20230523.txt

SAMPLE_AECOM_IA_20230523.txt

WATER_AECOM_IA_20230523.txt

The following comment was provided with this submission:

Hello - attached are November 2021 IA LTM files. Please let me know if there are any questions or issues. thank you! Jennifer Chastain

If you need to identify this session at a later date you may use the Ticket Key:

### TetraTechExternalClientsProtectedDataRepository2023523_3907574759_kedd_AECOM

You may print this page by clicking on the "Print This Page" button
Thank you for using the Data Checker, to upload more files click the "Data Checker" link in the
menu.

Print this Page

### **Completion Ticket**

On 5/23/2023 at 10:19 AM the following files were submitted to Tetra Tech

COMPLETION_AECOM_IA_20230522.txt

LITHOLOGY_AECOM_IA_20230522.txt

LOCATION_AECOM_IA_20230522.txt

PROJECT_AECOM_IA_20230522.txt

RESULT_AECOM_IA_20230522.txt

SAMPLE_AECOM_IA_20230522.txt

WATER_AECOM_IA_20230522.txt

The following comment was provided with this submission:

Hello TT! Attached are the Industrial Area LTM samples from May and November 2022. There are also three wells from FSA1 that were installed by HGL. I included all the info I could find. If you have any questions or issues please let me know. thank you! Jennifer Chastain

If you need to identify this session at a later date you may use the Ticket Key:

TetraTechExternalClientsProtectedDataRepository2023523_79277196_kedd_AECOM

You may print this page by clicking on the "Print This Page" button
Thank you for using the Data Checker, to upload more files click the "Data Checker" link in the
menu.

Print this Page

### **Completion Ticket**

On 6/8/2023 at 11:01 AM the following files were submitted to Tetra Tech

COMPLETION_AECOM_IA_20230519.txt

LITHOLOGY_AECOM_IA_20230519.txt

LOCATION_AECOM_IA_20230519.txt

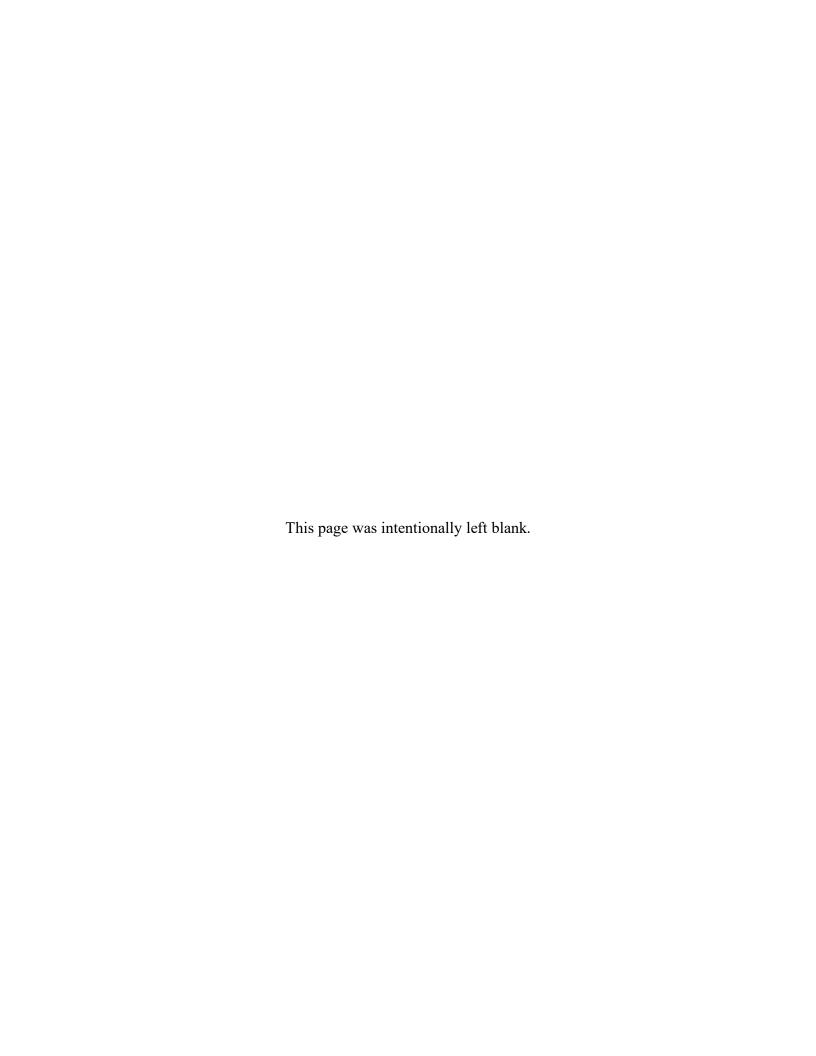
PROJECT_AECOM_IA_20230519.txt

RESULT_AECOM_IA_20230519.txt

SAMPLE_AECOM_IA_20230519.txt

WATER_AECOM_IA_20230519.txt

The following comment was provided with this submission:


Hello Tetra Tech! Thank you for the help on this upload. Attached are the Industrial Area EDL, EHF, and RRLF January and March 2023 DPT results. If there are any issues please let me know. thank you! Jennifer Chastain

If you need to identify this session at a later date you may use the Ticket Key:

TetraTechExternalClientsProtectedDataRepository202368_5208294132_kedd_AECOM

You may print this page by clicking on the "Print This Page" button
Thank you for using the Data Checker, to upload more files click the "Data Checker" link in the
menu.

Print this Page



# APPENDIX E LABORATORY ANALYTICAL DATA

10775 Central Port Drive Orlando FL, 32824

Phone: 407.826.5314 FAX: 407.850.6945

Friday, September 24, 2021
AECOM Technical Services, Inc. (SE004)
Attn: Teresa Amentt Jennings
150 N. Orange Ave, Suite 200
Orlando, FL 32801

RE: Laboratory Results for

Project Number: 60610905.Subs 2021-23-Subs 2021-23, Project Name/Desc: NASA KSC

ENCO Workorder(s): AE07198

Dear Teresa Amentt Jennings,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Thursday, September 16, 2021.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Orlando. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

K. Oglnicki

Sincerely,

Kaitlin Dylnicki

Project Manager

Enclosure(s)



### SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: ORSY-EX	C-MW0001I-022.5-2021091	Lab ID: AE07198-01	Sampled: 09/16/21 12:35	Received: 09/16/21 13:40
Parameter EPA 8260D	Preparation EPA 5030B_MS	Hold Date/Time(s) 09/30/21	Prep Date/Time(s) 09/23/21 10:32	Analysis Date/Time(s) 09/24/21 00:29
Client ID: ORSY-EX	C-MW0003I-022.5-2021091	Lab ID: AE07198-02	Sampled: 09/16/21 12:13	Received: 09/16/21 13:40
6 Darameter	Preparation	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
Parameter EPA 8260D	EPA 5030B_MS	09/30/21	09/23/21 10:32	09/24/21 00:57
EPA 8260D	<del></del>		<del></del>	<del></del>
EPA 8260D	EPA 5030B_MS	09/30/21	09/23/21 10:32	09/24/21 00:57



### **SAMPLE DETECTION SUMMARY**

Client ID: ORSY-EXC-MW0001I-022.5-20210916	Lab ID: AE07198-01									
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>			
1,2,4-Trichlorobenzene	0.73	I	0.70	1.0	ug/L	EPA 8260D				



Work Order: AE07198

### **ANALYTICAL RESULTS**

**Description:** ORSY-EXC-MW0001I-022.5-20210916 **Lab Sample ID:** AE07198-01 **Received:** 09/16/21 13:40

Matrix:Ground WaterSampled: 09/16/21 12:35Work Order: AE07198

Project: NASA KSC Sampled By: Greg Kusel/Dustin Slater

### **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
1,2,3-Trichlorobenzene [87-61-6]^	0.86	U	ug/L	1	0.86	1.0	1I23022	EPA 8260D	09/24/21 00:29	nmc	
1,2,4-Trichlorobenzene [120-82-1]^	0.73	I	ug/L	1	0.70	1.0	1I23022	EPA 8260D	09/24/21 00:29	nmc	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Rec</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	45	1	50.0	90 %	41-1	142	1I23022	EPA 8260D	09/24/21 00:29	nmc	
Dibromofluoromethane	51	1	50.0	102 %	<i>53</i> -1	146	1123022	EPA 8260D	09/24/21 00:29	nmc	

**Description:** ORSY-EXC-MW0003I-022.5-20210916 **Lab Sample ID:** AE07198-02 **Received:** 09/16/21 13:40

Matrix: Ground Water Sampled: 09/16/21 12:13

Project: NASA KSC Sampled By: Greg Kusel/Dustin Slater

#### Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<b>Analyzed</b>	By	<u>Notes</u>
1,2,3-Trichlorobenzene [87-61-6]^	0.86	U	ug/L	1	0.86	1.0	1I23022	EPA 8260D	09/24/21 00:57	nmc	
1,2,4-Trichlorobenzene [120-82-1]^	0.70	U	ug/L	1	0.70	1.0	1I23022	EPA 8260D	09/24/21 00:57	nmc	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	46	1	50.0	91 %	41	142	<i>1123022</i>	EPA 8260D	09/24/21 00:57	nmc	
Dibromofluoromethane	<i>52</i>	1	50.0	103 %	53-	146	1123022	EPA 8260D	09/24/21 00:57	nmc	
	52	-	30.0	105 70	55 .	10	1123022	2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	05/2 1/21 00101		

**Description:** ORSY-TB-20210916-01 **Lab Sample ID:** AE07198-03 **Received:** 09/16/21 13:40

Matrix: Ground Water Sampled: 09/16/21 08:00 Work Order: AE07198

Project: NASA KSC Sampled By: Greg Kusel/Dustin Slater

### Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
1,2,3-Trichlorobenzene [87-61-6]^	0.86	U	ug/L	1	0.86	1.0	1I23022	EPA 8260D	09/24/21 01:26	nmc	
1,2,4-Trichlorobenzene [120-82-1]^	0.70	U	ug/L	1	0.70	1.0	1I23022	EPA 8260D	09/24/21 01:26	nmc	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Rec</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
<u>Surrogates</u> 4-Bromofluorobenzene	<u>Results</u> 46	<u><b>DF</b></u> 1	<u>Spike Lvl</u> 50.0	<u>% Rec</u> 91 %	<u>% Rec</u> 41-1		<u>Batch</u> 1123022	<u>Method</u> EPA 8260D	<u>Analyzed</u> 09/24/21 01:26	<u>By</u> nmc	<u>Notes</u>
		<u>DF</u> 1 1				142	· · · · · · · · · · · · · · · · · · ·		<u> </u>		<u>Notes</u>
4-Bromofluorobenzene	46	<u>DF</u> 1 1 1	50.0	91 %	41-1	142 146	1123022	EPA 8260D	09/24/21 01:26	nmc	<u>Notes</u>



### **QUALITY CONTROL DATA**

### Volatile Organic Compounds by GCMS - Quality Control

47

### Batch 1I23022 - EPA 5030B_MS

Blank (1I23022-BLK1)

Toluene-d8

<u>Analyte</u>	Result	Flag	<u>POL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
1,2,3-Trichlorobenzene	0.86	U	1.0	ug/L							
1,2,4-Trichlorobenzene	0.70	U	1.0	ug/L							
4-Bromofluorobenzene	47			ug/L	50.0		94	41-142			-
Dibromofluoromethane	<i>53</i>			ug/L	50.0		106	53-146			

50.0

Prepared: 09/23/2021 10:32 Analyzed: 09/23/2021 22:34

41-146

LCS (1123022-BS1) Prepared: 09/23/2021 10:32 Analyzed: 09/23/2021 20:11

ug/L

Analyte	Result	Flag	POL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
1,2,3-Trichlorobenzene	24		1.0	ug/L	20.0		120	43-168			
1,2,4-Trichlorobenzene	21		1.0	ug/L	20.0		105	52-159			
4-Bromofluorobenzene	47			ug/L	50.0		94	41-142			
Dibromofluoromethane	50			ug/L	50.0		100	<i>53-146</i>			
Toluene-d8	46			ug/L	50.0		93	41-146			

 Matrix Spike (1123022-MS1)
 Prepared: 09/23/2021 10:32 Analyzed: 09/23/2021 20:40

Source: AE06854-01

Analyte	Result	<u>Flag</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1,2,3-Trichlorobenzene	21		1.0	ug/L	20.0	0.86 U	107	43-168			
1,2,4-Trichlorobenzene	20		1.0	ug/L	20.0	0.70 U	98	52-159			
4-Bromofluorobenzene	46			ug/L	50.0		92	41-142			
Dibromofluoromethane	50			ug/L	50.0		101	<i>53-146</i>			
Toluene-d8	50			ug/L	50.0		100	41-146			

 Matrix Spike Dup (1I23022-MSD1)
 Prepared: 09/23/2021 10:32 Analyzed: 09/23/2021 21:08

Source: AE06854-01

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	Units	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>Notes</u>
1,2,3-Trichlorobenzene	21		1.0	ug/L	20.0	0.86 U	104	43-168	3	26	
1,2,4-Trichlorobenzene	18		1.0	ug/L	20.0	0.70 U	92	52-159	6	24	
4-Bromofluorobenzene	46			ug/L	50.0		91	41-142			
Dibromofluoromethane	50			ug/L	50.0		101	<i>53-146</i>			
Toluene-d8	47			ug/L	50.0		93	41-146			



### **FLAGS/NOTES AND DEFINITIONS**

- **PQL** PQL: Practical Quantitation Limit. The PQL presented is the laboratory MRL.
  - **B** Results are based upon membrane filter colony counts that are outside the method indicated ideal range.
  - The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).
  - J Estimated value.
  - K Off-scale low; Actual value is known to be less than the value given.
  - **L** Off-scale high; Actual value is known to be greater than value given.
  - **M** Presence of analyte is verified but not quantified; the actual value is less than the MRL but greater than the MDL.
  - **N** Presumptive evidence of presence of material.
  - **O** Sampled, but analysis lost or not performed.
  - **Q** Sample exceeded the accepted holding time.
  - **T** Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only and shall not be used in statistical analysis.
- **U** Indicates that the compound was analyzed for but not detected.
- **V** Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
- **Z** Too many colonies were present (TNTC); the numeric value represents the filtration volume.
- ? Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
- * Not reported due to interference.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.

AE07198

																				100	' ' '	<u> </u>
•			CHAIN OF	CUSTODY AND ANA	LYTICAL RE	QUEST RE	CORD	)		COC No.					Page:	1	of	1				
		Project Name:	NASA KSC							PO No.					Project No. 6	50610905.Su	bs 2021-23-	Subs 2021-23	Phase:			
	<u>CO</u> )	Site Location:	Orsino Storage Ya	rd						Send Inv	voice To:	Instruct	ions in MS/	4 # 195-24	548-GV03			EDD to:	Jennifer (	Chastain	Cc: Teresa Ar	mentt Jennings
		TO No.: 80KSC	019F0071	AECOM Project Manager:		Chris Marsh	all			Deliver S	Sample Kits	To:	AECOM [	Depot, 523	18th Street	et, Orland	D	Report to:	Jennifer (	Chastain	Cc: Teresa Ar	mentt Jennings
Sampler/Phon	e #	Greg Kusel / (77	72) 631-7426	Dustin Slater / (407) 766-0	1747					Deliver S	Samples To	:	ENCO					Site-Spicific	WS#15 fr	om QAPP:	15-30	
Lab Name:		ENCO	<del></del>		Turnaround Tin	ne(specify):		Standard	14 day	Samp	le Analy	ysis Re	equeste	d (Enter	r numbe	er of con	tainers	for each	test)			
Lab ID	Sample ID	·		Location ID	Date	Time (Military)	Matrix Code		G=Grab	(3)	HCI											
	(sys_samp_			(sys_loc_code)	(YYYYMMDD)	(hhmm)	(1)	(2)	C=Comp	Total No. of Containers	1,2,3-TCB & 1,2,4-TCB by SW8260B								:			Comments
	ORSY-EX		28.5 - 20210416 6669	ORSY-EXC-MW0001I	202109 /6	1235	WG	N	G	3	3		-	† ·						1		
				ORSY-EXC-MW0003I	202109/6	1213	WG	N	G	3	3			†				1				<u> </u>
		202109/6 ~		ORSY-TB O /	202109/6	0800	wQ	ТВ	G	276	27											
										- 6												
								-	-			İ		1								
	<del> </del>		· ·						<u> </u>	1												
											1		<u> </u>	†					1			
														<u> </u>	1					†		+
													<b></b>	<u> </u>	_					<u> </u>	<del> </del>	
									ļ				+	<del>  -</del>	<del> </del>		-	1		<del> </del>	-	
<u> </u>	<del></del> -						<del> </del>		-	<del> </del>			+	1	<u> </u>	-					-	<del>                                     </del>
					-								-	<del>                                     </del>	ļ	-	-		-			
Field Comm	er OAPP WS			Date	Time	Lab Comm		re)				Date		Time			of cooler	Sample Ships in shipmen	t: <i>j</i>	d Deliver	y Details	
1	LUUM.	Ž	0	9/13/21 11	:50	Received by	ren	1/14	rel		4	1/16	121	970	0	Shipping						
2 / 2	Ted	Mul		Date 19/13/21 11 14/16/21 1	340	2 2	OR				9	107	n	340	)	Tracking	No:					
3	-0	-		<u>-</u>	- #: OF F-1	3	100	ν •		- TDIII -	-0 75311 1		15 5	on Dunalizati	MA - Mact	Date Sh		EC-Comer	t/Concrete	CE-Cod		

5M3R7 0,100

⁽¹⁾ AA=Ambient air, AQ=Air quality control, ASB-Asbestos, CK=Caulk, DS=Storm drain sediment, GS-Soil gas, IC=IDW Concrete, IDD=IDW Soild, IDS=IDW soil, IDS=IDW water, LF=Free Product, MA=Mastic, PC=Frant Chips, SC=Central Chips,

⁽²⁾ Sample Type: AB=Ambient Blk, EB=Equipment Blk, FB=Field Blk, FD=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Trip Blk

⁽³⁾ Preservative added: 4 DEG C=Cool to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C H2SO4=Hydrogen sulfate, H2SO4 <2=Adjust to pH < 2 with sulfuric acid, H3PO4 =Phosphoric acid, H3PO4 <2=Adjust to pH <2 with phosphoric acid, HC <2=Adjust to pH < 2 with phosphoric acid, H3PO4 =Phosphoric acid, H3PO4 <2=Adjust to pH <2 with phosphoric acid, HAO4S=Sodium bisulfate preservation, HNO3 <2=Adjust to pH < 2 with nitric acid, MeOH=Methanol preservation, Na2O3S2 3/gal=Add 3 mL 10% sodium thiosulfate per I-gal, Na2O3S2 4/4oz=4 drops of 10% sodium thiosulfate to 4 oz, NaHSO4 <2=Adjust to pH < 2 with sodium hydrogen sulfate, NaOH >12=Adjust to pH > 12 with sodium hydroxide, NaOH >9=Adjust to pH >9 with sodium hydroxide, VitC 0.6/500=0.6 g of ascorbic acid to 500mLs, ZnAct 2/500=Add 2 mL of zinc acetate to 500mLs, Rev 8/19

10775 Central Port Drive Orlando FL, 32824

Phone: 407.826.5314 FAX: 407.850.6945

Wednesday, September 29, 2021 AECOM Technical Services, Inc. (SE004) Attn: Teresa Amentt Jennings 150 N. Orange Ave, Suite 200 Orlando, FL 32801

RE: Laboratory Results for

Project Number: 60610905, Project Name/Desc: NASA KSC

ENCO Workorder(s): AE07200

Dear Teresa Amentt Jennings,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Wednesday, September 22, 2021.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Orlando. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

K. Oglnicki

Sincerely,

Kaitlin Dylnicki

Project Manager

Enclosure(s)



### SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: HMF-NLP	-IW0004I-037.5-20210922	Lab ID: AE07200-01	Sampled: 09/22/21 09:37	Received: 09/22/21 15:00
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	10/06/21	09/27/21 00:00	09/27/21 13:05
Client ID: HMF-MW	0006IR-037.5-20210922	Lab ID: AE07200-02	Sampled: 09/22/21 10:19	Received: 09/22/21 15:00
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	10/06/21	09/27/21 00:00	09/27/21 13:34
Client ID: HMF-TB-2	20210922	Lab ID: AE07200-03	Sampled: 09/22/21 09:30	Received: 09/22/21 15:00
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	10/06/21	09/27/21 00:00	09/27/21 14:02



### **SAMPLE DETECTION SUMMARY**

Client ID: HMF-NLP-IW0004I-037.5-20210922			Lab ID: AE(	7200-01			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Trichlorofluoromethane	1300		47	50	ug/L	EPA 8260D	



Work Order: AE07200

Work Order: AE07200

### **ANALYTICAL RESULTS**

**Description:** HMF-NLP-IW0004I-037.5-20210922 **Lab Sample ID:** AE07200-01 **Received:** 09/22/21 15:00

Matrix: Ground WaterSampled: 09/22/21 09:37Work Order: AE07200

Project: NASA KSC Sampled By: Greg Kusel/Dustin Slater

### **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Trichlorofluoromethane [75-69-4]^	1300		ug/L	50	47	50	1I27008	EPA 8260D	09/27/21 13:05	nmc	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	46	1	50.0	91 %	41-1	142	1127008	EPA 8260D	09/27/21 13:05	nmc	
Dibromofluoromethane	48	1	50.0	97 %	53-1	146	1127008	EPA 8260D	09/27/21 13:05	nmc	
Toluene-d8	44	1	50.0	89 %	41-1	146	1127008	EPA 8260D	09/27/21 13:05	nmc	

**Description:** HMF-MW0006IR-037.5-20210922 **Lab Sample ID:** AE07200-02 **Received:** 09/22/21 15:00

Matrix: Ground Water Sampled: 09/22/21 10:19

Project: NASA KSC Sampled By: Greg Kusel/Dustin Slater

### Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	<u>DF</u>	MDL_	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
Trichlorofluoromethane [75-69-4]^	0.94	U	ug/L	1	0.94	1.0	1I27008	EPA 8260D	09/27/21 13:34	nmc	
Surregatos	Bosulta	DF	Spike Lvl	% Rec	% Rec	l imita	Patch	Method	Analyzad	D.,	Notos
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvi</u>	<u> 70 KEC</u>	90 KEC 1	LIIIILS	<u>Batch</u>	<u>methou</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	46	1	50.0	92 %	41-14	2	1127008	EPA 8260D	09/27/21 13:34	nmc	
Dibromofluoromethane	49	1	50.0	99 %	53-14	6	1127008	EPA 8260D	09/27/21 13:34	nmc	
Toluene-d8	45	1	50.0	90 %	41-14	6	1127008	EPA 8260D	09/27/21 13:34	nmc	

**Description:** HMF-TB-20210922 **Lab Sample ID:** AE07200-03 **Received:** 09/22/21 15:00

**Matrix:** Water **Sampled:** 09/22/21 09:30

Project: NASA KSC Sampled By: ENCO ORL

### **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Trichlorofluoromethane [75-69-4]^	0.94	U	ug/L	1	0.94	1.0	1I27008	EPA 8260D	09/27/21 14:02	nmc	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	% Rec	<u>Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	49	1	50.0	98 %	41-14	2	1127008	EPA 8260D	09/27/21 14:02	nmc	
Dibromofluoromethane	51	1	50.0	102 %	53-14	6	1127008	EPA 8260D	09/27/21 14:02	nmc	
Toluene-d8	46	1	50.0	93 %	41-14	6	1127008	EPA 8260D	09/27/21 14:02	nmc	



### **QUALITY CONTROL DATA**

### Volatile Organic Compounds by GCMS - Quality Control

### Batch 1127008 - EPA 5030B_MS

Blank (	(1I27008-BLK1)	Prepared: 09/27/2021 00:00 Analyzed: 09/27/2021 10:42
---------	----------------	-------------------------------------------------------

Ana	<u>lyte</u>	<u>Result</u>	<u>Flag</u>	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
Trichlorofluoromethane		0.94	U	1.0	ug/L							
4-Bromofluorobenzene		47			ug/L	50.0		94	41-142			
Dibromofluoromethane		48			ug/L	50.0		97	<i>53-146</i>			
Toluene-d8		45			ug/L	50.0		91	41-146			
	LCS (1I27008-BS1)		Prepared: 09/27/2021 00:00 Analyzed: 09/27/2021 08:18									

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	Units	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
Trichlorofluoromethane	25		1.0	ug/L	20.0		126	56-155			
4-Bromofluorobenzene	50			ug/L	50.0		100	41-142			
Dibromofluoromethane	50			ug/L	50.0		99	<i>53-146</i>			
Toluene-d8	48			ua/L	50.0		96	41-146			

Matrix Spike (1127008-MS1) Prepared: 09/27/2021 00:00 Analyzed: 09/27/2021 08:47

Source: AE07615-01

<u>Analyte</u>	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Trichlorofluoromethane	24		1.0	ug/L	20.0	0.94 U	118	56-155			
4-Bromofluorobenzene	51			ug/L	50.0		101	41-142			
Dibromofluoromethane	50			ug/L	50.0		100	<i>53-146</i>			
Toluene-d8	48			ug/L	50.0		96	41-146			

Matrix Spike Dup (1127008-MSD1) Prepared: 09/27/2021 00:00 Analyzed: 09/27/2021 09:16

Source: AE07615-01

Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD <u>Limit</u>	Notes
Trichlorofluoromethane	24		1.0	ug/L	20.0	0.94 U	120	56-155	1	22	<u>Notes</u>
4-Bromofluorobenzene	51			ug/L	50.0		101	41-142			
Dibromofluoromethane	51			ug/L	50.0		103	<i>53-146</i>			
Toluene-d8	49			ug/L	50.0		97	41-146			



### **FLAGS/NOTES AND DEFINITIONS**

- **PQL** PQL: Practical Quantitation Limit. The PQL presented is the laboratory MRL.
  - **B** Results are based upon membrane filter colony counts that are outside the method indicated ideal range.
  - The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).
  - J Estimated value.
  - K Off-scale low; Actual value is known to be less than the value given.
  - **L** Off-scale high; Actual value is known to be greater than value given.
  - **M** Presence of analyte is verified but not quantified; the actual value is less than the MRL but greater than the MDL.
  - **N** Presumptive evidence of presence of material.
  - **O** Sampled, but analysis lost or not performed.
  - **Q** Sample exceeded the accepted holding time.
  - **T** Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only and shall not be used in statistical analysis.
- **U** Indicates that the compound was analyzed for but not detected.
- **V** Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
- **Z** Too many colonies were present (TNTC); the numeric value represents the filtration volume.
- ? Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
- * Not reported due to interference.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.

Λ	_		-	-
$\Delta$		0	11	(A)
	C	()-	1	00

																	1100	1 00	_
		CHAIN OF	CUSTODY AND ANA	LYTICAL RE	QUEST RE	CORD			COC No.				Page:	1	of	1			
	=	Project Name: NASA KSC							PO No.				Project No.	60610905.Su	ubs 2021-2	3-Subs 2021-23	Phase:		
	رت	Site Location: Hypergol Maintena	nce Facility South						Send Invoice To: Instructions in MSA # 19S-24548-GV03					3		EDD to:	to: Jennifer Chastain Cc: Teresa Amentt		
		TO No.: 80KSC019F0071	AECOM Project Manager:		Chris Marsh	all			Deliver Sample Kits To: AECOM Depot, 523 18th					eet, Orlando	D	Report to:	Jennifer Chastain	Cc: Teresa Ar	mentt Jennings
Sampler/Phor	ne #	Greg Kusel / (772) 631-7426	Dustin Slater / (407) 766-0	747					Deliver S	amples To		ENCO				Site-Spicific V	VS#15 from QAPP:	15-32	
Lab Name:		ENCO		Turnaround Tin	ne(specify):		Standard	14 day	Samp	le Analy	sis Req	uested (Ente	er numbe	er of con	tainers	for each te	st)		
Lab ID	Sample ID		Location ID	Date	Time (Military)	Matrix Code	Type	G=Grab	(3)	4 DEG C	HCL								
	(sys_samp	(37.5-20216972_	(sys_loc_code)	(YYYYMMDD)	(hhmm)	(1)	(2)	C=Comp	Total No. of Containers	Trichlorofluoromethane by SW8260B	Trichlorofluoromethane by SW8260B								Comments
	Spring beneath of the section of the	-IW0004I <del>-202109</del>	HMF-NLP-IW0004I	20210912	0937	WG	N	G	6	3	3								
	HMF-MW	00061R-202109 1- 202109 22	HMF-MW0006IR	20210972	1019	wg	N	G	6	3	3								
	нмғ-тв-2	20210972	нмғ-тв	20210927	0930	wQ	ТВ	G	6	3	3								
Field Com		#15-32. UNPRESERVED VIALS & F	PRESERVED VIALS. Analy	ze preserved if	Lab Comm no headspac		dspa <mark>d</mark> e, a	nalyze un	preserve	i.				Number o		Sample Shipment:	nent and Delivery	Details	
Relinquished	y signatu voluni	re)	Date 9/13/21 11	Time 1725 Y∞	Received by	ksignature	ielle	>		9/	Date 22/21	Time 0700		Samples Shipping (		eck) Yes	No		
2 /	Works	9	12 H	Y∞	2	EN)				onle	22/2	1 15:	00	Tracking N	35				
(1) AA-Ami	nient air AO	=Air quality control. ASB=Asbestos. C	K=Caulk DS=Storm drain se	ediment GS=Soil	nas IC=IDW	Concrete	TDD=TDV	V Solid ID	S=IDW so	I TOW=II	OW Water					SC=Cement/C	oncrete SF=Sedim	ent SI =Slud	ne SO=Soil

Med Red 195 4.9°C

⁽¹⁾ AA=Ambient air, AQ=Air quality control, ASB=Asbestos, CK=Caulk, DS=Storm drain sediment, GS=Soll gas, IC=IDW Corfcrete, IDD=IDW Solld, IDS=IDW soil, IDW=IDW Water, LF=Free Product, MA=Mastic, PC=Paint Chips, SC=Cement/Concrete, SE=Sediment, SL=Sludge, SO=Soil SQ=Soil/Solid quality control, SSD=Subsurface sediment, SU=Surface soil (<6 in), SW=Swab or wipe, TA=Animal tissue, TQ=Tissue quality control, WG=Ground water, WL=Leachate, WO=Ocean water, WQ=Water quality control, WR=Ground water effluent, WS=Surface water, WU=Storm water, WU=Storm water, WQ=Water quality control, WR=Ground water water, WU=Storm water, WU=Storm water, WQ=Water quality control, WR=Ground water water, WU=Storm water, W

⁽²⁾ Sample Type: AB=Ambient Blk, EB=Equipment Blk, FB=Field Blk, FD=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Trip Blk

⁽³⁾ Preservative added: 4 DEG C=Cool to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C H2SO4=Hydrogen sulfate, H2SO4 <2=Adjust to pH < 2 with sulfuric acid, H3PO4=Phosphoric acid, H3PO4 <2=Adjust to pH < 2 with phrosphoric acid, HNO3 <2=Adjust to pH < 2 with nitric acid, MeOH=Methanol preservation, Na2O352=Sodium thiosulfate preservation, HNO3 <2=Adjust to pH < 2 with nitric acid, MeOH=Methanol preservation, Na2O352=Sodium thiosulfate preservation, HNO3 <2=Adjust to pH < 2 with sodium hydroxide, Na2O352 3/gal=Add 3 mL 10% sodium thiosulfate preservation, Na2O352 4/4oz=4 drops of 10% sodium thiosulfate to 4 oz, NaHSO4 <2=Adjust to pH < 2 with sodium hydroxide, NaOH >9=Adjust to pH > 9 with sodium hydroxide, NaOH >9=Adjust to pH >9 with sodium hydroxide,

10775 Central Port Drive Orlando FL, 32824

Phone: 407.826.5314 FAX: 407.850.6945

Friday, September 24, 2021
AECOM Technical Services, Inc. (SE004)
Attn: Teresa Amentt Jennings
150 N. Orange Ave, Suite 200
Orlando, FL 32801

RE: Laboratory Results for

Project Number: 60610905.Subs 2021-23-Subs 2021-23, Project Name/Desc: NASA KSC

ENCO Workorder(s): AE07199

Dear Teresa Amentt Jennings,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Thursday, September 16, 2021.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Orlando. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

K. Oglnicki

Sincerely,

Kaitlin Dylnicki

Project Manager

Enclosure(s)



### SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: KP1-MW	0003-003.5-20210916	Lab ID: AE07199-01	Sampled: 09/16/21 11:09	Received: 09/16/21 13:40
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 6010D	EPA 3005A	03/15/22	09/21/21 12:36	09/22/21 15:07
Client ID: KP1-MW	0022-003.5-20210916	Lab ID: AE07199-02	Sampled: 09/16/21 10:27	Received: 09/16/21 13:40
Parameter	Preparation	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
		Hold Date/ Hille(3)	· · · · · · · · · · · · · · · · · · ·	
EPA 6010D	EPA 3005A	03/15/22	09/21/21 12:36	09/22/21 15:09
EPA 6010D	<del></del> -		<del></del>	
EPA 6010D	EPA 3005A	03/15/22	09/21/21 12:36	09/22/21 15:09



### **SAMPLE DETECTION SUMMARY**

Client ID:	KP1-MW0003-003.5-20210916	Lab ID: AE07199-01											
<u>Analyte</u>		<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>					
Lead - Total		13.9		4.40	10.0	ug/L	EPA 6010D						
Client ID:	KP1-MW0022-003.5-20210916			Lab ID:	AE07199-02								
<u>Analyte</u>		<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>					
Lead - Total		15.8		4.40	10.0	ug/L	EPA 6010D						
Client ID:	KP1-MW0035-003.0-20210916			Lab ID:	AE07199-03								
		Dogulto	Flan	MDI	DOI.	<u>Units</u>	Method	Netes					
<u>Analyte</u>		<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	UIIILS	Metriou	<u>Notes</u>					



Work Order: AE07199

Work Order: AE07199

Work Order: AE07199

### **ANALYTICAL RESULTS**

**Description:** KP1-MW0003-003.5-20210916 **Lab Sample ID:** AE07199-01 **Received:** 09/16/21 13:40

Matrix: Ground Water Sampled: 09/16/21 11:09

Project: NASA KSC Sampled By: Greg Kusel/Dustin Slater

### Metals (total recoverable) by EPA 6000/7000 Series Methods

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number] Results **Units** DF MDL **PQL Method** <u>Analyzed</u> <u>Flag</u> **Batch** <u>By</u> Notes 09/22/21 15:07 Lead [7439-92-1]^ 13.9 ug/L 4.40 10.0 1I21021 EPA 6010D NRB

**Description:** KP1-MW0022-003.5-20210916 **Lab Sample ID:** AE07199-02 **Received:** 09/16/21 13:40

Matrix: Ground Water Sampled: 09/16/21 10:27

Project: NASA KSC Sampled By: Greg Kusel/Dustin Slater

### Metals (total recoverable) by EPA 6000/7000 Series Methods

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number] Results Flag **Units** <u>DF</u> MDL **PQL Batch** Method **Analyzed** Βy **Notes** Lead [7439-92-1]^ 15.8 ug/L 4.40 10.0 1I21021 EPA 6010D 09/22/21 15:09 NRB

**Description:** KP1-MW0035-003.0-20210916 **Lab Sample ID:** AE07199-03 **Received:** 09/16/21 13:40

Matrix: Ground Water Sampled: 09/16/21 10:48

Project: NASA KSC Sampled By: Greg Kusel/Dustin Slater

### Metals (total recoverable) by EPA 6000/7000 Series Methods

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number] **PQL** Method Results Flag **Units** DF MDL **Batch Analyzed** By **Notes** Lead [7439-92-1]^ 14.6 ug/L 1 4.40 10.0 1I21021 EPA 6010D 09/22/21 15:14 NRB



### **QUALITY CONTROL DATA**

Metals (total recoverable) by EPA 6000/7000 Series Methods - Quality Control
------------------------------------------------------------------------------

Batch	<i>1121021</i>	- EPA	<i>3005A</i>
-------	----------------	-------	--------------

Blank (1I21021-BLK1)					Prepare	ed: 09/21/202	1 12:36 Anal	yzed: 09/22/	2021 13:17		
<u>unalyte</u>	<u>Result</u>	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Not</u>
ead	4.40	U	10.0	ug/L							
Blank (1I21021-BLK2)					Prepare	ed: 09/21/202	1 12:36 Anal	yzed: 09/22/	2021 16:39		
nalyte	<u>Result</u>	Flag	<u>POL</u>	Units	Spike Level	Source	%REC	%REC	RPD	RPD	N.
ad	4.40	<u>riay</u> U	10.0	ug/L	Levei	Result	%KEC	<u>Limits</u>	KPD	<u>Limit</u>	No
LCS (1I21021-BS1)	7.70		10.0	ug/ L	Prepare	ed: 09/21/202	1 12:36 Anal	yzed: 09/22/	2021 13:20		
					Spike	Source		%REC		RPD	
nalyte	Result	Flag	PQL	Units	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>No</u>
ad	500		10.0	ug/L	498		100	80-120			
LCS (1I21021-BS2)					Prepare	ed: 09/21/202	1 12:36 Anal	yzed: 09/22/	2021 16:42		
.nal <u>yte</u>	Result	Flag	<u>POL</u>	<u>Units</u>	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	No
ead	513		10.0	ug/L	498		103	80-120			
Matrix Spike (1I21021-MS1)					Prepare	ed: 09/21/202	1 12:36 Anal	yzed: 09/22/	2021 13:26		
Source: AE06543-02					- "	_					
nalyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	No
ad	497		10.0	ug/L	498	7.53	98	75-125			
Matrix Spike (1I21021-MS2)					Prepare	ed: 09/21/202	1 12:36 Anal	yzed: 09/22/	2021 13:35		
Source: AE06543-01						_					
nalyte	Result	Flag	POL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>No</u>
ead	509		10.0	ug/L	498	7.69	101	75-125			
Matrix Spike Dup (1I21021-MSD	1)				Prepare	ed: 09/21/202	1 12:36 Anal	yzed: 09/22/	2021 13:29		
Source: AE06543-02					Spike	C		0/ DEC		222	
					Snika	Source		%REC		RPD	
<u>nalyte</u>	Result	Flag	PQL	<u>Units</u>	Level	Result	%REC	Limits	RPD	<u>Limit</u>	No



### **FLAGS/NOTES AND DEFINITIONS**

- **PQL** PQL: Practical Quantitation Limit. The PQL presented is the laboratory MRL.
  - **B** Results are based upon membrane filter colony counts that are outside the method indicated ideal range.
  - The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).
  - J Estimated value.
  - K Off-scale low; Actual value is known to be less than the value given.
  - **L** Off-scale high; Actual value is known to be greater than value given.
  - **M** Presence of analyte is verified but not quantified; the actual value is less than the MRL but greater than the MDL.
  - **N** Presumptive evidence of presence of material.
  - **O** Sampled, but analysis lost or not performed.
  - **Q** Sample exceeded the accepted holding time.
  - **T** Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only and shall not be used in statistical analysis.
- **U** Indicates that the compound was analyzed for but not detected.
- **V** Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
- **Z** Too many colonies were present (TNTC); the numeric value represents the filtration volume.
- ? Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
- * Not reported due to interference.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.

1502100

																			/	ne		7 (
			CHAIN OF	CUSTODY AND AN	ALYTICAL R	QUEST RE	CORD	•		COC No.					Page:	1	of	1				•
	<b>6</b>	Project Name:	NASA KSC							PO No.					Project No.	60610905.5	Gubs 2021-2	3-Subs 2021-23	Phase:			
<u></u>		Site Location:	KARS Park 1 LOC#	19						Send Inv	oice To:	Instruct	tions in MS	A # 195-2	4548-GV0	3		EDD to:	Jennifer :	Chastain	Cc: Teresa Am	nentt Jennings
		TO No.: 80KSC	019F0071	AECOM Project Manager:		Chris Marsh	ali			Deliver S	ample Kits	To:	AECOM	Depot, 52	3 18th Stre	eet, Orland	io	Report to:	Jennifer	Chastain	Cc: Teresa Am	nentt Jennings
Sampler/Pho	ne #	Greg Kusel / (7)	2) 631-7426	Dustin Slater / (407) 766-	0747					Deliver S	amples To	:	ENCO					Site-Spicific	WS#15 from	m QAPP: 1	.5-35	
Lab Name:		ENCO			Turnaround Tin	ne(specify):		Standard	14 day	Samp	ie Analy	/sis Re	equeste	d (Ente	r numbe	er of cor	ntainers	for each to	est)			,
lab TO	C ID			h	0-4-	Time	Matrix			(3)	HNO3 <2			i								
Lab ID	Sample ID (sys_samp_			Location ID (sys_loc_code)	Date (YYYYMMDD)	(Military) (hhmm)	Code (1)	Type (2)	G=Grab C=Comp		12						1	-				
										Containers							Ì					
										Onta												Comments
										7	010											
										Total No.	/ SW6010											
										Tota	ead by											
	KP1-MW0	003- <b>2022108</b>	109.5 - 202 10916	KP1-MW0003	202109/6	1109	WG	N	G	1	1											
	KP1-MW0	022- <b>207100</b> -7	03.5-202109/6	KP1-MW0022	202109/6	1027	wg	N	G	1	1								+			-
			003.0-202109/6		202109/6	1048	WG	N	G	1	1		1		<del>                                     </del>	<b></b>	<u> </u>		1			
			•																			
								1														
															<del>                                     </del>							
						<u> </u>							1		-							
	<del> </del> -						<u> </u>	<del> </del>											-			
														-	-			<del> </del>	+			
								1									-		-		<u> </u>	
								1								<del> </del>	-			-		
								1						1							<u> </u>	
Field Com	ments:					Lab Comme	ents:							1	<u>l.                                    </u>	<del> </del>	<u> </u>	Famula Shin		Deliver	Dataile .	
	er QAPP WS	<b>#15-35</b>				Last Commi	ulturi									Number		Sample Ship s in shipment:	ment and	Delivery	Details	
	signatur			Date	Time	Received by	(signature	2)	,			Date		Time		Samples	Iced?(ch	eck) Yes	_ No			
1 4	reg	<del>)</del>	<u>O</u> ;	9/13/21	11:50. 1340	ورڪر ا	eg.	UNI	<u> </u>		4	116	/21 ,	070	0	· · · · · · · · · · · · · · · · · · ·	Company	:				
<u> </u>	men	WILL		/16/21	1540	2	<del>M</del>	<del></del>			47/4	olo i		340		Tracking Date Shi						
- (1) AA≃Amt	ient air. AO≔	Air quality contro	ASR=Ashestos Ci	C=Caulk, DS=Storm drain s	ediment GS=Soil	gas. IC=IDW (	Concrete	TDD=IOV	V Solid ID	S=IDW sn	il INW=II	NW Wate	er IF=Fro	e Product	MA=Mact			SC=Coment/	Concrete <	F=Sedim	ent SI=Slude	ne <b>SO</b> =Soil

Sydmahula Mid -334 0.19

SQ=Solid/Solid quality control, SSD=Subsurface sediment, SU=Surface soil (<6 in), SW=Swab or wipe, TA=Animal tissue, TP=Plant tissue, TQ=Tissue quality control, WG=Ground water, WL=Leachate, WO=Ocean water, WP=Drinking water, WQ=Water quality control, WR=Ground water effluent, WS=Surface water, WU=Storm water, WW=Waste water

⁽²⁾ Sample Type: A8=Ambient Blk, E8=Equipment Blk, FB=Field Blk, FD=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Methodology, N=Normal Environmental Sample, T8=Trip Blk

⁽³⁾ Preservative added: 4 DEG C=Cool to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C H2SO4=Hydrogen sulfate, H2SO4 <2=Adjust to pH < 2 with sulfuric acid, H3PO4=Phosphoric acid, H3PO4 <2=Adjust to pH <2 with hydrochloric acid, NNaO4S=Sodium bisulfate preservation, NNaO4S=Sodium bisulfate preservation, NNaO3S2 3/gal=Add 3 mL 10% sodium thiosulfate per I-gal, NNaO3S2 4/40z=4 drops of 10% sodium thiosulfate to 4 oz, NNaHSO4 <2=Adjust to pH < 2 with sodium hydroxide, NNaOH >12=Adjust to pH < 2 with sodium hydroxide, NNaOH >12=Adjust to pH < 2 with sodium hydroxide, NNaOH >12=Adjust to pH > 12 with sodium hydroxide, NNaOH >12=Adjust to pH < 2 with sodium hydroxide, NNaOH >12=Adjust to pH < 2 with sodium hydroxide, NNaOH >12=Adjust to pH < 2 with sodium hydroxide, NNaOH >12=Adjust to pH < 2 with sodium hydroxide, NNaOH >12=Adjust to pH < 2 with sodium hydroxide, NNaOH >12=Adjust to pH < 2 with sodium hydroxide, NNaOH >12=Adjust to pH < 3 with sodium hydroxide, NNaOH >12=Adjust to pH < 3 with sodium hydroxide, NNAOH >12=Adjust to pH < 3 with sodium hydroxide, NNAOH >12=Adjust to pH < 3 with sodium hydroxide, NNAOH >12=Adjust to pH < 3 with sodium hydroxide, NNAOH >12=Adjust to pH < 3 with sodium hydroxide, NNAOH >12=Adjust to pH < 3 with sodium hydroxide, NNAOH >12=Adjust to pH < 3 with sodium hydroxide, NNAOH >12=Adjust to pH < 3 with sodium hydroxide, NNAOH >12=Adjust to pH < 3 with sodium hydroxide, NNAOH >12=Adjust to pH < 3 with sodium hydroxide, NNAOH >12=Adjust to pH < 3 with sodium hydroxide, NNAOH >12=Adjust to pH < 3 with sodium hydroxide, NNAOH >12=Adjust to pH < 3 with sodium hydroxide, NNAOH >12=Adjust to pH < 3 with sodium hydroxide, NNAOH >12=Adjust to pH < 3 with sodium hydroxide, NNAOH >12=Adjust to pH < 3 with sodium hydroxide, NNAOH >12=Adjust to pH < 3 with sodium hydroxide, NNAOH >12=Adjust to pH < 3 with sodium hydroxide, NNAOH >12=Adjust to pH <10 wit >9=Zinc acetate and NaOH to pH>9; store cool at 4C If NO preservative added leave blank

10775 Central Port Drive Orlando FL, 32824

Phone: 407.826.5314 FAX: 407.850.6945

Tuesday, October 5, 2021
AECOM Technical Services, Inc. (SE004)
Attn: Teresa Amentt Jennings
150 N. Orange Ave, Suite 200
Orlando, FL 32801

RE: Laboratory Results for

Project Number: 60610905, Project Name/Desc: NASA KSC

ENCO Workorder(s): AE07201

Dear Teresa Amentt Jennings,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Wednesday, September 22, 2021.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Orlando. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

K. Oglnicki

Sincerely,

Kaitlin Dylnicki

Project Manager

Enclosure(s)



### SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: IA-IDW	1-20210922	Lab ID: AE07201-01	Sampled: 09/22/21 10:45	Received: 09/22/21 15:02
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 6010D	EPA 3005A	03/21/22	10/01/21 13:48	10/04/21 11:28
EPA 8260D	EPA 5030B_MS	10/06/21	09/27/21 00:00	09/27/21 14:31
Client ID: IA-TB01	-20210922	Lab ID: AE07201-02	Sampled: 09/22/21 10:30	Received: 09/22/21 15:02
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	10/06/21	09/27/21 00:00	09/27/21 15:00



### **SAMPLE DETECTION SUMMARY**

Client ID: IA-IDW01-20210922		Lab ID: AE0	D: AE07201-01							
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>			
Trichlorofluoromethane	25		0.94	1.0	ug/L	EPA 8260D				



Work Order: AE07201

### **ANALYTICAL RESULTS**

**Description:** IA-IDW01-20210922 **Lab Sample ID:** AE07201-01 **Received:** 09/22/21 15:02

Matrix:Ground WaterSampled: 09/22/21 10:45Work Order: AE07201

Project: NASA KSC Sampled By: Greg Kusel/Dustin Slater

### **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
1,2,3-Trichlorobenzene [87-61-6]^	0.86	U	ug/L	1	0.86	1.0	1I27008	EPA 8260D	09/27/21 14:31	nmc	
1,2,4-Trichlorobenzene [120-82-1]^	0.70	U	ug/L	1	0.70	1.0	1I27008	EPA 8260D	09/27/21 14:31	nmc	
Trichlorofluoromethane [75-69-4]^	25		ug/L	1	0.94	1.0	1I27008	EPA 8260D	09/27/21 14:31	nmc	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	% Rec	% Rec	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
<u>Surrogates</u> 4-Bromofluorobenzene	<u>Results</u> 47	<u>DF</u> 1	<u>Spike Lvl</u> 50.0	<u>% Rec</u> 93 %	<u>% Rec</u>		<u>Batch</u> 1127008	<u>Method</u> EPA 8260D	<u>Analyzed</u> 09/27/21 14:31	<u>By</u> nmc	<u>Notes</u>
<u> </u>		<u>DF</u> 1 1				142			<u> </u>		<u>Notes</u>

### Metals (total recoverable) by EPA 6000/7000 Series Methods

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	DF	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
Lead [7439-92-1]^	4.40	U	ug/L	1	4.40	10.0	1J01038	EPA 6010D	10/04/21 11:28	NRB	

**Description:** IA-TB01-20210922 **Lab Sample ID:** AE07201-02 **Received:** 09/22/21 15:02

**Matrix:** Water **Sampled:** 09/22/21 10:30

Project: NASA KSC Sampled By: ENCO ORL

### Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
1,2,3-Trichlorobenzene [87-61-6]^	0.86	U	ug/L	1	0.86	1.0	1I27008	EPA 8260D	09/27/21 15:00	nmc	
1,2,4-Trichlorobenzene [120-82-1]^	0.70	U	ug/L	1	0.70	1.0	1I27008	EPA 8260D	09/27/21 15:00	nmc	
Trichlorofluoromethane [75-69-4]^	0.94	U	ug/L	1	0.94	1.0	1I27008	EPA 8260D	09/27/21 15:00	nmc	
<u>Surrogates</u>	Results	<u>DF</u>	Spike Lvl	% Rec	% Rec	: Limits	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	Notes
<u>Surrogates</u> 4-Bromofluorobenzene	<u>Results</u> 46	<u>DF</u> 1	Spike Lvl 50.0	<u>% Rec</u> 93 %	<u>% Rec</u> 41-1		<u>Batch</u> 1127008	<u>Method</u> EPA 8260D	<u>Analyzed</u> 09/27/21 15:00	<u>By</u> nmc	<u>Notes</u>
		<u>DF</u> 1 1				142		<u> </u>		· <u></u> -	<u>Notes</u>
4-Bromofluorobenzene	46	<u>DF</u> 1 1 1	50.0	93 %	41-1	142 146	1127008	EPA 8260D	09/27/21 15:00	nmc	Notes



### **QUALITY CONTROL DATA**

Volatile Organic Compounds by GCMS - Quality Control

Batch 1127008 - EPA 5030B_MS

Blank (	(1I27008-BLK1)	Prepared: 09/27/2021 00:00 Analyzed: 09/27/2021 10:42
---------	----------------	-------------------------------------------------------

<u>Analyte</u>	<u>Result</u>	<u>Flaq</u>	<u>POL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
1,2,3-Trichlorobenzene	0.86	U	1.0	ug/L							
1,2,4-Trichlorobenzene	0.70	U	1.0	ug/L							
Trichlorofluoromethane	0.94	U	1.0	ug/L							
4-Bromofluorobenzene	47			ug/L	50.0		94	41-142			
Dibromofluoromethane	48			ug/L	50.0		97	<i>53-146</i>			
Toluene-d8	45			ug/L	50.0		91	41-146			

LCS (1127008-BS1) Prepared: 09/27/2021 00:00 Analyzed: 09/27/2021 08:18

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	Units	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>Notes</u>
1,2,3-Trichlorobenzene	23		1.0	ug/L	20.0		113	43-168			
1,2,4-Trichlorobenzene	21		1.0	ug/L	20.0		103	52-159			
Trichlorofluoromethane	25		1.0	ug/L	20.0		126	56-155			
4-Bromofluorobenzene	50			ug/L	50.0		100	41-142			
Dibromofluoromethane	50			ug/L	50.0		99	<i>53-146</i>			
Toluene-d8	48			ug/L	50.0		96	41-146			

Matrix Spike (1127008-MS1) Prepared: 09/27/2021 00:00 Analyzed: 09/27/2021 08:47

Source: AE07615-01

					Spike	Source		%REC		RPD	
<u>Analyte</u>	Result	Flag	<u>PQL</u>	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
1,2,3-Trichlorobenzene	23		1.0	ug/L	20.0	0.86 U	116	43-168			
1,2,4-Trichlorobenzene	21		1.0	ug/L	20.0	0.70 U	107	52-159			
Trichlorofluoromethane	24		1.0	ug/L	20.0	0.94 U	118	56-155			
4-Bromofluorobenzene	51			ug/L	50.0		101	41-142			
Dibromofluoromethane	50			ug/L	50.0		100	<i>53-146</i>			
Toluene-d8	48			ug/L	50.0		96	41-146			

**Matrix Spike Dup (1127008-MSD1)** Prepared: 09/27/2021 00:00 Analyzed: 09/27/2021 09:16

Source: AE07615-01

Analyte	Result	<u>Flag</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1,2,3-Trichlorobenzene	24		1.0	ug/L	20.0	0.86 U	118	43-168	2	26	
1,2,4-Trichlorobenzene	22		1.0	ug/L	20.0	0.70 U	110	52-159	2	24	
Trichlorofluoromethane	24		1.0	ug/L	20.0	0.94 U	120	56-155	1	22	
4-Bromofluorobenzene	51			ug/L	50.0		101	41-142			
Dibromofluoromethane	51			ug/L	50.0		103	<i>53-146</i>			
Toluene-d8	49			ug/L	50.0		97	41-146			

Metals (total recoverable) by EPA 6000/7000 Series Methods - Quality Control

Batch 1J01038 - EPA 3005A

Blank (1J01038-BLK1) Prepared: 10/01/2021 13:48 Analyzed: 10/04/2021 11:11

<u>Analyte</u>	Result	Flag	<u>POL</u>	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>Notes</u>
Lead	4.40	U	10.0	ug/L							



### **QUALITY CONTROL DATA**

### Metals (total recoverable) by EPA 6000/7000 Series Methods - Quality Control

#### Batch 1101038 - FPA 3005A - Continued

LCS (1J01038-BS1)					Prepare	ed: 10/01/202	1 13:48 Anal	yzed: 10/04/	2021 11:16		
<u>Analyte</u>	<u>Result</u>	<u>Flag</u>	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Lead	481		10.0	ug/L	498		96	80-120			
Matrix Spike (1J0103	8-MS1)				Prepare	ed: 10/01/202	1 13:48 Anal	yzed: 10/04/	2021 11:22		
Source: AE07044-03											
Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
Lead	474		10.0	ug/L	498	4.40 U	95	75-125			
Matrix Spike (1J0103	8-MS2)				Prepare	ed: 10/01/202	1 13:48 Anal	yzed: 10/04/	2021 11:33		
Source: AE07201-01											
Analyte	Result	Flag	PQL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Lead	458		10.0	ug/L	498	4.40 U	92	75-125			
Matrix Spike Dup (130	1038-MSD1)				Prepare	ed: 10/01/202	1 13:48 Anal	yzed: 10/04/	2021 11:25		
Source: AE07044-03											
Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Lead	471		10.0	ug/L	498	4.40 U	94	75-125	0.6	20	



### **FLAGS/NOTES AND DEFINITIONS**

- **PQL** PQL: Practical Quantitation Limit. The PQL presented is the laboratory MRL.
  - **B** Results are based upon membrane filter colony counts that are outside the method indicated ideal range.
  - The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).
  - J Estimated value.
  - **K** Off-scale low; Actual value is known to be less than the value given.
  - **L** Off-scale high; Actual value is known to be greater than value given.
  - **M** Presence of analyte is verified but not quantified; the actual value is less than the MRL but greater than the MDL.
  - **N** Presumptive evidence of presence of material.
  - Sampled, but analysis lost or not performed.
  - **Q** Sample exceeded the accepted holding time.
  - **T** Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only and shall not be used in statistical analysis.
- **U** Indicates that the compound was analyzed for but not detected.
- **V** Indicates that the analyte was detected in both the sample and the associated method blank.
- **Y** The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
- **Z** Too many colonies were present (TNTC); the numeric value represents the filtration volume.
- ? Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
- * Not reported due to interference.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.

			CHAIN (	OF CUSTODY AND AN	ALYTICAL RE	QUEST RI	CORD			COC No.					Page:	1	of	1				
		Project Name:	NASA KSC							PO No.					Project N	lo. 60610905	.Subs 2021-	-23-Subs 2021-2	Phase:			
	<u>C</u> O)	Site Location:	Industrial Area	IDW						Send Inv	oice To:	Instruction	ons in MSA	# 19S-2	4548-GV0	3		EDD to:	Jennifer	Chastain	Cc: Teresa Ar	mentt Jennings
		TO No.: 80KSC		AECOM Project Manager:		Chris Marsh	all			Deliver S	ample Kits	To:	AECOM I	Depot, 52	3 18th Str	eet, Orland	lo	Report to:	Jennifer	Chastain	Cc: Teresa Ar	mentt Jennings
Sampler/Phon	no #	Greg Kusel / (7		Dustin Slater / (407) 766-	0747					Deliver S	amples To	:	ENCO					Site-Spicific	WS#15 fro	m QAPP:	15-39	
	ic w	ENCO	.2,001,120		Turnaround Tin	ne(specify):		Standard	14 day	Samp	le Analy	sis Re	queste	<b>d</b> (Ente	er numb	er of cor	ntainers	for each t	est)			
Lab Name:		ENCO				Time	Matrix	Sample		(3)	4 DEG C	HNO3	4 DEG C									
Lab ID	Sample ID (sys_samp			Location ID (sys_loc_code)	Date (YYYYMMDD)	(Military) (hhmm)	Code (1)	Type (2)	G=Grab C=Comp	Total No. of Containers	Select VOC by SW8260B	Pb by SW6010B	Select PFAS by 537									Comments
	IA-IDW0	1-20210922		IA-IDW01	20210927	IOUS	WG	N	G	6	3	1	2									
		202109 77		IA-TB01	20210922	1030	wQ	тв	G	3	3											
	10000000	L				10/0																
															+							
								-						1					_			
										+	-		-		-		-					
														-		-				-		
	1																					
	+																					
Field Com						Lab Comm	nents:	1								Number	r of coole	Sample Shi	************	d Deliver	Details	
Report only Relinquishe	ed by signat	ure)		Date 09/13/21 9/22/21	Time 12520	Received by	y (sighatu	ré) Ald	<b>₩</b>		9	plate /	u	Time	0	Sample	0.55	heck) Yes	550	-		
2	AVIA	fratto		9/22/21	1400	2		1				0/0-	1	1-	.60 .	Tracking						
3	11/10/14	UNIA.		os, <b>CK</b> =Caulk, <b>DS</b> =Storm drain	7.0	3	gy	/	500 - 5 1 <u>2 - 14 14 14 14 14 14 14 14 14 14 14 14 14 </u>		U	7/82	181		:62	Date St			t/Concent	CE_Codi-	nent El -Cli	doe SO-Soil

Med Red 195 4.9°C

⁽¹⁾ AA=Ambient air, AQ=Air quality control, ASB=Asbestos, CK=Caulk, DS=Storm drain sediment, GS=Soil gas, IC=IDW Concrete, IDD=IDW Soild, IDS=IDW soil, IDW=IDW Water, LF=Free Product, MA=Mastic, PC=Paint Cnips, SC=Cement/Concrete, SC=Sediment, SC=Soil gas, IC=IDW Concrete, IDD=IDW Soild, IDS=IDW soil, IDS=IDW

⁽²⁾ Sample Type: AB=Ambient Blk, EB=Equipment Blk, FB=Field Blk, FD=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Trip Blk

⁽³⁾ Preservative added: 4 DEG C=Cool to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C H2SO4=Hydrogen sulfate, H2SO4 <2=Adjust to pH < 2 with sulfuric acid, H3PO4=Phosphoric acid, H3PO4=Phosph









PO Box 30712 Charleston, SC 29417 2040 Savage Road Charleston, SC 29407 P 843.556.8171 F 843.766.1178

gel.com

September 28, 2021

Kaitlin Dylnicki Environmental Conservation Laboratories, Inc. 10775 Central Port Drive Orlando, Florida 32824

a member of The GEL Group INC

Re: NASA PFAS - Dylnicki

Work Order: 556641 SDG: AE07201

Dear Kaitlin Dylnicki:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on September 23, 2021. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4523.

Sincerely,

Grace Bodiford for Samuel Hogan

Project Manager

Purchase Order: GELP20-0372

Enclosures

Page 1 of 14 SDG: AE07201

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# Certificate of Analysis Report for

ENCL001 Environmental Conservation Laboratories Client SDG: AE07201 GEL Work Order: 556641

### The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- I The reported value is greater than or equal to the laboratory method detection limit but less than the laboratory practical quantitation limit.
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Samuel Hogan.

Grace	Bodiford
-------	----------

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### **Certificate of Analysis**

Project:

Client ID:

Report Date: September 28, 2021

ENCL00421

ENCL001

Company: Environmental Conservation Laboratories, Inc.

Address: 10775 Central Port Drive

Orlando, Florida 32824

Contact: Kaitlin Dylnicki

Project: NASA PFAS - Dylnicki

Client Sample ID: IA-IDW01-20210922

Sample ID: 556641001 Matrix: Ground Water Collect Date: 22-SEP-21 10:45 Receive Date: 23-SEP-21

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
LCMSMS PFCs										
EPA 537.1Mod PFCs by	LC-MS/MS	S "As Received"								
11-Chloroeicosafluoro-3- oxaundecane-1-sulfonic acid (1: Cl-PF3OUdS)	U 1-	ND	0.000608	0.00173	ug/L	0.0184	1	JMB3 09/24/21	1622 2178044	1
Hexafluoropropyleneoxide dimeacid (HFPO-DA)(Gen-X)	er U	ND	0.000608	0.00184	ug/L	0.0184	1			
9-Chlorohexadecafluoro-3- oxanonane-1-sulfonic acid (9-Cl PF3ONS)	U l-	ND	0.000608	0.00172	ug/L	0.0184	1			
N-Ethylperfluorooctane sulfonamido acetic acid (NEtFOSAA)	U	ND	0.00122	0.00368	ug/L	0.0184	1			
N-Methylperfluorooctane sulfonamido acetic acid (NMeFOSAA)	U	ND	0.00122	0.00368	ug/L	0.0184	1			
Perfluorobutane sulfonic acid (PFBS)		0.00305	0.000608	0.00164	ug/L	0.0184	1			
Perfluorodecanoic acid (PFDA)	U	ND	0.000718	0.00184	ug/L	0.0184	1			
Perfluorododecanoic acid (PFD)	OA) U	ND	0.000608	0.00184	ug/L	0.0184	1			
Perfluoroheptanoic acid (PFHpA	A)	0.00555	0.000608	0.00184	ug/L	0.0184	1			
Perfluorohexane sulfonic acid (PFHxS)		0.0276	0.000608	0.00168	ug/L	0.0184	1			
Perfluorohexanoic acid (PFHxA	<b>.</b> )	0.00805	0.000736	0.00184	ug/L	0.0184	1			
Perfluorononanoic acid (PFNA)	I	0.000908	0.000608	0.00184	ug/L	0.0184	1			
Perfluorooctane sulfonic acid (PFOS)		0.0659	0.000736	0.00184	ug/L	0.0184	1			
Perfluorooctanoic acid (PFOA)		0.00743	0.000736	0.00184	ug/L	0.0184	1			
Perfluorotetradecanoic acid (PFTDA)	U	ND	0.000736	0.00184	ug/L	0.0184	1			
Perfluorotridecanoic acid (PFTr	DA) U	ND	0.000608	0.00184	ug/L	0.0184	1			
Perfluoroundecanoic acid (PFUnDA)	U	ND	0.000608	0.00184	ug/L	0.0184	1			
4,8-Dioxa-3H-perfluorononanoi acid (DONA)	c U	ND	0.000608	0.00184	ug/L	0.0184	1			
The following Prep Metho	ods were pe	erformed:								
Method	Description	1		Analyst	Date	-	Гіте	Prep Batch		
EPA 537.1 Mod, PFAS, Compl	PFCs Extracti	on in Liquid		LM1	09/24/21	(	0857	2178043		

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

**Certificate of Analysis** 

Report Date: September 28, 2021

Company: Environmental Conservation Laboratories, Inc.

Address: 10775 Central Port Drive

Orlando, Florida 32824

Contact: Kaitlin Dylnicki

Project: NASA PFAS - Dylnicki

Client Sample ID: IA-IDW01-20210922 Project: ENCL00421 Sample ID: 556641001 Client ID: ENCL001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
The following Ar	alytical Methods w	vere performed:							
Method	Description					Analys	st Comments		
1	FPA 537 1 Ma	nd PEAS Compliant v	vith OSM Table B-15			-			

#### EPA 537.1 Mod, PFAS, Compliant with QSM Table B-1

### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

## **QC Summary**

Environmental Conservation Laboratories, Inc.

Report Date: September 28, 2021

Page 1 of 6

10775 Central Port Drive

Orlando, Florida Kaitlin Dylnicki

Workorder: 556641

**Contact:** 

Parmname	NOM	Sample Q	QC QC	Units RPD/D	% REC%	Range Anlst	Date Time
Perfluorinated Compounds Batch 2178044 ———							
QC1204917289 LCS 11-Chloroeicosafluoro-3- oxaundecane-1-sulfonic acid (11- Cl-PF3OUdS)	0.0183		0.0117	ug/L	64	(59%-144%) JMB3	09/24/21 15:43
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	0.0194		0.0155	ug/L	80	(67%-136%)	
9-Chlorohexadecafluoro-3- oxanonane-1-sulfonic acid (9-Cl- PF3ONS)	0.0181		0.0153	ug/L	85	(68%-135%)	
Hexafluoropropyleneoxide dimer acid (HFPO-DA)(Gen-X)	0.0194		0.0176	ug/L	91	(67%-144%)	09/27/21 12:10
N-Ethylperfluorooctane sulfonamido acetic acid (NEtFOSAA)	0.0194		0.0183	ug/L	95	(57%-139%)	09/24/21 15:43
N-Methylperfluorooctane sulfonamido acetic acid (NMeFOSAA)	0.0194		0.0155	ug/L	80	(59%-145%)	
Perfluorobutane sulfonic acid (PFBS)	0.0172		0.0142	ug/L	82	(70%-144%)	
Perfluorodecanoic acid (PFDA)	0.0194		0.0166	ug/L	86	(65%-145%)	
Perfluorododecanoic acid (PFDOA)	0.0194		0.0176	ug/L	91	(65%-137%)	
Perfluoroheptanoic acid (PFHpA)	0.0194		0.0156	ug/L	81	(71%-133%)	
Perfluorohexane sulfonic acid (PFHxS)	0.0177		0.0140	ug/L	79	(67%-145%)	
Perfluorohexanoic acid (PFHxA)	0.0194		0.0160	ug/L	83	(70%-138%)	
Perfluorononanoic acid (PFNA)	0.0194		0.0152	ug/L	78	(69%-133%)	
Perfluorooctane sulfonic acid (PFOS)	0.0194		0.0166	ug/L	86	(65%-133%)	

Page 5 of 14 SDG: AE07201

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

## **QC Summary**

Workorder: 556641 Page 2 of 6

Parmname	NOM	Sample	Qual	QC	Units	RPD/D%	REC%	Range Ar	ılst	Date Time
<b>Perfluorinated Compounds</b> Batch 2178044										
Perfluorooctanoic acid (PFOA)	0.0194			0.0166	ug/L		86	(66%-139%) J.	MB3	09/24/21 15:43
Perfluorotetradecanoic acid (PFTDA)	0.0194			0.0173	ug/L		89	(66%-138%)		
Perfluorotridecanoic acid (PFTrDA)	0.0194			0.0164	ug/L		85	(58%-140%)		
Perfluoroundecanoic acid (PFUnDA)	0.0194			0.0159	ug/L		82	(63%-135%)		
QC1204917288 MB 11-Chloroeicosafluoro-3- oxaundecane-1-sulfonic acid (11- Cl-PF3OUdS)			U	ND	ug/L					09/24/21 15:30
4,8-Dioxa-3H-perfluorononanoic acid (DONA)			U	ND	ug/L					
9-Chlorohexadecafluoro-3- oxanonane-1-sulfonic acid (9-Cl- PF3ONS)			U	ND	ug/L					
Hexafluoropropyleneoxide dimer acid (HFPO-DA)(Gen-X)			U	ND	ug/L					09/27/21 11:49
N-Ethylperfluorooctane sulfonamido acetic acid (NEtFOSAA)			U	ND	ug/L					09/24/21 15:30
N-Methylperfluorooctane sulfonamido acetic acid (NMeFOSAA)			U	ND	ug/L					
Perfluorobutane sulfonic acid (PFBS)			U	ND	ug/L					
Perfluorodecanoic acid (PFDA)			U	ND	ug/L					
Perfluorododecanoic acid (PFDOA)			U	ND	ug/L					
Perfluoroheptanoic acid (PFHpA)			U	ND	ug/L					
Perfluorohexane sulfonic acid (PFHxS)			U	ND	ug/L					

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

## **QC Summary**

Workorder: 556641 Page 3 of 6

Parmname	NOM	I Sample	Qual	QC	Units	RPD/D%	REC%	Range	Anlst	Date Time
Perfluorinated Compounds Batch 2178044										
Perfluorohexanoic acid (PFHxA)			U	ND	ug/L				JMB3	09/24/21 15:30
Perfluorononanoic acid (PFNA)			U	ND	ug/L					
Perfluorooctane sulfonic acid (PFOS)			U	ND	ug/L					
Perfluorooctanoic acid (PFOA)			U	ND	ug/L					
Perfluorotetradecanoic acid (PFTDA)			U	ND	ug/L					
Perfluorotridecanoic acid (PFTrDA)			U	ND	ug/L					
Perfluoroundecanoic acid (PFUnDA)			U	ND	ug/L					
QC1204917290 556645003 MS 11-Chloroeicosafluoro-3- oxaundecane-1-sulfonic acid (11- Cl-PF3OUdS)	0.0173	U ND		0.0120	ug/L		69	(42%-138%)	)	09/24/21 17:14
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	0.0184	U ND		0.0153	ug/L		83	(62%-132%)	)	
9-Chlorohexadecafluoro-3- oxanonane-1-sulfonic acid (9-Cl- PF3ONS)	0.0171	U ND		0.0136	ug/L		80	(54%-139%)	)	
Hexafluoropropyleneoxide dimer acid (HFPO-DA)(Gen-X)	0.0184	0.00169		0.0208	ug/L		104	(51%-159%)	)	09/27/21 13:34
N-Ethylperfluorooctane sulfonamido acetic acid (NEtFOSAA)	0.0184	U ND		0.0201	ug/L		110	(38%-148%)	)	09/24/21 17:14
N-Methylperfluorooctane sulfonamido acetic acid (NMeFOSAA)	0.0184	U ND		0.0157	ug/L		85	(40%-144%)	)	
Perfluorobutane sulfonic acid (PFBS)	0.0162	0.00837		0.0233	ug/L		92	(52%-147%)	)	
Perfluorodecanoic acid (PFDA)	0.0184	U ND		0.0158	ug/L		86	(44%-143%)	)	

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

## **QC Summary**

Workorder: 556641 Page 4 of 6

Parmname	NOM	Sample	Qual QC	Units	RPD/D%	REC%	Range	Anlst	Date	Time
Perfluorinated Compounds Batch 2178044										
Perfluorododecanoic acid (PFDOA)	0.0184 U	ND	0.0171	ug/L		93	(45%-142%)	JMB3	09/24/2	1 17:14
Perfluoroheptanoic acid (PFHpA)	0.0184	0.00235	0.0188	ug/L		90	(51%-149%)			
Perfluorohexane sulfonic acid (PFHxS)	0.0167 I	0.00135	0.0147	ug/L		80	(50%-148%)			
Perfluorohexanoic acid (PFHxA)	0.0184	0.00421	0.0195	ug/L		83	(50%-150%)			
Perfluorononanoic acid (PFNA)	0.0184 U	ND	0.0157	ug/L		86	(54%-146%)			
Perfluorooctane sulfonic acid (PFOS)	0.0184	0.00604	0.0227	ug/L		91	(42%-150%)			
Perfluorooctanoic acid (PFOA)	0.0184	0.00701	0.0250	ug/L		98	(50%-151%)			
Perfluorotetradecanoic acid (PFTDA)	0.0184 U	ND	0.0169	ug/L		92	(41%-148%)			
Perfluorotridecanoic acid (PFTrDA)	0.0184 U	ND	0.0159	ug/L		87	(41%-142%)			
Perfluoroundecanoic acid (PFUnDA)	0.0184 U	ND	0.0167	ug/L		91	(44%-141%)			
QC1204917291 556645003 MSD 11-Chloroeicosafluoro-3- oxaundecane-1-sulfonic acid (11- Cl-PF3OUdS)	0.0179 U	ND	0.0115	ug/L	4	64	(0%-36%)		09/24/2	1 17:27
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	0.0190 U	ND	0.0164	ug/L	7	86	(0%-28%)			
9-Chlorohexadecafluoro-3- oxanonane-1-sulfonic acid (9-Cl- PF3ONS)	0.0177 U	ND	0.0143	ug/L	5	81	(0%-33%)			
Hexafluoropropyleneoxide dimer acid (HFPO-DA)(Gen-X)	0.0190	0.00169	0.0212	ug/L	2	103	(0%-28%)		09/27/2	1 13:55
N-Ethylperfluorooctane sulfonamido acetic acid (NEtFOSAA)	0.0190 U	ND	0.0195	ug/L	3	103	(0%-36%)		09/24/2	1 17:27

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

## **QC Summary**

Workorder: 556641 Page 5 of 6

Parmname	NOM	Sample Qual	QC	Units	RPD/D%	REC%	Range Anlst	Date Time	
Perfluorinated Compounds Batch 2178044									
N-Methylperfluorooctane sulfonamido acetic acid (NMeFOSAA)	0.0190 U	ND	0.0161	ug/L	3	85	(0%-36%) JMB3	09/24/21 17:27	
Perfluorobutane sulfonic acid (PFBS)	0.0168	0.00837	0.0240	ug/L	3	93	(0%-27%)		
Perfluorodecanoic acid (PFDA)	0.0190 U	ND	0.0174	ug/L	9	91	(0%-35%)		
Perfluorododecanoic acid (PFDOA)	0.0190 U	ND	0.0172	ug/L	0	91	(0%-30%)		
Perfluoroheptanoic acid (PFHpA)	0.0190	0.00235	0.0205	ug/L	9	95	(0%-26%)		
Perfluorohexane sulfonic acid (PFHxS)	0.0173 I	0.00135	0.0154	ug/L	5	81	(0%-31%)		
Perfluorohexanoic acid (PFHxA)	0.0190	0.00421	0.0215	ug/L	10	91	(0%-26%)		
Perfluorononanoic acid (PFNA)	0.0190 U	ND	0.0167	ug/L	6	88	(0%-30%)		
Perfluorooctane sulfonic acid (PFOS)	0.0190	0.00604	0.0231	ug/L	2	90	(0%-31%)		
Perfluorooctanoic acid (PFOA)	0.0190	0.00701	0.0247	ug/L	1	93	(0%-28%)		
Perfluorotetradecanoic acid (PFTDA)	0.0190 U	ND	0.0176	ug/L	4	93	(0%-32%)		
Perfluorotridecanoic acid (PFTrDA)	0.0190 U	ND	0.0166	ug/L	4	87	(0%-35%)		
Perfluoroundecanoic acid (PFUnDA)	0.0190 U	ND	0.0172	ug/L	3	91	(0%-34%)		

### **Notes:**

The Qualifiers in this report are defined as follows:

- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported

Page 9 of 14 SDG: AE07201

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

### **QC Summary**

Parmname NOM Sample Qual QC Units RPD/D% REC% Range AnIst Date Time

- A The TIC is a suspected aldol-condensation product
- B The target analyte was detected in the associated blank.
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- E Concentration of the target analyte exceeds the instrument calibration range
- I The reported value is greater than or equal to the laboratory method detection limit but less than the laboratory practical quantitation limit.
- J See case narrative for an explanation
- JNX Non Calibrated Compound

556641

- N Organics--Presumptive evidence based on mass spectral library search to make a tentative identification of the analyte (TIC). Quantitation is based on nearest internal standard response factor
- N Presumptive evidence based on mass spectral library search to make a tentative identification of the analyte (TIC). Quantitation is based on nearest internal standard response factor
- N/A RPD or %Recovery limits do not apply.
- N1 See case narrative

Workorder:

- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- P Organics--The concentrations between the primary and confirmation columns/detectors is >40% different. For HPLC, the difference is >70%.
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- Q Sample held beyond the accepted holding time. This code shall be used if the value is derived from a sample that was prepared or analyzed after the approved holding time restrictions for sample preparation or analysis.
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- UJ Compound cannot be extracted
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 10 of 14 SDG: AE07201

### LCMSMS-Misc

### Technical Case Narrative Environmental Conservation Laboratories SDG #: AE07201 Work Order #: 556641

**Product:** The Extraction and Analysis of Per and Polyfluroalkyl Substances Using LCMSMS

Analytical Method: EPA 537.1 Mod, PFAS, Compliant with QSM Table B-15

Analytical Procedure: GL-OA-E-076 REV# 12 Analytical Batches: 2178044 and 2178043

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
556641001	IA-IDW01-20210922
1204917288	Method Blank (MB)
1204917289	Laboratory Control Sample (LCS)
1204917290	556645003(NonSDG) Matrix Spike (MS)
1204917291	556645003(NonSDG) Matrix Spike Duplicate (MSD)

The samples in this SDG were analyzed on an "as received" basis.

### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

### **Technical Information**

### Sample Re-extraction/Re-analysis

Samples were re-analyzed on a second instrument in order to meet client requirements for a select subset of analytes. 1204917288 (MB), 1204917289 (LCS), 1204917290 (Non SDG 556645003MS) and 1204917291 (Non SDG 556645003MSD).

### **Certification Statement**

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 11 of 14 SDG: AE07201

### SUBCONTRACT ORDER

**ENCO Orlando** 

AE07201

556641

**SENDING LABORATORY:** 

ENCO Orlando

10775 Central Port Drive

Orlando, FL 32824 Phone: 407.826.5314 Fax: 407.850.6945

Project Manager: Kaitlin Dylnicki

**RECEIVING LABORATORY:** 

GEL Laboratories, Inc. (SC)

2040 Savage Road

Charleston, SC 29407

Phone: (843) 556-8171

Fax: (843) 766-1178

Project State of Origin: Florida

Sub Lab ID	Originating Lab ID	Client Matrix	Date Sampled	Sample Comments	
	_ IA-IDW01-20210922	Ground Water	22-Sep-21 10:45		
Analysis	Due	Expires		Analysis Comments	
PFAS	29-Sep-21 15:00	06-Oct-21 10:45		14 analyte 537 GELP21-0027	
Containers Supplied: 5ml V (A)	250mLP (B)	250mLP (C)			ur dan generalis de la companya de l

Released By

Date

9/23/21

Released By Page 12 of 14 SDG: AE07201 Received By

Date

**GEL** Laboratories LLC

SAMPLE RECEIPT & REVIEW FORM

Client: ENCL			
Panetural Pro. O /			SDG/AR/COC/Work Order: 556 641
Received By: P (>		************	Date Received: 9/23/2 (Circle Applicable: FedEx Express) FedEx Ground UPS Field Services Courier Other
Carrier and Tracking Number			020153078832 5278
Suspected Hazard Information	Yes	å	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.
A)Shipped as a DOT Hazardous?		X	Hazard Class Shipped: UN#:  If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo
B) Did the client designate the samples are to be received as radioactive?		X	COC notation or radioactive stickers on containers equal client designation.
C) Did the RSO classify the samples as radioactive?		X	Maximum Net Counts Observed* (Observed Counts - Area Background Counts): CPM/ mR/Hr Classified as: Rad 1 Rad 2 Rad 3
D) Did the client designate samples are hazardous		X	COC notation or hazard labels on containers equal client designation.
E) Did the RSO identify possible hazards?	<u> </u>	X	ff D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:
Sample Receipt Criteria	Yes	NA	Z Comments/Qualifiers (Required for Non-Conforming Items)
Shipping containers received intact and sealed?	X		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
2 Chain of custody documents included with shipment?	X		Circle Applicable: Client contacted and provided COC COC created upon receipt
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	Х		Preservation Method: Wet Ice Ice Packs Dry ice None Other:  *all temperatures are recorded in Celsius  TEMP:
Daily check performed and passed on IR temperature gun?	X		Temperature Device Serial #: 1 P C Z L Secondary Temperature Device Serial # (If Applicable):
5 Sample containers intact and sealed?	X		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
6 Samples requiring chemical preservation at proper pH?		Χ	Sample ID's and Containers Affected:  If Preservation added, Lot#:
7 Do any samples require Volatile Analysis?			If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer)  Do liquid VOA vials contain acid preservation? Yes No NA (If unknown, select No)  Are liquid VOA vials free of headspace? Yes No NA  Sample ID's and containers affected:
8 Samples received within holding time?	χ		ID's and tests affected;
9 Sample ID's on COC match ID's on bottles?	X		ID's and containers affected:
Date & time on COC match date & time on bottles?	X		Circle Applicable: No dates on containers  No times on containers  COC missing info  Other (describe)
Number of containers received match number indicated on COC?	X		Circle Applicable: No container count on COC Other (describe)
Are sample containers identifiable as GEL provided by use of GEL labels?			X
COC form is properly signed in relinquished/received sections?	X		Circle Applicable: Not relinquished Other (describe)
Comments (Use Continuation Form if needed):			

List of current GEL Certifications as of 28 September 2021

State	Certification
Alabama	42200
Alaska	17–018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122021-1
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2019–165
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-21-19
Utah NELAP	SC000122021-35
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
	1

10775 Central Port Drive Orlando FL, 32824

Phone: 407.826.5314 FAX: 407.850.6945

Tuesday, November 30, 2021
AECOM Technical Services, Inc. (SE004)
Attn: Teresa Amentt Jennings
150 N. Orange Ave, Suite 200
Orlando, FL 32801

RE: Laboratory Results for

Project Number: 60610905, Project Name/Desc: NASA KSC -

ENCO Workorder(s): AE09084

Dear Teresa Amentt Jennings,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Tuesday, November 23, 2021.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Orlando. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

K. Oglnicki

Sincerely,

Kaitlin Dylnicki

Project Manager

Enclosure(s)



### SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: LETF-MW	/0001-025.0-20211123	Lab ID: AE09084-01	Sampled: 11/23/21 10:10	Received: 11/23/21 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	<u>Prep Date/Time(s)</u>	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/07/21	11/24/21 09:21	11/24/21 15:23
Client ID: LETF-MW	/0002-025.0-20211123	Lab ID: AE09084-02	Sampled: 11/23/21 11:35	Received: 11/23/21 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/07/21	11/24/21 09:21	11/24/21 15:51
Client ID: LETF-MW	/0005-025.0-20211123	Lab ID: AE09084-03	Sampled: 11/23/21 11:30	Received: 11/23/21 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/07/21	11/24/21 09:21	11/24/21 16:19
Client ID: LETF-MW	/0007-036.0-20211123	Lab ID: AE09084-04	Sampled: 11/23/21 10:50	Received: 11/23/21 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	<u>Prep Date/Time(s)</u>	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/07/21	11/24/21 09:21	11/24/21 16:46
	3-MW0001I-024.5-2021112	Lab ID: AE09084-05	Sampled: 11/23/21 10:55	Received: 11/23/21 16:30
3 <u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/07/21	11/24/21 09:21	11/24/21 17:14
Client ID: LETF-PSE	3-MW0002I-024.5-2021112	Lab ID: AE09084-06	Sampled: 11/23/21 10:16	Received: 11/23/21 16:30
3 Parameter	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/07/21	11/24/21 09:21	11/24/21 17:42
Client ID: LETF-TB0	01-20211123	Lab ID: AE09084-07	Sampled: 11/23/21 08:00	Received: 11/23/21 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/07/21	11/24/21 09:21	11/24/21 18:10



### **SAMPLE DETECTION SUMMARY**

Client ID: LETF-MW0001-025.0-20211123	Lab ID: AE09084-01								
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>		
Vinyl chloride	7.0		0.71	1.0	ug/L	EPA 8260D			



Work Order: AE09084

Work Order: AE09084

### **ANALYTICAL RESULTS**

**Description:** LETF-MW0001-025.0-20211123 **Lab Sample ID:** AE09084-01 **Received:** 11/23/21 16:30

Matrix:Ground WaterSampled: 11/23/21 10:10Project:NASA KSC -Sampled By: Greg Kusel

### **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Vinyl chloride [75-01-4]^	7.0		ug/L	1	0.71	1.0	1K24012	EPA 8260D	11/24/21 15:23	KKW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	% Rec	% Rec	c Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	Notes
4-Bromofluorobenzene	51	1	50.0	102 %	41-1	142	1K24012	EPA 8260D	11/24/21 15:23	KKW	
Dibromofluoromethane	51	1	50.0	102 %	<i>53-1</i>	146	1K24012	EPA 8260D	11/24/21 15:23	KKW	
Toluene-d8	<i>52</i>	1	50.0	104 %	41-1	146	1K24012	EPA 8260D	11/24/21 15:23	KKW	

**Description:** LETF-MW0002-025.0-20211123 **Lab Sample ID:** AE09084-02 **Received:** 11/23/21 16:30

Matrix: Ground Water Sampled: 11/23/21 11:35 Work Order: AE09084

Project: NASA KSC - Sampled By: Greg Kusel

### Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	<u>DF</u>	MDL PQ	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71 1.0	1K24012	EPA 8260D	11/24/21 15:51	KKW	
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec Limi	its <u>Batch</u>	Method	Analyzed	<u>By</u>	Notes
4-Bromofluorobenzene	<u>51</u>	<u>21</u> 1	50.0	103 %	41-142	1K24012	EPA 8260D	11/24/21 15:51	KKW	110105
Dibromofluoromethane	50	1	50.0	101 %	53-146	1K24012	EPA 8260D	11/24/21 15:51	KKW	
Toluene-d8	53	1	50.0	105 %	41-146	1K24012	EPA 8260D	11/24/21 15:51	KKW	

**Description:** LETF-MW0005-025.0-20211123 **Lab Sample ID:** AE09084-03 **Received:** 11/23/21 16:30

Matrix: Ground Water Sampled: 11/23/21 11:30

Project: NASA KSC - Sampled By: Greg Kusel

### Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	DF	MDL	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	1K24012	EPA 8260D	11/24/21 16:19	KKW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Rec l</u>	<u>Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	51	1	50.0	103 %	41-14.	2	1K24012	EPA 8260D	11/24/21 16:19	KKW	
Dibromofluoromethane	51	1	50.0	101 %	53-14	6	1K24012	EPA 8260D	11/24/21 16:19	KKW	
Toluene-d8	<i>52</i>	1	50.0	104 %	41-14	6	1K24012	EPA 8260D	11/24/21 16:19	KKW	

**Description:** LETF-MW0007-036.0-20211123 **Lab Sample ID:** AE09084-04 **Received:** 11/23/21 16:30

Matrix: Ground Water Sampled: 11/23/21 10:50 Work Order: AE09084

Project: NASA KSC - Sampled By: Greg Kusel

### Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	1K24012	EPA 8260D	11/24/21 16:46	KKW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Rec</u>	<u>Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	52	1	50.0	103 %	41-14	12	1K24012	EPA 8260D	11/24/21 16:46	KKW	
Dibromofluoromethane	51	1	50.0	102 %	53-14	16	1K24012	EPA 8260D	11/24/21 16:46	KKW	
Toluene-d8	<i>52</i>	1	50.0	104 %	41-14	16	1K24012	EPA 8260D	11/24/21 16:46	KKW	



### **ANALYTICAL RESULTS**

**Description:** LETF-PSB-MW0001I-024.5-20211123 **Lab Sample ID:** AE09084-05 **Received:** 11/23/21 16:30

Matrix:Ground WaterSampled: 11/23/21 10:55Project:NASA KSC -Sampled By: Greg Kusel

Work Order: AE09084

Work Order: AE09084

Work Order: AE09084

### **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL F	<u> QL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	1K24012	EPA 8260D	11/24/21 17:14	KKW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec Li	<u>mits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	<i>52</i>	1	50.0	103 %	41-142		1K24012	EPA 8260D	11/24/21 17:14	KKW	
Dibromofluoromethane	51	1	50.0	101 %	<i>53-146</i>		1K24012	EPA 8260D	11/24/21 17:14	KKW	
Toluene-d8	54	1	50.0	108 %	41-146		1K24012	EPA 8260D	11/24/21 17:14	KKW	

**Description:** LETF-PSB-MW0002I-024.5-20211123 **Lab Sample ID:** AE09084-06 **Received:** 11/23/21 16:30

Matrix: Ground Water Sampled: 11/23/21 10:16

Project: NASA KSC - Sampled By: Greg Kusel

### Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	<u>DF</u>	MDL PQL	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71 1.0	1K24012	EPA 8260D	11/24/21 17:42	KKW	
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec Limit	<u>s Batch</u>	Method	Analyzed	<u>By</u>	Notes
4-Bromofluorobenzene	<u>51</u>	<u>21</u> 1	50.0	102 %	41-142	1K24012	EPA 8260D	11/24/21 17:42	KKW	110105
Dibromofluoromethane	52	1	50.0	103 %	53-146	1K24012	EPA 8260D	11/24/21 17:42	KKW	
Toluene-d8	53	1	50.0	106 %	41-146	1K24012	EPA 8260D	11/24/21 17:42	KKW	

**Description:** LETF-TB01-20211123 **Lab Sample ID:** AE09084-07 **Received:** 11/23/21 16:30

**Matrix:** Water **Sampled:** 11/23/21 08:00

Project: NASA KSC - Sampled By: ENCO - ORL

### **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	1K24012	EPA 8260D	11/24/21 18:10	KKW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	% Rec	% Rec L	.imits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	52	1	50.0	103 %	41-142	2	1K24012	EPA 8260D	11/24/21 18:10	KKW	
Dibromofluoromethane	50	1	50.0	100 %	53-146	5	1K24012	EPA 8260D	11/24/21 18:10	KKW	
Toluene-d8	53	1	50.0	105 %	41-146	5	1K24012	EPA 8260D	11/24/21 18:10	KKW	



### **QUALITY CONTROL DATA**

### Volatile Organic Compounds by GCMS - Quality Control

### Batch 1K24012 - EPA 5030B_MS

Blank (	1K24012-BLK1	Prepared: 11/24/2021 00:00 Analyzed: 11/24/2021 09:50
---------	--------------	-------------------------------------------------------

Analyte	Result	<u>Flaq</u>	<u>POL</u>	<u>Units</u>	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
Vinyl chloride	0.71	U	1.0	ug/L							
4-Bromofluorobenzene	53			ug/L	50.0		106	41-142			
Dibromofluoromethane	50			ug/L	50.0		100	<i>53-146</i>			
Toluene-d8	52			ug/L	50.0		105	41-146			

LCS (1K24012-BS1) Prepared: 11/24/2021 00:00 Analyzed: 11/24/2021 08:55

Analyte	Result	Flag	PQL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Vinyl chloride	16		1.0	ug/L	20.0		81	20-167			
4-Bromofluorobenzene	53			ug/L	50.0		105	41-142			
Dibromofluoromethane	51			ug/L	50.0		102	<i>53-146</i>			
Toluene-d8	53			ug/L	50.0		106	41-146			

Matrix Spike (1K24012-MS1) Prepared: 11/24/2021 00:00 Analyzed: 11/24/2021 19:33

Source: AE09085-01

					Spike	Source		%REC		RPD	
<u>Analyte</u>	Result	Flag	PQL	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
Vinyl chloride	24		1.0	ug/L	20.0	6.4	87	20-167			
4-Bromofluorobenzene	52			ug/L	50.0		103	41-142			
Dibromofluoromethane	50			ug/L	50.0		100	<i>53-146</i>			
Toluene-d8	54			ug/L	50.0		107	41-146			

Matrix Spike Dup (1K24012-MSD1) Prepared: 11/24/2021 00:00 Analyzed: 11/24/2021 20:00

Source: AE09085-01

_Analyte	Result	<u>Flag</u>	POL	<u>Units</u>	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD <u>Limit</u>	Notes
Vinyl chloride	24		1.0	ug/L	20.0	6.4	88	20-167	0.3	24	
4-Bromofluorobenzene	54			ug/L	50.0		108	41-142			
Dibromofluoromethane	<i>52</i>			ug/L	50.0		104	<i>53-146</i>			
Toluene-d8	53			ug/L	50.0		106	41-146			



#### **FLAGS/NOTES AND DEFINITIONS**

- **PQL** PQL: Practical Quantitation Limit. The PQL presented is the laboratory MRL.
- **B** Results are based upon membrane filter colony counts that are outside the method indicated ideal range.
- The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).
- **J** Estimated value.
- K Off-scale low; Actual value is known to be less than the value given.
- **L** Off-scale high; Actual value is known to be greater than value given.
- **M** Presence of analyte is verified but not quantified; the actual value is less than the MRL but greater than the MDL.
- **N** Presumptive evidence of presence of material.
- Sampled, but analysis lost or not performed.
- **Q** Sample exceeded the accepted holding time.
- **T** Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only and shall not be used in statistical analysis.
- **U** Indicates that the compound was analyzed for but not detected.
- **V** Indicates that the analyte was detected in both the sample and the associated method blank.
- **Y** The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
- **Z** Too many colonies were present (TNTC); the numeric value represents the filtration volume.
- ? Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
- * Not reported due to interference.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.



													-/								
		CHAIN OF	CUSTODY AND AN	ALYTICAL RE	QUEST RE	CORD			COC No.					Page:	1	of	1				
	Pr	roject Name: NASA KSC			PO No. 1	38224				Project No	. 60610905.5	Subs 2021-2	3-Subs 2021-23	Phase:							
	si	ite Location: LETF							Send Inv	roice To:	Instructio	ons in MSA	# 19S-2	4548-GV0	3		EDD to:	Jennifer	Chastain	Cc: Teresa A	mentt Jennings
	т	O No.: 80KSC019F0071	AECOM Project Manager:		Chris Marsh	all			Deliver S	Sample Kits	То:	AECOM D	Depot, 523	3 18th Stre	eet, Orland	lo	Report to:	Jennifer	Chastain	Cc: Teresa A	mentt Jennings
Sampler/Phor	ne # G	reg Kusel / (772) 631-7426							Deliver S	Samples To	:	ENCO					Site-Spicific	NS#15 from	m QAPP: 1	5-11	
Lab Name:	E	NCO		Turnaround Tim	e(specify):		Standard	14 day	Samp	le Analy	sis Re	queste	d (Ente	r numb	er of cor	ntainers	for each te	est)			
Lab ID	Sample ID	ode)	Location ID	Date (YYYYMMDD)	Time (Military) (hhmm)	Matrix Code (1)	Type	G=Grab C=Comp	(3)	HCI											
		GK			(IIIIIII)	(1)	(2)	С-сыпр	Total No. of Containers	Vinyl chloride by SW8260B											Comments
	LETF-MW00	01-2 <del>02111</del> -025.9-20211123	LETF-MW0001	202111 23	1019	WG	N	G	3	3											
	LETF-MW00	TF-MW0002-2021T1 - 926-0 - 2021113 LETF-MW0002 2021112				wg	N	G	3	3											
	LETF-MW00	05-202111 02.0 · LOUIN	LETF-MW0005	20211123	1130	wg	N	G	3	3											
	LETF-MW00	07- <del>202111</del> -0 <i>36.9 -20<b>21</b>11 <b>2</b>3</i>	LETF-MW0007	202111 23	1050	wg	N	G	3	3											
	LETF-PSB-M	1W00011-202111 024 ( - 204103	LETF-PSB-MW0001I	20211123	1055	wg	N	G	3	3											
	LETF-PSB-M	1W0002I-2021110715- 201113	LETF-PSB-MW0002I	20211123	1016	WG	N	G	3	3											
	LETF-TB-20	2111 23-01	LETF-TB © (	20211123	0800	wq	ТВ	G	2	2											
Field Com	Comments:  Lab Comments:  body per QAPP WS #15-11						Comments:						Number		Sample Ship s in shipment:	ment and	Delivery	Details			
Relinquished	Quished of (signature)  Date  Time  Received by (signature)  11-18-21  15:35  1 Drug  Man  11/23/21  1630  2						? Nuoi	ı		, ,	Date 1/22/	(2)	Time 970	0		Iced?(ch	eck) Yes	_ No			
2	Bres	V Mysel 1	1/23/21	1630	2	403	4	64		110	30	1	163	0	Tracking	No:					
3	0	ir quality control ASR=Ashestos CK			3				C-IDW	al TOW T	DW Water	I E-E	Droduct	MA-M	Date Shi	7.4	SC-Come-ti	Concrete	E_Codi-	ent CI - Clud	00 <b>50</b> =5c#
III AA=Amb	DIEDIT AIL ACI = A	IL CIDARITY COULTDL ASB = ASDESTOS CK	= vaulk. Da=atorm orain s	examplem (35=50)	uns. IL = IDW	CONCIPIE.	TOD=IDV	v SONG. ID:	a=IL/VV SO	IDW=1	zvv vvater	. LF=FTEE	- FIDGUCT.	PIA-MIS	uc, PC=Pa	THE LINES.	- ac=cement/	williefe, 5	E-Sedime	11L 3L=5100	uc. 3U=30II.

⁽¹⁾ AA=Ambient air, AQ=Air quality control, ASB=Asbestos, CK=Caulk, DS=Storm drain sediment, GS=Soil gas, IC=IDW Concrete, IDD=IDW Solid, IDS=IDW soil, IDW=IDW Water, LF=Free Product, MA=Mastic, PC=Paint Chips, SC=Cement/Concrete, SE=Sediment, SL=Sludge, SO=Soil, SQ=Soil/Solid quality control, SSD=Subsurface sediment, SU=Surface soil (<6 in), SW=Swab or wipe, TA=Animal tissue, TP=Plant tissue, TQ=Tissue quality control, WG=Ground water, WU=Storm water, WQ=Water quality control, WR=Ground water water, WU=Storm water, WU=S

⁽²⁾ Sample Type: AB=Ambient Blk, EB=Equipment Blk, FD=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Trip Blk

⁽³⁾ Preservative added: 4 DEG C=Cool to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C H2SO4=Hydrogen sulfate, H2SO4 <2=Adjust to pH < 2 with sulfuric acid, H3PO4=Phosphoric acid, H3PO4=Phosph

10775 Central Port Drive Orlando FL, 32824

Phone: 407.826.5314 FAX: 407.850.6945

Tuesday, November 30, 2021
AECOM Technical Services, Inc. (SE004)
Attn: Teresa Amentt Jennings
150 N. Orange Ave, Suite 200
Orlando, FL 32801

RE: Laboratory Results for

Project Number: 60610905, Project Name/Desc: NASA KSC -

ENCO Workorder(s): AE09085

Dear Teresa Amentt Jennings,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Tuesday, November 23, 2021.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Orlando. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

Sincerely,

Kaitlin Dylnicki

K. Oglnicki

Enclosure(s)

Project Manager



# SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: GSSP-MW	V0013-010.0-20211122	Lab ID: AE09085-01	Sampled: 11/22/21 14:40	Received: 11/23/21 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/06/21	11/24/21 09:21	11/24/21 10:18
Client ID: GSSP-MW	V0019-020.0-20211122	Lab ID: AE09085-02	Sampled: 11/22/21 15:41	Received: 11/23/21 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/06/21	11/24/21 09:21	11/24/21 10:46
Client ID: GSSP-MW	V0020-030.0-20211122	Lab ID: AE09085-03	Sampled: 11/22/21 16:17	Received: 11/23/21 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/06/21	11/24/21 09:21	11/24/21 11:14
Client ID: GSSP-MW	V0020-030.0-20211122	Lab ID: AE09085-03RE1	Sampled: 11/22/21 16:17	Received: 11/23/21 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/06/21	11/29/21 00:00	11/29/21 14:04
Client ID: GSSP-MW	V0034-010.0-20211122	Lab ID: AE09085-04	Sampled: 11/22/21 16:50	Received: 11/23/21 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/06/21	11/24/21 09:21	11/24/21 11:41
Client ID: GSSP-MW	V0036-035.0-20211122	Lab ID: AE09085-05	Sampled: 11/22/21 15:50	Received: 11/23/21 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/06/21	11/24/21 09:21	11/24/21 12:09
Client ID: GSSP-MW	V0044R-030.0-20211122	Lab ID: AE09085-06	Sampled: 11/22/21 12:33	Received: 11/23/21 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/06/21	11/24/21 00:00	11/24/21 16:21
Client ID: GSSP-MW	V0059-018.5-20211122	Lab ID: AE09085-07	Sampled: 11/22/21 14:00	Received: 11/23/21 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/06/21	11/24/21 00:00	11/24/21 17:47
Client ID: GSSP-MW	V0060-012.5-20211122	Lab ID: AE09085-08	Sampled: 11/22/21 13:16	Received: 11/23/21 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/06/21	11/24/21 00:00	11/24/21 18:16
Client ID: GSSP-MW	V0061-018.5-20211122	Lab ID: AE09085-09	Sampled: 11/22/21 12:44	Received: 11/23/21 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/06/21	11/24/21 10:25	11/25/21 03:51
Client ID: GSSP-MW	V0062-012.5-20211122	Lab ID: AE09085-10	Sampled: 11/22/21 14:23	Received: 11/23/21 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/06/21	11/24/21 10:25	11/25/21 04:19
Client ID: GSSP-MW	V0063-018.5-20211122	Lab ID: AE09085-11	Sampled: 11/22/21 15:05	Received: 11/23/21 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/06/21	11/24/21 10:25	11/25/21 04:47
Client ID: GSSP-MW	V0024R-020.0-20211122	Lab ID: AE09085-12	Sampled: 11/22/21 17:26	Received: 11/23/21 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/06/21	11/24/21 10:25	11/25/21 05:15
EPA 8270E	EPA 3511_MS	11/29/21 01/03/22	11/24/21 13:00	11/29/21 14:56
	V0035-020.0-20211122	Lab ID: AE09085-13	Sampled: 11/22/21 16:20	Received: 11/23/21 16:30
<u>Parameter</u>	Preparation	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D EPA 8270E	EPA 5030B_MS	12/06/21	11/24/21 10:25 11/24/21 13:00	11/25/21 05:42 11/29/21 15:18
LPA 02/UE	EPA 3511_MS	11/29/21 01/03/22	11/24/21 13:00	11/29/21 15:18



# SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: GSSP-M	W0053-020.0-20211122	Lab ID: A	E09085-14	Sampled: 11/22/	21 16:50	Received: 11/23/21 16:30	
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time	<u>e(s)</u>	Prep Date	/Time(s)	Analysis Date/Time(s)	
EPA 8260D	EPA 5030B_MS	12/06/21		11/24/21	10:25	11/25/21 06:10	
EPA 8270E	EPA 3511_MS	11/29/21	01/03/22	11/24/21	13:00	11/29/21 15:40	
Client ID: GSSP-TE	3-20211122-01	Lab ID: A	E09085-15	Sampled: 11/22/	21 08:00	Received: 11/23/21 16:30	
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time	<u>e(s)</u>	<u>Prep Date</u>	/Time(s)	Analysis Date/Time(s)	
EPA 8260D	EPA 5030B_MS	12/06/21		11/24/21 10:25		11/25/21 06:38	



# **SAMPLE DETECTION SUMMARY**

Client ID: GSSP-MW0	013-010.0-20211122			Lab ID:	AE09085-01			
<u>Analyte</u>		<u>Results</u>	<u>Flag</u>	MDL	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
/inyl chloride		6.4		0.71	1.0	ug/L	EPA 8260D	
Client ID: GSSP-MW0	019-020.0-20211122			Lab ID:	AE09085-02			
<u>Analyte</u>		<u>Results</u>	<u>Flag</u>	MDL	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
cis-1,2-Dichloroethene		2.5		0.53	1.0	ug/L	EPA 8260D	
trans-1,2-Dichloroethene		1.0		0.73	1.0	ug/L	EPA 8260D	
Vinyl chloride		81		0.71	1.0	ug/L	EPA 8260D	
Client ID: GSSP-MW0	020-030.0-20211122			Lab ID:	AE09085-03			
<u>Analyte</u>		<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
rans-1,2-Dichloroethene		2.4		0.73	1.0	ug/L	EPA 8260D	
Client ID: GSSP-MW0	020-030.0-20211122			Lab ID:	AE09085-03RE1			
<u>Analyte</u>		<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
/inyl chloride		220		3.6	5.0	ug/L	EPA 8260D	
Client ID: GSSP-MW0	036-035.0-20211122			Lab ID:	AE09085-05			
<u>Analyte</u>		<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
/inyl chloride		1.8		0.71	1.0	ug/L	EPA 8260D	
Client ID: GSSP-MW0	059-018.5-20211122			Lab ID:	AE09085-07			
<u>Analyte</u>		<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
/inyl chloride		2.2		0.71	1.0	ug/L	EPA 8260D	
Client ID: GSSP-MW0	060-012.5-20211122			Lab ID:	AE09085-08			
<u>Analyte</u>		<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Vinyl chloride		1.6		0.71	1.0	ug/L	EPA 8260D	
Client ID: GSSP-MW0	062-012.5-20211122			Lab ID:	AE09085-10			
<u> Analyte</u>		<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
cis-1,2-Dichloroethene		0.55	I	0.53	1.0	ug/L	EPA 8260D	
Vinyl chloride		7.1		0.71	1.0	ug/L	EPA 8260D	
Client ID: GSSP-MW0	024R-020.0-20211122			Lab ID:	AE09085-12			
<u>Analyte</u>		<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Naphthalene		0.051	I	0.050	0.10	ug/L	EPA 8270E	
Client ID: GSSP-MW0	035-020.0-20211122			Lab ID:	AE09085-13			
Analyte		Results	Flag	MDL	<u>PQL</u>	<u>Units</u>	Method	<u>Notes</u>
/inyl chloride		2.9		0.71	1.0	ug/L	EPA 8260D	
Client ID: GSSP-MW0	053-020.0-20211122			Lab ID:	AE09085-14			
<u>Analyte</u>		Results	Flag	MDL	<u>PQL</u>	<u>Units</u>	Method	<u>Notes</u>
Naphthalene		0.069	I	0.050	0.10	ug/L	EPA 8270E	_
		63				-		



**Description:** GSSP-MW0013-010.0-20211122 **Lab Sample ID:** AE09085-01 **Received:** 11/23/21 16:30

Matrix:Ground WaterSampled: 11/22/21 14:40Project:NASA KSC -Sampled By: Greg Kusel

Work Order: AE09085

Work Order: AE09085

# Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	1K24012	EPA 8260D	11/24/21 10:18	KKW	
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	1K24012	EPA 8260D	11/24/21 10:18	KKW	
trans-1,2-Dichloroethene [156-60-5]^	0.73	U	ug/L	1	0.73	1.0	1K24012	EPA 8260D	11/24/21 10:18	KKW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	1K24012	EPA 8260D	11/24/21 10:18	KKW	
Vinyl chloride [75-01-4]^	6.4		ug/L	1	0.71	1.0	1K24012	EPA 8260D	11/24/21 10:18	KKW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	% Rec	c Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	<i>52</i>	1	50.0	103 %	41-	142	1K24012	EPA 8260D	11/24/21 10:18	KKW	
Dibromofluoromethane	50	1	50.0	100 %	<i>53-1</i>	146	1K24012	EPA 8260D	11/24/21 10:18	KKW	
Toluene-d8	<i>52</i>	1	50.0	105 %	41-1	146	1K24012	EPA 8260D	11/24/21 10:18	KKW	

**Description:** GSSP-MW0019-020.0-20211122 **Lab Sample ID:** AE09085-02 **Received:** 11/23/21 16:30

Matrix:Ground WaterSampled: 11/22/21 15:41Project:NASA KSC -Sampled By: Greg Kusel

# Volatile Organic Compounds by GCMS

Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	2.5		ug/L	1	0.53	1.0	1K24012	EPA 8260D	11/24/21 10:46	KKW	
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	1K24012	EPA 8260D	11/24/21 10:46	KKW	
trans-1,2-Dichloroethene [156-60-5]^	1.0		ug/L	1	0.73	1.0	1K24012	EPA 8260D	11/24/21 10:46	KKW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	1K24012	EPA 8260D	11/24/21 10:46	KKW	
Vinyl chloride [75-01-4]^	81		ug/L	1	0.71	1.0	1K24012	EPA 8260D	11/24/21 10:46	KKW	
	- <i>"</i>			a. =	a. =		- · ·			_	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Ke</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	<i>52</i>	1	50.0	105 %	41-1	142	1K24012	EPA 8260D	11/24/21 10:46	KKW	
Dibromofluoromethane	51	1	50.0	101 %	<i>53</i> -2	146	1K24012	EPA 8260D	11/24/21 10:46	KKW	
Toluene-d8	<i>52</i>	1	50.0	105 %	41-1	146	1K24012	EPA 8260D	11/24/21 10:46	KKW	



**Description:** GSSP-MW0020-030.0-20211122 **Lab Sample ID:** AE09085-03 **Received:** 11/23/21 16:30

Matrix:Ground WaterSampled: 11/22/21 16:17Project:NASA KSC -Sampled By: Greg Kusel

Work Order: AE09085

Work Order: AE09085

# Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	DF	MDL	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	1K24012	EPA 8260D	11/24/21 11:14	KKW	
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	1K24012	EPA 8260D	11/24/21 11:14	KKW	
trans-1,2-Dichloroethene [156-60-5]^	2.4		ug/L	1	0.73	1.0	1K24012	EPA 8260D	11/24/21 11:14	KKW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	1K24012	EPA 8260D	11/24/21 11:14	KKW	
Vinyl chloride [75-01-4]^	220		ug/L	5	3.6	5.0	1K29005	EPA 8260D	11/29/21 14:04	nmc	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	% Re	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	52	1	50.0	103 %	41	142	1K24012	EPA 8260D	11/24/21 11:14	KKW	
4-Bromofluorobenzene	40	1	50.0	<i>79 %</i>	41	142	1K29005	EPA 8260D	11/29/21 14:04	nmc	
Dibromofluoromethane	51	1	50.0	101 %	<i>53</i>	146	1K24012	EPA 8260D	11/24/21 11:14	KKW	
Dibromofluoromethane	44	1	50.0	87 %	<i>53</i>	146	1K29005	EPA 8260D	11/29/21 14:04	nmc	
Toluene-d8	53	1	50.0	106 %	41-	146	1K24012	EPA 8260D	11/24/21 11:14	KKW	
Toluene-d8	45	1	50.0	90 %	41-	146	1K29005	EPA 8260D	11/29/21 14:04	nmc	

**Description:** GSSP-MW0034-010.0-20211122 **Lab Sample ID:** AE09085-04 **Received:** 11/23/21 16:30

**Matrix:** Ground Water Sampled: 11/22/21 16:50

Project: NASA KSC - Sampled By: Greg Kusel

# Volatile Organic Compounds by GCMS

Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	1K24012	EPA 8260D	11/24/21 11:41	KKW	
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	1K24012	EPA 8260D	11/24/21 11:41	KKW	
trans-1,2-Dichloroethene [156-60-5]^	0.73	U	ug/L	1	0.73	1.0	1K24012	EPA 8260D	11/24/21 11:41	KKW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	1K24012	EPA 8260D	11/24/21 11:41	KKW	
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	1K24012	EPA 8260D	11/24/21 11:41	KKW	
Surrogates	Results	DF	Spike Lvl	% Rec	% Red	c Limits	Batch	Method	Analyzed	<u>By</u>	Notes
4-Bromofluorobenzene	52	1	50.0	105 %	41-1	142	1K24012	EPA 8260D	11/24/21 11:41	KKW	
Dibromofluoromethane	50	1	50.0	100 %	<i>53-1</i>	146	1K24012	EPA 8260D	11/24/21 11:41	KKW	
Toluene-d8	53	1	50.0	105 %	41-1	146	1K24012	EPA 8260D	11/24/21 11:41	KKW	



**Description:** GSSP-MW0036-035.0-20211122 **Lab Sample ID:** AE09085-05 **Received:** 11/23/21 16:30

Matrix:Ground WaterSampled: 11/22/21 15:50Project:NASA KSC -Sampled By: Greg Kusel

Work Order: AE09085

Work Order: AE09085

# **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	DF	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<b>Notes</b>
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	1K24012	EPA 8260D	11/24/21 12:09	KKW	
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	1K24012	EPA 8260D	11/24/21 12:09	KKW	
trans-1,2-Dichloroethene [156-60-5]^	0.73	U	ug/L	1	0.73	1.0	1K24012	EPA 8260D	11/24/21 12:09	KKW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	1K24012	EPA 8260D	11/24/21 12:09	KKW	
Vinyl chloride [75-01-4]^	1.8		ug/L	1	0.71	1.0	1K24012	EPA 8260D	11/24/21 12:09	KKW	
	- "			a. =	a. =					_	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Ke</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	51	1	50.0	102 %	41	142	1K24012	EPA 8260D	11/24/21 12:09	KKW	
Dibromofluoromethane	50	1	50.0	99 %	<i>53-</i> .	146	1K24012	EPA 8260D	11/24/21 12:09	KKW	
Toluene-d8	<i>53</i>	1	50.0	106 %	41	146	1K24012	EPA 8260D	11/24/21 12:09	KKW	

**Description:** GSSP-MW0044R-030.0-20211122 **Lab Sample ID:** AE09085-06 **Received:** 11/23/21 16:30

Matrix:Ground WaterSampled: 11/22/21 12:33Project:NASA KSC -Sampled By: Greg Kusel

# Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

-										
<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<b>Analyzed</b>	<u>By</u>	<u>Notes</u>
0.53	U	ug/L	1	0.53	1.0	1K24011	EPA 8260D	11/24/21 16:21	KKW	
0.76	U	ug/L	1	0.76	1.0	1K24011	EPA 8260D	11/24/21 16:21	KKW	
0.73	U	ug/L	1	0.73	1.0	1K24011	EPA 8260D	11/24/21 16:21	KKW	
0.89	U	ug/L	1	0.89	1.0	1K24011	EPA 8260D	11/24/21 16:21	KKW	
0.71	U	ug/L	1	0.71	1.0	1K24011	EPA 8260D	11/24/21 16:21	KKW	
<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
40	1	50.0	81 %	41	142	1K24011	EPA 8260D	11/24/21 16:21	KKW	
49	1	50.0	98 %	<i>53-</i> .	146	1K24011	EPA 8260D	11/24/21 16:21	KKW	
47	1	50.0	95 %	41-	146	1K24011	EPA 8260D	11/24/21 16:21	KKW	
	0.53 0.76 0.73 0.89 0.71 Results 40 49	0.53 U 0.76 U 0.73 U 0.89 U 0.71 U  Results DF 40 1 49 1	0.53       U       ug/L         0.76       U       ug/L         0.73       U       ug/L         0.89       U       ug/L         0.71       U       ug/L         Results       DF       Spike Lvl         40       1       50.0         49       1       50.0	0.53     U     ug/L     1       0.76     U     ug/L     1       0.73     U     ug/L     1       0.89     U     ug/L     1       0.71     U     ug/L     1       Results     DF     Spike Lvl     % Rec       40     1     50.0     81 %       49     1     50.0     98 %	0.53         U         ug/L         1         0.53           0.76         U         ug/L         1         0.76           0.73         U         ug/L         1         0.73           0.89         U         ug/L         1         0.89           0.71         U         ug/L         1         0.71           Results         DF         Spike Lvl         % Rec         % Rec         % Rec           40         1         50.0         81 %         41           49         1         50.0         98 %         53	0.53         U         ug/L         1         0.53         1.0           0.76         U         ug/L         1         0.76         1.0           0.73         U         ug/L         1         0.73         1.0           0.89         U         ug/L         1         0.89         1.0           0.71         U         ug/L         1         0.71         1.0           Results         DF         Spike Lvl         % Rec         % Rec Limits           40         1         50.0         81 %         41-142           49         1         50.0         98 %         53-146	0.53         U         ug/L         1         0.53         1.0         1K24011           0.76         U         ug/L         1         0.76         1.0         1K24011           0.73         U         ug/L         1         0.73         1.0         1K24011           0.89         U         ug/L         1         0.89         1.0         1K24011           0.71         U         ug/L         1         0.71         1.0         1K24011           Results         DF         Spike Lvl         % Rec         % Rec Limits         Batch           40         1         50.0         81 %         41-142         1K24011           49         1         50.0         98 %         53-146         1K24011	0.53         U         ug/L         1         0.53         1.0         1K24011         EPA 8260D           0.76         U         ug/L         1         0.76         1.0         1K24011         EPA 8260D           0.73         U         ug/L         1         0.73         1.0         1K24011         EPA 8260D           0.89         U         ug/L         1         0.89         1.0         1K24011         EPA 8260D           0.71         U         ug/L         1         0.71         1.0         1K24011         EPA 8260D           Results         DF         Spike Lvl         % Rec         % Rec Limits         Batch         Method           40         1         50.0         81 %         41-142         1K24011         EPA 8260D           49         1         50.0         98 %         53-146         1K24011         EPA 8260D	0.53         U         ug/L         1         0.53         1.0         1K24011         EPA 8260D         11/24/21 16:21           0.76         U         ug/L         1         0.76         1.0         1K24011         EPA 8260D         11/24/21 16:21           0.73         U         ug/L         1         0.73         1.0         1K24011         EPA 8260D         11/24/21 16:21           0.89         U         ug/L         1         0.89         1.0         1K24011         EPA 8260D         11/24/21 16:21           0.71         U         ug/L         1         0.71         1.0         1K24011         EPA 8260D         11/24/21 16:21           Results         DF         Spike Lvl         % Rec         Limits         Batch         Method         Analyzed           40         1         50.0         81 %         41-142         1K24011         EPA 8260D         11/24/21 16:21           49         1         50.0         98 %         53-146         1K24011         EPA 8260D         11/24/21 16:21	0.53         U         ug/L         1         0.53         1.0         1K24011         EPA 8260D         11/24/21 16:21         KKW           0.76         U         ug/L         1         0.76         1.0         1K24011         EPA 8260D         11/24/21 16:21         KKW           0.73         U         ug/L         1         0.73         1.0         1K24011         EPA 8260D         11/24/21 16:21         KKW           0.89         U         ug/L         1         0.89         1.0         1K24011         EPA 8260D         11/24/21 16:21         KKW           0.71         U         ug/L         1         0.71         1.0         1K24011         EPA 8260D         11/24/21 16:21         KKW           Results         DF         Spike Lvl         % Rec         % Rec Limits         Batch         Method         Analyzed         By           40         1         50.0         81 %         41-142         1K24011         EPA 8260D         11/24/21 16:21         KKW           49         1         50.0         98 %         53-146         1K24011         EPA 8260D         11/24/21 16:21         KKW

**Description:** GSSP-MW0059-018.5-20211122 **Lab Sample ID:** AE09085-07 **Received:** 11/23/21 16:30

Matrix: Ground WaterSampled: 11/22/21 14:00Work Order: AE09085

Project: NASA KSC - Sampled By: Greg Kusel

## **Volatile Organic Compounds by GCMS**

Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	DF	MDL	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	1K24011	EPA 8260D	11/24/21 17:47	KKW	
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	1K24011	EPA 8260D	11/24/21 17:47	KKW	
trans-1,2-Dichloroethene [156-60-5]^	0.73	U	ug/L	1	0.73	1.0	1K24011	EPA 8260D	11/24/21 17:47	KKW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	1K24011	EPA 8260D	11/24/21 17:47	KKW	
Vinyl chloride [75-01-4]^	2.2		ug/L	1	0.71	1.0	1K24011	EPA 8260D	11/24/21 17:47	KKW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	% Rec	% Re	c Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	40	1	50.0	<i>79 %</i>	41	142	1K24011	EPA 8260D	11/24/21 17:47	KKW	
Dibromofluoromethane	48	1	50.0	96 %	<i>53-</i> .	146	1K24011	EPA 8260D	11/24/21 17:47	KKW	
Toluene-d8	46	1	50.0	93 %	41-	146	1K24011	EPA 8260D	11/24/21 17:47	KKW	



**Description:** GSSP-MW0060-012.5-20211122 **Lab Sample ID:** AE09085-08 **Received:** 11/23/21 16:30

Matrix:Ground WaterSampled: 11/22/21 13:16Project:NASA KSC -Sampled By: Greg Kusel

Work Order: AE09085

Work Order: AE09085

# **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	1K24011	EPA 8260D	11/24/21 18:16	KKW	
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	1K24011	EPA 8260D	11/24/21 18:16	KKW	
trans-1,2-Dichloroethene [156-60-5]^	0.73	U	ug/L	1	0.73	1.0	1K24011	EPA 8260D	11/24/21 18:16	KKW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	1K24011	EPA 8260D	11/24/21 18:16	KKW	
Vinyl chloride [75-01-4]^	1.6		ug/L	1	0.71	1.0	1K24011	EPA 8260D	11/24/21 18:16	KKW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	% Re	c Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	39	1	50.0	<i>78 %</i>	41-	142	1K24011	EPA 8260D	11/24/21 18:16	KKW	
Dibromofluoromethane	48	1	50.0	95 %	<i>53-</i> 2	146	1K24011	EPA 8260D	11/24/21 18:16	KKW	
Toluene-d8	47	1	50.0	93 %	41-	146	1K24011	EPA 8260D	11/24/21 18:16	KKW	

**Description:** GSSP-MW0061-018.5-20211122 **Lab Sample ID:** AE09085-09 **Received:** 11/23/21 16:30

Matrix:Ground WaterSampled: 11/22/21 12:44Project:NASA KSC -Sampled By: Greg Kusel

# **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	1K24018	EPA 8260D	11/25/21 03:51	KKW	
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	1K24018	EPA 8260D	11/25/21 03:51	KKW	
trans-1,2-Dichloroethene [156-60-5]^	0.73	U	ug/L	1	0.73	1.0	1K24018	EPA 8260D	11/25/21 03:51	KKW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	1K24018	EPA 8260D	11/25/21 03:51	KKW	
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	1K24018	EPA 8260D	11/25/21 03:51	KKW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Re	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	<i>52</i>	1	50.0	104 %	41	142	1K24018	EPA 8260D	11/25/21 03:51	KKW	
Dibromofluoromethane	51	1	50.0	102 %	<i>53</i>	146	1K24018	EPA 8260D	11/25/21 03:51	KKW	
Toluene-d8	53	1	50.0	107 %	41-	146	1K24018	EPA 8260D	11/25/21 03:51	KKW	

**Description:** GSSP-MW0062-012.5-20211122 **Lab Sample ID:** AE09085-10 **Received:** 11/23/21 16:30

Matrix:Ground WaterSampled: 11/22/21 14:23Work Order: AE09085Project:NASA KSC -Sampled By: Greg Kusel

## **Volatile Organic Compounds by GCMS**

Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
0.55	I	ug/L	1	0.53	1.0	1K24018	EPA 8260D	11/25/21 04:19	KKW	
0.76	U	ug/L	1	0.76	1.0	1K24018	EPA 8260D	11/25/21 04:19	KKW	
0.73	U	ug/L	1	0.73	1.0	1K24018	EPA 8260D	11/25/21 04:19	KKW	
0.89	U	ug/L	1	0.89	1.0	1K24018	EPA 8260D	11/25/21 04:19	KKW	
7.1		ug/L	1	0.71	1.0	1K24018	EPA 8260D	11/25/21 04:19	KKW	
Bosulta	DE	Eniko Lul	0/- Bos	0/- Ba	a l imita	Patch	Mathad	Analyzad	D.,	Notes
KESUILS	<u> </u>	Spike Lvi	<u> 70 KEC</u>	70 KE	<u>L LIIIIILS</u>	<u>DALCII</u>	<u>мешои</u>	<u>Allalyzeu</u>	<u> </u>	<u>Notes</u>
51	1	50.0	101 %	41-1	142	1K24018	EPA 8260D	11/25/21 04:19	KKW	
48	1	50.0	96 %	<i>53</i> -2	146	1K24018	EPA 8260D	11/25/21 04:19	KKW	
<i>52</i>	1	50.0	103 %	41-1	146	1K24018	EPA 8260D	11/25/21 04:19	KKW	
	0.55 0.76 0.73 0.89 7.1 Results 51 48	0.55       I         0.76       U         0.73       U         0.89       U         7.1       Results       DF         51       1         48       1	0.55         I         ug/L           0.76         U         ug/L           0.73         U         ug/L           0.89         U         ug/L           7.1         ug/L           Spike Lvl           51         1         50.0           48         1         50.0	0.55         I         ug/L         1           0.76         U         ug/L         1           0.73         U         ug/L         1           0.89         U         ug/L         1           7.1         ug/L         1           Results         DF         Spike Lvl         % Rec           51         1         50.0         101 %           48         1         50.0         96 %	0.55         I         ug/L         1         0.53           0.76         U         ug/L         1         0.76           0.73         U         ug/L         1         0.73           0.89         U         ug/L         1         0.89           7.1         ug/L         1         0.71           Results         DF         Spike Lvl         % Rec         % Rec           51         1         50.0         101 %         41           48         1         50.0         96 %         53	0.55         I         ug/L         1         0.53         1.0           0.76         U         ug/L         1         0.76         1.0           0.73         U         ug/L         1         0.73         1.0           0.89         U         ug/L         1         0.89         1.0           7.1         ug/L         1         0.71         1.0           Results         DF         Spike Lvl         % Rec         % Rec Limits           51         1         50.0         101 %         41-142           48         1         50.0         96 %         53-146	0.55         I         ug/L         1         0.53         1.0         1K24018           0.76         U         ug/L         1         0.76         1.0         1K24018           0.73         U         ug/L         1         0.73         1.0         1K24018           0.89         U         ug/L         1         0.89         1.0         1K24018           7.1         ug/L         1         0.71         1.0         1K24018           Results         DF         Spike Lvl         % Rec         % Rec Limits         Batch           51         1         50.0         101 %         41-142         1K24018           48         1         50.0         96 %         53-146         1K24018	0.55         I         ug/L         1         0.53         1.0         1K24018         EPA 8260D           0.76         U         ug/L         1         0.76         1.0         1K24018         EPA 8260D           0.73         U         ug/L         1         0.73         1.0         1K24018         EPA 8260D           0.89         U         ug/L         1         0.89         1.0         1K24018         EPA 8260D           7.1         ug/L         1         0.71         1.0         1K24018         EPA 8260D           Results         DF         Spike Lvl         % Rec         % Rec Limits         Batch         Method           51         1         50.0         101 %         41-142         1K24018         EPA 8260D           48         1         50.0         96 %         53-146         1K24018         EPA 8260D	0.55         I         ug/L         1         0.53         1.0         1K24018         EPA 8260D         11/25/21 04:19           0.76         U         ug/L         1         0.76         1.0         1K24018         EPA 8260D         11/25/21 04:19           0.73         U         ug/L         1         0.73         1.0         1K24018         EPA 8260D         11/25/21 04:19           0.89         U         ug/L         1         0.89         1.0         1K24018         EPA 8260D         11/25/21 04:19           7.1         ug/L         1         0.71         1.0         1K24018         EPA 8260D         11/25/21 04:19           Results         DF         Spike Lvl         % Rec         % Rec Limits         Batch         Method         Analyzed           51         1         50.0         101 %         41-142         1K24018         EPA 8260D         11/25/21 04:19           48         1         50.0         96 %         53-146         1K24018         EPA 8260D         11/25/21 04:19	0.55         I         ug/L         1         0.53         1.0         1K24018         EPA 8260D         11/25/21 04:19         KKW           0.76         U         ug/L         1         0.76         1.0         1K24018         EPA 8260D         11/25/21 04:19         KKW           0.73         U         ug/L         1         0.73         1.0         1K24018         EPA 8260D         11/25/21 04:19         KKW           0.89         U         ug/L         1         0.89         1.0         1K24018         EPA 8260D         11/25/21 04:19         KKW           7.1         ug/L         1         0.71         1.0         1K24018         EPA 8260D         11/25/21 04:19         KKW           Results         DF         Spike Lvl         % Rec         % Rec Limits         Batch         Method         Analyzed         By           51         1         50.0         101 %         41-142         1K24018         EPA 8260D         11/25/21 04:19         KKW           48         1         50.0         96 %         53-146         1K24018         EPA 8260D         11/25/21 04:19         KKW



**Description:** GSSP-MW0063-018.5-20211122 **Lab Sample ID:** AE09085-11 **Received:** 11/23/21 16:30

Matrix:Ground WaterSampled: 11/22/21 15:05Project:NASA KSC -Sampled By: Greg Kusel

Work Order: AE09085

Work Order: AE09085

# **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	1K24018	EPA 8260D	11/25/21 04:47	KKW	
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	1K24018	EPA 8260D	11/25/21 04:47	KKW	
trans-1,2-Dichloroethene [156-60-5]^	0.73	U	ug/L	1	0.73	1.0	1K24018	EPA 8260D	11/25/21 04:47	KKW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	1K24018	EPA 8260D	11/25/21 04:47	KKW	
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	1K24018	EPA 8260D	11/25/21 04:47	KKW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	% Rec	% Re	c Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	52	1	50.0	105 %	41	142	1K24018	EPA 8260D	11/25/21 04:47	KKW	
Dibromofluoromethane	49	1	50.0	98 %	<i>53</i> -2	146	1K24018	EPA 8260D	11/25/21 04:47	KKW	
Toluene-d8	<i>52</i>	1	50.0	105 %	41-	146	1K24018	EPA 8260D	11/25/21 04:47	KKW	

**Description:** GSSP-MW0024R-020.0-20211122 **Lab Sample ID:** AE09085-12 **Received:** 11/23/21 16:30

Matrix:Ground WaterSampled: 11/22/21 17:26Project:NASA KSC -Sampled By: Greg Kusel

# Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	Method	Analyzed	By	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	1K24018	EPA 8260D	11/25/21 05:15	KKW	
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	1K24018	EPA 8260D	11/25/21 05:15	KKW	
trans-1,2-Dichloroethene [156-60-5]^	0.73	U	ug/L	1	0.73	1.0	1K24018	EPA 8260D	11/25/21 05:15	KKW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	1K24018	EPA 8260D	11/25/21 05:15	KKW	
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	1K24018	EPA 8260D	11/25/21 05:15	KKW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	% Re	c Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	51	1	50.0	102 %	41-	142	1K24018	EPA 8260D	11/25/21 05:15	KKW	
Dibromofluoromethane	50	1	50.0	100 %	<i>53</i>	146	1K24018	EPA 8260D	11/25/21 05:15	KKW	
Toluene-d8	52	1	50.0	105 %	41-	146	1K24018	EPA 8260D	11/25/21 05:15	KKW	

## Semivolatile Organic Compounds by GCMS SIM

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	PQL	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	Ву	<u>Notes</u>
Naphthalene [91-20-3]^	0.051	I	ug/L	1	0.050	0.10	1K24028	EPA 8270E	11/29/21 14:56	jfi	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	% Rec	% Rec	<u>Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	Notes
2-Methylnaphthalene-d10	4.4	1	5.71	<i>77 %</i>	<i>50-1</i> .	50	1K24028	EPA 8270E	11/29/21 14:56	jfi	
Fluoranthene-d10	4.9	1	5.71	<i>85 %</i>	50-1.	50	1K24028	EPA 8270E	11/29/21 14:56	ifi	



**Description:** GSSP-MW0035-020.0-20211122 Lab Sample ID: AE09085-13 **Received:** 11/23/21 16:30

Matrix: Ground Water Sampled: 11/22/21 16:20 Project: NASA KSC -Sampled By: Greg Kusel

Work Order: AE09085

# **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	1K24018	EPA 8260D	11/25/21 05:42	KKW	
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	1K24018	EPA 8260D	11/25/21 05:42	KKW	
trans-1,2-Dichloroethene [156-60-5]^	0.73	U	ug/L	1	0.73	1.0	1K24018	EPA 8260D	11/25/21 05:42	KKW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	1K24018	EPA 8260D	11/25/21 05:42	KKW	
Vinyl chloride [75-01-4]^	2.9		ug/L	1	0.71	1.0	1K24018	EPA 8260D	11/25/21 05:42	KKW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	% Rec	% Re	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	51	1	50.0	103 %	41-	142	1K24018	EPA 8260D	11/25/21 05:42	KKW	
Dibromofluoromethane	50	1	50.0	100 %	<i>53</i>	146	1K24018	EPA 8260D	11/25/21 05:42	KKW	
Toluene-d8	53	1	50.0	105 %	41-	146	1K24018	EPA 8260D	11/25/21 05:42	KKW	

# Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Naphthalene [91-20-3]^	0.050	U	ug/L	1	0.050	0.10	1K24028	EPA 8270E	11/29/21 15:18	jfi	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	Notes
2-Methylnaphthalene-d10	5.0	1	5.71	88 %	50-1	50	1K24028	EPA 8270E	11/29/21 15:18	jfi	
Fluoranthene-d10	6.2	1	5.71	108 %	50-1	50	1K24028	EPA 8270E	11/29/21 15:18	ifi	

**Description:** GSSP-MW0053-020.0-20211122 Lab Sample ID: AE09085-14 **Received:** 11/23/21 16:30

Matrix: Ground Water Sampled: 11/22/21 16:50 Project: NASA KSC -Sampled By: Greg Kusel

Work Order: AE09085

## Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

LIVEO Oriando ceranica analyte [IVLLAC L	.03102]										
Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	Analyzed	By	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	1K24018	EPA 8260D	11/25/21 06:10	KKW	
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	1K24018	EPA 8260D	11/25/21 06:10	KKW	
trans-1,2-Dichloroethene [156-60-5]^	0.73	U	ug/L	1	0.73	1.0	1K24018	EPA 8260D	11/25/21 06:10	KKW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	1K24018	EPA 8260D	11/25/21 06:10	KKW	
Vinyl chloride [75-01-4]^	63		ug/L	1	0.71	1.0	1K24018	EPA 8260D	11/25/21 06:10	KKW	
<u>Surrogates</u>	Results	<u>DF</u>	Spike Lvl	% Rec	% Re	c Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	Notes
4-Bromofluorobenzene	52	1	50.0	103 %	41-	142	1K24018	EPA 8260D	11/25/21 06:10	KKW	
Dibromofluoromethane	49	1	50.0	99 %	<i>53</i>	146	1K24018	EPA 8260D	11/25/21 06:10	KKW	
Toluene-d8	53	1	50.0	106 %	41	146	1K24018	EPA 8260D	11/25/21 06:10	KKW	

# Semivolatile Organic Compounds by GCMS SIM

<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
0.069	I	ug/L	1	0.050	0.10	1K24028	EPA 8270E	11/29/21 15:40	jfi	
<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec I	Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
5.9	1	5.71	102 %	50-15	0	1K24028	EPA 8270E	11/29/21 15:40	jfi	
6.5	1	5.71	114 %	50-15	0	1K24028	EPA 8270E	11/29/21 15:40	jfi	
	0.069 <u>Results</u> 5.9	0.069       I         Results       DF         5.9       1	0.069         I         ug/L           Results         DF         Spike Lvl           5.9         1         5.71	0.069         I         ug/L         1           Results         DF         Spike Lvl         % Rec           5.9         1         5.71         102 %	0.069         I         ug/L         1         0.050           Results         DF         Spike Lvl         % Rec         % Rec           5.9         1         5.71         102 %         50-15	0.069         I         ug/L         1         0.050         0.10           Results         DF         Spike LvI         % Rec         % Rec Limits           5.9         1         5.71         102 %         50-150	0.069         I         ug/L         1         0.050         0.10         1K24028           Results         DF         Spike Lvl         % Rec         % Rec Limits         Batch           5.9         1         5.71         102 %         50-150         1K24028	0.069         I         ug/L         1         0.050         0.10         1K24028         EPA 8270E           Results         DF         Spike Lvl         % Rec         % Rec Limits         Batch         Method           5.9         1         5.71         102 %         50-150         1K24028         EPA 8270E	0.069         I         ug/L         1         0.050         0.10         1K24028         EPA 8270E         11/29/21 15:40           Results         DF         Spike Lvl         % Rec         % Rec Limits         Batch         Method         Analyzed           5.9         1         5.71         102 %         50-150         1K24028         EPA 8270E         11/29/21 15:40	0.069         I         ug/L         1         0.050         0.10         1K24028         EPA 8270E         11/29/21 15:40         jfi           Results         DF         Spike Lvl         % Rec         % Rec         Limits         Batch         Method         Analyzed         By           5.9         1         5.71         102 %         50-150         1K24028         EPA 8270E         11/29/21 15:40         jfi



**Description:** GSSP-TB-20211122-01 **Lab Sample ID:** AE09085-15 **Received:** 11/23/21 16:30

Matrix:WaterSampled: 11/22/21 08:00Project:NASA KSC -Sampled By: ENCO - ORL

Work Order: AE09085

# Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83	182]										
Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	1K24018	EPA 8260D	11/25/21 06:38	KKW	
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	1K24018	EPA 8260D	11/25/21 06:38	KKW	
trans-1,2-Dichloroethene [156-60-5]^	0.73	U	ug/L	1	0.73	1.0	1K24018	EPA 8260D	11/25/21 06:38	KKW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	1K24018	EPA 8260D	11/25/21 06:38	KKW	
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	1K24018	EPA 8260D	11/25/21 06:38	KKW	
	- "			a. =	24.5					_	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Rec</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	51	1	50.0	103 %	41-1	142	1K24018	EPA 8260D	11/25/21 06:38	KKW	
Dibromofluoromethane	51	1	50.0	101 %	<i>53-1</i>	146	1K24018	EPA 8260D	11/25/21 06:38	KKW	
Toluene-d8	52	1	50.0	105 %	41-1	146	1K24018	EPA 8260D	11/25/21 06:38	KKW	



## Volatile Organic Compounds by GCMS - Quality Control

#### Batch 1K24011 - EPA 5030B_MS

Blank (1K24011-BLK1) Prepared: 11/24/2021 00:00 Analyzed: 11/24/2021 11:33

Analyte	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
cis-1,2-Dichloroethene	0.53	U	1.0	ug/L							
Tetrachloroethene	0.76	U	1.0	ug/L							
trans-1,2-Dichloroethene	0.73	U	1.0	ug/L							
Trichloroethene	0.89	U	1.0	ug/L							
Vinyl chloride	0.71	U	1.0	ug/L							
4-Bromofluorobenzene	40			ug/L	50.0		79	41-142			
Dibromofluoromethane	47			ug/L	50.0		94	<i>53-146</i>			
Toluene-d8	46			ug/L	50.0		92	41-146			

LCS (1K24011-BS1) Prepared: 11/24/2021 00:00 Analyzed: 11/24/2021 09:08

<u>Analyte</u>	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
cis-1,2-Dichloroethene	24		1.0	ug/L	20.0		119	56-128			
Tetrachloroethene	21		1.0	ug/L	20.0		103	60-147			
trans-1,2-Dichloroethene	24		1.0	ug/L	20.0		119	54-134			
Trichloroethene	24		1.0	ug/L	20.0		119	62-135			
Vinyl chloride	31		1.0	ug/L	20.0		154	20-167			
4-Bromofluorobenzene	41			ug/L	50.0		82	41-142			
Dibromofluoromethane	47			ug/L	50.0		95	<i>53-146</i>			
Toluene-d8	47			ug/L	50.0		94	41-146			

Matrix Spike (1K24011-MS1) Prepared: 11/24/2021 00:00 Analyzed: 11/24/2021 10:06

Source: AE09336-01

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	Units	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>Notes</u>
cis-1,2-Dichloroethene	25		1.0	ug/L	20.0	0.53 U	125	56-128			
Tetrachloroethene	20		1.0	ug/L	20.0	0.76 U	100	60-147			
trans-1,2-Dichloroethene	26		1.0	ug/L	20.0	0.73 U	130	54-134			
Trichloroethene	26		1.0	ug/L	20.0	0.89 U	128	62-135			
Vinyl chloride	27		1.0	ug/L	20.0	0.71 U	134	20-167			
4-Bromofluorobenzene	39			ug/L	50.0		79	41-142			
Dibromofluoromethane	47			ug/L	50.0		94	<i>53-146</i>			
Toluene-d8	46			ug/L	50.0		92	41-146			

Matrix Spike Dup (1K24011-MSD1) Prepared: 11/24/2021 00:00 Analyzed: 11/24/2021 10:35

Source: AE09336-01

Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
cis-1,2-Dichloroethene	25		1.0	ug/L	20.0	0.53 U	123	56-128	1	17	
Tetrachloroethene	20		1.0	ug/L	20.0	0.76 U	100	60-147	0.4	21	
trans-1,2-Dichloroethene	25		1.0	ug/L	20.0	0.73 U	127	54-134	3	20	
Trichloroethene	25		1.0	ug/L	20.0	0.89 U	125	62-135	3	20	
Vinyl chloride	27		1.0	ug/L	20.0	0.71 U	133	20-167	1	24	
4-Bromofluorobenzene	40			ug/L	50.0		80	41-142			
Dibromofluoromethane	46			ug/L	50.0		92	<i>53-146</i>			
Toluene-d8	46			ug/L	50.0		93	41-146			

Batch 1K24012 - EPA 5030B_MS



# Volatile Organic Compounds by GCMS - Quality Control

## Batch 1K24012 - EPA 5030B_MS - Continued

Blank (1K24012-BLK1)	Prepared: 11/24/2021 00:00 Analyzed: 11/24/2021 09:50

Analyte	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
cis-1,2-Dichloroethene	0.53	U	1.0	ug/L							
Tetrachloroethene	0.76	U	1.0	ug/L							
trans-1,2-Dichloroethene	0.73	U	1.0	ug/L							
Trichloroethene	0.89	U	1.0	ug/L							
Vinyl chloride	0.71	U	1.0	ug/L							
4-Bromofluorobenzene	53			ug/L	50.0		106	41-142			
Dibromofluoromethane	50			ug/L	50.0		100	<i>53-146</i>			
Toluene-d8	52			ug/L	50.0		105	41-146			

LCS (1K24012-BS1) Prepared: 11/24/2021 00:00 Analyzed: 11/24/2021 08:55

Analyte	<u>Result</u>	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
cis-1,2-Dichloroethene	20		1.0	ug/L	20.0		98	56-128			
Tetrachloroethene	20		1.0	ug/L	20.0		99	60-147			
trans-1,2-Dichloroethene	21		1.0	ug/L	20.0		103	54-134			
Trichloroethene	19		1.0	ug/L	20.0		94	62-135			
Vinyl chloride	16		1.0	ug/L	20.0		81	20-167			
4-Bromofluorobenzene	53			ug/L	50.0		105	41-142			
Dibromofluoromethane	51			ug/L	50.0		102	<i>53-146</i>			
Toluene-d8	53			ug/L	50.0		106	41-146			

Matrix Spike (1K24012-MS1) Prepared: 11/24/2021 00:00 Analyzed: 11/24/2021 19:33

Source: AE09085-01

Analyte	Result	Flag	PQL	Units	Spike Level	Source	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notos
Allalyte	Kesuit	riay	PQL	Units	Levei	<u>Result</u>	%KEC	Limits	KPD	Limit	<u>Notes</u>
cis-1,2-Dichloroethene	20		1.0	ug/L	20.0	0.53 U	100	56-128			
Tetrachloroethene	20		1.0	ug/L	20.0	0.76 U	100	60-147			
trans-1,2-Dichloroethene	22		1.0	ug/L	20.0	0.73 U	112	54-134			
Trichloroethene	20		1.0	ug/L	20.0	0.89 U	100	62-135			
Vinyl chloride	24		1.0	ug/L	20.0	6.4	87	20-167			
4-Bromofluorobenzene	52			ug/L	50.0		103	41-142			
Dibromofluoromethane	50			ug/L	50.0		100	<i>53-146</i>			
Toluene-d8	54			ug/L	50.0		107	41-146			

Matrix Spike Dup (1K24012-MSD1) Prepared: 11/24/2021 00:00 Analyzed: 11/24/2021 20:00

Source: AE09085-01

<u>Analyte</u>	<u>Result</u>	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
cis-1,2-Dichloroethene	20		1.0	ug/L	20.0	0.53 U	98	56-128	2	17	
Tetrachloroethene	20		1.0	ug/L	20.0	0.76 U	102	60-147	2	21	
trans-1,2-Dichloroethene	21		1.0	ug/L	20.0	0.73 U	105	54-134	6	20	
Trichloroethene	19		1.0	ug/L	20.0	0.89 U	97	62-135	3	20	
Vinyl chloride	24		1.0	ug/L	20.0	6.4	88	20-167	0.3	24	
4-Bromofluorobenzene	54			ug/L	50.0		108	41-142			
Dibromofluoromethane	<i>52</i>			ug/L	50.0		104	<i>53-146</i>			
Toluene-d8	53			ug/L	50.0		106	41-146			

Batch 1K24018 - EPA 5030B_MS



# Volatile Organic Compounds by GCMS - Quality Control

## Batch 1K24018 - EPA 5030B_MS - Continued

Blank (	1K24018-BLK1	Prepared: 11/24/2021 10:25 Analyzed: 11/24/2021 23:14
---------	--------------	-------------------------------------------------------

Analyte	<u>Result</u>	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
cis-1,2-Dichloroethene	0.53	U	1.0	ug/L							
Tetrachloroethene	0.76	U	1.0	ug/L							
trans-1,2-Dichloroethene	0.73	U	1.0	ug/L							
Trichloroethene	0.89	U	1.0	ug/L							
Vinyl chloride	0.71	U	1.0	ug/L							
4-Bromofluorobenzene	52			ug/L	50.0		104	41-142			
Dibromofluoromethane	49			ug/L	50.0		98	<i>53-146</i>			
Toluene-d8	52			ug/L	50.0		103	41-146			

LCS (1K24018-BS1) Prepared: 11/24/2021 10:25 Analyzed: 11/24/2021 21:23

<u>Analyte</u>	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
cis-1,2-Dichloroethene	19		1.0	ug/L	20.0		96	56-128			
Tetrachloroethene	18		1.0	ug/L	20.0		88	60-147			
trans-1,2-Dichloroethene	20		1.0	ug/L	20.0		101	54-134			
Trichloroethene	18		1.0	ug/L	20.0		89	62-135			
Vinyl chloride	17		1.0	ug/L	20.0		84	20-167			
4-Bromofluorobenzene	52			ug/L	50.0		104	41-142			
Dibromofluoromethane	<i>53</i>			ug/L	50.0		106	<i>53-146</i>			
Toluene-d8	54			ug/L	50.0		108	41-146			

Matrix Spike (1K24018-MS1) Prepared: 11/24/2021 10:25 Analyzed: 11/24/2021 21:51

Source: AE09337-01

				_	Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	Units	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>Notes</u>
cis-1,2-Dichloroethene	21		1.0	ug/L	20.0	0.53 U	106	56-128			
Tetrachloroethene	21		1.0	ug/L	20.0	0.76 U	106	60-147			
trans-1,2-Dichloroethene	22		1.0	ug/L	20.0	0.73 U	112	54-134			
Trichloroethene	20		1.0	ug/L	20.0	0.89 U	101	62-135			
Vinyl chloride	20		1.0	ug/L	20.0	0.71 U	99	20-167			
4-Bromofluorobenzene	53			ug/L	50.0		105	41-142			
Dibromofluoromethane	51			ug/L	50.0		103	<i>53-146</i>			
Toluene-d8	53			ug/L	50.0		105	41-146			

Matrix Spike Dup (1K24018-MSD1) Prepared: 11/24/2021 10:25 Analyzed: 11/24/2021 22:19

Source: AE09337-01

<u>Analyte</u>	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
cis-1,2-Dichloroethene	20		1.0	ug/L	20.0	0.53 U	101	56-128	4	17	
Tetrachloroethene	20		1.0	ug/L	20.0	0.76 U	98	60-147	7	21	
trans-1,2-Dichloroethene	21		1.0	ug/L	20.0	0.73 U	106	54-134	6	20	
Trichloroethene	19		1.0	ug/L	20.0	0.89 U	97	62-135	4	20	
Vinyl chloride	19		1.0	ug/L	20.0	0.71 U	96	20-167	4	24	
4-Bromofluorobenzene	52			ug/L	50.0		103	41-142			
Dibromofluoromethane	51			ug/L	50.0		102	<i>53-146</i>			
Toluene-d8	52			ug/L	50.0		104	41-146			

Batch 1K29005 - EPA 5030B_MS



## Volatile Organic Compounds by GCMS - Quality Control

#### Batch 1K29005 - EPA 5030B_MS - Continued

<u>Analyte</u>	<u>Result</u>	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
cis-1,2-Dichloroethene	0.53	U	1.0	ug/L							
Tetrachloroethene	0.76	U	1.0	ug/L							
trans-1,2-Dichloroethene	0.73	U	1.0	ug/L							
Trichloroethene	0.89	U	1.0	ug/L							
Vinyl chloride	0.71	U	1.0	ug/L							
4-Bromofluorobenzene	40			ug/L	50.0		79	41-142			
Dibromofluoromethane	43			ug/L	50.0		86	<i>53-146</i>			
Toluene-d8	44			ug/L	50.0		89	41-146			

LCS (1K29005-BS1) Prepared: 11/29/2021 00:00 Analyzed: 11/29/2021 08:18

<u>Analyte</u>	Result	<u>Flaq</u>	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
cis-1,2-Dichloroethene	22		1.0	ug/L	20.0		108	56-128			
Tetrachloroethene	21		1.0	ug/L	20.0		105	60-147			
trans-1,2-Dichloroethene	22		1.0	ug/L	20.0		110	54-134			
Trichloroethene	23		1.0	ug/L	20.0		113	62-135			
Vinyl chloride	22		1.0	ug/L	20.0		110	20-167			
4-Bromofluorobenzene	41			ug/L	50.0		83	41-142			
Dibromofluoromethane	42			ug/L	50.0		84	<i>53-146</i>			
Toluene-d8	45			ug/L	50.0		91	41-146			

Matrix Spike (1K29005-MS1) Prepared: 11/29/2021 00:00 Analyzed: 11/29/2021 08:47

Source: AE09256-01

Analyte	Result	Flag	POL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
cis-1,2-Dichloroethene	2200		100	ug/L	2000	53 U	110	56-128			
Tetrachloroethene	2000		100	ug/L	2000	76 U	99	60-147			
trans-1,2-Dichloroethene	2300		100	ug/L	2000	73 U	114	54-134			
Trichloroethene	2300		100	ug/L	2000	89 U	117	62-135			
Vinyl chloride	2300		100	ug/L	2000	71 U	113	20-167			
4-Bromofluorobenzene	4100			ug/L	5000		81	41-142			
Dibromofluoromethane	4200			ug/L	5000		83	<i>53-146</i>			
Toluene-d8	4400			ug/L	5000		87	41-146			

Matrix Spike Dup (1K29005-MSD1) Prepared: 11/29/2021 00:00 Analyzed: 11/29/2021 09:16

Source: AE09256-01

<u>Analyte</u>	<u>Result</u>	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
cis-1,2-Dichloroethene	2200		100	ug/L	2000	53 U	109	56-128	0.9	17	
Tetrachloroethene	2000		100	ug/L	2000	76 U	99	60-147	0	21	
trans-1,2-Dichloroethene	2300		100	ug/L	2000	73 U	113	54-134	0.6	20	
Trichloroethene	2400		100	ug/L	2000	89 U	118	62-135	0.9	20	
Vinyl chloride	2300		100	ug/L	2000	71 U	114	20-167	0.9	24	
4-Bromofluorobenzene	4200			ug/L	5000		83	41-142			
Dibromofluoromethane	4300			ug/L	5000		86	<i>53-146</i>			
Toluene-d8	4500			ug/L	5000		91	41-146			

Semivolatile Organic Compounds by GCMS SIM - Quality Control



# Semivolatile Organic Compounds by GCMS SIM - Quality Control

## Batch 1K24028 - EPA 3511_MS - Continued

Blank (1K24028-BLK1)					Prepar	ed: 11/24/202	1 13:00 Anal	yzed: 11/29/	2021 12:04		
<u>Analyte</u>	Result	<u>Flaq</u>	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Naphthalene	0.050	U	0.10	ug/L							
2-Methylnaphthalene-d10	4.7			ug/L	5.71		83	50-150			
Fluoranthene-d10	7.3			ug/L	5.71		128	50-150			
LCS (1K24028-BS1)					Prepar	ed: 11/24/202	1 13:00 Anal	yzed: 11/29/	2021 12:25		
Analyte	Result	Flag	POL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
Naphthalene	5.5		0.10	ug/L	5.71		97	68-120			
2-Methylnaphthalene-d10	5.3			ug/L	5.71		93	50-150			
Fluoranthene-d10	7.0			ug/L	5.71		122	50-150			
Matrix Spike (1K24028-MS1)					Prepar	ed: 11/24/202	1 13:00 Anal	yzed: 11/29/	2021 12:47		
Source: AE09268-02					- "	_					
<u>Analyte</u>	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Naphthalene	5.8		0.10	ug/L	5.71	0.050 U	102	68-120			
2-Methylnaphthalene-d10	5.4			ug/L	5.71		95	50-150			
Fluoranthene-d10	7.8			ug/L	5.71		137	50-150			
Matrix Spike Dup (1K24028-I	MSD1)				Prepar	ed: 11/24/202	1 13:00 Anal	yzed: 11/29/	2021 13:09		
Source: AE09268-02											
<u>Analyte</u>	Result	Flag	POL	<u>Units</u>	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Naphthalene	5.6		0.10	ug/L	5.71	0.050 U	98	68-120	4	25	

ug/L

ug/L

6.6

5.71

5.71

50-150

*50-150* 

115

2-Methylnaphthalene-d10

Fluoranthene-d10



#### **FLAGS/NOTES AND DEFINITIONS**

- **POL** POL: Practical Quantitation Limit. The POL presented is the laboratory MRL.
  - **B** Results are based upon membrane filter colony counts that are outside the method indicated ideal range.
  - The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).
  - J Estimated value.
- **K** Off-scale low; Actual value is known to be less than the value given.
- **L** Off-scale high; Actual value is known to be greater than value given.
- **M** Presence of analyte is verified but not quantified; the actual value is less than the MRL but greater than the MDL.
- **N** Presumptive evidence of presence of material.
- Sampled, but analysis lost or not performed.
- **Q** Sample exceeded the accepted holding time.
- **T** Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only and shall not be used in statistical analysis.
- **U** Indicates that the compound was analyzed for but not detected.
- **V** Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
- **Z** Too many colonies were present (TNTC); the numeric value represents the filtration volume.
- ? Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
- * Not reported due to interference.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.
- **QM-07** The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
- **QV-01** The associated continuing calibration verification standard exhibited high bias; since the result is ND, there is no impact.



								Т									•			
	CHAIN OF C	CUSTODY AND ANA	LYTICAL RE	QUEST RE	CORD			COC No.					Page:	1	of	2				
	Project Name: NASA KSC							PO No. 13	38224				Project No.	60610905.Sc	ıbs 2021-2	3-Subs 2021-23	Phase:			
	Site Location: General Services Ad	ministration Seized Property	· · · · · · · · · · · · · · · · · · ·					Send Invo	oice To:	Instruction	ns in MSA	# 19S-24	548-GV03			EDD to:	Jennifer	Chastain	Cc: Teresa An	nentt Jennings
	TO No.: 80KSC019F0071	AECOM Project Manager:		Chris Marsha	 II	-		Deliver Sa	ample Kits	To:	AECOM D	Depot, 523	18th Stre	et, Orlandi	•	Report to:	Jennifer	Chastain	Cc: Teresa An	nentt Jennings
iampler/Phone #	Greg Kusel / (772) 631-7426		·-·				••	Deliver Sa	amples To	: I	ENCO			•		Site-Spicific	WS#15 from	m QAPP: 1	5-12	
ab Name:	ENCO	<del></del>	Turnaround Time	e(specify):		Standard	14 day	Sampl	e Analy	ysis Req	ueste	d (Enter	r numbe	er of con	tainers	for each t	est)			
ao name.	Liteo		T	Time	Matrix	Sample		1	HÇI	4 DEG C										
ab ID Sample (sys_sam		Location ID (sys_loc_code)	Date (YYYYMMDD)	(Military) (hhmm)	Code (1)	Type (2)	G≠Grab C≃Comp	(3)	HU							:				-
								of Containers	VOC by SW8260B	by SW8270C SIM	ı									Comments
	6K							Total No.	Select VOC by	Naphthalene b										
GSSP-N		GSSP-MW0013	202111 22	1440	WG	N	G	3	3									<u>.</u>		ļ
GSSP-N	4W0019-2 <del>02111</del> - 020.0 -	GSSP-MW0019	202111,22	1541	WG	N	G	3	3							<u> </u>				<u> </u>
GSSP-	MM0020-303144 -030-0 -	GSSP-MW0020	202111 22	1617	WG	N	G	3	3									ļ	<u>.</u>	<u> </u>
GSSP-N	4W0034-0024-17 -010.0 -	GSSP-MW0034	20211122	1650	WG	N	G	3	3									ļ	ļ	
GSSP-P	MW0036-202111 - 035.0 -	GSSP-MW0036	202111 22	1550	WG	N	G	3_	3				_	<u></u>	_			ļ	<u> </u>	
GSSP-N	MW0044R #02141 - 930.0-	GSSP-MW0044R	202111 22	1233	WG	N	G	3	3									<u> </u>		
GSSP-F	MW0059-202114 - 018.5 202412	GSSP-MW0059	20211122	1400	WG	N	G	3	3					_						ļ
	MW0060-302111 - 012.5-2021112		20211122	1316	WG	N	G	3	3			<u> </u>								
GSSP-I	MW0061-2021112 - 014,5-2021112	GSSP-MW0061	202111 22	1244	WG	N	G	3	3		l						_			
GSSP-I	MW0062- <del>20212</del> 1- 912-5-	GSSP-MW0062	202111.22	1423	WG	N	G	3	3						<u>.</u>				<u> </u>	
GSSP-I	MW0063-202224 - 019-5 - 2,0211122	GSSP-MW0063	20211122	1505	WG	N	G	3	3											
	K																			<u> </u>
Field Comments:		J		Lab Commo	ents:					<u>,, , , , , , , , , , , , , , , , , , ,</u>						Sample Sh	ipment and	d Delivery	Details	
Report only per QAPP	WS #15												_	Number	of coole	rs in shipmer	t:			
Relinquished (sign		Date	Time	Received by	(signatur	e)				Date	,	Time			-	heck) Yes	No	-		
1 Hum	ns 1	1-18-21	16.10	1 2	4	<u> 14asi</u>	<u>(                                    </u>		111/	300	21,	970	0	Shipping		iy:				
2 / 200	roof Musel	1-18-21	16:10 16:30	2	<b>A</b>	<b>h</b>			1112	rjm.		2 <del>1</del>		Tracking Date Sh						

2,73

7.3

⁽¹⁾ AA=Ambient air, AQ=Air quality control, ASB=Asbestos, CK=Caulk, DS=Storm drain sediment, GS=Soil gas, IC=IDW Soild, IDS=IDW Soild, IDS=IDW soil, IDW=IDW water, LF=Free Product, MA=Install, PS=Storm drain sediment, GS=Soil gas, IC=IDW Cancrete, IDD=IDW Soild, IDS=IDW soil, IDW=IDW water, LF=Free Product, MA=Install, PS=Storm drain sediment, GS=Soil gas, IC=IDW Soild, IDS=IDW soil, IDW=IDW water, LF=Free Product, MA=Install, PS=Storm drain sediment, GS=Soil gas, IC=IDW Soild, IDS=IDW soil, IDW=IDW water, LF=Free Product, MA=Install, PS=Storm drain sediment, GS=Soil gas, IC=IDW Soild, IDS=IDW soild

⁽²⁾ Sample Type: AB=Ambient Blk, EB=Equipment Blk, FB=Field Blk, FD=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Trip Blk

⁽³⁾ Preservative added: 4 DEG C=Cool to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C H2SO4=Hydrogen sulfate, H2SO4 <2=Adjust to pH < 2 with sulfuric acid, H3PO4=Phosphoric acid, H3PO4 <2=Adjust to pH <2 with phosphoric acid, H1O3 <2=Adjust to pH < 2 with nitric acid, MeOH=Methanol preservation, Na2O3S2=Sodium thiosulfate per I-gal, Na2O3S2 4/4oz=4 drops of 10% sodium thiosulfate to with hydrochloric acid, HNAO4S=Sodium hydroside, Na2O3S2 3/gal=Add 3 mL 10% sodium thiosulfate per I-gal, Na2O3S2 4/4oz=4 drops of 10% sodium thiosulfate to with hydroside, Na2O3S2 3/gal=Add 3 mL 10% sodium thiosulfate per I-gal, Na2O3S2 4/4oz=4 drops of 10% sodium thiosulfate to with hydroside, Na2O3S2 3/gal=Add 3 mL 10% sodium thiosulfate per I-gal, Na2O3S2 4/4oz=4 drops of 10% sodium thiosulfate to with hydroside, Na2O3S2 3/gal=Add 3 mL 10% sodium thiosulfate per I-gal, Na2O3S2 4/4oz=4 drops of 10% sodium thiosulfate to with hydroside, Na2O3S2 3/gal=Add 3 mL 10% sodium thiosulfate per I-gal, Na2O3S2 4/4oz=4 drops of 10% sodium thiosulfate to with hydroside, Na2O3S2 3/gal=Add 3 mL 10% sodium thiosulfate per I-gal, Na2O3S2 4/4oz=4 drops of 10% sodium thiosulfate to with hydroside, Na2O3S2 3/gal=Add 3 mL 10% sodium thiosulfate per I-gal, Na2O3S2 4/4oz=4 drops of 10% sodium thiosulfate to with hydroside, Na2O3S2 3/gal=Add 3 mL 10% sodium thiosulfate per I-gal, Na2O3S2 4/4oz=4 drops of 10% sodium thiosulfate to with hydroside, Na2O3S2 3/gal=Add 3 mL 10% sodium thiosulfate per I-gal, Na2O3S2 4/4oz=4 drops of 10% sodium thiosulfate to with hydroside, Na2O3S2 3/gal=Add 3 mL 10% sodium thiosulfate per I-gal, Na2O3S2 4/4oz=4 drops of 10% sodium thiosulfate to with hydroside, Na2O3S2 3/gal=Add 3 mL 10% sodium thiosulfate per I-gal, Na2O3S2 3/gal=Add 3 mL 10% sodium thiosulfate per I-gal, Na2O3S2 3/gal=Add 3 mL 10% sodium thiosulfate per I-gal, Na2O3S2 3/gal=Add 3 mL 10% sodium thiosulfate per I-gal, Na2O3S2 3/gal=Add 3 mL 10% sodium thiosulfate per I-gal, Na2O3S2 3/gal=Add 3 mL 10% sodium thiosulfate per I-gal, Na2O3S2 3/gal=



			CHAIN OF	CUSTODY AND ANA	ALYTICAL RI	EQUEST R	ECORD	)		COC No.				F	Page:	2	of	2				
	<b>E</b>	Project Name:	NASA KSC							PO No.					roject No.	60610905.5	ubs 2021-2	23-Subs 2021-23	Phase:			
	روو	Site Location:	General Services A	dministration Seized Proper	ty					Send Inv	oice To:	Instruction	ons in MSA	A # 19S-245	48-GV03	3		EDD to:	Jennifer	Chastain	Cc: Teresa Ar	nentt Jennings
		TO No.: 80KSC	019F0071	AECOM Project Manager:		Chris Marsh	alf			Deliver S	iampie Kit	s To:	AECOM D	Depot, 523	l8th Stre	et, Orland	<b>.</b>	Report to:	Jennifer	Chastain	Cc: Teresa Ar	nentt Jennings
Sampler/Phon	ne #	Greg Kusel / (77	72) 631-7426	1						Deliver S	amples T	0:	ENCO		*			Site-Spicific	WS#15 fro	m QAPP:	15-12	
Lab Name:		ENCO			Turnaround Tir	me(specify):		Standard	i 14 day	Samp	le Anai	ysis Re	queste	d ( <i>Enter</i>	numbe	er of con	tainers	for each te	est )			
Lab ID	Sample ID	)		Location ID	Date	Time (Military)	Matrix Code		G=Grab	(3)	HCI	4 DEG C				i						
	(sys_samp	_code)		(sys_loc_code)	(YYYYMMDD)	(hhmm)	(1)	(2)	C=Comp	Total No. of Containers	Select VOC by SW8260B	Naphthalene by SW8270C SIM										Comments
	GSSP-MW	/0024R-2 <del>0211</del> 1	20211122	GSSP-MW0024R	202111 22	1726	WG	N	G	5	3	2										
	GSSP-MW	/0035 <del>-202111</del>	-020.0- 202) 1122	GSSP-MW0035	202111 72	1620	WG	N	G	5	3	2						12.12				
	GSSP-MW	/0053- <del>202111</del> -		GSSP-MW0053	202111,2,2		WG	N	G	5	3	2										
	GSSP-TB-	202111 AA -		GSSP-TB O i	202111 22	0800	wQ	ТВ	G	2	2											
Field Comm	er QAPP WS					Lab Comm	ents:		l								of cooler:	Sample Ship s in shipment:			Details	
Relinquished  1  2	was-		/	Date 1-18-21 1/23/21	Time 16:10 16:30	Received by	(signatur		W		11	Date /22	/21 71	Time	_	Samples Shipping ( Tracking I	Company	eck) Yes	_ No	•		
(1) AA=Amh	ient air AO:	=Air quality contr		K=Caulk, DS=Storm drain s	ediment GS≠Soil	3 IC=IDW	Concrete	IDD=ID	W Solid TD	S=IDW so	i) IDW=1	IDW Water	I E-Free	Product M	I <b>∆</b> =Ma⇔	Date Ship	<u> </u>	SC=Coment/	"oncrete 4	EE-Sadim	ont <b>SI</b> – Sluct	- <b>CO</b> -Coil

⁽²⁾ Sample Type: AB=Ambient Blk, EB=Equipment Blk, FB=Field Blk, FD=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Trip Blk

⁽³⁾ Preservative added: 4 DEG C=Cool to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C H2SO4=Hydrogen sulfate, H2SO4 <2=Adjust to pH < 2 with sulfuric acid, H3PO4=Phosphoric acid, H3PO4 <2=Adjust to pH < 2 with phosphoric acid, H3PO4=Phosphoric acid, H3PO4=Phosphoric acid, H3PO4 <2=Adjust to pH < 2 with phosphoric acid, H3PO4=Phosphoric acid, H3PO4=Phosphoric acid, H3PO4 <2=Adjust to pH < 2 with phosphoric acid, H3PO4=Phosphoric acid, H3PO4=Phosphoric acid, H3PO4=Phosphoric acid, H3PO4 <2=Adjust to pH < 2 with phosphoric acid, H3PO4=Phosphoric acid, H3PO4=Phosphoric acid, H3PO4 <2=Adjust to pH < 2 with phosphoric acid, H3PO4=Phosphoric acid, H3

10775 Central Port Drive Orlando FL, 32824

Phone: 407.826.5314 FAX: 407.850.6945

Wednesday, December 8, 2021 AECOM Technical Services, Inc. (SE004) Attn: Teresa Amentt Jennings 150 N. Orange Ave, Suite 200 Orlando, FL 32801

RE: Laboratory Results for

Project Number: 60610905, Project Name/Desc: NASA KSC -

ENCO Workorder(s): AE09083

Dear Teresa Amentt Jennings,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Tuesday, November 30, 2021.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Orlando. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

K. Oglnicki

Sincerely,

Kaitlin Dylnicki

Project Manager

Enclosure(s)



# SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: FSA1-MV	V0001-005.0-20211130	Lab ID: A	E09083-01	Sampled: 11/30/21 10:52	Received: 11/30/21 13:58
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time	<u>e(s)</u>	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/14/21		12/01/21 00:00	12/01/21 15:05
EPA 8270E	EPA 3511_MS	12/07/21	01/12/22	12/03/21 08:30	12/03/21 14:07
FL-PRO	EPA 3510C	12/07/21	01/10/22	12/01/21 09:50	12/03/21 19:43
lient ID: FSA1-MV	V0002-004.5-20211130	Lab ID: A	E09083-02	Sampled: 11/30/21 11:19	Received: 11/30/21 13:58
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time	<u>e(s)</u>	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/14/21		12/01/21 00:00	12/01/21 15:32
EPA 8270E	EPA 3511_MS	12/07/21	01/12/22	12/03/21 08:30	12/03/21 14:28
FL-PRO	EPA 3510C	12/07/21	01/10/22	12/01/21 09:50	12/03/21 20:07
lient ID: FSA1-MV	V0012R-005.5-20211130	Lab ID: A	E09083-03	Sampled: 11/30/21 10:27	Received: 11/30/21 13:58
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Tim	<u>e(s)</u>	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/14/21		12/01/21 00:00	12/01/21 16:00
EPA 8270E	EPA 3511_MS	12/07/21	01/12/22	12/03/21 08:30	12/03/21 14:50
FL-PRO	EPA 3510C	12/07/21	01/10/22	12/01/21 09:50	12/03/21 20:31
lient ID: FSA1-MV	V0014-005.5-20211130	Lab ID: A	E09083-04	Sampled: 11/30/21 09:50	Received: 11/30/21 13:58
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Tim	<u>e(s)</u>	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/14/21		12/01/21 00:00	12/01/21 16:28
EPA 8270E	EPA 3511_MS	12/07/21	01/12/22	12/03/21 08:30	12/03/21 15:11
FL-PRO	EPA 3510C	12/07/21	01/10/22	12/01/21 09:50	12/03/21 20:56
lient ID: FSA1-MV	V0021-004.0-20211130	Lab ID: A	E09083-05	Sampled: 11/30/21 11:50	Received: 11/30/21 13:58
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Tim	<u>e(s)</u>	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/14/21		12/01/21 00:00	12/01/21 16:55
EPA 8270E	EPA 3511_MS	12/07/21	01/12/22	12/03/21 08:30	12/03/21 15:33
FL-PRO	EPA 3510C	12/07/21	01/10/22	12/01/21 09:50	12/03/21 21:20
lient ID: FSA1-MV	V0022R-005.0-20211130	Lab ID: A	E09083-06	Sampled: 11/30/21 11:10	Received: 11/30/21 13:58
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Tim	<u>e(s)</u>	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/14/21		12/01/21 00:00	12/01/21 17:23
EPA 8270E	EPA 3511_MS	12/07/21	01/12/22	12/03/21 08:30	12/03/21 15:54
FL-PRO	EPA 3510C	12/07/21	01/10/22	12/01/21 09:50	12/03/21 21:45
lient ID: FSA1-MV	V0023-005.5-20211130	Lab ID: A	E09083-07	Sampled: 11/30/21 11:59	Received: 11/30/21 13:58
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Tim	<u>e(s)</u>	<u>Prep Date/Time(s)</u>	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/14/21		12/01/21 00:00	12/01/21 17:51
EPA 8270E	EPA 3511_MS	12/07/21	01/12/22	12/03/21 08:30	12/03/21 16:16
FL-PRO	EPA 3510C	12/07/21	01/10/22	12/01/21 09:50	12/03/21 22:09
lient ID: FSA1-MV	V0027-020.0-20211130	Lab ID: A	E09083-08	Sampled: 11/30/21 10:35	Received: 11/30/21 13:58
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Tim	e(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/14/21		12/01/21 00:00	12/01/21 18:19
EPA 8270E	EPA 3511_MS	12/07/21	01/12/22	12/03/21 08:30	12/03/21 16:37
	EPA 3510C	12/07/21	01/10/22	12/01/21 09:50	12/03/21 22:59
FL-PRO			E09083-09	Sampled: 11/30/21 09:50	Received: 11/30/21 13:58
	V0028-20.0-20211130	Lab ID: A			
	V0028-20.0-20211130  Preparation	Hold Date/Tim		Prep Date/Time(s)	<u>Analysis Date/Time(s)</u>
lient ID: FSA1-MV				Prep Date/Time(s) 12/01/21 00:00	Analysis Date/Time(s) 12/01/21 18:46
lient ID: FSA1-MV	<u>Preparation</u>	Hold Date/Tim			



# SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: FSA1-TB-2021	11130-01	Lab ID: AE09083-10	Sampled: 11/30/21 08:00	Received: 11/30/21 13:58
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/14/21	12/01/21 00:00	12/01/21 12:18



# **SAMPLE DETECTION SUMMARY**

Client ID: FSA1-MW0001-005.0-20211130			Lab ID:	AE09083-01			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
I-Methylnaphthalene	3.4		0.050	0.10	ug/L	EPA 8270E	
2-Methylnaphthalene	3.0		0.050	0.10	ug/L	EPA 8270E	
Sopropylbenzene	4.6		0.67	1.0	ug/L	EPA 8260D	
Naphthalene	2.9		0.050	0.10	ug/L	EPA 8270E	
ГРН (C8-C40)	1300		100	680	ug/L	FL-PRO	
Client ID: FSA1-MW0002-004.5-20211130			Lab ID:	AE09083-02			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Naphthalene	0.13		0.050	0.10	ug/L	EPA 8270E	
Client ID: FSA1-MW0014-005.5-20211130			Lab ID:	AE09083-04			
<u>nalyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
sopropylbenzene	1.1		0.67	1.0	ug/L	EPA 8260D	
Naphthalene	0.23		0.050	0.10	ug/L	EPA 8270E	
Client ID: FSA1-MW0021-004.0-20211130			Lab ID:	AE09083-05			
<u> Inalyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
sopropylbenzene	1.1		0.67	1.0	ug/L	EPA 8260D	
Naphthalene	0.091	I	0.050	0.10	ug/L	EPA 8270E	
Client ID: FSA1-MW0027-020.0-20211130			Lab ID:	AE09083-08			
Analysta	Results	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
<u>Anaryte</u>							
<mark>Analyte</mark> sopropylbenzene	1.0		0.67	1.0	ug/L	EPA 8260D	



**Description:** FSA1-MW0001-005.0-20211130 **Lab Sample ID:** AE09083-01 **Received:** 11/30/21 13:58

Matrix:Ground WaterSampled: 11/30/21 10:52Project:NASA KSC -Sampled By: Greg Kusel

Work Order: AE09083

# Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
Isopropylbenzene [98-82-8]^	4.6		ug/L	1	0.67	1.0	1L01030	EPA 8260D	12/01/21 15:05	KKW	
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec	Limits	<u>Batch</u>	Method	Analyzed	Ву	Notes
4-Bromofluorobenzene	<i>52</i>	1	50.0	104 %	41-1		1L01030	EPA 8260D	12/01/21 15:05	KKW	
Dibromofluoromethane	50	1	50.0	99 %	53-1	46	1L01030	EPA 8260D	12/01/21 15:05	KKW	
Toluene-d8	<i>53</i>	1	50.0	105 %	41-1	46	1L01030	EPA 8260D	12/01/21 15:05	KKW	

# Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	Flag	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	Analyzed	Ву	<u>Notes</u>
1-Methylnaphthalene [90-12-0]^	3.4		ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 14:07	jfi	
2-Methylnaphthalene [91-57-6]^	3.0		ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 14:07	jfi	
Naphthalene [91-20-3]^	2.9		ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 14:07	jfi	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
2-Methylnaphthalene-d10	5.9	1	5.71	104 %	<i>50-1</i>	50	1L03002	EPA 8270E	12/03/21 14:07	jfi	
Fluoranthene-d10	5.7	1	5.71	100 %	<i>50-1</i>	50	1L03002	EPA 8270E	12/03/21 14:07	jfi	

# FL Petroleum Range Organics

Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	DF	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
TPH (C8-C40)^	1300		ug/L	1	100	680	1L01010	FL-PRO	12/03/21 19:43	JJB	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec L	imits.	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	Notes
n-Pentatriacontane	380	1	400	95 %	40-129	9	1L01010	FL-PRO	12/03/21 19:43	JJB	
o-Terphenyl	160	1	200	82 %	66-139	9	1L01010	FL-PRO	12/03/21 19:43	JJB	



# **ANALYTICAL RESULTS**

**Description:** FSA1-MW0002-004.5-20211130 **Lab Sample ID:** AE09083-02 **Received:** 11/30/21 13:58

Matrix:Ground WaterSampled: 11/30/21 11:19Project:NASA KSC -Sampled By: Greg Kusel

# Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

	,										
Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<b>Analyzed</b>	By	<u>Notes</u>
Isopropylbenzene [98-82-8]^	0.67	U	ug/L	1	0.67	1.0	1L01030	EPA 8260D	12/01/21 15:32	KKW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	<u>Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	Notes
4-Bromofluorobenzene	53	1	50.0	105 %	41-14	12	1L01030	EPA 8260D	12/01/21 15:32	KKW	
Dibromofluoromethane	<i>52</i>	1	50.0	104 %	53-14	16	1L01030	EPA 8260D	12/01/21 15:32	KKW	
Toluene-d8	53	1	50.0	105 %	41-14	16	1L01030	EPA 8260D	12/01/21 15:32	KKW	

# Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	DF	<u>MDL</u>	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
1-Methylnaphthalene [90-12-0]^	0.050	U	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 14:28	jfi	
2-Methylnaphthalene [91-57-6]^	0.050	U	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 14:28	jfi	
Naphthalene [91-20-3]^	0.13		ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 14:28	jfi	
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec	Limits	Batch	Method	Analvzed	Bv	Notes
<u>Surrogates</u> 2-Methylnaphthalene-d10	Results 5.4	<u>DF</u> 1	<u>Spike Lvl</u> 5.71	<u>% Rec</u> 95 %	<u>% Rec</u> 50-1		<u>Batch</u> 1L03002	<u>Method</u> EPA 8270E	<u>Analyzed</u> 12/03/21 14:28	<u>By</u> jfi	<u>Notes</u>

# FL Petroleum Range Organics

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL F	PQL	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
TPH (C8-C40)^	100	U	ug/L	1	100	680	1L01010	FL-PRO	12/03/21 20:07	JJB	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	% Rec Li	imits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
n-Pentatriacontane	430	1	400	108 %	40-129	1	1L01010	FL-PRO	12/03/21 20:07	JJB	
o-Terphenyl	180	1	200	88 %	66-139		1L01010	FL-PRO	12/03/21 20:07	JJB	



# **ANALYTICAL RESULTS**

**Description:** FSA1-MW0012R-005.5-20211130 **Lab Sample ID:** AE09083-03 **Received:** 11/30/21 13:58

Matrix:Ground WaterSampled: 11/30/21 10:27Project:NASA KSC -Sampled By: Greg Kusel

# Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
Isopropylbenzene [98-82-8]^	0.67	U	ug/L	1	0.67	1.0	1L01030	EPA 8260D	12/01/21 16:00	KKW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec L	<u>imits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	51	1	50.0	102 %	41-142	?	1L01030	EPA 8260D	12/01/21 16:00	KKW	
Dibromofluoromethane	50	1	50.0	101 %	53-146	5	1L01030	EPA 8260D	12/01/21 16:00	KKW	
Toluene-d8	54	1	50.0	107 %	41-146	5	1L01030	EPA 8260D	12/01/21 16:00	KKW	

# Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
1-Methylnaphthalene [90-12-0]^	0.050	U	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 14:50	jfi	
2-Methylnaphthalene [91-57-6]^	0.050	U	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 14:50	jfi	
Naphthalene [91-20-3]^	0.050	U	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 14:50	jfi	
Surregatos	Bosulta	DF	Spike Lvl	% Rec	0/- Bo	Limits	Patch	Method	Anglyzad	D.,	Notes
<u>Surrogates</u>	<u>Results</u>	<u> </u>	Spike Lvi	<u> 70 KEC</u>	70 KEC	LIIIILS	<u>Batch</u>	<u>Methou</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
2-Methylnaphthalene-d10	5.3	1	5.71	93 %	<i>50-1</i>	50	1L03002	EPA 8270E	12/03/21 14:50	jfi	
Fluoranthene-d10	5.4	1	<i>5.71</i>	94 %	50-1	50	1L03002	EPA 8270E	12/03/21 14:50	ifi	

# FL Petroleum Range Organics

Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
TPH (C8-C40)^	100	U	ug/L	1	100	680	1L01010	FL-PRO	12/03/21 20:31	JJB	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	% Rec L	<u>imits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
n-Pentatriacontane	490	1	400	122 %	40-129	9	1L01010	FL-PRO	12/03/21 20:31	JJB	
o-Terphenyl	200	1	200	102 %	66-139	9	1L01010	FL-PRO	12/03/21 20:31	JJB	



**Description:** FSA1-MW0014-005.5-20211130 **Lab Sample ID:** AE09083-04 **Received:** 11/30/21 13:58

Matrix:Ground WaterSampled: 11/30/21 09:50Project:NASA KSC -Sampled By: Greg Kusel

Sampled: 11/30/21 09:50 Work Order: AE09083

# Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Isopropylbenzene [98-82-8]^	1.1		ug/L	1	0.67	1.0	1L01030	EPA 8260D	12/01/21 16:28	KKW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	<i>52</i>	1	50.0	103 %	41-1	42	1L01030	EPA 8260D	12/01/21 16:28	KKW	
Dibromofluoromethane	50	1	50.0	99 %	53-1	46	1L01030	EPA 8260D	12/01/21 16:28	KKW	
Toluene-d8	<i>53</i>	1	50.0	106 %	41-1	46	1L01030	EPA 8260D	12/01/21 16:28	KKW	

# Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
1-Methylnaphthalene [90-12-0]^	0.050	U	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 15:11	jfi	
2-Methylnaphthalene [91-57-6]^	0.050	U	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 15:11	jfi	
Naphthalene [91-20-3]^	0.23		ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 15:11	jfi	
Surrogates	Reculte	DE	Snike I vl	% Rec	% Rad	- I imite	Ratch	Method	Analyzed	Rv	Notes
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>		<u>Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
Surrogates 2-Methylnaphthalene-d10	Results 5.1	<u>DF</u> 1	<u>Spike Lvl</u> 5.71	<u>% Rec</u> 90 %	<u>% Rec</u> 50-1	,	<u>Batch</u> 1L03002	<u>Method</u> EPA 8270E	<u>Analyzed</u> 12/03/21 15:11	<u>By</u> jfi	<u>Notes</u>

# FL Petroleum Range Organics

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL P	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
TPH (C8-C40)^	100	U	ug/L	1	100	680	1L01010	FL-PRO	12/03/21 20:56	JJB	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec Li	imits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
n-Pentatriacontane	480	1	400	120 %	40-129		1L01010	FL-PRO	12/03/21 20:56	JJB	
o-Terphenyl	190	1	200	96 %	66-139		1L01010	FL-PRO	12/03/21 20:56	JJB	



## **ANALYTICAL RESULTS**

**Description:** FSA1-MW0021-004.0-20211130 **Lab Sample ID:** AE09083-05 **Received:** 11/30/21 13:58

Matrix:Ground WaterSampled: 11/30/21 11:50Project:NASA KSC -Sampled By: Greg Kusel

# Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Isopropylbenzene [98-82-8]^	1.1		ug/L	1	0.67	1.0	1L01030	EPA 8260D	12/01/21 16:55	KKW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	<u>Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	51	1	50.0	102 %	41-1	42	1L01030	EPA 8260D	12/01/21 16:55	KKW	
Dibromofluoromethane	50	1	50.0	100 %	53-1	46	1L01030	EPA 8260D	12/01/21 16:55	KKW	
Toluene-d8	<i>53</i>	1	50.0	107 %	41-1	46	1L01030	EPA 8260D	12/01/21 16:55	KKW	

# Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
1-Methylnaphthalene [90-12-0]^	0.050	U	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 15:33	jfi	
2-Methylnaphthalene [91-57-6]^	0.050	U	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 15:33	jfi	
Naphthalene [91-20-3]^	0.091	I	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 15:33	jfi	
Surrogates	Results	DF	Spike Lvl	% Rec	% Par	c Limits	Batch	Method	Analyzed	By	Notes
<u>Surrogates</u>	<u>Kesuits</u>	<u> </u>	Spike LVI	70 KEC	70 ACC	LIIIICS	Daten	rictiou	Allalyzeu	<u>Dy</u>	Hotes
2-Methylnaphthalene-d10	6.7	1	5.71	117 %	<i>50-1</i>	150	1L03002	EPA 8270E	12/03/21 15:33	jfi	
Fluoranthene-d10	8.3		5.71	145 %	50-1	. = 0	1L03002	EPA 8270E	12/03/21 15:33	jfi	

# FL Petroleum Range Organics

<u>Results</u>	<u>Flag</u>	<u>Units</u>	DF	MDL	<u>PQL</u>	<u>Batcn</u>	<u>metnoa</u>	<u>Analyzed</u>	<u>BĀ</u>	<u>Notes</u>
100	U	ug/L	1	100	680	1L01010	FL-PRO	12/03/21 21:20	JJB	
<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	<u>Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
510	1	400	128 %	40-12	29	1L01010	FL-PRO	12/03/21 21:20	JJB	
210	1	200	106 %	66-13	39	1L01010	FL-PRO	12/03/21 21:20	JJB	
	100 <b>Results</b> 510	100 U  Results DF  510 1	100 U ug/L  **Results** DF Spike Lvl** 510 1 400	100 U ug/L 1  Results DF Spike Lvl % Rec 510 1 400 128 %	100         U         ug/L         1         100           Results         DF         Spike Lvl         % Rec         % Rec           510         1         400         128 %         40-12	100         U         ug/L         1         100         680           Results         DF         Spike LvI         % Rec         % Rec Limits           510         1         400         128 %         40-129	100         U         ug/L         1         100         680         1L01010           Results         DF         Spike LvI         % Rec         % Rec Limits         Batch           510         1         400         128 %         40-129         1L01010	100         U         ug/L         1         100         680         1L01010         FL-PRO           Results         DF         Spike Lvl         % Rec         % Rec Limits         Batch         Method           510         1         400         128 %         40-129         1L01010         FL-PRO	100         U         ug/L         1         100         680         1L01010         FL-PRO         12/03/21 21:20           Results         DF         Spike LvI         % Rec         % Rec Limits         Batch         Method         Analyzed           510         1         400         128 %         40-129         1L01010         FL-PRO         12/03/21 21:20	100         U         ug/L         1         100         680         1L01010         FL-PRO         12/03/21 21:20         JJB           Results         DF         Spike Lvl         % Rec         % Rec Limits         Batch         Method         Analyzed         By           510         1         400         128 %         40-129         1L01010         FL-PRO         12/03/21 21:20         JJB



**Description:** FSA1-MW0022R-005.0-20211130 **Lab Sample ID:** AE09083-06 **Received:** 11/30/21 13:58

Matrix:Ground WaterSampled: 11/30/21 11:10Project:NASA KSC -Sampled By: Greg Kusel

Work Order: AE09083

# Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Isopropylbenzene [98-82-8]^	0.67	U	ug/L	1	0.67	1.0	1L01030	EPA 8260D	12/01/21 17:23	KKW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	% Rec	<u>Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	51	1	50.0	103 %	41-14	12	1L01030	EPA 8260D	12/01/21 17:23	KKW	
Dibromofluoromethane	49	1	50.0	98 %	53-14	16	1L01030	EPA 8260D	12/01/21 17:23	KKW	
Toluene-d8	53	1	50.0	107 %	41-14	16	1L01030	EPA 8260D	12/01/21 17:23	KKW	

# Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
1-Methylnaphthalene [90-12-0]^	0.050	U	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 15:54	jfi	
2-Methylnaphthalene [91-57-6]^	0.050	U	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 15:54	jfi	
Naphthalene [91-20-3]^	0.050	U	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 15:54	jfi	
Surrogates	Results	DF	Spike Lvl	% Rec	% Red	Limits	<u>Batch</u>	Method	Analyzed	<u>By</u>	<u>Notes</u>
2-Methylnaphthalene-d10	6.6	1	5.71	116 %	50-1	150	1L03002	EPA 8270E	12/03/21 15:54	jfi	
Fluoranthene-d10	6.6	1	5.71	116 %	50-1	150	1L03002	EPA 8270E	12/03/21 15:54	jfi	

# FL Petroleum Range Organics

Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	DF	MDL I	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
TPH (C8-C40)^	100	U	ug/L	1	100	680	1L01010	FL-PRO	12/03/21 21:45	JJB	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec Li	<u>imits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
n-Pentatriacontane	500	1	385	129 %	40-129	)	1L01010	FL-PRO	12/03/21 21:45	JJB	
o-Terphenyl	210	1	192	108 %	66-139	)	1L01010	FL-PRO	12/03/21 21:45	JJB	



# **ANALYTICAL RESULTS**

**Description:** FSA1-MW0023-005.5-20211130 **Lab Sample ID:** AE09083-07 **Received:** 11/30/21 13:58

Matrix:Ground WaterSampled: 11/30/21 11:59Project:NASA KSC -Sampled By: Greg Kusel

# **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

1023										
<b>Results</b>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
0.67	U	ug/L	1	0.67	1.0	1L01030	EPA 8260D	12/01/21 17:51	KKW	
<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	% Rec	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
52	1	50.0	104 %	41-1	42	1L01030	EPA 8260D	12/01/21 17:51	KKW	
50	1	50.0	100 %	53-1	46	1L01030	EPA 8260D	12/01/21 17:51	KKW	
53	1	50.0	107 %	41-1	46	1L01030	EPA 8260D	12/01/21 17:51	KKW	
	Results 0.67  Results 52 50	Results         Flag           0.67         U           Results         DF           52         1           50         1	Results         Flag         Units           0.67         U         ug/L           Results         DF         Spike Lvl           52         1         50.0           50         1         50.0	Results         Flag         Units         DF           0.67         U         ug/L         1           Results         DF         Spike Lvl         % Rec           52         1         50.0         104 %           50         1         50.0         100 %	Results         Flag         Units         DF         MDL           0.67         U         ug/L         1         0.67           Results         DF         Spike Lvl         % Rec         % Rec         % Rec           52         1         50.0         104 %         41-1           50         1         50.0         100 %         53-1	Results         Flag         Units         DF         MDL         PQL           0.67         U         ug/L         1         0.67         1.0           Results         DF         Spike LvI         % Rec         % Rec         Limits           52         1         50.0         104 %         41-12-           50         1         50.0         100 %         53-16-	Results         Flag         Units         DF         MDL         PQL         Batch           0.67         U         ug/L         1         0.67         1.0         1L01030           Results         DF         Spike LvI         % Rec         % Rec         Limits         Batch           52         1         50.0         104 % $41$ - $1$ - $1$ 1L01030           50         1         50.0         100 % $53$ - $1$ - $1$ 1L01030	Results         Flag         Units         DF         MDL         PQL         Batch         Method           0.67         U         ug/L         1         0.67         1.0         101030         EPA 8260D           Results         DF         Spike Lvl         % Rec         % Rec         Limits         Batch         Method           52         1         50.0         104 % $41$ - $12$ 1L01030         EPA 8260D           50         1         50.0         100 % $53$ - $16$ 1L01030         EPA 8260D	Results         Flag         Units         DF         MDL         PQL         Batch         Method         Analyzed           0.67         U         ug/L         1         0.67         1.0         1L01030         EPA 8260D         12/01/21 17:51           Results         DF         Spike Lvl         % Rec         % Rec         Limits         Batch         Method         Analyzed           52         1         50.0         104 %         41-142         1L01030         EPA 8260D         12/01/21 17:51           50         1         50.0         100 %         53-146         1L01030         EPA 8260D         12/01/21 17:51	Results         Flag         Units         DF         MDL         PQL         Batch         Method         Analyzed         By           0.67         U         ug/L         1         0.67         1.0         1L01030         EPA 8260D         12/01/21 17:51         KKW           Results         DF         Spike Lvl         % Rec         10.0         Method         Analyzed         By           52         1         50.0         104 %         41-12         1L01030         EPA 8260D         12/01/21 17:51         KKW           50         1         50.0         100 %         53-14         1L01030         EPA 8260D         12/01/21 17:51         KKW

# Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
1-Methylnaphthalene [90-12-0]^	0.050	U	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 16:16	jfi	
2-Methylnaphthalene [91-57-6]^	0.050	U	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 16:16	jfi	
Naphthalene [91-20-3]^	0.050	U	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 16:16	jfi	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Rec</u>	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
2-Methylnaphthalene-d10	6.5	1	5.71	114 %	<i>50-1</i>	50	1L03002	EPA 8270E	12/03/21 16:16	jfi	
El 11 110			F 71	127 %	50-1	150	1L03002	EPA 8270E	12/03/21 16:16	:6:	
Fluoranthene-d10	7.2	1	<i>5.71</i>	12/ %	30-1	30	1L03002	EPA 02/UE	12/03/21 10:10	jfi	

# FL Petroleum Range Organics

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL F	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
TPH (C8-C40)^	100	U	ug/L	1	100	680	1L01010	FL-PRO	12/03/21 22:09	JJB	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	% Rec	% Rec Li	imits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	Notes
n-Pentatriacontane	460	1	400	115 %	40-129		1L01010	FL-PRO	12/03/21 22:09	JJB	
o-Terphenyl	190	1	200	95 %	66-139		1L01010	FL-PRO	12/03/21 22:09	JJB	



# **ANALYTICAL RESULTS**

**Description:** FSA1-MW0027-020.0-20211130 **Lab Sample ID:** AE09083-08 **Received:** 11/30/21 13:58

Matrix:Ground WaterSampled: 11/30/21 10:35Project:NASA KSC -Sampled By: Greg Kusel

# Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Isopropylbenzene [98-82-8]^	1.0		ug/L	1	0.67	1.0	1L01030	EPA 8260D	12/01/21 18:19	KKW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	52	1	50.0	103 %	41-1	42	1L01030	EPA 8260D	12/01/21 18:19	KKW	
Dibromofluoromethane	50	1	50.0	100 %	53-1	46	1L01030	EPA 8260D	12/01/21 18:19	KKW	
Toluene-d8	<i>53</i>	1	50.0	106 %	41-1	46	1L01030	EPA 8260D	12/01/21 18:19	KKW	

# Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	DF	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
1-Methylnaphthalene [90-12-0]^	0.050	U	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 16:37	jfi	
2-Methylnaphthalene [91-57-6]^	0.050	U	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 16:37	jfi	
Naphthalene [91-20-3]^	0.24		ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 16:37	jfi	
Surrogates	Results	DF	Spike Lvl	% Rec	% Par	c Limits	Batch	Method	Analyzed	By	Notes
<u>Surrogates</u>	<u>Kesuits</u>	<u>D1</u>	Spike LVI	70 KEC	70 ACC	LIIIILS	Daten	rictiou	Anaryzeu	<u> </u>	HOLES
2-Methylnaphthalene-d10	6.2	1	<i>5.71</i>	109 %	<i>50-1</i>	150	1L03002	EPA 8270E	12/03/21 16:37	jfi	

# FL Petroleum Range Organics

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
TPH (C8-C40)^	100	U	ug/L	1	100	680	1L01010	FL-PRO	12/03/21 22:59	JJB	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec L	imits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
n-Pentatriacontane	470	1	400	117 %	40-129	7	1L01010	FL-PRO	12/03/21 22:59	JJB	
o-Terphenyl	210	1	200	104 %	66-139	)	1L01010	FL-PRO	12/03/21 22:59	JJB	



## **ANALYTICAL RESULTS**

**Description:** FSA1-MW0028-20.0-20211130 **Lab Sample ID:** AE09083-09 **Received:** 11/30/21 13:58

Matrix:Ground WaterSampled: 11/30/21 09:50Project:NASA KSC -Sampled By: Greg Kusel

# **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Isopropylbenzene [98-82-8]^	0.67	U	ug/L	1	0.67	1.0	1L01030	EPA 8260D	12/01/21 18:46	KKW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	<u>Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	51	1	50.0	101 %	41-14	12	1L01030	EPA 8260D	12/01/21 18:46	KKW	
Dibromofluoromethane	50	1	50.0	100 %	53-14	<i>16</i>	1L01030	EPA 8260D	12/01/21 18:46	KKW	
Toluene-d8	<i>52</i>	1	50.0	105 %	41-14	<i>16</i>	1L01030	EPA 8260D	12/01/21 18:46	KKW	

# Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
1-Methylnaphthalene [90-12-0]^	0.050	U	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 16:59	jfi	
2-Methylnaphthalene [91-57-6]^	0.050	U	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 16:59	jfi	
Naphthalene [91-20-3]^	0.050	U	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 16:59	jfi	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Rec</u>	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
2-Methylnaphthalene-d10	5.6	1	5.71	99 %	50-1	50	1L03002	EPA 8270E	12/03/21 16:59	jfi	
Fluoranthene-d10	8.5	1	5.71	<i>150 %</i>	<i>50-1</i>	150	1L03002	EPA 8270E	12/03/21 16:59	jfi	

# FL Petroleum Range Organics

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
TPH (C8-C40)^	100	U	ug/L	1	100	680	1L01010	FL-PRO	12/03/21 23:23	JJB	
										_	
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec	c Limits	Batch	Method	Analvzed	Bv	Notes
<u>Surrogates</u> n-Pentatriacontane	<u>Results</u> 430	<u>DF</u> 1	<u>Spike Lvl</u> 385	<u>% Rec</u> 113 %	<u>% Rec</u> 40-1		<u><b>Batch</b></u> 1L01010	<u>Method</u> FL-PRO	<u>Analyzed</u> 12/03/21 23:23	<u>By</u> JJB	<u>Notes</u>

**Description:** FSA1-TB-20211130-01 **Lab Sample ID:** AE09083-10 **Received:** 11/30/21 13:58

**Matrix:** Water **Sampled:** 11/30/21 08:00 **Work Order:** AE09083

Project: NASA KSC - Sampled By: Greg Kusel

## Volatile Organic Compounds by GCMS

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL P	<u>QL</u>	<b>Batch</b>	<u>Method</u>	<b>Analyzed</b>	By	<u>Notes</u>
Isopropylbenzene [98-82-8]^	0.67	U	ug/L	1	0.67	1.0	1L01030	EPA 8260D	12/01/21 12:18	KKW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	% Rec Li	mits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	52	1	50.0	104 %	41-142		1L01030	EPA 8260D	12/01/21 12:18	KKW	
Dibromofluoromethane	50	1	50.0	101 %	<i>53-146</i>		1L01030	EPA 8260D	12/01/21 12:18	KKW	
Toluene-d8	53	1	50.0	106 %	41-146		1L01030	EPA 8260D	12/01/21 12:18	KKW	



Volatile Organic Compounds by GCMS - Quality Control

Batch 1L01030 - EPA 5030B_MS

Blank (	(1L01030-BLK1)	Prepared: 12/01/2021 00:00 Analyzed: 12/01/2021 09:32
---------	----------------	-------------------------------------------------------

Analyte	Result	<u>Flaq</u>	<u>POL</u>	<u>Units</u>	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Isopropylbenzene	0.67	U	1.0	ug/L							
4-Bromofluorobenzene	52			ug/L	50.0		105	41-142			
Dibromofluoromethane	51			ug/L	50.0		102	<i>53-146</i>			
Toluene-d8	53			ug/L	50.0		106	41-146			

LCS (1L01030-BS1) Prepared: 12/01/2021 00:00 Analyzed: 12/01/2021 08:40

Analyte	Result	Flag	POL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Isopropylbenzene	22		1.0	ug/L	20.0		111	60-132			
4-Bromofluorobenzene	53			ug/L	50.0		105	41-142			
Dibromofluoromethane	49			ug/L	50.0		98	<i>53-146</i>			
Toluene-d8	54			ug/L	50.0		107	41-146			

Matrix Spike (1L01030-MS1) Prepared: 12/01/2021 00:00 Analyzed: 12/01/2021 10:27

Source: AE08138-02

<u>Analyte</u>	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
Isopropylbenzene	24		1.0	ug/L	20.0	0.67 U	120	60-132			
4-Bromofluorobenzene	53			ug/L	50.0		105	41-142			
Dibromofluoromethane	53			ug/L	50.0		105	<i>53-146</i>			
Toluene-d8	54			ug/L	50.0		107	41-146			

Matrix Spike Dup (1L01030-MSD1)

Prepared: 12/01/2021 00:00 Analyzed: 12/01/2021 10:55

Source: AE08138-02

<u>Analyte</u>	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Isopropylbenzene	24		1.0	ug/L	20.0	0.67 U	119	60-132	0.9	23	
4-Bromofluorobenzene	53			ug/L	50.0		107	41-142			
Dibromofluoromethane	<i>52</i>			ug/L	50.0		105	<i>53-146</i>			
Toluene-d8	53			ug/L	50.0		107	41-146			

## Semivolatile Organic Compounds by GCMS SIM - Quality Control

Batch 1L03002 - EPA 3511_MS

FINAL

Blank (1L03002-BLK1)	Prepared: 12/03/2021 08:30 Analyzed: 12/03/2021 10:29
----------------------	-------------------------------------------------------

Analy	vte	Result	Flag	PQL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
1-Meth	hylnaphthalene	0.050	U	0.10	ug/L							
2-Meth	hylnaphthalene	0.050	U	0.10	ug/L							
Napht	halene	0.050	U	0.10	ug/L							
2-Meti	hylnaphthalene-d10	5.6			ug/L	5.71		98	50-150			
Fluora	enthene-d10	5.6			ug/L	5.71		97	50-150			
Г	LCS (1L03002-BS1)					Prepare	ed: 12/03/202	1 08:30 Anal	yzed: 12/03/	2021 10:50		

<u>Analyte</u>	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1-Methylnaphthalene	5.5		0.10	ug/L	5.71		97	59-120			
2-Methylnaphthalene	5.8		0.10	ug/L	5.71		102	43-120			



#### Semivolatile Organic Compounds by GCMS SIM - Quality Control

#### Batch 1L03002 - EPA 3511_MS - Continued

I CC /	11 N	2002	_BC1\	Continued	

Prepared: 12/03/2021 08:30 Analyzed: 12/03/2021 10:50

					Spike	Source		%REC		RPD	
<u>Analyte</u>	Result	<u>Flag</u>	<u>PQL</u>	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>Notes</u>
Naphthalene	5.7		0.10	ug/L	5.71		100	68-120			
2-Methylnaphthalene-d10	6.0			ug/L	5.71		105	50-150			
Fluoranthene-d10	6.0			ug/L	5.71		105	<i>50-150</i>			

Matrix Spike (1L03002-MS1) Prepared: 12/03/2021 08:30 Analyzed: 12/03/2021 11:12

Source: AE09386-01

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	Units	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
1-Methylnaphthalene	5.7		0.10	ug/L	5.71	0.050 U	100	59-120			
2-Methylnaphthalene	6.1		0.10	ug/L	5.71	0.050 U	107	43-120			
Naphthalene	5.7		0.10	ug/L	5.71	0.050 U	100	68-120			
2-Methylnaphthalene-d10	6.0			ug/L	5.71		105	50-150			
Fluoranthene-d10	5.7			ug/L	5.71		99	50-150			

Matrix Spike Dup (1L03002-MSD1) Prepared: 12/03/2021 08:30 Analyzed: 12/03/2021 11:34

Source: AE09386-01

					Spike	Source		%REC		RPD	
<u>Analyte</u>	Result	Flag	PQL	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
1-Methylnaphthalene	5.2		0.10	ug/L	5.71	0.050 U	91	59-120	9	25	
2-Methylnaphthalene	5.6		0.10	ug/L	5.71	0.050 U	98	43-120	8	25	
Naphthalene	5.1		0.10	ug/L	5.71	0.050 U	89	68-120	12	25	
2-Methylnaphthalene-d10	6.2			ug/L	5.71		109	50-150			
Fluoranthene-d10	6.2			ug/L	5.71		109	50-150			

## FL Petroleum Range Organics - Quality Control

#### Batch 1L01010 - EPA 3510C

**Blank (1L01010-BLK1)** Prepared: 12/01/2021 09:50 Analyzed: 12/03/2021 09:25

Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
TPH (C8-C40)	100	U	680	ug/L							
n-Pentatriacontane	370			ug/L	400		93	40-129			
o-Terphenyl	150			ug/L	200		<i>75</i>	66-139			
1.00 (41.04.04.0 B.C4.)						1 42/04/202	4 00 50 4	1 42/02/	2024 00 50		

LCS (1L01010-BS1) Prepared: 12/01/2021 09:50 Analyzed: 12/03/2021 09:50

Analyte	Result	Flag	POL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
TPH (C8-C40)	6500		680	ug/L	6800		96	66-119			
n-Pentatriacontane	240			ug/L	400		61	40-129			
o-Terphenyl	190			ug/L	200		96	66-139			

Matrix Spike (1L01010-MS1) Prepared: 12/01/2021 09:50 Analyzed: 12/03/2021 10:26

Source: AE09386-01

<u>Analyte</u>	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
TPH (C8-C40)	7500		680	ug/L	6800	100 U	111	65-123			
n-Pentatriacontane	300			ug/L	400		<i>75</i>	40-129			
o-Terphenyl	220			ug/L	200		109	66-139			



## FL Petroleum Range Organics - Quality Control

### Batch 1L01010 - EPA 3510C - Continued

Matrix Spike Dup (1L01010-MSD1)

Prepared: 12/01/2021 09:50 Analyzed: 12/03/2021 10:50

Source: AE09386-01

					Spike	Source		%REC		RPD	
<u>Analyte</u>	Result	Flag	<u>PQL</u>	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>Notes</u>
TPH (C8-C40)	7100		680	ug/L	6800	100 U	104	65-123	6	20	
n-Pentatriacontane	260			ug/L	400		65	40-129			
o-Terphenyl	210			ug/L	200		107	66-139			



### **FLAGS/NOTES AND DEFINITIONS**

- **PQL** PQL: Practical Quantitation Limit. The PQL presented is the laboratory MRL.
  - **B** Results are based upon membrane filter colony counts that are outside the method indicated ideal range.
  - The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).
  - **J** Estimated value.
  - **K** Off-scale low; Actual value is known to be less than the value given.
  - **L** Off-scale high; Actual value is known to be greater than value given.
- **M** Presence of analyte is verified but not quantified; the actual value is less than the MRL but greater than the MDL.
- **N** Presumptive evidence of presence of material.
- Sampled, but analysis lost or not performed.
- **Q** Sample exceeded the accepted holding time.
- **T** Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only and shall not be used in statistical analysis.
- **U** Indicates that the compound was analyzed for but not detected.
- **V** Indicates that the analyte was detected in both the sample and the associated method blank.
- **Y** The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
- **Z** Too many colonies were present (TNTC); the numeric value represents the filtration volume.
- ? Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
- * Not reported due to interference.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.

		CHAIN OF	CUSTODY AND AN	ALYTICAL RE	QUEST RI	ECORD	)		COC No.					Page:	1	of 1				
		Project Name: NASA KSC							PO No. 1	38224				Project No. 606	10905.Subs 2	021-23-Subs 2021-23	Phase:			
	(0)	Site Location: Fuel Storage Area	#1 Underground Storage T	ank					Send Inv	oice To:	Instructio	ons in MSA	# 195-245	548-GV03		EDD to:	Jennifer Cha	stain C	: Teresa Amentt Jeni	nings
		TO No.: 80KSC019F0071	AECOM Project Manager:		Chris Marsh	all			Deliver S	ample Kit	s To:	AECOM D	epot, 523	18th Street,	Orlando	Report to:	Jennifer Cha	istain Co	:: Teresa Americt Jeni	nings
Sampler/Pho	ne #	Greg Kusel / (772) 631-7426							Deliver S	amples To	0:	ENCO				Site-Spicific	WS#15 from Q	APP: 15-	5	7
Lab Name:		ENCO		Turnaround Tim	ne(specify):		Standard	14 day	Samp	le Anal	ysis Red	queste	d (Enter	number o	of contain	ners for each to	est)			
Lab ID	Sample ID		Location ID	Date	Time (Military)	Matrix Code	Type	G=Grab	(3)	HCI	4 DEG C	H2SO4 <2								
	(sys_samp_	code)	(sys_loc_code)	(YYYYMMDD)	(hhmm)	(1)	(2)	C=Comp	Total No. of Containers	Isopropylbenzene by SW8260B	Select PAH by SW8270C SIM	TRPH by FL PRO							Comm	ents
	FSA1-MW	0001-202111 005:0-20211130	FSA1-MW0001	2021113°	1057	WG	N	G	7	3	2	2								
	FSA1-MW	0002-202111 0045-20211130	FSA1-MW0002	20211130	1119	wg	N	G	7	3	2	2								
	FSA1-MW	0012R-202111005.5-1021 1130	FSA1-MW0012R	20211136	1027	wg	N	G	7	3	2	2								
	FSA1-MW	0014-2021110055-2021136	FSA1-MW0014	202111 30	6950	wg	N	G	7	3	2	2								
	FSA1-MW	0021-202111 004.0 - 202111 30	FSA1-MW0021	2021113	1150	wg	N	G	7	3	2	2								
	FSA1-MW	0022R-202111 005.0-20211139	FSA1-MW0022R	20211130	1110	wg	N	G	7	3	2	2								
	FSA1-MW	0023-202111 605.5-2021130	FSA1-MW0023	20211130	1159	wg	N	G	7	3	2	2								
	FSA1-MW	0027-202111 020-0 - 2021 1130	FSA1-MW0027	20211136	1035	WG	N	G	7	3	2	2								
	FSA1-MW	0028-202111920.0-20211130	7FSA1-MW0028	20211130	0450	wg	N	G	6	2	2	2								
	FSA1-TB-	202111 30 - 9	FSA1-TB D (	202111 30	0800	wQ	ТВ	G	2	2										
Field Com Report only	ments: per QAPP WS	#15-5			Lab Comm	ents:								N	umber of co	Sample Ship polers in shipment:	ment and De	livery De	etails	
	d by (signatur	(e)	Date 1-18-21 30 24	Time 15:30	Received by	(signatur	+			i	Pate 1/30/24	, (	Time	1	amples Iced ipping Com	i?(check) Yes pany:	No			
2	ut will	4 11	130/24	1358	2	100				111	2010	1 7	135	)	acking No:					
3	100000000000000000000000000000000000000	All available control ACD Ashortes CV	Coulle BC Charm during	adiment CC_Cail	3 TO TOW	Consusta	TOD IDI	N C-84 TO	C 10111		row was		D - 1 - 1	-	ate Shipped		Consumbs EF	Codimont	El-Chidas EO	C-11

LG-617 5.8°C





SQ=Solil/Soliid quality control, SSD=Subsurface sediment, SU=Surface soil (<6 in), SW=Swab or wipe, TA=Animal tissue, TP=Plant tissue, TQ=Tissue quality control, WG=Ground water, WL=Leachate, WO=Ocean water, WP=Drinking water, WQ=Water quality control, WR=Ground water effluent, WS=Surface water, WU=Storm water, WW=Waste water

⁽²⁾ Sample Type: AB=Ambient Blk, EB=Equipment Blk, FD=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Trip Blk

⁽³⁾ Preservative added: 4 DEG C=Cool to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C H2SO4=Hydrogen sulfate, H2SO4 <2=Adjust to pH < 2 with sulfuric acid, H3PO4=Phosphoric acid, H3PO4 <2=Adjust to pH <2 with hydrochloric acid, HNaO4S=Sodium bisulfate per l-gal, Na2O3S2 4/4oz=4 drops of 10% sodium thiosulfate preservation, HNO3 <2=Adjust to pH < 2 with nitric acid, MeOH=Methanol preservation, Na2O3S2 3/gal=Add 3 mL 10% sodium thiosulfate per l-gal, Na2O3S2 4/4oz=4 drops of 10% sodium thiosulfate to 4 oz, NaHSO4 <2=Adjust to pH < 2 with sodium hydroxide, NaOH >9=Adjust to pH >9 with sodium hydroxide, VitC 0.6/500=0.6 g of ascorbic acid to 500mLs, ZnAct 2/500=Add 2 mL of zinc acetate to 500mLs, ZnAct 2/500=Add 2 mL of zinc acetate to 500mLs, ZnAct 2/500=0.6 g of ascorbic acid to 500mLs, ZnAct 2/500=Add 2 mL of zinc acetate to 500mLs, ZnAct 4NaOH >9=Adjust to pH >9 with sodium hydroxide, VitC 0.6/500=0.6 g of ascorbic acid to 500mLs, ZnAct 2/500=Add 2 mL of zinc acetate to 500mLs, ZnAct 4NaOH >9=Adjust to pH >9 with sodium hydroxide, VitC 0.6/500=0.6 g of ascorbic acid to 500mLs, ZnAct 2/500=Add 2 mL of zinc acetate to 500mLs, ZnAct 4NaOH >9=Adjust to pH >9 with sodium hydroxide, VitC 0.6/500=0.6 g of ascorbic acid to 500mLs, ZnAct 2/500=Add 2 mL of zinc acetate to 500mLs, ZnAct 4NaOH >9=Adjust to pH >9 with sodium hydroxide, VitC 0.6/500=0.6 g of ascorbic acid to 500mLs, ZnAct 2/500=Add 2 mL of zinc acetate to 500mLs, ZnAct 4NaOH >9=Adjust to pH >9 with sodium hydroxide, VitC 0.6/500=0.6 g of ascorbic acid to 500mLs, ZnAct 2/500=Add 2 mL of zinc acetate to 500mLs, ZnAct 4NaOH >9=Adjust to pH >9 with sodium hydroxide, VitC 0.6/500=0.6 g of ascorbic acid to 500mLs, ZnAct 2/500=Add 2 mL of zinc acetate to 500mLs, ZnAct 4NaOH >9=Adjust to pH >9 with sodium hydroxide, VitC 0.6/500=0.6 g of ascorbic acid to 500mLs, ZnAct 4NaOH >9=Adjust to pH >9 with sodium hydroxide, VitC 0.6/500=0.6 g of ascorbic acid to 500mLs, ZnAct 4NaOH >9=Adjust to pH >9 with sodium hydroxide, VitC 0.6/500=0.6 g of ascorbic acid to 500mLs, ZnAct 4NaOH >9=Adjust to pH >9 with sodium hydroxide, VitC 0.6/500=0.6 g of ascorbic acid to 500mLs, ZnAct 4NaOH >9=Adjust to pH >9 with sodium hydroxide, VitC 0.6/500=0.6 g of ascorbic acid to 500mLs, ZnAct 4NaOH >9=Adjust to pH >9 with sodium hydroxide, VitC 0.6/500=0.6 g of ascorbic acid to 500mLs, ZnAct 4NaOH >9=Adjust to pH >9 with sodium hydroxide, VitC 0.6/500=0.6 g of ascorbic acid to 500mLs, ZnAct 4NaOH >9=Adjust to pH >9 with sodium hydroxide, VitC 0.6/500=0.6 g of ascorbic acid to 500mLs, ZnAc

10775 Central Port Drive Orlando FL, 32824

Phone: 407.826.5314 FAX: 407.850.6945

Monday, December 13, 2021 AECOM Technical Services, Inc. (SE004) Attn: Teresa Amentt Jennings 150 N. Orange Ave, Suite 200 Orlando, FL 32801

RE: Laboratory Results for

Project Number: 60610905, Project Name/Desc: NASA KSC -

ENCO Workorder(s): AE09082

Dear Teresa Amentt Jennings,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Tuesday, November 30, 2021.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Orlando. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

K. Oglnicki

Sincerely,

Kaitlin Dylnicki

Project Manager

Enclosure(s)



## SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: IA-IDW-	20211130-01	Lab ID: A	E09082-01	Sampled: 11/30/	21 12:40	Received: 11/30/21 13:58
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Tim	<u>e(s)</u>	<u>Prep Date</u>	/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/14/21		12/01/21	00:00	12/01/21 14:37
EPA 8270E	EPA 3511_MS	12/07/21	01/12/22	12/03/21	08:30	12/03/21 13:45
FL-PRO	EPA 3510C	12/07/21	01/10/22	12/01/21	09:50	12/03/21 19:18
Client ID: IA-TB01	-20211130-01	Lab ID: A	E09082-02	Sampled: 11/30/	21 08:00	Received: 11/30/21 13:58
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Tim	<u>e(s)</u>	Prep Date	/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	12/14/21		12/01/21	00:00	12/01/21 11:50



### **SAMPLE DETECTION SUMMARY**

Client ID: IA-IDW-20211130-01			Lab ID: AEC	9082-01			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
TPH (C8-C40)	110	I	100	680	ug/L	FL-PRO	
Vinyl chloride	0.80	I	0.71	1.0	ug/L	EPA 8260D	



Work Order: AE09082

## **ANALYTICAL RESULTS**

**Description:** IA-IDW-20211130-01 Lab Sample ID: AE09082-01 **Received:** 11/30/21 13:58

Sampled: 11/30/21 12:40 Matrix: Water Project: NASA KSC -Sampled By: Greg Kusel

## Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyt	○ [NFI AC F83182]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<b>Analyzed</b>	<u>By</u>	<u>Notes</u>
1,2,3-Trichlorobenzene [87-61-6]^	0.86	U	ug/L	1	0.86	1.0	1L01030	EPA 8260D	12/01/21 14:37	KKW	
1,2,4-Trichlorobenzene [120-82-1]^	0.70	U	ug/L	1	0.70	1.0	1L01030	EPA 8260D	12/01/21 14:37	KKW	
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	1L01030	EPA 8260D	12/01/21 14:37	KKW	
Isopropylbenzene [98-82-8]^	0.67	U	ug/L	1	0.67	1.0	1L01030	EPA 8260D	12/01/21 14:37	KKW	
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	1L01030	EPA 8260D	12/01/21 14:37	KKW	
trans-1,2-Dichloroethene [156-60-5]^	0.73	U	ug/L	1	0.73	1.0	1L01030	EPA 8260D	12/01/21 14:37	KKW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	1L01030	EPA 8260D	12/01/21 14:37	KKW	
Trichlorofluoromethane [75-69-4]^	0.94	U	ug/L	1	0.94	1.0	1L01030	EPA 8260D	12/01/21 14:37	KKW	
Vinyl chloride [75-01-4]^	0.80	I	ug/L	1	0.71	1.0	1L01030	EPA 8260D	12/01/21 14:37	KKW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	53	1	50.0	106 %	41	142	1L01030	EPA 8260D	12/01/21 14:37	KKW	
Dibromofluoromethane	49	1	50.0	98 %	<i>53</i>	146	1L01030	EPA 8260D	12/01/21 14:37	KKW	
Toluene-d8	53	1	50.0	106 %	41-	146	1L01030	EPA 8260D	12/01/21 14:37	KKW	

### Semivolatile Organic Compounds by GCMS SIM

^{^ -} ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
1-Methylnaphthalene [90-12-0]^	0.050	U	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 13:45	jfi	
2-Methylnaphthalene [91-57-6]^	0.050	U	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 13:45	jfi	
Naphthalene [91-20-3]^	0.050	U	ug/L	1	0.050	0.10	1L03002	EPA 8270E	12/03/21 13:45	jfi	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Rec</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
2-Methylnaphthalene-d10	5.8	1	5.71	102 %	<i>50-1</i>	150	1L03002	EPA 8270E	12/03/21 13:45	jfi	
Fluoranthene-d10	5.3	1	5.71	93 %	<i>50-1</i>	150	1L03002	EPA 8270E	12/03/21 13:45	jfi	

### FL Petroleum Range Organics

^{^ -} ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	DF	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
TPH (C8-C40)^	110	I	ug/L	1	100	680	1L01010	FL-PRO	12/03/21 19:18	JJB	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Rec L</u>	<u>imits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
n-Pentatriacontane	480	1	392	121 %	40-129	9	1L01010	FL-PRO	12/03/21 19:18	JJB	
o-Terphenyl	190	1	196	97 %	66-139	9	1L01010	FL-PRO	12/03/21 19:18	JJB	



### **ANALYTICAL RESULTS**

**Description:** IA-TB01-20211130-01 **Lab Sample ID:** AE09082-02 **Received:** 11/30/21 13:58

Matrix:WaterSampled: 11/30/21 08:00Project:NASA KSC -Sampled By: Greg Kusel

Work Order: AE09082

## **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

* - ENCO Oriando Certinea analyte [NELAC E	3102]										
Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	DF	<u>MDL</u>	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
1,2,3-Trichlorobenzene [87-61-6]^	0.86	U	ug/L	1	0.86	1.0	1L01030	EPA 8260D	12/01/21 11:50	KKW	
1,2,4-Trichlorobenzene [120-82-1]^	0.70	U	ug/L	1	0.70	1.0	1L01030	EPA 8260D	12/01/21 11:50	KKW	
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	1L01030	EPA 8260D	12/01/21 11:50	KKW	
Isopropylbenzene [98-82-8]^	0.67	U	ug/L	1	0.67	1.0	1L01030	EPA 8260D	12/01/21 11:50	KKW	
Tetrachloroethene [127-18-4]^	0.76	U	ug/L	1	0.76	1.0	1L01030	EPA 8260D	12/01/21 11:50	KKW	
trans-1,2-Dichloroethene [156-60-5]^	0.73	U	ug/L	1	0.73	1.0	1L01030	EPA 8260D	12/01/21 11:50	KKW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	1L01030	EPA 8260D	12/01/21 11:50	KKW	
Trichlorofluoromethane [75-69-4]^	0.94	U	ug/L	1	0.94	1.0	1L01030	EPA 8260D	12/01/21 11:50	KKW	
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	1L01030	EPA 8260D	12/01/21 11:50	KKW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Re	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	52	1	50.0	105 %	41-	142	1L01030	EPA 8260D	12/01/21 11:50	KKW	
Dibromofluoromethane	52	1	50.0	104 %	<i>53</i>	146	1L01030	EPA 8260D	12/01/21 11:50	KKW	
Toluene-d8	54	1	50.0	107 %	41	146	1L01030	EPA 8260D	12/01/21 11:50	KKW	



## Volatile Organic Compounds by GCMS - Quality Control

### Batch 1L01030 - EPA 5030B_MS

Blank (1L01030-BLK1) Prepared: 12/01/2021 00:00 Analyzed: 12/01/2021 09:32

<u>Analyte</u>	<u>Result</u>	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1,2,3-Trichlorobenzene	0.86	U	1.0	ug/L							
1,2,4-Trichlorobenzene	0.70	U	1.0	ug/L							
cis-1,2-Dichloroethene	0.53	U	1.0	ug/L							
Isopropylbenzene	0.67	U	1.0	ug/L							
Tetrachloroethene	0.76	U	1.0	ug/L							
trans-1,2-Dichloroethene	0.73	U	1.0	ug/L							
Trichloroethene	0.89	U	1.0	ug/L							
Trichlorofluoromethane	0.94	U	1.0	ug/L							
Vinyl chloride	0.71	U	1.0	ug/L							
4-Bromofluorobenzene	52			ug/L	50.0		105	41-142			
Dibromofluoromethane	51			ug/L	50.0		102	<i>53-146</i>			
Toluene-d8	53			ug/L	50.0		106	41-146			

LCS (1L01030-BS1) Prepared: 12/01/2021 00:00 Analyzed: 12/01/2021 08:40

Analyte	Result	<u>Flag</u>	<u>POL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1,2,3-Trichlorobenzene	21		1.0	ug/L	20.0		106	43-168			
1,2,4-Trichlorobenzene	24		1.0	ug/L	20.0		118	52-159			
cis-1,2-Dichloroethene	21		1.0	ug/L	20.0		107	56-128			
Isopropylbenzene	22		1.0	ug/L	20.0		111	60-132			
Tetrachloroethene	21		1.0	ug/L	20.0		104	60-147			
trans-1,2-Dichloroethene	22		1.0	ug/L	20.0		109	54-134			
Trichloroethene	20		1.0	ug/L	20.0		102	62-135			
Trichlorofluoromethane	16		1.0	ug/L	20.0		82	56-155			
Vinyl chloride	17		1.0	ug/L	20.0		83	20-167			
4-Bromofluorobenzene	53			ug/L	50.0		105	41-142			
Dibromofluoromethane	49			ug/L	50.0		98	<i>53-146</i>			
Toluene-d8	54			ug/L	50.0		107	41-146			

Matrix Spike (1L01030-MS1) Prepared: 12/01/2021 00:00 Analyzed: 12/01/2021 10:27

Source: AE08138-02

Analyte	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1,2,3-Trichlorobenzene	22		1.0	ug/L	20.0	0.86 U	108	43-168	I.I. 2	<u> </u>	Notes
1,2,4-Trichlorobenzene	24		1.0	ug/L	20.0	0.70 U	118	52-159			
cis-1,2-Dichloroethene	22		1.0	ug/L	20.0	0.53 U	111	56-128			
Isopropylbenzene	24		1.0	ug/L	20.0	0.67 U	120	60-132			
Tetrachloroethene	22		1.0	ug/L	20.0	0.76 U	109	60-147			
trans-1,2-Dichloroethene	24		1.0	ug/L	20.0	0.73 U	122	54-134			
Trichloroethene	21		1.0	ug/L	20.0	0.89 U	107	62-135			
Trichlorofluoromethane	19		1.0	ug/L	20.0	0.94 U	97	56-155			
Vinyl chloride	20		1.0	ug/L	20.0	0.71 U	102	20-167			
4-Bromofluorobenzene	53			ug/L	50.0		105	41-142			
Dibromofluoromethane	53			ug/L	50.0		105	<i>53-146</i>			
Toluene-d8	54			ug/L	50.0		107	41-146			



Prepared: 12/01/2021 00:00 Analyzed: 12/01/2021 10:55

Volatile Organic Compounds by GCMS - Quality Control

Batch 1L01030 - EPA 5030B_MS - Continued

Matrix Spike Dup (1L01030-MSD1)

Source: AE08138-02

Analyte	<u>Result</u>	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1,2,3-Trichlorobenzene	24		1.0	ug/L	20.0	0.86 U	119	43-168	10	26	
1,2,4-Trichlorobenzene	25		1.0	ug/L	20.0	0.70 U	123	52-159	4	24	
cis-1,2-Dichloroethene	22		1.0	ug/L	20.0	0.53 U	112	56-128	0.9	17	
Isopropylbenzene	24		1.0	ug/L	20.0	0.67 U	119	60-132	0.9	23	
Tetrachloroethene	21		1.0	ug/L	20.0	0.76 U	107	60-147	2	21	
trans-1,2-Dichloroethene	23		1.0	ug/L	20.0	0.73 U	116	54-134	5	20	
Trichloroethene	21		1.0	ug/L	20.0	0.89 U	106	62-135	0.5	20	
Trichlorofluoromethane	19		1.0	ug/L	20.0	0.94 U	96	56-155	0.3	22	
Vinyl chloride	20		1.0	ug/L	20.0	0.71 U	98	20-167	4	24	
4-Bromofluorobenzene	53			ug/L	50.0		107	41-142			
Dibromofluoromethane	<i>52</i>			ug/L	50.0		105	<i>53-146</i>			
Toluene-d8	53			ug/L	50.0		107	41-146			

Semivolatile Organic Compounds by GCMS SIM - Quality Control

Batch 1L03002 - EPA 3511_MS

Blank (1L03002-BLK1) Prepared: 12/03/2021 08:30 Analyzed: 12/03/2021 10:29

Ana	<u>lyte</u>	<u>Result</u>	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
1-Me	thylnaphthalene	0.050	U	0.10	ug/L							
2-Me	thylnaphthalene	0.050	U	0.10	ug/L							
Naph	thalene	0.050	U	0.10	ug/L							
2-Me	thylnaphthalene-d10	5.6			ug/L	5.71		98	50-150			
Fluo	ranthene-d10	5.6			ug/L	5.71		97	<i>50-150</i>			
	LCS (1L03002-BS1)				Prepare	ed: 12/03/202	1 08:30 Anal	yzed: 12/03/2	2021 10:50			

Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1-Methylnaphthalene	5.5		0.10	ug/L	5.71		97	59-120			
2-Methylnaphthalene	5.8		0.10	ug/L	5.71		102	43-120			
Naphthalene	5.7		0.10	ug/L	5.71		100	68-120			
2-Methylnaphthalene-d10	6.0			ug/L	5.71		105	50-150			
Fluoranthene-d10	6.0			ug/L	5.71		105	50-150			

Matrix Spike (1L03002-MS1) Prepared: 12/03/2021 08:30 Analyzed: 12/03/2021 11:12

Source: AE09386-01

<u>Analyte</u>	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
1-Methylnaphthalene	5.7		0.10	ug/L	5.71	0.050 U	100	59-120			
2-Methylnaphthalene	6.1		0.10	ug/L	5.71	0.050 U	107	43-120			
Naphthalene	5.7		0.10	ug/L	5.71	0.050 U	100	68-120			
2-Methylnaphthalene-d10	6.0			ug/L	5.71		105	50-150			
Fluoranthene-d10	5.7			ug/L	5.71		99	<i>50-150</i>			

 Matrix Spike Dup (1L03002-MSD1)
 Prepared: 12/03/2021 08:30 Analyzed: 12/03/2021 11:34

Source: AE09386-01

Spike Source %REC RPD **Analyte** Flag **PQL Units** Result %REC RPD <u>Limits</u> Level Result <u>Limit</u> Notes



### Semivolatile Organic Compounds by GCMS SIM - Quality Control

<b>Batch</b>	1103002 -	FPA 3511	MS-	Continued

Matrix Spike Dup (1L03002	-MSD1) Continue	d			Prepare	ed: 12/03/202	1 08:30 Anal	yzed: 12/03/	2021 11:34		
Source: AE09386-01											
<u>Analyte</u>	Result	<u>Flaq</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1-Methylnaphthalene	5.2		0.10	ug/L	5.71	0.050 U	91	59-120	9	25	
2-Methylnaphthalene	5.6		0.10	ug/L	5.71	0.050 U	98	43-120	8	25	
Naphthalene	5.1		0.10	ug/L	5.71	0.050 U	89	68-120	12	25	
2-Methylnaphthalene-d10	6.2			ug/L	5.71		109	50-150			
Fluoranthene-d10	6.2			ug/L	5.71		109	50-150			

## FL Petroleum Range Organics - Quality Control

#### Batch 1L01010 - EPA 3510C

Blank (1L01010-BLK1)

<u>Analyte</u>	Result	<u>Flaq</u>	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
TPH (C8-C40)	100	U	680	ug/L							
n-Pentatriacontane	370			ug/L	400		93	40-129			
o-Terphenyl	150			ug/L	200		<i>75</i>	66-139			

Prepared: 12/01/2021 09:50 Analyzed: 12/03/2021 09:25

LCS (1L01010-BS1) Prepared: 12/01/2021 09:50 Analyzed: 12/03/2021 09:50

Analyte	Result	Flag	PQL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
TPH (C8-C40)	6500		680	ug/L	6800		96	66-119			
n-Pentatriacontane	240			ug/L	400		61	40-129			
o-Terphenyl	190			ug/L	200		96	66-139			

 Matrix Spike (1L01010-MS1)
 Prepared: 12/01/2021 09:50 Analyzed: 12/03/2021 10:26

Source: AE09386-01

<u>Analyte</u>	Result	<u>Flaq</u>	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
TPH (C8-C40)	7500		680	ug/L	6800	100 U	111	65-123			
n-Pentatriacontane	300			ug/L	400		<i>75</i>	40-129			
o-Terphenyl	220			ug/L	200		109	66-139			

 Matrix Spike Dup (1L01010-MSD1)
 Prepared: 12/01/2021 09:50 Analyzed: 12/03/2021 10:50

Source: AE09386-01

<u>Analyte</u>	Result	<u>Flaq</u> <u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
TPH (C8-C40)	7100	680	ug/L	6800	100 U	104	65-123	6	20	
n-Pentatriacontane	260		ug/L	400		65	40-129			
o-Terphenvl	210		ua/L	200		107	66-139			



### **FLAGS/NOTES AND DEFINITIONS**

- **PQL** PQL: Practical Quantitation Limit. The PQL presented is the laboratory MRL.
  - **B** Results are based upon membrane filter colony counts that are outside the method indicated ideal range.
  - The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).
  - J Estimated value.
- **K** Off-scale low; Actual value is known to be less than the value given.
- **L** Off-scale high; Actual value is known to be greater than value given.
- **M** Presence of analyte is verified but not quantified; the actual value is less than the MRL but greater than the MDL.
- **N** Presumptive evidence of presence of material.
- **O** Sampled, but analysis lost or not performed.
- **Q** Sample exceeded the accepted holding time.
- **T** Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only and shall not be used in statistical analysis.
- **U** Indicates that the compound was analyzed for but not detected.
- **V** Indicates that the analyte was detected in both the sample and the associated method blank.
- **Y** The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
- **Z** Too many colonies were present (TNTC); the numeric value represents the filtration volume.
- ? Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
- * Not reported due to interference.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.

14	1025			
Λ	t	nG	092	
1	۲.	1	UTOL	١

																			f	100 10	Oh.
		CHAIN	OF CUSTODY AND AN	ALYTICAL RE	QUEST RE	CORD			COC No.					Page:	1	of	1				
	100	Project Name: NASA KSC							PO No. 1	38224				Project No	. 60610905.S	ubs 2021-2	23-Subs 2021-23	Phase:			
	ICO)	Site Location: Industrial Area	IDW						Send Inv	voice To:	Instructio	ons in MSA	# 195-24	1548-GV0	3		EDD to:	Jennifer Cha	astain	Cc: Teresa Ar	mentt Jennings
		TO No.: 80KSC019F0071	AECOM Project Manager:		Chris Marsh	all			Deliver S	Sample Kits	s To:	AECOM D	epot, 523	18th Stre	et, Orland	0	Report to:	Jennifer Cha	astain	Cc: Teresa Ar	mentt Jennings
Sampler/Pho	ne #	Greg Kusel / (772) 631-7426							Deliver S	Samples To	):	ENCO					Site-Spicific	WS#15 from (	QAPP: 1	5-39	
Lab Name:		ENCO		Turnaround Tin	ne(specify):		Standard	14 day	Samp	le Anal	ysis Re	queste	d (Ente	r numb	er of con	tainers	for each to	est)			
Lab ID	Sample ID	)	Location ID	Date	Time (Military)	Matrix Code	Type	G=Grab	(3)	4 DEG C	4 DEG C	H2SO4 <2	4 DEG C								
	(sys_samp_	_code)	(sys_loc_code)	(YYYYMMDD)	(hhmm)	(1)	(2)	C=Comp	Total No. of Containers	Select VOC by SW8260B	Select PAH by SW8270C SIM	TRPH by FL PRO	Select PFAS by 537							-	Comments
	IA-IDW0	1-202111 30 -0)	IA-IDW01	202111	1240	IDW	IDW	G	9	3	2	2	2								
	IA-TB01-	20211130-01	IA-TB01	20211130	0800	wq	тв	G	2	2											
									-												
	-						-			-											-
	-									-											
							-		-	-											
							-								-						-
							-				-							-			-
									-	-						-					
																					1
Field Com Report only	ments: per QAPP WS	i #15-39			Lab Comm	ents:									Number		Sample Ship rs in shipment		elivery	Details	
	(signatu	re)	Date 12-18-21	Time 16:55	Received by	signatur	nolla	K		t	Date (130/2	1	Time 060	K	_	Iced?(cf	heck) Yes				
2 7	Musi	1 de	12-18-21	16:55 358	2	0			-	-11	130%	)	11 25	35	Tracking Date Sh						
(1) AA=Am	bient air. AO:	=Air quality control. ASB=Asbestos	s. CK=Caulk. DS=Storm drain s	sediment. GS=Soil	gas, IC=IDW	Concrete	IDD=ID	W Solid, ID	S=IDW so	oil. IDW=1	DW Wate	r, <b>LF</b> =Free	Product.	MA=Mas			, SC=Cement,	Concrete, SE	=Sedime	ent, SL=Sluc	ige, <b>SO</b> =Soil,

⁽¹⁾ AA=Ambient air, AQ=Air quality control, ASB=Asbestos, CK=Caulk, DS=Storm drain sediment, GS=Soil gas, IC=IDW Concrete, IDD=IDW Solid, IDS=IDW soil, IDW=IDW Water, LF=Free Product, MA=Mastic, PC=Paint Chips, SC=Cement/Concrete, SE=Sediment, SL=Sludge, SO=Soil SQ=Soil/Solid quality control, SSD=Subsurface sediment, SU=Surface soil (<6 in), SW=Swab or wipe, TA=Animal tissue, TQ=Tissue quality control, WG=Ground water, WL=Leachate, WO=Ocean water, WQ=Water quality control, WR=Ground water effluent, WS=Surface water, WU=Storm water, WU=Water quality control, WR=Ground water water.

⁽²⁾ Sample Type: AB=Ambient Blk, EB=Equipment Blk, FB=Field Blk, FD=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Trip Blk

⁽³⁾ Preservative added: 4 DEG C=Cool to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C H2SO4=Hydrogen sulfate, H2SO4 <2=Adjust to pH < 2 with sulfuric acid, H3PO4=Phosphoric acid, H3PO4 <2=Adjust to pH <2 with phosphoric acid, H3PO4 <2=Adjust to pH <2 with phosphoric acid, H3PO4=Phosphoric acid, H3PO4=Phos









PO Box 30712 Charleston, SC 29417 2040 Savage Road Charleston, SC 29407 P 843.556.8171 F 843.766.1178

gel.com

December 14, 2021

Kaitlin Dylnicki Environmental Conservation Laboratories, Inc. 10775 Central Port Drive Orlando, Florida 32824

a member of The GEL Group INC

Re: NASA PFAS - Dylnicki Work Order: 563563

SDG: AE09082

Dear Kaitlin Dylnicki:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on December 01, 2021. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4523.

Sincerely,

Samuel Hogan Project Manager

Purchase Order: GELP20-0372

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# Certificate of Analysis Report for

ENCL001 Environmental Conservation Laboratories Client SDG: AE09082 GEL Work Order: 563563

### The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- I The reported value is greater than or equal to the laboratory method detection limit but less than the laboratory practical quantitation limit.
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Samuel Hogan.

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

Project:

Client ID:

Report Date: December 14, 2021

ENCL00421

ENCL001

Company: Environmental Conservation Laboratories, Inc.

Address: 10775 Central Port Drive

Orlando, Florida 32824

Contact: Kaitlin Dylnicki

Project: NASA PFAS - Dylnicki

Client Sample ID: IA-IDW-20211130-01

Sample ID: 563563001

Matrix: GW

Collect Date: 30-NOV-21 12:40

Receive Date: 01-DEC-21 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
LCMSMS PFCs										
EPA 537.1Mod PFCs by 1	LC-MS/MS	S "As Received"								
11-Chloroeicosafluoro-3- oxaundecane-1-sulfonic acid (11 Cl-PF3OUdS)	U !-	ND	0.000668	0.00191	ug/L	0.0202	1	JMB3 12/07/21	1214 2204433	1
Hexafluoropropyleneoxide dime acid (HFPO-DA)(Gen-X)	er U	ND	0.000668	0.00202	ug/L	0.0202	1			
9-Chlorohexadecafluoro-3- oxanonane-1-sulfonic acid (9-Cl PF3ONS)	U -	ND	0.000668	0.00189	ug/L	0.0202	1			
N-Ethylperfluorooctane sulfonamido acetic acid (NEtFOSAA)	U	ND	0.00134	0.00405	ug/L	0.0202	1			
N-Methylperfluorooctane sulfonamido acetic acid (NMeFOSAA)	U	ND	0.00134	0.00405	ug/L	0.0202	1			
Perfluorobutane sulfonic acid (PFBS)	I	0.00148	0.000668	0.00180	ug/L	0.0202	1			
Perfluorodecanoic acid (PFDA)	U	ND	0.000789	0.00202	ug/L	0.0202	1			
Perfluorododecanoic acid (PFDC	OA) U	ND	0.000668	0.00202	ug/L	0.0202	1			
Perfluoroheptanoic acid (PFHpA	A)	0.00498	0.000668	0.00202	ug/L	0.0202	1			
Perfluorohexane sulfonic acid (PFHxS)		0.00866	0.000668	0.00184	ug/L	0.0202	1			
Perfluorohexanoic acid (PFHxA	)	0.00555	0.000809	0.00202	ug/L	0.0202	1			
Perfluorononanoic acid (PFNA)	U	ND	0.000668	0.00202	ug/L	0.0202	1			
Perfluorooctane sulfonic acid (PFOS)		0.0284	0.000809	0.00202	ug/L	0.0202	1			
Perfluorooctanoic acid (PFOA)		0.00950	0.000809	0.00202	ug/L	0.0202	1			
Perfluorotetradecanoic acid (PFTDA)	U	ND	0.000809	0.00202	ug/L	0.0202	1			
Perfluorotridecanoic acid (PFTrl	DA) U	ND	0.000668	0.00202	ug/L	0.0202	1			
Perfluoroundecanoic acid (PFUnDA)	U	ND	0.000668	0.00202	ug/L	0.0202	1			
4,8-Dioxa-3H-perfluorononanoio acid (DONA)	c U	ND	0.000668	0.00202	ug/L	0.0202	1			
The following Prep Metho	ods were pe	erformed:								
Method	Description	n		Analyst	Date	,	Гіте	Prep Batch		
EPA 537.1 Mod, PFAS, Compl	PFCs Extracti	ion in Liquid		TC2	12/06/21	(	0825	2204428		

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

**Certificate of Analysis** 

Report Date: December 14, 2021

Company: Environmental Conservation Laboratories, Inc.

Address: 10775 Central Port Drive

Orlando, Florida 32824

Contact: Kaitlin Dylnicki

Project: NASA PFAS - Dylnicki

Client Sample ID: IA-IDW-20211130-01 Project: ENCL00421 Sample ID: 563563001 Client ID: ENCL001

Parameter	Qualifier	Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
The following Ar	alytical Methods w	vere performed:							
Method	Description					Analys	st Comments		
1	FPA 537 1 Ma	od PFAS Compliant v	ith OSM Table B-15						

### Notes:

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

## **QC Summary**

**Environmental Conservation Laboratories, Inc.** 

10775 Central Port Drive

Orlando, Florida Kaitlin Dylnicki

Workorder: 563563

**Contact:** 

Parmname	NOM	Sample Qual	QC	Units	RPD/D%	REC%	Range Anlst	Date Time
Perfluorinated Compounds Batch 2204433 ———								
QC1204971764 LCS 11-Chloroeicosafluoro-3- oxaundecane-1-sulfonic acid (11- Cl-PF3OUdS)	0.0194		0.0174	ug/L		89	(59%-144%) JMB3	12/07/21 11:48
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	0.0206		0.0203	ug/L		98	(67%-136%)	
9-Chlorohexadecafluoro-3- oxanonane-1-sulfonic acid (9-Cl- PF3ONS)	0.0192		0.0183	ug/L		95	(68%-135%)	
Hexafluoropropyleneoxide dimer acid (HFPO-DA)(Gen-X)	0.0206		0.0196	ug/L		95	(67%-144%)	
N-Ethylperfluorooctane sulfonamido acetic acid (NEtFOSAA)	0.0206		0.0185	ug/L		89	(57%-139%)	
N-Methylperfluorooctane sulfonamido acetic acid (NMeFOSAA)	0.0206		0.0183	ug/L		88	(59%-145%)	
Perfluorobutane sulfonic acid (PFBS)	0.0183		0.0183	ug/L		100	(70%-144%)	
Perfluorodecanoic acid (PFDA)	0.0206		0.0218	ug/L		105	(65%-145%)	
Perfluorododecanoic acid (PFDOA)	0.0206		0.0198	ug/L		96	(65%-137%)	
Perfluoroheptanoic acid (PFHpA)	0.0206		0.0215	ug/L		104	(71%-133%)	
Perfluorohexane sulfonic acid (PFHxS)	0.0188		0.0206	ug/L		110	(67%-145%)	
Perfluorohexanoic acid (PFHxA)	0.0206		0.0197	ug/L		96	(70%-138%)	
Perfluorononanoic acid (PFNA)	0.0206		0.0207	ug/L		100	(69%-133%)	
Perfluorooctane sulfonic acid (PFOS)	0.0206		0.0208	ug/L		101	(65%-133%)	

Page 5 of 14 SDG: AE09082

Page 1 of 5

Report Date: December 14, 2021

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

## **QC Summary**

Workorder: 563563 Page 2 of 5

Parmname	NOM	Sample Qual	QC	Units	RPD/D%	REC%	Range An	lst	Date Time
<b>Perfluorinated Compounds</b> Batch 2204433									
Perfluorooctanoic acid (PFOA)	0.0206		0.0217	ug/L		105	(66%-139%) JI	MB3	12/07/21 11:48
Perfluorotetradecanoic acid (PFTDA)	0.0206		0.0208	ug/L		101	(66%-138%)		
Perfluorotridecanoic acid (PFTrDA)	0.0206		0.0225	ug/L		109	(58%-140%)		
Perfluoroundecanoic acid (PFUnDA)	0.0206		0.0211	ug/L		102	(63%-135%)		
QC1204971765 LCSD 11-Chloroeicosafluoro-3- oxaundecane-1-sulfonic acid (11- Cl-PF3OUdS)	0.0193		0.0151	ug/L	14	78	(0%-27%)		12/07/21 12:01
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	0.0205		0.0191	ug/L	6	93	(0%-26%)		
9-Chlorohexadecafluoro-3- oxanonane-1-sulfonic acid (9-Cl- PF3ONS)	0.0191		0.0177	ug/L	3	93	(0%-26%)		
Hexafluoropropyleneoxide dimer acid (HFPO-DA)(Gen-X)	0.0205		0.0182	ug/L	8	89	(0%-25%)		
N-Ethylperfluorooctane sulfonamido acetic acid (NEtFOSAA)	0.0205		0.0208	ug/L	12	102	(0%-27%)		
N-Methylperfluorooctane sulfonamido acetic acid (NMeFOSAA)	0.0205		0.0196	ug/L	7	95	(0%-27%)		
Perfluorobutane sulfonic acid (PFBS)	0.0181		0.0173	ug/L	6	95	(0%-23%)		
Perfluorodecanoic acid (PFDA)	0.0205		0.0206	ug/L	6	100	(0%-26%)		
Perfluorododecanoic acid (PFDOA)	0.0205		0.0210	ug/L	6	102	(0%-26%)		
Perfluoroheptanoic acid (PFHpA)	0.0205		0.0219	ug/L	2	107	(0%-23%)		
Perfluorohexane sulfonic acid (PFHxS)	0.0187		0.0180	ug/L	14	96	(0%-27%)		

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

## **QC Summary**

Workorder: 563563 Page 3 of 5

								Page 3 of 5
Parmname	NOM	Sample Qual	QC	Units	RPD/D%	REC%	Range Anlst	Date Time
<b>Perfluorinated Compounds</b> Batch 2204433								
Perfluorohexanoic acid (PFHxA)	0.0205		0.0197	ug/L	0	96	(0%-27%) JMB3	12/07/21 12:01
Perfluorononanoic acid (PFNA)	0.0205		0.0203	ug/L	2	99	(0%-25%)	
Perfluorooctane sulfonic acid (PFOS)	0.0205		0.0202	ug/L	3	99	(0%-25%)	
Perfluorooctanoic acid (PFOA)	0.0205		0.0194	ug/L	11	95	(0%-27%)	
Perfluorotetradecanoic acid (PFTDA)	0.0205		0.0207	ug/L	0	101	(0%-26%)	
Perfluorotridecanoic acid (PFTrDA)	0.0205		0.0226	ug/L	1	110	(0%-31%)	
Perfluoroundecanoic acid (PFUnDA)	0.0205		0.0212	ug/L	1	103	(0%-26%)	
QC1204971763 MB 11-Chloroeicosafluoro-3- oxaundecane-1-sulfonic acid (11- Cl-PF3OUdS)		U	ND	ug/L				12/07/21 11:35
4,8-Dioxa-3H-perfluorononanoic acid (DONA)		U	ND	ug/L				
9-Chlorohexadecafluoro-3- oxanonane-1-sulfonic acid (9-Cl- PF3ONS)		U	ND	ug/L				
Hexafluoropropyleneoxide dimer acid (HFPO-DA)(Gen-X)		U	ND	ug/L				
N-Ethylperfluorooctane sulfonamido acetic acid (NEtFOSAA)		U	ND	ug/L				
N-Methylperfluorooctane sulfonamido acetic acid (NMeFOSAA)		U	ND	ug/L				
Perfluorobutane sulfonic acid (PFBS)		U	ND	ug/L				
Perfluorodecanoic acid (PFDA)		U	ND	ug/L				

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

## **QC Summary**

Workorder: 563563 Page 4 of 5 QC **Parmname NOM** Sample Qual Units RPD/D% REC% Range Anlst Date Time **Perfluorinated Compounds** Batch 2204433 Perfluorododecanoic acid (PFDOA) U ND ug/L JMB3 12/07/21 11:35 U Perfluoroheptanoic acid (PFHpA) ND ug/L U Perfluorohexane sulfonic acid ND ug/L (PFHxS) U ND Perfluorohexanoic acid (PFHxA) ug/L U Perfluorononanoic acid (PFNA) ND ug/L U Perfluorooctane sulfonic acid ND ug/L (PFOS) U Perfluorooctanoic acid (PFOA) ND ug/L U ND Perfluorotetradecanoic acid ug/L (PFTDA) U ND Perfluorotridecanoic acid ug/L (PFTrDA) Perfluoroundecanoic acid U ND ug/L (PFUnDA)

### **Notes:**

The Qualifiers in this report are defined as follows:

- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B The target analyte was detected in the associated blank.
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- E Concentration of the target analyte exceeds the instrument calibration range
- I The reported value is greater than or equal to the laboratory method detection limit but less than the laboratory practical quantitation limit.
- J See case narrative for an explanation

Page 8 of 14 SDG: AE09082

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

## **QC Summary**

Page 5 of 5 Parmname **NOM** Sample Qual QC Units RPD/D% REC% Range Anlst Date Time

JNX Non Calibrated Compound

563563

- Organics--Presumptive evidence based on mass spectral library search to make a tentative identification of the analyte (TIC). Quantitation is based on nearest internal standard response factor
- Ν Presumptive evidence based on mass spectral library search to make a tentative identification of the analyte (TIC). Quantitation is based on nearest internal standard response factor
- N/A RPD or %Recovery limits do not apply.
- N1 See case narrative

Workorder:

- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Ρ Organics--The concentrations between the primary and confirmation columns/detectors is >40% different. For HPLC, the difference is >70%.
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- Sample held beyond the accepted holding time. This code shall be used if the value is derived from a sample that was prepared or analyzed after the Q approved holding time restrictions for sample preparation or analysis.
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- UJ Compound cannot be extracted
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ٨ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

* Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 9 of 14 SDG: AE09082

### LCMSMS-Misc

### Technical Case Narrative Environmental Conservation Laboratories SDG #: AE09082 Work Order #: 563563

**Product:** The Extraction and Analysis of Per and Polyfluroalkyl Substances Using LCMSMS

Analytical Method: EPA 537.1 Mod, PFAS, Compliant with QSM Table B-15

**Analytical Procedure:** GL-OA-E-076 REV# 12 **Analytical Batches:** 2204433 and 2204428

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
563563001	IA-IDW-20211130-01
1204971763	Method Blank (MB)
1204971764	Laboratory Control Sample (LCS)
1204971765	Laboratory Control Sample Duplicate (LCSD)

The samples in this SDG were analyzed on an "as received" basis.

### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

### **Miscellaneous Information**

#### **Additional Comments**

Additional sample was not provided for matrix QC.

### **Certification Statement**

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 10 of 14 SDG: AE09082

### SUBCONTRACT ORDER

### **ENCO Orlando**

### AE09082

563563

SENDING LABORATORY:

ENCO Orlando

10775 Central Port Drive Orlando, F1, 32824 Phone: 407.826.5314 Fax. 407.850.6945

Project Manager:

Kaitlin Dylnicki

RECEIVING LABORATORY:

GEL Laboratories, Inc. (SC)

2040 Savage Road Charleston, SC 29407 Phone :(843) 556-8171

Fax: (843) 766-1178

Project State of Origin:

Florida

On the control of the	COLUMN TO SERVICE TRANSPORTE SERVICE S		Palantole market de la company de la comp		
Sub Lab ID	Originating Lab ID	Client Matrix	Date Sampled	Sample Comments	
	IA-IDW-20211130-01	Water	30-Nov-21 12:40		*
Analysis	Due -	Expires		Analysis Comments	
PFAS	07-Dec-21 15:00	14-Dec-21 12:40		14 analyte 537 GELP21	-0027
Containers Supplied:				•	
5mLV (H)	250mLP(I)	250mLP(J)			

Revised

Released By Date Received By Date

Released By Date

Reference By Date

## SUBCONTRACT ORDER

**ENCO Orlando** 

AE09082

563563

Studence GELTHI

3 JAN11130A

**SENDING LABORATORY:** 

**ENCO** Orlando

10775 Central Port Drive

Orlando, FL 32824

Phone: 407.826.5314 Fax: 407.850.6945

Project Manager: Kaitlin Dylnicki

**RECEIVING LABORATORY:** 

GEL Laboratories, Inc. (SC)

2040 Savage Road

Charleston, SC 29407

Phone :(843) 556-8171

Fax: (843) 766-1178

Project State of Origin: Florida

Sub Lab ID	Originating Lab ID	Client Matrix	Date Sampled	Sample Comments	
***	_ IA-IDW-202111-30-01	Water	30-Nov-21 12:40		
Analysis	Due	Expires		Analysis Commen	
PFAS	07-Dec-21 15:00	14-Dec-21 12:40		14 analyte 537 GEI	
Containers Supplied:					41 302,
5mLV (H)	250mLP (I)	250mLP (J)			

Released By

Date

Received By

Date Date

Released By

Date

Received By

Date

**Gal** Laboratories LLC

Client:			SAMPLE RECEIPT & REVIEW FORM	
			SDG/AR/COC/Work Order:	*
Received By: DC  Carrier and Tracking Number			Pate Received:  Circle Applicable: FedEx Express FedEx Ground UPS Field Services  SSOT OFOU	Courier Other
Suspected Hazard Information	Yes	Š	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety	Group for further investigation.
A)Shipped as a DOT Hazardous?		χ	Hazard Class Shipped: UN#:  If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo	
B) Did the client designate the samples are to be received as radioactive?		X	COC notation or radioactive stickers on containers equal client designation.	
C) Did the RSO classify the samples as radioactive?	,	X	Maximum Net Counts Observed* (Observed Counts - Area Background Counts):  Classified as: Rad 1 Rad 2 Rad 3	CPM / mR/Hr
D) Did the client designate samples are hazardous?		X	COC notation or hazard labels on containers equal client designation.  If D or E is yes, select Hazards below.	
E) Did the RSO identify possible hazards?		X	PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Othe	r. ·
Sample Receipt Criteria	Yes	NA	2 Comments/Qualifiers (Required for Non-Conforming	Items)
Shipping containers received intact and sealed?	レ		Circle Applicable: Seals broken Damaged container Leaking container Other (describ	2)
2 Chain of custody documents included with shipment?			Circle Applicable: Client contacted and provided COC COC created upon receipt  Preservation Method: Wet Ice Ica Packs Dry ice None Other:	
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	The same		*all temperatures are recorded in Celsius	TEMP:
Daily check performed and passed on IR temperature gun?	L		Temperature Device Serial #: IR6-21 Secondary Temperature Device Serial # (If Applicable):	
5 Sample containers intact and sealed?	Ĺ		efficie Applicable: Seals broken Damaged container Leaking container Other (describ	2)
6 Samples requiring chemical preservation at proper pH?		سيخ	Sample ID's and Containers Affected:  If Preservation added, Loi#:	,
7 Do any samples require Volatile Analysis?			If Yes, are Encores or Scii Kits present for solids? Yes No NA (If yes, take Do liquid WOA vials contain acid preservation? Yes No NA (If unknown, s Are liquid VOA viais free of headspace? Yes No NA Sample ID's and containers affected:	o VOA Freezer) elect No)
8 Samples received within holding time?			iD's and tests affected:	
9 Sample ID's on COC match ID's on bottles?	C/		ID's and containers affected:	
Date & time on COC match date & time on bottles?	سا		Circle Applicable: No dates on containers  No times on containers  COC missing info	Other (describe)
Number of containers received match number indicated on COC?	レ		Circle Applicable: No container count on COC Other (describe)	,
Are sample containers identifiable as GEL provided by use of GEL labels?				
COC form is properly signed in relinquished/received sections?	L		Circle Applicable: Not relinquished Other (describe)	·
Comments (Use Continuation Form if needed):			Initials (5B Date 1222 Page of	

List of current GEL Certifications as of 14 December 2021

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122021-1
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2019–165
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-21-19
Utah NELAP	SC000122021–36
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
asimigion	2.00

10775 Central Port Drive Orlando FL, 32824

Phone: 407.826.5314 FAX: 407.850.6945

Friday, May 20, 2022
AECOM Technical Services, Inc. (SE004)
Attn: Teresa Amentt Jennings
150 N. Orange Ave, Suite 200
Orlando, FL 32801

RE: Laboratory Results for

Project Number: 60610905, Project Name/Desc: NASA KSC - Ransom Rd LF

ENCO Workorder(s): AF03371

Dear Teresa Amentt Jennings,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Wednesday, May 11, 2022.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Orlando. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

K. Oglnicki

Sincerely,

Kaitlin Dylnicki

Project Manager

Enclosure(s)



## SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: RRLF-MV	N0033-027.5-20220510	Lab ID: AF03371-01	Sampled: 05/10/22 11:48	Received: 05/11/22 15:35
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/24/22	05/16/22 00:00	05/16/22 17:02
Client ID: RRLF-MV	N0038I-024.5-20220510	Lab ID: AF03371-02	Sampled: 05/10/22 11:37	Received: 05/11/22 15:35
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/24/22	05/16/22 00:00	05/16/22 17:31
Client ID: RRLF-MV	W0039I-024.5-20220510	Lab ID: AF03371-03	Sampled: 05/10/22 12:12	Received: 05/11/22 15:35
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/24/22	05/16/22 00:00	05/16/22 18:00
Client ID: RRLF-MV	W0040I-024.5-20220510	Lab ID: AF03371-04	Sampled: 05/10/22 12:29	Received: 05/11/22 15:35
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/24/22	05/16/22 00:00	05/16/22 18:29
Client ID: RRLF-TB	-20220510	Lab ID: AF03371-05	Sampled: 05/10/22 11:30	Received: 05/11/22 15:35
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/24/22	05/16/22 00:00	05/16/22 18:58



### **SAMPLE DETECTION SUMMARY**

Client ID: RRLF-MW0033-027.5-20220510			Lab ID: AF	03371-01			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Vinyl chloride	8.9		0.71	1.0	ug/L	EPA 8260D	
Client ID: RRLF-MW0038I-024.5-20220510			Lab ID: AF	03371-02			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Vinyl chloride	7.7		0.71	1.0	ug/L	EPA 8260D	
Client ID: RRLF-MW0040I-024.5-20220510			Lab ID: AF	03371-04			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Vinyl chloride	3.4		0.71	1.0	ug/L	EPA 8260D	



### **ANALYTICAL RESULTS**

**Description:** RRLF-MW0033-027.5-20220510 **Lab Sample ID:** AF03371-01 **Received:** 05/11/22 15:35

Matrix: Ground Water Sampled: 05/10/22 11:48

Project: NASA KSC - Ransom Rd LF Sampled By: Greg Kusel/Dustin Slater

Work Order: AF03371

Work Order: AF03371

Work Order: AF03371

## **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Vinyl chloride [75-01-4]^	8.9		ug/L	1	0.71	1.0	2E16008	EPA 8260D	05/16/22 17:02	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	45	1	50.0	91 %	41-14	2	2E16008	EPA 8260D	05/16/22 17:02	JMW	
Dibromofluoromethane	<i>57</i>	1	50.0	114 %	53-14	6	2E16008	EPA 8260D	05/16/22 17:02	JMW	
Toluene-d8	49	1	50.0	98 %	41-14	6	2E16008	EPA 8260D	05/16/22 17:02	JMW	

**Description:** RRLF-MW0038I-024.5-20220510 **Lab Sample ID:** AF03371-02 **Received:** 05/11/22 15:35

Matrix: Ground Water Sampled: 05/10/22 11:37

Project: NASA KSC - Ransom Rd LF Sampled By: Greg Kusel/Dustin Slater

### **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Vinyl chloride [75-01-4]^	7.7		ug/L	1	0.71	1.0	2E16008	EPA 8260D	05/16/22 17:31	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	45	1	50.0	91 %	41-1	142	2E16008	EPA 8260D	05/16/22 17:31	JMW	
Dibromofluoromethane	<i>55</i>	1	50.0	111 %	53-1	146	2E16008	EPA 8260D	05/16/22 17:31	JMW	
Toluene-d8	48	1	50.0	06 %	41-1	146	2F16008	FDA 8260D	05/16/22 17:31	7/4/4/	

**Description:** RRLF-MW0039I-024.5-20220510 **Lab Sample ID:** AF03371-03 **Received:** 05/11/22 15:35

Matrix: Ground Water Sampled: 05/10/22 12:12

**Project:** NASA KSC - Ransom Rd LF **Sampled By:** Greg Kusel/Dustin Slater

### Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<b>Results</b>	Flag	<u>Units</u>	<u>DF</u>	MDL PQL		<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	2E16008	EPA 8260D	05/16/22 18:00	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	% Rec	<u>Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	46	1	50.0	91 %	41-1	42	2E16008	EPA 8260D	05/16/22 18:00	JMW	
Dibromofluoromethane	56	1	50.0	113 %	53-1	46	2E16008	EPA 8260D	05/16/22 18:00	JMW	
Toluene-d8	48	1	50.0	97 %	41-1	46	2E16008	EPA 8260D	05/16/22 18:00	JMW	

**Description:** RRLF-MW0040I-024.5-20220510 **Lab Sample ID:** AF03371-04 **Received:** 05/11/22 15:35

Matrix: Ground Water Sampled: 05/10/22 12:29 Work Order: AF03371

Project: NASA KSC - Ransom Rd LF Sampled By: Greg Kusel/Dustin Slater

### **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL PQL		Batch Method		<u>Analyzed</u>	By	<u>Notes</u>
Vinyl chloride [75-01-4]^	3.4		ug/L	1	1 0.71 1.0 2		2E16008	EPA 8260D	05/16/22 18:29	JMW	
_				a. =						_	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Rec</u>	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	43	1	50.0	86 %	41-1	42	2E16008	EPA 8260D	05/16/22 18:29	JMW	
Dibromofluoromethane	54	1	50.0	107 %	53-1	46	2E16008	EPA 8260D	05/16/22 18:29	JMW	
Toluene-d8	47	1	50.0	93 %	41-1	46	2E16008	EPA 8260D	05/16/22 18:29	JMW	



Work Order: AF03371

### **ANALYTICAL RESULTS**

**Description:** RRLF-TB-20220510 **Lab Sample ID:** AF03371-05 **Received:** 05/11/22 15:35

**Matrix:** Water **Sampled:** 05/10/22 11:30

 Project:
 NASA KSC - Ransom Rd LF
 Sampled By: ENCO ORL

## Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	<u>DF</u>	MDL P	<u>QL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71 1	.0	2E16008	EPA 8260D	05/16/22 18:58	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec Lin	nits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	44	1	50.0	88 %	41-142		2E16008	EPA 8260D	05/16/22 18:58	JMW	
Dibromofluoromethane	<i>55</i>	1	50.0	111 %	<i>53-146</i>		2E16008	EPA 8260D	05/16/22 18:58	JMW	
Toluene-d8	47	1	50.0	94 %	41-146		2E16008	EPA 8260D	05/16/22 18:58	JMW	



### Volatile Organic Compounds by GCMS - Quality Control

48

### Batch 2E16008 - EPA 5030B_MS

Blank (2E16008-BLK1)

Toluene-d8

Analyte	<u>Result</u>	<u>Flaq</u>	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
Vinyl chloride	0.71	U	1.0	ug/L							
4-Bromofluorobenzene	45			ug/L	50.0		90	41-142			
Dibromofluoromethane	<i>55</i>			ug/L	50.0		110	<i>53-146</i>			

50.0

Prepared: 05/16/2022 00:00 Analyzed: 05/16/2022 09:21

41-146

LCS (2E16008-BS1) Prepared: 05/16/2022 00:00 Analyzed: 05/16/2022 08:23

ug/L

Analyte	Result	Flag	PQL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
Vinyl chloride	29		1.0	ug/L	20.0		143	20-167			
4-Bromofluorobenzene	48			ug/L	50.0		97	41-142			
Dibromofluoromethane	<i>57</i>			ug/L	50.0		113	<i>53-146</i>			
Toluene-d8	50			ug/L	50.0		100	41-146			

 Matrix Spike (2E16008-MS1)
 Prepared: 05/16/2022 00:00 Analyzed: 05/16/2022 11:16

Source: AF03369-01

					Spike	Source		%REC		RPD	
<u>Analyte</u>	Result	<u>Flag</u>	PQL	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
Vinyl chloride	31		1.0	ug/L	20.0	2.1	143	20-167			
4-Bromofluorobenzene	46			ug/L	50.0		92	41-142			_
Dibromofluoromethane	54			ug/L	50.0		108	<i>53-146</i>			
Toluene-d8	48			ug/L	50.0		96	41-146			

Matrix Spike Dup (2E16008-MSD1) Prepared: 05/16/2022 00:00 Analyzed: 05/16/2022 11:45

Source: AF03369-01

Analyte	Result	Flag	DOL	Unito	Spike	Source	0/ BEC	%REC	DDD	RPD	B1 - 4
Alldiyte	Kesuit	riay	PQL	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>Notes</u>
Vinyl chloride	30		1.0	ug/L	20.0	2.1	139	20-167	2	24	
4-Bromofluorobenzene	44			ug/L	50.0		88	41-142			
Dibromofluoromethane	54			ug/L	50.0		108	<i>53-146</i>			
Toluene-d8	47			ug/L	50.0		94	41-146			



### **FLAGS/NOTES AND DEFINITIONS**

- **PQL** PQL: Practical Quantitation Limit. The PQL presented is the laboratory MRL.
  - **B** Results are based upon membrane filter colony counts that are outside the method indicated ideal range.
  - The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).
  - J Estimated value.
  - **K** Off-scale low; Actual value is known to be less than the value given.
  - **L** Off-scale high; Actual value is known to be greater than value given.
  - **M** Presence of analyte is verified but not quantified; the actual value is less than the MRL but greater than the MDL.
  - **N** Presumptive evidence of presence of material.
  - Sampled, but analysis lost or not performed.
  - **Q** Sample exceeded the accepted holding time.
  - **T** Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only and shall not be used in statistical analysis.
- **U** Indicates that the compound was analyzed for but not detected.
- **V** Indicates that the analyte was detected in both the sample and the associated method blank.
- **Y** The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
- **Z** Too many colonies were present (TNTC); the numeric value represents the filtration volume.
- ? Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
- * Not reported due to interference.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.

		CHAIN O	F CUSTODY AND AN	ALYTICAL RE	QUEST RE	CORD			COC No.					Page:	1	of	1				
		Project Name: NASA KSC							PO No.13	88224				Project No.	60610905.S	iubs 2021-2	3-Subs 2021-23	Phase:			
	<b>E0</b> )	Site Location: Ransom Road La	ındfill						Send Inv	oice To:	Instructio	ons in MSA	# 195-24	548-GV03			EDD to:	Jennifer	Chastain	Cc: Teresa A	mentt Jennings
		TO No.: 80KSC019F0071	AECOM Project Manager:		Chris Marsh	all			Deliver S	ample Kits	То:	AECOM D	epot, 523	18th Stre	et, Orland	lo	Report to:	Jennifer	Chastain	Cc: Teresa A	mentt Jennings
Sampler/Phone	e #	Greg Kusel / (772) 631-7426	Dustin Slater / (407) 766-	0747					Deliver S	amples To	:	ENCO					Site-Spicific	WS#15 fro	m QAPP: 1	5-29	
Lab Name:		ENCO		Turnaround Tim	ne(specify):		Standard	14 day	Samp	le Analy	sis Re	questec	(Enter	numbe	er of con	ntainers	for each t	test)			
	6 1 10		Location ID	Date	Time (Military)	Matrix Code	Sample Type	G=Grab	(3)	HCI											
Lab ID	Sample ID (sys_samp	_code)	(sys_loc_code)	(YYYYMMDD)	(hhmm)	(1)	(2)	C=Comp	Total No. of Containers	Vinyl chloride by SW8260B											Comments
		V0033-202205()	RRLF-MW0033	202205(6	1148	wg	N	G	3	3											
	RRLF-MW	000381-202205 LOZZOS to	RRLF-MW0038I	202205	1137	wg	N	G	3	3											
	RRLF-MW	V00391-202205 102201D	RRLF-MW0039I	202205 (6	1212	wg	N	G	3	3											44
	RRLF-MV	000391-202203 20220510 000401-202205 20220516	RRLF-MW0040I	2022056	1229	wg	N	G	3	3											
		-202205 jD	RRLF-TBO\	202205	1130	wq	тв	G	3	3											
												-									
Field Comm					Lab Comm	nents:										of cooler	Sample Shi	t: [	l Delivery	Details	
Relinquished	by signati	ure)	Date 5/04/22 /11/22	Time 14:00	Received by	(signatu	to			5	Date 1922 11.22		Time		Shipping	Company	neck) Yes X y:	No			
2 /	Muth	H 5	/11/22	535	1 MM	L	1-			5.	11.22	1	535	)	Tracking						
3	V V	D-Air quality control ASR-Ashestos			3	Con	TRE IS	W Colled TO	C-IDW -	oil TDW	IDW Water	r IE-Eron	Product	MA=Mad	Date Sh	7.55	SC=Cemen	t/Concrete	SE=Sedim	ent. <b>SL</b> =Slin	dge, <b>SO</b> =Soil.

5M411 0.9°C

⁽¹⁾ AA=Ambient air, AQ=Air quality control, ASB=Asbestos, CK=Caulk, DS=Storm drain sediment, GS=Soil gas, IC=IDW Concrete, IDD=IDW Solid, IDS=IDW soil, IDW=IDW Water, LF=Free Product, MA=Mastic, PC=Paint Cnips, SC=Lement/Concrete, SC=Soil/Golid, IDS=IDW soil, IDS=IDW

⁽²⁾ Sample Type: AB=Ambient Blk, EB=Equipment Blk, FB=Field Blk, FD=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Trip Blk

⁽³⁾ Preservative added: 4 DEG C=Cool to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C H2SO4=Hydrogen sulfate, H2SO4 <2=Adjust to pH < 2 with sulfuric acid, H3PO4=Phosphoric acid, H3PO4=Phosph

10775 Central Port Drive Orlando FL, 32824

Phone: 407.826.5314 FAX: 407.850.6945

Friday, May 20, 2022
AECOM Technical Services, Inc. (SE004)
Attn: Teresa Amentt Jennings
150 N. Orange Ave, Suite 200
Orlando, FL 32801

RE: Laboratory Results for

Project Number: 60610905, Project Name/Desc: NASA KSC - M7-505

ENCO Workorder(s): AF03369

Dear Teresa Amentt Jennings,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Wednesday, May 11, 2022.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Orlando. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

K. Oglnicki

Sincerely,

Kaitlin Dylnicki

Project Manager

Enclosure(s)



# SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: M505-	MW0013-025.5-20220511	Lab ID: AF03369-01	Sampled: 05/11/22 10:47	Received: 05/11/22 15:35
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/25/22	05/16/22 00:00	05/16/22 09:50
Client ID: M505-	MW0032-035.0-20220511	Lab ID: AF03369-02	Sampled: 05/11/22 11:52	Received: 05/11/22 15:35
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/25/22	05/16/22 00:00	05/16/22 10:19
Client ID: M505-	MW0033-025.0-20220511	Lab ID: AF03369-03	Sampled: 05/11/22 12:15	Received: 05/11/22 15:35
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/25/22	05/16/22 00:00	05/16/22 10:48
Client ID: M505-	MW0039-032.5-20220511	Lab ID: AF03369-04	Sampled: 05/11/22 11:35	Received: 05/11/22 15:35
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/25/22	05/16/22 00:00	05/16/22 12:14
Client ID: M505-	MW0049-009.0-20220511	Lab ID: AF03369-05	Sampled: 05/11/22 11:15	Received: 05/11/22 15:35
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/25/22	05/16/22 00:00	05/16/22 12:43
Client ID: M505-	MW0051-025.0-20220511	Lab ID: AF03369-06	Sampled: 05/11/22 12:39	Received: 05/11/22 15:35
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/25/22	05/16/22 00:00	05/16/22 13:12
Client ID: M505-	MW0055-025.0-20220511	Lab ID: AF03369-07	Sampled: 05/11/22 12:35	Received: 05/11/22 15:35
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/25/22	05/16/22 00:00	05/16/22 13:41
Client ID: M505-	MW0059-025.0-20220511	Lab ID: AF03369-08	Sampled: 05/11/22 12:07	Received: 05/11/22 15:35
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/25/22	05/16/22 00:00	05/16/22 14:09
Client ID: M505-	TB-20220511-01	Lab ID: AF03369-09	Sampled: 05/11/22 07:00	Received: 05/11/22 15:35
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/25/22	05/16/22 00:00	05/16/22 14:38



## **SAMPLE DETECTION SUMMARY**

Client ID: M505-MW0013-025.5-20220511			Lab ID:	AF03369-01			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
cis-1,2-Dichloroethene	37		0.53	1.0	ug/L	EPA 8260D	
Vinyl chloride	2.1		0.71	1.0	ug/L	EPA 8260D	
Client ID: M505-MW0032-035.0-20220511			Lab ID:	AF03369-02			
<u>Analyte</u>	<u>Results</u>	Flag	MDL	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
cis-1,2-Dichloroethene	35		0.53	1.0	ug/L	EPA 8260D	
/inyl chloride	4.7		0.71	1.0	ug/L	EPA 8260D	
Client ID: M505-MW0033-025.0-20220511			Lab ID:	AF03369-03			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
cis-1,2-Dichloroethene	6.1		0.53	1.0	ug/L	EPA 8260D	
Client ID: M505-MW0039-032.5-20220511			Lab ID:	AF03369-04			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
cis-1,2-Dichloroethene	41		0.53	1.0	ug/L	EPA 8260D	
Trichloroethene	2.7		0.89	1.0	ug/L	EPA 8260D	
Client ID: M505-MW0049-009.0-20220511			Lab ID:	AF03369-05			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	MDL	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
cis-1,2-Dichloroethene	21		0.53	1.0	ug/L	EPA 8260D	
Client ID: M505-MW0051-025.0-20220511			Lab ID:	AF03369-06			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	Method	<u>Notes</u>
cis-1,2-Dichloroethene	6.3		0.53	1.0	ug/L	EPA 8260D	
Client ID: M505-MW0055-025.0-20220511			Lab ID:	AF03369-07			
	Results	Flag	MDL	PQL	<u>Units</u>	Method	Notes
<u>Analyte</u>	Kesuits	<u> </u>					
<b>Analyte</b> cis-1,2-Dichloroethene	53	<u>r lug</u>	0.53	1.0	ug/L	EPA 8260D	



### **ANALYTICAL RESULTS**

**Description:** M505-MW0013-025.5-20220511 **Lab Sample ID:** AF03369-01 **Received:** 05/11/22 15:35

Matrix: Ground WaterSampled: 05/11/22 10:47Work Order: AF03369

**Project:** NASA KSC - M7-505 **Sampled By:** Greg Kusel/Dustin Slater

## **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	37		ug/L	1	0.53	1.0	2E16008	EPA 8260D	05/16/22 09:50	JMW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	2E16008	EPA 8260D	05/16/22 09:50	JMW	
Vinyl chloride [75-01-4]^	2.1		ug/L	1	0.71	1.0	2E16008	EPA 8260D	05/16/22 09:50	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	% Rec	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
<u>Surrogates</u> 4-Bromofluorobenzene	<u>Results</u> 46	<u>DF</u> 1	<u>Spike Lvl</u> 50.0	<u>% Rec</u> 91 %	<u>% Rec</u> 41-1		<u>Batch</u> 2E16008	<u>Method</u> EPA 8260D	<u>Analyzed</u> 05/16/22 09:50	<u>By</u> JMW	<u>Notes</u>
		<u>DF</u> 1 1				42	· · · · · · · · · · · · · · · · · · ·		<u> </u>		<u>Notes</u>

**Description:** M505-MW0032-035.0-20220511 **Lab Sample ID:** AF03369-02 **Received:** 05/11/22 15:35

Matrix: Ground Water Sampled: 05/11/22 11:52

Project: NASA KSC - M7-505 Sampled By: Greg Kusel/Dustin Slater

### Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	35		ug/L	1	0.53	1.0	2E16008	EPA 8260D	05/16/22 10:19	JMW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	2E16008	EPA 8260D	05/16/22 10:19	JMW	
Vinyl chloride [75-01-4]^	4.7		ug/L	1	0.71	1.0	2E16008	EPA 8260D	05/16/22 10:19	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
<u>Surrogates</u> 4-Bromofluorobenzene	<u>Results</u> 44	<u>DF</u> 1	<u>Spike Lvl</u> 50.0	<u>% Rec</u> 88 %	<u>% Rec</u> 41-1	,	<u>Batch</u> 2E16008	<u>Method</u> EPA 8260D	<u>Analyzed</u> 05/16/22 10:19	<u>By</u> JMW	<u>Notes</u>
		<u>DF</u> 1 1				142			<u> </u>		<u>Notes</u>

**Description:** M505-MW0033-025.0-20220511 **Lab Sample ID:** AF03369-03 **Received:** 05/11/22 15:35

Matrix: Ground Water Sampled: 05/11/22 12:15 Work Order: AF03369

**Project:** NASA KSC - M7-505 **Sampled By:** Greg Kusel/Dustin Slater

## Volatile Organic Compounds by GCMS

Analyte [CAS Number]	<b>Results</b>	Flag	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	6.1		ug/L	1	0.53	1.0	2E16008	EPA 8260D	05/16/22 10:48	JMW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	2E16008	EPA 8260D	05/16/22 10:48	JMW	
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	2E16008	EPA 8260D	05/16/22 10:48	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	% Rec	% Rec	c Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
<u>Surrogates</u> 4-Bromofluorobenzene	<u>Results</u> 43	<u>DF</u> 1	<u>Spike Lvl</u> 50.0	<u>% Rec</u> 86 %	<u>% Rec</u>		<u>Batch</u> 2E16008	<u>Method</u> EPA 8260D	<u>Analyzed</u> 05/16/22 10:48	<u>By</u> JMW	<u>Notes</u>
		<u>DF</u> 1 1				142			<u> </u>		<u>Notes</u>



### **ANALYTICAL RESULTS**

**Description:** M505-MW0039-032.5-20220511 **Lab Sample ID:** AF03369-04 **Received:** 05/11/22 15:35

Matrix: Ground WaterSampled: 05/11/22 11:35Work Order: AF03369

**Project:** NASA KSC - M7-505 **Sampled By:** Greg Kusel/Dustin Slater

## **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<b>Analyzed</b>	<u>By</u>	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	41		ug/L	1	0.53	1.0	2E16008	EPA 8260D	05/16/22 12:14	JMW	
Trichloroethene [79-01-6]^	2.7		ug/L	1	0.89	1.0	2E16008	EPA 8260D	05/16/22 12:14	JMW	
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	2E16008	EPA 8260D	05/16/22 12:14	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	% Rec	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	45	1	50.0	91 %	41-1	142	2E16008	EPA 8260D	05/16/22 12:14	JMW	
Dibromofluoromethane	56	1	50.0	112 %	53-1	46	2E16008	EPA 8260D	05/16/22 12:14	JMW	
Toluene-d8	49	1	50.0	98 %	41-1	116	2F16008	FPA 8260D	05/16/22 12:14	7MW	

**Description:** M505-MW0049-009.0-20220511 **Lab Sample ID:** AF03369-05 **Received:** 05/11/22 15:35

Matrix: Ground Water Sampled: 05/11/22 11:15

Project: NASA KSC - M7-505 Sampled By: Greg Kusel/Dustin Slater

### **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<b>Analyzed</b>	By	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	21		ug/L	1	0.53	1.0	2E16008	EPA 8260D	05/16/22 12:43	JMW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	2E16008	EPA 8260D	05/16/22 12:43	JMW	
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	2E16008	EPA 8260D	05/16/22 12:43	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	% Rec	% Rec	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
<u>Surrogates</u> 4-Bromofluorobenzene	<u>Results</u> 45	<u>DF</u> 1	<u>Spike Lvl</u> 50.0	<u>% Rec</u> 89 %	<u>% Rec</u> 41-1		<u>Batch</u> 2E16008	<u>Method</u> EPA 8260D	<u>Analyzed</u> 05/16/22 12:43	<u>By</u> JMW	<u>Notes</u>
		<u>DF</u> 1 1				142			<u> </u>		<u>Notes</u>

**Description:** M505-MW0051-025.0-20220511 **Lab Sample ID:** AF03369-06 **Received:** 05/11/22 15:35

Matrix: Ground Water Sampled: 05/11/22 12:39 Work Order: AF03369

**Project:** NASA KSC - M7-505 **Sampled By:** Greg Kusel/Dustin Slater

## Volatile Organic Compounds by GCMS

Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	6.3		ug/L	1	0.53	1.0	2E16008	EPA 8260D	05/16/22 13:12	JMW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	2E16008	EPA 8260D	05/16/22 13:12	JMW	
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	2E16008	EPA 8260D	05/16/22 13:12	JMW	
<u>Surrogates</u>	Results	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	<u>: Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
<u>Surrogates</u> 4-Bromofluorobenzene	<u>Results</u> 44	<u>DF</u> 1	Spike Lvl 50.0	<u>% Rec</u> 88 %	<u>% Rec</u> 41-1		<u>Batch</u> 2E16008	<u>Method</u> EPA 8260D	<u>Analyzed</u> 05/16/22 13:12	<u>By</u> JMW	<u>Notes</u>
		<u>DF</u> 1 1				142			<u> </u>	-	<u>Notes</u>



### **ANALYTICAL RESULTS**

**Description:** M505-MW0055-025.0-20220511 Lab Sample ID: AF03369-07 **Received:** 05/11/22 15:35

Matrix: Ground Water Sampled: 05/11/22 12:35 Work Order: AF03369 Project: NASA KSC - M7-505

Sampled By: Greg Kusel/Dustin Slater

# **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	53		ug/L	1	0.53	1.0	2E16008	EPA 8260D	05/16/22 13:41	JMW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	2E16008	EPA 8260D	05/16/22 13:41	JMW	
Vinyl chloride [75-01-4]^	9.3		ug/L	1	0.71	1.0	2E16008	EPA 8260D	05/16/22 13:41	JMW	
_	04-									_	Makes
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Rec</u>	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
<u>Surrogates</u> 4-Bromofluorobenzene	<u><b>Resuits</b></u> 46	<u>DF</u> 1	<u>Spike Lvl</u> 50.0	<u>% Rec</u> 92 %	<u>% Rec</u> 41-1	,	<u>Batch</u> 2E16008	<u>Method</u> EPA 8260D	<u>Analyzed</u> 05/16/22 13:41	<u>By</u> JMW	Notes
		<u>DF</u> 1 1				142			<u> </u>	-	<u>Notes</u>

**Description:** M505-MW0059-025.0-20220511 Lab Sample ID: AF03369-08 **Received:** 05/11/22 15:35

Matrix: Ground Water Sampled: 05/11/22 12:07

Project: NASA KSC - M7-505 Sampled By: Greg Kusel/Dustin Slater

### **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	2E16008	EPA 8260D	05/16/22 14:09	JMW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	2E16008	EPA 8260D	05/16/22 14:09	JMW	
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	2E16008	EPA 8260D	05/16/22 14:09	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	% Rec	% Rec	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
<u>Surrogates</u> 4-Bromofluorobenzene	<u>Results</u> 45	<u>DF</u> 1	<u>Spike Lvl</u> 50.0	<u>% Rec</u> 90 %	<u>% Rec</u> 41-1		<u>Batch</u> 2E16008	<u>Method</u> EPA 8260D	<u>Analyzed</u> 05/16/22 14:09	<u>By</u> JMW	<u>Notes</u>
		<u>DF</u> 1 1				142					<u>Notes</u>

**Description:** M505-TB-20220511-01 Lab Sample ID: AF03369-09 **Received:** 05/11/22 15:35

Matrix: Water Sampled: 05/11/22 07:00 Work Order: AF03369

Project: NASA KSC - M7-505 Sampled By: ENCO ORL

### Volatile Organic Compounds by GCMS

Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	2E16008	EPA 8260D	05/16/22 14:38	JMW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	2E16008	EPA 8260D	05/16/22 14:38	JMW	
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	2E16008	EPA 8260D	05/16/22 14:38	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	% Rec	% Rec	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
<u>Surrogates</u> 4-Bromofluorobenzene	<u>Results</u> 44	<u>DF</u> 1	<u>Spike Lvl</u> 50.0	<u>% Rec</u> 88 %	<u>% Rec</u> 41-1		<u>Batch</u> 2E16008	<u>Method</u> EPA 8260D	<u>Analyzed</u> 05/16/22 14:38	<u>By</u> JMW	<u>Notes</u>
		<u><b>DF</b></u> 1 1				142			<u> </u>		<u>Notes</u>



# Volatile Organic Compounds by GCMS - Quality Control

### Batch 2E16008 - EPA 5030B_MS

						03/10/202	2 00.00 Anai	yzed: 05/16/	2022 09.21		
<u>Analyte</u>	<u>Result</u>	<u>Flag</u>	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
cis-1,2-Dichloroethene	0.53	U	1.0	ug/L							
Trichloroethene	0.89	U	1.0	ug/L							
Vinyl chloride	0.71	U	1.0	ug/L							
4-Bromofluorobenzene	45			ug/L	50.0		90	41-142			
Dibromofluoromethane	55			ug/L	50.0		110	53-146			
Toluene-d8	48			ug/L	50.0		96	41-146			
LCS (2E16008-BS1)					Prepare	ed: 05/16/2022	2 00:00 Anal	yzed: 05/16/	2022 08:23		

Analyte	Result	Flag	PQL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
cis-1,2-Dichloroethene	25		1.0	ug/L	20.0		124	56-128			
Trichloroethene	23		1.0	ug/L	20.0		115	62-135			
Vinyl chloride	29		1.0	ug/L	20.0		143	20-167			
4-Bromofluorobenzene	48			ug/L	50.0		97	41-142			
Dibromofluoromethane	<i>57</i>			ug/L	50.0		113	<i>53-146</i>			
Toluene-d8	50			ug/L	50.0		100	41-146			

Matrix Spike (2E16008-MS1) Prepared: 05/16/2022 00:00 Analyzed: 05/16/2022 11:16

Source: AF03369-01

					Spike	Source		%REC		RPD	
Analyte	<u>Result</u>	Flag	<u>PQL</u>	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>Notes</u>
cis-1,2-Dichloroethene	61		1.0	ug/L	20.0	37	121	56-128			
Trichloroethene	25		1.0	ug/L	20.0	0.89 U	123	62-135			
Vinyl chloride	31		1.0	ug/L	20.0	2.1	143	20-167			
4-Bromofluorobenzene	46			ug/L	50.0		92	41-142			
Dibromofluoromethane	54			ug/L	50.0		108	<i>53-146</i>			
Toluene-d8	48			ug/L	50.0		96	41-146			

**Matrix Spike Dup (2E16008-MSD1)** Prepared: 05/16/2022 00:00 Analyzed: 05/16/2022 11:45

Source: AF03369-01

Analista	Dogult	- Flor	DOL	Haita	Spike	Source	0/ 850	%REC		RPD	
<u>Analyte</u>	Result	Flag	PQL	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>Notes</u>
cis-1,2-Dichloroethene	61		1.0	ug/L	20.0	37	119	56-128	0.7	17	
Trichloroethene	24		1.0	ug/L	20.0	0.89 U	122	62-135	1	20	
Vinyl chloride	30		1.0	ug/L	20.0	2.1	139	20-167	2	24	
4-Bromofluorobenzene	44			ug/L	50.0		88	41-142			
Dibromofluoromethane	54			ug/L	50.0		108	<i>53-146</i>			
Toluene-d8	47			ug/L	50.0		94	41-146			



### **FLAGS/NOTES AND DEFINITIONS**

- **PQL** PQL: Practical Quantitation Limit. The PQL presented is the laboratory MRL.
  - **B** Results are based upon membrane filter colony counts that are outside the method indicated ideal range.
  - The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).
  - J Estimated value.
- **K** Off-scale low; Actual value is known to be less than the value given.
- **L** Off-scale high; Actual value is known to be greater than value given.
- **M** Presence of analyte is verified but not quantified; the actual value is less than the MRL but greater than the MDL.
- **N** Presumptive evidence of presence of material.
- Sampled, but analysis lost or not performed.
- **Q** Sample exceeded the accepted holding time.
- **T** Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only and shall not be used in statistical analysis.
- **U** Indicates that the compound was analyzed for but not detected.
- **V** Indicates that the analyte was detected in both the sample and the associated method blank.
- **Y** The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
- **Z** Too many colonies were present (TNTC); the numeric value represents the filtration volume.
- ? Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
- * Not reported due to interference.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.

			CHAIN OF	CUSTODY AND AN	ALYTICAL RE	QUEST RI	CORD			COC No.				Page:	1	of	1				
CN	<u></u>	Project Name:	NASA KSC							PO No. 1	38224			Project N	o. 60610905.Su	ıbs 2021-2	3-Subs 2021-23	Phase:			
(E)		Site Location:	M7-505 Treatmen	t Tank Area						Send Inv	oice To: Ins	tructions in	MSA # 19S-	24548-GV	03		EDD to:	Jennifer	Chastain	Cc: Teresa A	mentt Jennings
		TO No.: 80KSC	019F0071	AECOM Project Manager:		Chris Marsh	all			Deliver S	ample Kits To:	AECO	M Depot, 52	23 18th St	reet, Orlando	)	Report to:	Jennifer	Chastain	Cc: Teresa A	mentt Jennings
Sampler/Phor	e#	Greg Kusel / (77	2) 631-7426	Dustin Slater / (407) 766	-0747					Deliver S	amples To:	ENCO	()				Site-Spicific	WS#15 from	n QAPP: 1	5-4	
Lab Name:		ENCO			Turnaround Tin	ne(specify):		Standard	14 day	Sampl	e Analysis	s Reques	ted (Ent	er numb	per of con	tainers	for each to	est)			
Lab ID	Sample ID			Location ID	Date	Time (Military)	Matrix Code	Sample Type	G=Grab	(3)	HCI										
	(sys_samp_			(sys_loc_code)	(YYYYMMDD)	(hhmm)	(1)	(2)	C=Comp	Total No. of Containers	Select VOC by SW8260B										Comments
	M505-MW	0013-2 <del>02205</del>	20220511	M505-MW0013	202205 [ ]	1047	WG	N	G	3	3										
	M505-MW	0032- <del>202205</del>	20220511	M505-MW0032	202205 //	1152	wg	N	G	3	3										
	M505-MW	0033-202205	2250-	M505-MW0033	202205	1215	WG	N	G	3	3										
	M505-MW	0039-202205	20220511 20220511	M505-MW0039	202205	1135	WG	N	G	3	3										
	M505-MW	0049-2 <del>0220</del> 5	20220511	M505-MW0049	202205   1	1115	wg	N	G	3	3									1	
	M505-MW	0051-2 <del>02205</del>	20220511	M505-MW0051	202205 //	1239	wg	N	G	3	3										
	M505-MW	0055-202305	025,0-	M505-MW0055	202205 //	1235	wg	N	G	3	3										
			20220511 -025,0- 20220511	M505-MW0059	202205 )	1207	wg	N	G	3	3			1							
		202205    -0	29200211	M505-TBØ	202205	9700	wq	ТВ	G	3	3										
Field Comm		#15				Lab Comme	ents:								Number o		Sample Ship	ment and	Delivery	Details	
Relinquished 1		a Muss	4	Date 05/04/22 5/11/22	Time 12:30	Received by	(signature	1 flus	u		5/1.	1/22	70 070	9	Samples I Shipping C	Company:	eck) Yes_X	_ No			
3		٥		Caulle DS-Starm duain		3					RKS		1535		Date Ship						

LG629 3.9°C

⁽¹⁾ AA=Ambient air, AQ=Air quality control, ASB=Asbestos, CK=Caulk, DS=Storm drain sediment, GS=Soil gas, IC=IDW Concrete, IDD=IDW Solid, IDS=IDW soil, IDW=IDW Water, LF=Free Product, MA=Mastic, PC=Paint Chips, SC=Cement/Concrete, SE=Sediment, SL=Sludge, SO=Soil, SQ=Soil/Solid quality control, SSD=Subsurface sediment, SU=Surface soil (<6 in), SW=Swab or wipe, TA=Animal tissue, TQ=Tissue quality control, WG=Ground water, WL=Leachate, WO=Ocean water, WP=Drinking water, WQ=Water quality control, WR=Ground water effluent, WS=Surface water, WU=Storm water, WU=Storm water, WW=Water quality control, WR=Ground water water.

⁽²⁾ Sample Type: AB=Ambient Blk, EB=Equipment Blk, FB=Field Blk, FD=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Trip Blk

⁽³⁾ Preservative added: 4 DEG C=Cool to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C H2SO4=Hydrogen sulfate, H2SO4 < 2=Adjust to pH < 2 with sulfuric acid, H3PO4=Phosphoric acid, H3PO4=Phosp

10775 Central Port Drive Orlando FL, 32824

Phone: 407.826.5314 FAX: 407.850.6945

Tuesday, May 17, 2022
AECOM Technical Services, Inc. (SE004)
Attn: Teresa Amentt Jennings
150 N. Orange Ave, Suite 200
Orlando, FL 32801

RE: Laboratory Results for

Project Number: 60610905, Project Name/Desc: NASA KSC - O_C

ENCO Workorder(s): AF03370

Dear Teresa Amentt Jennings,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Monday, May 9, 2022.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Orlando. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

K. Oglnicki

Sincerely,

Kaitlin Dylnicki

Project Manager

Enclosure(s)



# SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: O_C-MW	0005I-042.5-20220509	Lab ID: AF03370-01	Sampled: 05/09/22 14:18	Received: 05/09/22 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/23/22	05/13/22 00:00	05/13/22 16:29
Client ID: O_C-MW	0007I-042.5-20220509	Lab ID: AF03370-02	Sampled: 05/09/22 14:49	Received: 05/09/22 16:30
Davamatav	Dti		D D (T' ()	4 1 ' D 1 (T' ( )
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	<u>Prep Date/Time(s)</u>	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	<u>Hold Date/Time(s)</u> 05/23/22	05/13/22 00:00	05/13/22 16:58
	EPA 5030B_MS	<del></del>	<del></del>	<del></del>
EPA 8260D	EPA 5030B_MS	05/23/22	05/13/22 00:00	05/13/22 16:58



## **SAMPLE DETECTION SUMMARY**

Client ID: O_0	_C-MW0005I-042.5-20220509			Lab ID:	AF03370-01			
<u>Analyte</u>		<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Vinyl chloride		3.0		0.71	1.0	ug/L	EPA 8260D	
Client ID: O_0	_C-MW0007I-042.5-20220509			Lab ID:	AF03370-02			
<u>Analyte</u>		<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Vinyl chloride		3.2		0.71	1.0	ug/L	EPA 8260D	



### **ANALYTICAL RESULTS**

**Description:** O_C-MW0005I-042.5-20220509 **Lab Sample ID:** AF03370-01 **Received:** 05/09/22 16:30

Matrix: Ground WaterSampled: 05/09/22 14:18Work Order: AF03370

**Project:** NASA KSC - O_C **Sampled By:** Greg Kusel/Dustin Slater

## **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	DF	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
Vinyl chloride [75-01-4]^	3.0		ug/L	1	0.71	1.0	2E13004	EPA 8260D	05/13/22 16:29	nmc	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec I	<u>Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	43	1	50.0	86 %	41-14.	2	2E13004	EPA 8260D	05/13/22 16:29	nmc	
Dibromofluoromethane	51	1	50.0	102 %	53-14	6	2E13004	EPA 8260D	05/13/22 16:29	nmc	
Toluene-d8	45	1	50.0	91 %	41-14	6	2F13004	FPA 8260D	05/13/22 16:29	nmc	

**Description:** O_C-MW0007I-042.5-20220509 **Lab Sample ID:** AF03370-02 **Received:** 05/09/22 16:30

Matrix: Ground Water Sampled: 05/09/22 14:49 Work Order: AF03370

**Project:** NASA KSC - O_C **Sampled By:** Greg Kusel/Dustin Slater

### Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Vinyl chloride [75-01-4]^	3.2		ug/L	1	0.71	1.0	2E13004	EPA 8260D	05/13/22 16:58	nmc	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	<u>Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	45	1	50.0	91 %	41-14	12	2E13004	EPA 8260D	05/13/22 16:58	nmc	
Dibromofluoromethane	54	1	50.0	108 %	53-14	16	2E13004	EPA 8260D	05/13/22 16:58	nmc	
Toluene-d8	48	1	50.0	96 %	41-14	16	2E13004	EPA 8260D	05/13/22 16:58	nmc	

**Description:** O_C-TB-20220509-01 **Lab Sample ID:** AF03370-03 **Received:** 05/09/22 16:30

**Matrix:** Water **Sampled:** 05/09/22 07:00

Project: NASA KSC - O_C Sampled By: ENCO ORL

### **Volatile Organic Compounds by GCMS**

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL F	<u> QL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	2E13004	EPA 8260D	05/13/22 17:27	nmc	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	% Rec Li	<u>mits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	44	1	50.0	88 %	41-142		2E13004	EPA 8260D	05/13/22 17:27	nmc	
Dibromofluoromethane	52	1	50.0	104 %	<i>53-146</i>		2E13004	EPA 8260D	05/13/22 17:27	nmc	
Toluene-d8	46	1	50.0	92 %	41-146		2E13004	EPA 8260D	05/13/22 17:27	nmc	



## Volatile Organic Compounds by GCMS - Quality Control

### Batch 2E13004 - EPA 5030B_MS

Blank (2E13004-BLK1)

<u>Analyte</u> Vinyl chloride	<b>Result</b> 0.71	<b>Flag</b> U	<b>POL</b> 1.0	<u>Units</u> ug/L	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
4-Bromofluorobenzene	45			ug/L	50.0		91	41-142			
Dibromofluoromethane	53			ug/L	50.0		105	<i>53-146</i>			
Toluene-d8	46			ug/L	50.0		93	41-146			

Prepared: 05/13/2022 00:00 Analyzed: 05/13/2022 10:14

LCS (2E13004-BS1) Prepared: 05/13/2022 00:00 Analyzed: 05/13/2022 07:50

Analyte	Result	Flag	PQL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Vinyl chloride	27		1.0	ug/L	20.0		137	20-167			
4-Bromofluorobenzene	42			ug/L	50.0		85	41-142			
Dibromofluoromethane	50			ug/L	50.0		100	<i>53-146</i>			
Toluene-d8	45			ug/L	50.0		91	41-146			

 Matrix Spike (2E13004-MS1)
 Prepared: 05/13/2022 00:00 Analyzed: 05/13/2022 08:19

Source: AF03650-01

<u>Analyte</u>	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Vinyl chloride	30		1.0	ug/L	20.0	0.71 U	149	20-167			
4-Bromofluorobenzene	43			ug/L	50.0		86	41-142			
Dibromofluoromethane	51			ug/L	50.0		102	<i>53-146</i>			
Toluene-d8	46			ug/L	50.0		93	41-146			

Matrix Spike Dup (2E13004-MSD1) Prepared: 05/13/2022 00:00 Analyzed: 05/13/2022 08:48

Source: AF03650-01

					Spike	Source		%REC		RPD	
<u>Analyte</u>	Result	Flag	PQL	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
Vinyl chloride	28		1.0	ug/L	20.0	0.71 U	142	20-167	4	24	
4-Bromofluorobenzene	43			ug/L	50.0		85	41-142			_
Dibromofluoromethane	50			ug/L	50.0		100	<i>53-146</i>			
Toluene-d8	46			ug/L	50.0		93	41-146			



### **FLAGS/NOTES AND DEFINITIONS**

- **PQL** PQL: Practical Quantitation Limit. The PQL presented is the laboratory MRL.
  - **B** Results are based upon membrane filter colony counts that are outside the method indicated ideal range.
  - The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).
  - J Estimated value.
  - K Off-scale low; Actual value is known to be less than the value given.
  - **L** Off-scale high; Actual value is known to be greater than value given.
  - **M** Presence of analyte is verified but not quantified; the actual value is less than the MRL but greater than the MDL.
  - **N** Presumptive evidence of presence of material.
  - **O** Sampled, but analysis lost or not performed.
  - **Q** Sample exceeded the accepted holding time.
  - **T** Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only and shall not be used in statistical analysis.
- **U** Indicates that the compound was analyzed for but not detected.
- **V** Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
- **Z** Too many colonies were present (TNTC); the numeric value represents the filtration volume.
- ? Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
- * Not reported due to interference.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.

			CHAIN OF	CUSTODY AND AN	ALYTICAL RE	QUEST RI	CORD			COC No.					Page:	1	of	1				
		Project Name:	NASA KSC							PO No. 1	38224				Project No.	60610905.S	ubs 2021-2	3-Subs 2021-23	Phase:			
	KEO)	Site Location:	Operations and Ch	eckout Building	-			-		Send Inv	oice To:	Instruct	ions in MSA	# 195-2	4548-GV0	3		EDD to:	Jennifer	Chastain	Cc: Teresa A	mentt Jennings
		TO No.: 80KSC	)19F <b>00</b> 71	AECOM Project Manager:		Chris Marsh	all			Deliver S	ample Kits	To:	AECOM D	epot, 52	3 18th Stre	et, Orland	0	Report to:	Jennifer	Chastain	Cc: Teresa A	mentt Jennings
Sampler/Ph	one #	Greg Kusei / (77	2) 631-7426	Dustin Slater / (407) 766-	0747					Deliver S	amples To:	:	ENCO					Site-Spicific	WS#15 fro	m QAPP: 1	5-31	
Lab Name:		ENCO			Turnaround Tin	ne(specify):		Standard	14 day	Sampl	e Analy	sis Re	equeste	d (Ente	er numb	er of con	itainers	for each t	est)			
Lab ID	Sample ID	•		Location ID	Date	Time (Military)	Matrix Code	Sample Type	G=Grab	(3)	на			_								
	(sys_samp_			(sys_loc_code)	(YYYYMMDD)	(hhmm)	(1)	(2)	C=Comp	Total No. of Containers	Vinyl chloride by SW8260B											Comments
	O_C-MW0	005I- <del>202205</del>	20220509	O_C-MW0005I	202205 09	1418	WG	N	G	3	3											
	1	0071-2 <del>02203</del>	047.5- 20220501	O_C-MW0007I	202205 0 9	1449	wg	N	G	3	3											
	О_С-ТВ-2	0220504 -9/		о_с-тв О }	202205 09	0700	wq	TB	G	3	3											
													<u> </u>									
																		·				
					-								1							-		
								<del> -</del>					ļ		-				1			_
											.							<u> </u>		<del> </del>		
	<u> </u>												ļ		-							
															<u> </u>							
Field Com	ments: per QAPP WS	#15-31				Lab Comme	ents:	•		•	'							Sample Ship	ment and	Delivery	Details	1
Relinguishe	d W (Signatur			Date	Time	Received by	'slonature	<u> </u>	<del> </del>			Date	~	Time		l		in shipment: ack) Yes	No		-	
1 Z	FILLAN	nD	05	Date 6/04/22 1/22	14:20	1 2/1	-	Nurel	,			9/2:			2	Shipping (			10			
2 T	Drea	INP / Timed	3,	19/22	16 30	2	▓	····	<b></b>		A	(1)	1	63	`	Tracking h						
3	7-1	/*###\		· / - A		3						···I U d		w u	J	Date Ship						

5m-594 2.791

⁽¹⁾ AA=Ambient air, AQ=Air quality control, ASB=Asbestos, CK=Caulk, DS=Storm drain sediment, GS=Soil gas, IC=IDW Concrete, IDD=IDW Solid, IDS=IDW soil, IDS=IDW water, LF=Free Product, MA=Mastic, PC=Paint Chips, SC=Cement/Concrete, SE=Sediment, SL=Sludge, SO=Soil, SQ=Soil/Solid quality control, SSD=Subsurface sediment, SU=Surface soil (<6 In), SW=Swab or wipe, TA=Animal tissue, TP=Plant tissue, TQ=Tissue quality control, WG=Ground water, WL=Leachate, WO=Ocean water, WP=Drinking water, WQ=Water quality control, WR=Ground water water, WU=Storm water, WU=Storm water, WU=Water quality control, SC=Soil gas, IC=IDW concrete, IDD=IDW soild, IDS=IDW soil, IDS=IDW water, LF=Free Product, MA=Mastic, PC=Paint Chips, SC=Cement/Concrete, SE=Sediment, SL=Sludge, SO=Soil, SQ=Soil, S

⁽²⁾ Sample Type: AB=Ambient Blk, EB=Equipment Blk, FB=Field Blk, FD=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Trip Blk

⁽³⁾ Preservative added: 4 DEG C=Cool to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C H2SO4=Hydrogen sulfate, H2SO4 <2=Adjust to pH < 2 with sulfuric acid, H3PO4=Phosphoric acid, H3PO4 <2=Adjust to pH < 2 with phosphoric acid, H3PO4=Phosphoric acid, H3PO4 <2=Adjust to pH < 2 with nibric acid, MeOH=Methanol preservation, Na2O3S2=Sodium thiosulfate per I-gal, Na2O3S2 4/40z=4 drops of 10% sodium thiosulfate to 4 oz, NaHSO4 <2=Adjust to pH < 2 with sodium hydroxide, NaOH >9=Adjust to pH < 2 with sodium hydroxide, NaOH >9=Adjust to pH < 9 with sodium hydroxide, VitC 0.6/500=0.6 g of ascorbic acid to 500mLs, ZnAct 2/500=Add 2 mL of zinc acetate to 500mLs, ZnAct +NaOH >9=Zinc acetate and NaOH to pH>9; store cool at 4C If NO preservative added leave blank

Rev 8/19

10775 Central Port Drive Orlando FL, 32824

Phone: 407.826.5314 FAX: 407.850.6945

Friday, May 20, 2022
AECOM Technical Services, Inc. (SE004)
Attn: Teresa Amentt Jennings
150 N. Orange Ave, Suite 200
Orlando, FL 32801

RE: Laboratory Results for

Project Number: 60610905, Project Name/Desc: NASA KSC - VPF

**ENCO Workorder(s): AF03375** 

Dear Teresa Amentt Jennings,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Thursday, May 12, 2022.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Orlando. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

K. Oglnicki

Sincerely,

Kaitlin Dylnicki

Project Manager

Enclosure(s)



# SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID:	VPF-IW0008I-020.0-20220512	Lab ID: AF03375-01	Sampled: 05/12/22 12:42	Received: 05/12/22 14:52
Paramete	r <u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/26/22	05/16/22 00:00	05/17/22 00:43
Client ID:	VPF-IW0008I-020.0-20220512	Lab ID: AF03375-01RE1	Sampled: 05/12/22 12:42	Received: 05/12/22 14:52
<u>Paramete</u>	r <u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/26/22	05/17/22 00:00	05/17/22 14:19
Client ID:	VPF-IW0018I-023.0-20220512	Lab ID: AF03375-02	Sampled: 05/12/22 11:20	Received: 05/12/22 14:52
<u>Paramete</u>	r <u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/26/22	05/16/22 00:00	05/17/22 01:12
Client ID:	VPF-IW0018I-023.0-20220512	Lab ID: AF03375-02RE1	Sampled: 05/12/22 11:20	Received: 05/12/22 14:52
Paramete	r <u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/26/22	05/17/22 00:00	05/17/22 14:48
Client ID:	VPF-MW0021-030.0-20220512	Lab ID: AF03375-03	Sampled: 05/12/22 10:52	Received: 05/12/22 14:52
<u>Paramete</u>	r <u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/26/22	05/17/22 00:00	05/17/22 15:16
Client ID:	VPF-MW0022-007.5-20220512	Lab ID: AF03375-04	Sampled: 05/12/22 10:50	Received: 05/12/22 14:52
<u>Paramete</u>	r <u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/26/22	05/17/22 00:00	05/17/22 15:45
Client ID:	VPF-MW0025-040.0-20220512	Lab ID: AF03375-05	Sampled: 05/12/22 11:29	Received: 05/12/22 14:52
Paramete	r <u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/26/22	05/17/22 00:00	05/17/22 16:14
Client ID:	VPF-MW0027-040.0-20220512	Lab ID: AF03375-06	Sampled: 05/12/22 12:05	Received: 05/12/22 14:52
Paramete	r <u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/26/22	05/17/22 00:00	05/18/22 03:16
Client ID:	VPF-TB-20220512-01	Lab ID: AF03375-07	Sampled: 05/12/22 07:00	Received: 05/12/22 14:52
<u>Paramete</u>	r <u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/26/22	05/17/22 00:00	05/18/22 03:45



## **SAMPLE DETECTION SUMMARY**

Client ID: VPF-IW0008I-020.0-20220512			Lab ID:	AF03375-01			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
cis-1,2-Dichloroethene	5.2		0.53	1.0	ug/L	EPA 8260D	
Client ID: VPF-IW0008I-020.0-20220512			Lab ID:	AF03375-01RE1			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Vinyl chloride	1.2		0.71	1.0	ug/L	EPA 8260D	
Client ID: VPF-IW0018I-023.0-20220512			Lab ID:	AF03375-02			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
cis-1,2-Dichloroethene	6.0		0.53	1.0	ug/L	EPA 8260D	
Trichloroethene	1.6		0.89	1.0	ug/L	EPA 8260D	
Client ID: VPF-IW0018I-023.0-20220512			Lab ID:	AF03375-02RE1			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Vinyl chloride	1.5		0.71	1.0	ug/L	EPA 8260D	
Client ID: VPF-MW0021-030.0-20220512			Lab ID:	AF03375-03			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
cis-1,2-Dichloroethene	18		0.53	1.0	ug/L	EPA 8260D	
Trichloroethene	8.3		0.89	1.0	ug/L	EPA 8260D	
Client ID: VPF-MW0022-007.5-20220512			Lab ID:	AF03375-04			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Vinyl chloride	5.1		0.71	1.0	ug/L	EPA 8260D	
Client ID: VPF-MW0025-040.0-20220512			Lab ID:	AF03375-05			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
cis-1,2-Dichloroethene	10		0.53	1.0	ug/L	EPA 8260D	
Trichloroethene	4.1		0.89	1.0	ug/L	EPA 8260D	
			Lab ID:	AF03375-06			
Client ID: VPF-MW0027-040.0-20220512							
Client ID: VPF-MW0027-040.0-20220512  Analyte	<u>Results</u>	<u>Flag</u>	MDL	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
	Results 13	<u>Flag</u>	<u>MDL</u> 0.53	<u>PQL</u> 1.0	<u>Units</u> ug/L	<u>Method</u> EPA 8260D	<u>Notes</u>



<u>Analyzed</u>

<u>By</u>

**Notes** 

### **ANALYTICAL RESULTS**

**Description:** VPF-IW0008I-020.0-20220512 **Lab Sample ID:** AF03375-01 **Received:** 05/12/22 14:52

<u>DF</u>

<u>MDL</u>

<u>PQL</u>

**Batch** 

**Method** 

Matrix: Ground Water Sampled: 05/12/22 12:42

Results

Project: NASA KSC - VPF Sampled By: Greg Kusel/Dustin Slater

**Units** 

<u>Flag</u>

# **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]

cis-1,2-Dichloroethene [156-59-2]^	5.2		ug/L	1	0.53	1.0	2E16037	EPA 8260D	05/17/22 00:43	JMW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	2E16037	EPA 8260D	05/17/22 00:43	JMW	
Vinyl chloride [75-01-4]^	1.2		ug/L	1	0.71	1.0	2E17007	EPA 8260D	05/17/22 14:19	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	45	1	50.0	91 %	41-1	42	2E16037	EPA 8260D	05/17/22 00:43	JMW	
4-Bromofluorobenzene	42	1	50.0	<i>85</i> %	41-1	42	2E17007	EPA 8260D	05/17/22 14:19	JMW	
Dibromofluoromethane	<i>56</i>	1	50.0	113 %	<i>53-1</i> -	46	2E16037	EPA 8260D	05/17/22 00:43	JMW	
Dibromofluoromethane	<i>56</i>	1	50.0	111 %	<i>53-1</i> -	46	2E17007	EPA 8260D	05/17/22 14:19	JMW	
Toluene-d8	48	1	50.0	96 %	41-1	46	2E16037	EPA 8260D	05/17/22 00:43	JMW	
Toluene-d8	45	1	50.0	90 %	41-1	46	2E17007	EPA 8260D	05/17/22 14:19	JMW	

**Description:** VPF-IW0018I-023.0-20220512 **Lab Sample ID:** AF03375-02 **Received:** 05/12/22 14:52

Matrix: Ground Water Sampled: 05/12/22 11:20 Work Order: AF03375

**Project:** NASA KSC - VPF **Sampled By:** Greg Kusel/Dustin Slater

### **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<b>Notes</b>
cis-1,2-Dichloroethene [156-59-2]^	6.0		ug/L	1	0.53	1.0	2E16037	EPA 8260D	05/17/22 01:12	JMW	
Trichloroethene [79-01-6]^	1.6		ug/L	1	0.89	1.0	2E16037	EPA 8260D	05/17/22 01:12	JMW	
Vinyl chloride [75-01-4]^	1.5		ug/L	1	0.71	1.0	2E17007	EPA 8260D	05/17/22 14:48	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	% Rec	<u>Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	43	1	50.0	<i>85 %</i>	41-1	42	2E16037	EPA 8260D	05/17/22 01:12	JMW	
4-Bromofluorobenzene	44	1	50.0	<i>87 %</i>	41-1	42	2E17007	EPA 8260D	05/17/22 14:48	JMW	
Dibromofluoromethane	54	1	50.0	107 %	<i>53-1</i> -	46	2E16037	EPA 8260D	05/17/22 01:12	JMW	
Dibromofluoromethane	55	1	50.0	110 %	<i>53-1</i> -	46	2E17007	EPA 8260D	05/17/22 14:48	JMW	
Toluene-d8	47	1	50.0	94 %	41-1	46	2E16037	EPA 8260D	05/17/22 01:12	JMW	
Toluene-d8	46	1	50.0	92 %	41-1	46	2E17007	EPA 8260D	05/17/22 14:48	JMW	

**Description:** VPF-MW0021-030.0-20220512 **Lab Sample ID:** AF03375-03 **Received:** 05/12/22 14:52

Matrix: Ground Water Sampled: 05/12/22 10:52 Work Order: AF03375

Project: NASA KSC - VPF Sampled By: Greg Kusel/Dustin Slater

### Volatile Organic Compounds by GCMS

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	18		ug/L	1	0.53	1.0	2E17007	EPA 8260D	05/17/22 15:16	JMW	
Trichloroethene [79-01-6]^	8.3		ug/L	1	0.89	1.0	2E17007	EPA 8260D	05/17/22 15:16	JMW	
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	2E17007	EPA 8260D	05/17/22 15:16	JMW	
Surrogates	Results	DF	Snike I vl	% Rec	% Red	- I imite	Ratch	Method	Analyzed	Rv	Notes
Surrogates 4-Bromofluorobenzene	<u>Results</u>	<u>DF</u> 1	<u>Spike Lvl</u> 50.0	<u>% Rec</u> 89 %		<u>: Limits</u>	<u>Batch</u> 2F17007	<u>Method</u> FPA 8260D	<u>Analyzed</u> 05/17/22 15:16	<u>Ву</u> 1МW	<u>Notes</u>
<u>Surrogates</u> 4-Bromofluorobenzene Dibromofluoromethane	<u>Results</u> 44 56	<u>DF</u> 1 1	<u>Spike Lvl</u> 50.0 50.0	% Rec 89 % 113 %	<u>% Rec</u> 41-1 53-1	142	<u>Batch</u> 2E17007 2E17007	<u>Method</u> EPA 8260D EPA 8260D	<u>Analyzed</u> 05/17/22 15:16 05/17/22 15:16	<u><b>By</b></u> JMW JMW	<u>Notes</u>



05/17/22 15:45

JMW

### **ANALYTICAL RESULTS**

**Description:** VPF-MW0022-007.5-20220512 Lab Sample ID: AF03375-04 **Received:** 05/12/22 14:52

Matrix: Ground Water Sampled: 05/12/22 10:50 Project: NASA KSC - VPF Sampled By: Greg Kusel/Dustin Slater

## **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	Flag	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<b>Analyzed</b>	<u>By</u>	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	2E17007	EPA 8260D	05/17/22 15:45	JMW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	2E17007	EPA 8260D	05/17/22 15:45	JMW	
Vinyl chloride [75-01-4]^	5.1		ug/L	1	0.71	1.0	2E17007	EPA 8260D	05/17/22 15:45	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	% Re	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	43	1	50.0	86 %	41-	142	2E17007	EPA 8260D	05/17/22 15:45	JMW	
Dibromofluoromethane	54	1	50.0	108 %	<i>53</i> -1	146	2E17007	EPA 8260D	05/17/22 15:45	JMW	

93 % **Description:** VPF-MW0025-040.0-20220512 Lab Sample ID: AF03375-05 Received: 05/12/22 14:52

41-146

2E17007

EPA 8260D

Matrix: Ground Water Sampled: 05/12/22 11:29 Work Order: AF03375

50.0

Project: NASA KSC - VPF Sampled By: Greg Kusel/Dustin Slater

### **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Toluene-d8

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	10		ug/L	1	0.53	1.0	2E17007	EPA 8260D	05/17/22 16:14	JMW	
Trichloroethene [79-01-6]^	4.1		ug/L	1	0.89	1.0	2E17007	EPA 8260D	05/17/22 16:14	JMW	
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	2E17007	EPA 8260D	05/17/22 16:14	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	% Rec	% Rec	c Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
<u>Surrogates</u> 4-Bromofluorobenzene	<u>Results</u> 43	<u>DF</u> 1	<u>Spike Lvl</u> 50.0	<u>% Rec</u> 87 %	<u>% Red</u> 41-1		<u>Batch</u> 2E17007	<u>Method</u> EPA 8260D	<u>Analyzed</u> 05/17/22 16:14	<u>By</u> JMW	<u>Notes</u>
		<u>DF</u> 1 1				142			<u> </u>		<u>Notes</u>

**Description:** VPF-MW0027-040.0-20220512 **Received:** 05/12/22 14:52 Lab Sample ID: AF03375-06

Matrix: Ground Water Sampled: 05/12/22 12:05 Work Order: AF03375

Project: NASA KSC - VPF Sampled By: Greg Kusel/Dustin Slater

## Volatile Organic Compounds by GCMS

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	13		ug/L	1	0.53	1.0	2E17030	EPA 8260D	05/18/22 03:16	JMW	
Trichloroethene [79-01-6]^	3.8		ug/L	1	0.89	1.0	2E17030	EPA 8260D	05/18/22 03:16	JMW	
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	2E17030	EPA 8260D	05/18/22 03:16	JMW	QV-01
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Rec</u>	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	44	1	50.0	<i>87</i> %	41-1	142	2E17030	EPA 8260D	05/18/22 03:16	JMW	
4-Bromofluorobenzene Dibromofluoromethane	44 55	1 1	50.0 50.0	87 % 110 %	41-1 53-1		2E17030 2E17030	EPA 8260D EPA 8260D	05/18/22 03:16 05/18/22 03:16	JMW JMW	



## **ANALYTICAL RESULTS**

**Description:** VPF-TB-20220512-01 **Lab Sample ID:** AF03375-07 **Received:** 05/12/22 14:52

Matrix:WaterSampled: 05/12/22 07:00Project:NASA KSC - VPFSampled By: ENCO ORL

Work Order: AF03375

# Volatile Organic Compounds by GCMS

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	2E17030	EPA 8260D	05/18/22 03:45	JMW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	2E17030	EPA 8260D	05/18/22 03:45	JMW	
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	2E17030	EPA 8260D	05/18/22 03:45	JMW	QV-01
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
<u>Surrogates</u> 4-Bromofluorobenzene	<u>Results</u> 42	<u>DF</u> 1	<u>Spike Lvl</u> 50.0	<u>% Rec</u> 85 %	<u>% Rec</u> 41-1		<u>Batch</u> 2E17030	<u>Method</u> EPA 8260D	<u>Analyzed</u> 05/18/22 03:45	<u><b>By</b></u> JMW	<u>Notes</u>
		<u>DF</u> 1 1				42			·	-	<u>Notes</u>
4-Bromofluorobenzene	42	<b>DF</b> 1 1 1	50.0	85 %	41-1	42 46	2E17030	EPA 8260D	05/18/22 03:45	JMW	<u>Notes</u>



# Volatile Organic Compounds by GCMS - Quality Control

### Batch 2E16037 - EPA 5030B_MS

Analyte	Result										
. 425:11	icoult	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Note</u>
cis-1,2-Dichloroethene	0.53	U	1.0	ug/L							
Trichloroethene	0.89	U	1.0	ug/L							
Vinyl chloride	0.71	U	1.0	ug/L							
4-Bromofluorobenzene	45			ug/L	50.0		90	41-142			
Dibromofluoromethane	<i>55</i>			ug/L	50.0		110	<i>53-146</i>			
Toluene-d8	47			ug/L	50.0		95	41-146			
LCS (2E16037-BS1)					Prepare	ed: 05/16/202	2 00:00 Anal	yzed: 05/16/2	2022 20:24		
Analyte	Result	Flag	POL	Units	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
cis-1,2-Dichloroethene	24		1.0	ug/L	20.0	Kesuit	120	56-128	2	<u> </u>	11010.
Trichloroethene	23		1.0	ug/L	20.0		113	62-135			
Vinyl chloride	28		1.0	ug/L	20.0		139	20-167			
4-Bromofluorobenzene	43			ug/L	50.0		86	41-142			
Dibromofluoromethane	54			ug/L	50.0		107	53-146			
Toluene-d8	47			ug/L	50.0		94	41-146			
Matrix Spike (2E16037-MS1)					Prepare	ed: 05/16/202	2 00:00 Anal	yzed: 05/16/2	2022 20:53		
Source: AF03641-01											
<u>Analyte</u>	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Note</u> :
cis-1,2-Dichloroethene	24		1.0	ug/L	20.0	0.53 U	121	56-128			
Trichloroethene	23		1.0	ug/L	20.0	0.89 U	115	62-135			
Vinyl chloride	29		1.0	ug/L	20.0	0.71 U	143	20-167			
4-Bromofluorobenzene	44			ug/L	50.0		87	41-142			
Dibromofluoromethane	54			ug/L	50.0		108	<i>53-146</i>			
Toluene-d8	49			ug/L	50.0		98	41-146			
Matrix Spike Dup (2E16037-MS	SD1)				Prepare	ed: 05/16/202	2 00:00 Anal	yzed: 05/16/2	2022 21:22		
Source: AF03641-01					Caller	S		0/ PEC		222	
<u>Analyte</u>	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
cis-1,2-Dichloroethene	26		1.0	ug/L	20.0	0.53 U	128	56-128	6	17	

Batch 2E17007 - EPA 5030B_MS

24

30

45

*57* 

49

Trichloroethene

4-Bromofluorobenzene

Dibromofluoromethane

FINAL

Vinyl chloride

Toluene-d8

**Blank (2E17007-BLK1)** Prepared: 05/17/2022 00:00 Analyzed: 05/17/2022 10:28

ug/L

ug/L

ug/L

ug/L

ug/L

20.0

20.0

50.0

50.0

50.0

0.89 U

0.71 U

118

149

90

113

98

62-135

20-167

41-142

*53-146* 

41-146

3

4

20

24

1.0

1.0

<u>Analyte</u>	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
cis-1,2-Dichloroethene	0.53	U	1.0	ug/L							
Trichloroethene	0.89	U	1.0	ug/L							
Vinyl chloride	0.71	U	1.0	ug/L							
4-Bromofluorobenzene	44			ug/L	50.0		88	41-142			
Dibromofluoromethane	55			ug/L	50.0		111	<i>53-146</i>			



Volatile Organic Compounds by	GCMS - Quali	ty Contr	ol								
Batch 2E17007 - EPA 5030	B_MS - Contin	nued									
Blank (2E17007-BLK1) Contin	nued				Prepar	ed: 05/17/202	2 00:00 Anal	yzed: 05/17/	2022 10:28		
<u>Analyte</u>	<u>Result</u>	<u>Flag</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Toluene-d8	46			ug/L	50.0		93	41-146			
LCS (2E17007-BS1)					Prepar	ed: 05/17/202	2 00:00 Anal	yzed: 05/17/	2022 08:04		
Analyte	Result	<u>Flaq</u>	<u>PQL</u>	<u>Units</u>	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
cis-1,2-Dichloroethene	25		1.0	ug/L	20.0	Result	126	56-128	I.I. 2	<u> </u>	Hotes
Trichloroethene	23		1.0	ug/L	20.0		116	62-135			
Vinyl chloride	30		1.0	ug/L	20.0		149	20-167			
4-Bromofluorobenzene	45			ug/L	50.0		90	41-142			
Dibromofluoromethane	56			ug/L ug/L	50.0		112	53-146			
Toluene-d8	<i>49</i>			ug/L	50.0		98	41-146			
Matrix Spike (2E17007-MS1)				-3/ -		ed: 05/17/202			2022 08:33		
Source: AF03703-05					Пери	cu. 03/17/202	2 00.00 7 11 101	y2cu: 05/17/	2022 00.33		
<u>Analyte</u>	Result	<u>Flag</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
cis-1,2-Dichloroethene	27		1.0	ug/L	20.0	0.53 U	134	56-128			QM-07
Trichloroethene	25		1.0	ug/L	20.0	0.89 U	127	62-135			
Vinyl chloride	30		1.0	ug/L	20.0	0.71 U	148	20-167			
4-Bromofluorobenzene	45			ug/L	50.0		89	41-142			
Dibromofluoromethane	56			ug/L	50.0		111	<i>53-146</i>			
Toluene-d8	48			ug/L	50.0		97	41-146			
Matrix Spike Dup (2E17007-N	(SD1)				Prepar	ed: 05/17/202	2 00:00 Anal	yzed: 05/17/	2022 09:02		
Source: AF03703-05					C	<b>C</b>		0/ DEC		222	
<u>Analyte</u>	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
cis-1,2-Dichloroethene	26		1.0	ug/L	20.0	0.53 U	131	56-128	2	17	QM-07
Trichloroethene	25		1.0	ug/L	20.0	0.89 U	126	62-135	0.4	20	
Vinyl chloride	29		1.0	ug/L	20.0	0.71 U	144	20-167	3	24	
4-Bromofluorobenzene	43			ug/L	50.0		87	41-142			
Dibromofluoromethane	54			ug/L	50.0		108	53-146			
Toluene-d8	48			ug/L	50.0		95	41-146			
Batch 2E17030 - EPA 5030	B_MS										
Blank (2E17030-BLK1)					Prepar	ed: 05/17/202	2 00:00 Anal	yzed: 05/17/	2022 22:57		
Analyte	<u>Result</u>	<u>Flaq</u>	<u>POL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
cis-1,2-Dichloroethene	0.53	U	1.0	ug/L						_	
			4.0	<i>J</i> ,							

Ana	l <u>yte</u>	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
cis-1,	2-Dichloroethene	0.53	U	1.0	ug/L							
Trich	oroethene	0.89	U	1.0	ug/L							
Vinyl	chloride	0.71	U	1.0	ug/L							
4-Bro	mofluorobenzene	44			ug/L	50.0		88	41-142			
Dibro	mofluoromethane	<i>56</i>			ug/L	50.0		112	<i>53-146</i>			
Tolue	ene-d8	49			ug/L	50.0		97	41-146			
	LCS (2E17030-BS1)	Prepared: 05/17/2022 00:00 Analyzed: 05/17/2022 20:33										

Source RPD Spike %REC **Analyte POL** Flag <u>Units</u> Level %REC <u>Limits</u> RPD <u>Limit</u> Result



# Volatile Organic Compounds by GCMS - Quality Control

### Batch 2E17030 - EPA 5030B_MS - Continued

LCS (2E17030-BS1) Continued

Prepared: 05/17/2022 00:00 Analyzed: 05/17/2022 20:33

<u>Analyte</u>	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
cis-1,2-Dichloroethene	25		1.0	ug/L	20.0	·	123	56-128			
Trichloroethene	23		1.0	ug/L	20.0		117	62-135			
Vinyl chloride	28		1.0	ug/L	20.0		141	20-167			
4-Bromofluorobenzene	45			ug/L	50.0		90	41-142			
Dibromofluoromethane	55			ug/L	50.0		109	53-146			
Toluene-d8	49			ug/L	50.0		98	41-146			

Matrix Spike (2E17030-MS1) Prepared: 05/17/2022 00:00 Analyzed: 05/17/2022 21:02

Source: AF03694-01

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	Units	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>Notes</u>
cis-1,2-Dichloroethene	24		1.0	ug/L	20.0	0.53 U	121	56-128			
Trichloroethene	23		1.0	ug/L	20.0	0.89 U	114	62-135			
Vinyl chloride	26		1.0	ug/L	20.0	0.71 U	130	20-167			
4-Bromofluorobenzene	44			ug/L	50.0		87	41-142			
Dibromofluoromethane	56			ug/L	50.0		111	<i>53-146</i>			
Toluene-d8	48			ug/L	50.0		96	41-146			

Matrix Spike Dup (2E17030-MSD1) Prepared: 05/17/2022 00:00 Analyzed: 05/17/2022 21:31

Source: AF03694-01

					Spike	Source		%REC		RPD	
<u>Analyte</u>	<u>Result</u>	Flag	<u>PQL</u>	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
cis-1,2-Dichloroethene	25		1.0	ug/L	20.0	0.53 U	125	56-128		17	
Trichloroethene	23		1.0	ug/L	20.0	0.89 U	116	62-135		20	
Vinyl chloride	26		1.0	ug/L	20.0	0.71 U	132	20-167		24	
4-Bromofluorobenzene	45			ug/L	50.0		90	41-142			
Dibromofluoromethane	56			ug/L	50.0		112	<i>53-146</i>			
Toluene-d8	49			ug/L	50.0		98	41-146			



### **FLAGS/NOTES AND DEFINITIONS**

- **PQL** PQL: Practical Quantitation Limit. The PQL presented is the laboratory MRL.
  - **B** Results are based upon membrane filter colony counts that are outside the method indicated ideal range.
  - The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).
  - J Estimated value.
- **K** Off-scale low; Actual value is known to be less than the value given.
- **L** Off-scale high; Actual value is known to be greater than value given.
- **M** Presence of analyte is verified but not quantified; the actual value is less than the MRL but greater than the MDL.
- **N** Presumptive evidence of presence of material.
- Sampled, but analysis lost or not performed.
- **Q** Sample exceeded the accepted holding time.
- **T** Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only and shall not be used in statistical analysis.
- **U** Indicates that the compound was analyzed for but not detected.
- **V** Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
- **Z** Too many colonies were present (TNTC); the numeric value represents the filtration volume.
- ? Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
- * Not reported due to interference.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.
- **QM-07** The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
- **QV-01** The associated continuing calibration verification standard exhibited high bias; since the result is ND, there is no impact.

		CHAIN OF	CUSTODY AND AN	ALYTICAL RE	QUEST RE	CORD			COC No.					Page:	1	of	1				
		Project Name: NASA KSC							PO No. 1	38224				Project No.	60610905.5	ubs 2021-2	3-Subs 2021-23	Phase:			
		Site Location: Vertical Processing	Facility						Send Inv	oice To: I	Instructio	ons in MSA :	# 19S-24	548-GV0	3		EDD to:	Jennifer	Chastain	Cc: Teresa Ar	nentt Jennings
		TO No.: 80KSC019F0071	AECOM Project Manager:		Chris Marsha	ıll			Deliver S	ample Kits 1	To:	AECOM De	pot, 523	18th Stre	et, Orland	0	Report to:	Jennifer	Chastain	Cc: Teresa An	nentt Jennings
Sampler/Pho	one #	Greg Kusel / (772) 631-7426	Dustin Slater / (407) 766-	0747					Deliver S	amples To:		ENCO					Site-Spicific	WS#15 fro	n QAPP: 1	5-6	
.ab Name:		ENCO		Turnaround Tin	ne(specify):		Standard	14 day	Sampl	e Analy:	sis Re	quested	(Enter	r numbe	er of con	tainers	for each to	est)			-
Lab ID	Sample ID	)	Location ID	Date	Time (Military)	Matrix Code	Sample Type	G=Grab	(3)	на											
	(sys_samp_		(sys_loc_code)	(YYYYMMDD)	(hhmm)	(1)	(2)	C=Comp	Total No. of Containers	Select VOC by SW8260B											Comments
-	VPF-IW00	0081-2 <del>320</del> 5 020-0- 30220512	VPF-IW0008I	202205 12	1242	WG	N	G	3	3											
	VPF-IW00	0181-2 <del>01205</del> -02 3.0 - 2022 05/2	VPF-IW0018I	202205 ) 🗷	1120	WG	N	G	3	3	-										
	VPF-MW0	1021-202705 -1090.0-	VPF-MW0021	202205 12	1952	WG	N	G	3	3										·	
_	VPF-MW0	022-203205 - 007.5-	VPF-MW0022	202205/2	1050	WG	N	G	3	3	•										
	VPF-MW0	1025-202305 -040.9-	VPF-MW0025	202205 12	1129	WG	N	G	3	3											
	VPF-MW0	-040.0-		202205 12	1205	WG	N	G	3	3					-						
	_	02205 12-01	VPF-TB Ø (	202205/2	0700	wq	ТВ	G	3	3			-		ļ <u>-</u>						
_		70-1			- 1 /0												-				
_																					
		<u></u>													ļ						
					<u></u>																
Field Con Report only	nments: per QAPP WS	5 #15			Lab Comme	ents:									Number		Sample Ship s in shipment:	ment and	Delivery	Details	
	ed by signatur		Date	Time	Received by					ſ	Date		lime		+		eck) Yes	_ No			
			5/04/22 5/12/22	12:40	1	ZOPY	Jun	U.		Ž	/12/	22	070	0	Shipping	Company	:				
2 9	rex	That	5/12/22	1452	2	42				71	1213	10	47	}	Tracking						
3	<u> </u>	=Air quality control. ASB=Asbestos. C			3	$\overline{}$	<u></u>					·			Date Shi						

⁽¹⁾ AA=Ambient air, AQ=Air quality control, ASB=Asbestos, CK=Caulk, DS=Storm drain sediment, GS=Soil gas, IC=IDW Concrete, IDD=IDW Solid, IDS=IDW water, LF=Free Product, MA=Mastic, PC=Paint Chips, SC=Cement/Concrete, SE=Sediment, SL=Sludge, SQ=Soil, SQ=Soil/Solid quality control, SSD=Subsurface sediment, SU=Surface soil (<6 in), SW=Swab or wipe, TA=Animal tissue, TQ=Tissue quality control, WG=Ground water, WL=Leachate, WO=Ocean water, WP=Drinking water, WQ=Water quality control, WR=Ground water effluent, WS=Surface water, WU=Storm water, WW=Waste water

⁽²⁾ Sample Type: AB=Ambient Blk, EB=Equipment Blk, FB=Field Blk, FD=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Trip Blk

⁽³⁾ Preservative added: 4 DEG C=Cool to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C N2SO4=Hydrogen sulfate, H2SO4 <2=Adjust to pH < 2 with sulfuric acid, H3PO4=Phosphoric acid, H3PO4<2=Adjust to pH <2 with phosphoric acid, HNAO4S=Sodium bisulfate preservation, HNO3 <2=Adjust to pH < 2 with nitric acid, MeOH=Methanol preservation, Na2O352=Sodium thiosulfate, Na2O352 3/gal=Add 3 mL 10% sodium thiosulfate per I-gal, Na2O352 4/4oz=4 drops of 10% sodium thiosulfate to 4 oz, NaHSO4 <2=Adjust to pH < 2 with sodium hydroxide, NaOH >9=Adjust to pH > 9 with sodium hydroxide, VICC 0.6/500=0.6 g of ascorbic acid to 500mLs, ZnAct 2/500=Add 2 mL of zinc acetate to 500mLs, ZnAct +NaOH >9=Zinc acetate and NaOH to pH>9; store cool at 4C. If NO preservative added leave blank

Rev 8/19

10775 Central Port Drive Orlando FL, 32824

Phone: 407.826.5314 FAX: 407.850.6945

Tuesday, May 24, 2022
AECOM Technical Services, Inc. (SE004)
Attn: Teresa Amentt Jennings
150 N. Orange Ave, Suite 200
Orlando, FL 32801

RE: Laboratory Results for

Project Number: 60610905, Project Name/Desc: NASA KSC - KARS Park 1

**ENCO Workorder(s): AF03379** 

Dear Teresa Amentt Jennings,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Thursday, May 12, 2022.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Orlando. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

K. Oglnicki

Sincerely,

Kaitlin Dylnicki

Project Manager

Enclosure(s)



# SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: KP1-MW002	2-004.5-20220512	Lab ID: AF03379-01	Sampled: 05/12/22 07:58	Received: 05/12/22 14:52
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 6020B	EPA 3005A	11/08/22	05/17/22 09:54	05/23/22 18:07



## **SAMPLE DETECTION SUMMARY**

No positive results detected.



## **ANALYTICAL RESULTS**

**Description:** KP1-MW0022-004.5-20220512 **Lab Sample ID:** AF03379-01 **Received:** 05/12/22 14:52

Matrix: Ground WaterSampled: 05/12/22 07:58Work Order: AF03379

**Project:** NASA KSC - KARS Park 1 **Sampled By:** Greg Kusel, Dustin Slater

# Metals (total recoverable) by EPA 6000/7000 Series Methods

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
Lead [7439-92-1]^	2.50	U	ug/L	1	2.50	5.00	2E16054	EPA 6020B	05/23/22 18:07	JMA	



# Metals (total recoverable) by EPA 6000/7000 Series Methods - Quality Control

#### Batch 2F16054 - FPA 3005A

Batch 2E16054 - EPA 3005A													
Blank (2E16054-BLK1)					Prepare	ed: 05/17/202	2 09:54 Anal	yzed: 05/23/	2022 12:22				
<u>Analyte</u>	Result	<u>Flag</u>	<u>POL</u>	<u>Units</u>	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>		
Lead	2.50	U	5.00	ug/L		' <u></u> '							
LCS (2E16054-BS1)					Prepare	ed: 05/17/202	2 09:54 Anal	yzed: 05/23/	2022 12:25				
<u>Analyte</u>	<u>Result</u>	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>		
Lead	498		5.00	ug/L	500		100	80-120					
Matrix Spike (2E16054-MS2)					Prepare	ed: 05/17/202	2 09:54 Anal	yzed: 05/23/	2022 14:58				
Source: AF03651-01													
Analyte	Result	Flag	POL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes		
Lead	488		25.0	ug/L	500	12.5 U	98	75-125					
Matrix Spike Dup (2E16054-MS	D2)				Prepare	ed: 05/17/202	2 09:54 Anal	yzed: 05/23/	2022 15:05				
Source: AF03651-01													
<u>Analyte</u>	Result	<u>Flag</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes		
Lead	487		25.0	ug/L	500	12.5 U	97	75-125	0.06	20			
Post Spike (2E16054-PS2)					Prepared: 05/23/2022 08:50 Analyzed: 05/23/2022 14:24								
Source: AF03651-01													
Source: AF03651-01	Result	<u>Flaq</u>	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>		



### **FLAGS/NOTES AND DEFINITIONS**

- **PQL** PQL: Practical Quantitation Limit. The PQL presented is the laboratory MRL.
  - **B** Results are based upon membrane filter colony counts that are outside the method indicated ideal range.
  - The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).
  - J Estimated value.
  - K Off-scale low; Actual value is known to be less than the value given.
  - **L** Off-scale high; Actual value is known to be greater than value given.
  - **M** Presence of analyte is verified but not quantified; the actual value is less than the MRL but greater than the MDL.
  - **N** Presumptive evidence of presence of material.
  - **O** Sampled, but analysis lost or not performed.
  - **Q** Sample exceeded the accepted holding time.
  - **T** Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only and shall not be used in statistical analysis.
- **U** Indicates that the compound was analyzed for but not detected.
- **V** Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
- **Z** Too many colonies were present (TNTC); the numeric value represents the filtration volume.
- ? Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
- * Not reported due to interference.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.

		CHAIN OF	CUSTODY AND AN	ALYTICAL RE	QUEST RI	CORD			COC No.			T		Page:	1	of	1				
	==	Project Name: NASA KSC							PO No. 1	38224				Project No.	60610905.Su	bs 2021-23	3-Subs 2021-23	Phase:			
(EI)		Site Location: KARS Park 1 LOC	#9						Send Inv	roice To:	Instructio	ons in MSA #	# 19S-24	548-GV03	3		EDD to:	Jennifer	Chastain	Cc: Teresa A	mentt Jennings
		TO No.: 80KSC019F0071	AECOM Project Manager:		Chris Marsh	all			Deliver S	Sample Kits	To:	AECOM De	pot, 523	18th Stre	et, Orlando	j .	Report to:	Jennifer	Chastain	Cc: Teresa A	mentt Jennings
Sampler/Pho	ne #	Greg Kusel / (772) 631-7426	Dustin Slater / (407) 766-	0747					Deliver S	amples To	:	ENCO					Site-Spicific	WS#15 fro	m QAPP: 1	5-35	
Lab Name:		ENCO		Turnaround Tin	ne(specify):		Standard	i 14 day	Samp	le Anal	ysis Red	quested	(Enter	numbe	er of cont	tainers	for each t	test)			
Lab ID	Sample ID	)	Location ID	Date	Time (Military)	Matrix Code	Type	G=Grab	(3)	HNO3 <2											
	(sys_samp	_code)	(sys_loc_code)	(YYYYMMDD)	(hhmm)	(1)	(2)	C=Comp	Total No. of Containers	Lead by SW6010											Comments
	KP1-MW0	0022-202205-04/5-202205/2	KP1-MW0022	202205 12	0758	wg	N	G	1	1											
		9																			
							-														
																		-	-		
							_											_	-		
			8																		
Field Com		5 #15-35			Lab Comm	ents:	1								Number o		Sample Ship in shipment		Delivery	Details	
Relinquisher	d by Signatu	re)	Date 5/04/22 11/22	Time 12:50 .	Received by	(signature	Alas	0		5/	Date 12/22	0	ime 660		Samples I Shipping C		eck) Yes	No	-		
2	With	5	112/22	1452	2	1	2			5	12102	100	150	,	Tracking N	lo:					
3	2 1.0	=Air quality control, <b>ASB</b> =Asbestos, <b>(</b>			3										Date Ship	***************************************			Car. 2007 W	D. 10000 1044 1	DOD STRAIN

SM431 3,50

⁽¹⁾ AA=Ambient air, AQ=Air quality control, ASB=Asbestos, CK=Caulk, DS=Storm drain sediment, GS=Soil gas, IC=IDW Concrete, IDD=IDW Solid, IDS=IDW solid, IDS=IDW water, LF=Free Product, MA=Mastic, PC=Paint Chips, SC=Cement/Concrete, SE=Sediment, SL=Sludge, SO=Soil, SQ=Soil/Solid quality control, SSD=Subsurface sediment, SU=Surface soil (<6 in), SW=Swab or wipe, TA=Animal tissue, TQ=Tissue quality control, WG=Ground water, WQ=Water quality control, WR=Ground water, WQ=Water quality control, WR=G

⁽²⁾ Sample Type: AB=Ambient Blk, EB=Equipment Blk, FB=Field Blk, FD=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Trip Blk

⁽³⁾ Preservative added: 4 DEG C=Cool to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C H2SO4=Hydrogen sulfate, H2SO4 <2=Adjust to pH < 2 with sulfuric acid, H3PO4=Phosphoric acid, H3PO4=Phosph

10775 Central Port Drive Orlando FL, 32824

Phone: 407.826.5314 FAX: 407.850.6945

Thursday, May 26, 2022 AECOM Technical Services, Inc. (SE004) Attn: Teresa Amentt Jennings 150 N. Orange Ave, Suite 200 Orlando, FL 32801

RE: Laboratory Results for

Project Number: 60610905, Project Name/Desc: NASA KSC - SSPF

**ENCO Workorder(s): AF03374** 

Dear Teresa Amentt Jennings,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Wednesday, May 11, 2022.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Orlando. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

K. Oglnicki

Sincerely,

Kaitlin Dylnicki

Project Manager

Enclosure(s)



# SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: SSPF-MW	/0004-009.5-20220510	Lab ID: AF03374-01RE1	Sampled: 05/10/22 15:20	Received: 05/11/22 15:35	
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)	
EPA 350.1	NO PREP	06/07/22	05/12/22 11:00	05/13/22 10:48	
Client ID: SSPF-MW	/0006-010.0-20220510	Lab ID: AF03374-02RE1	Sampled: 05/10/22 14:42	Received: 05/11/22 15:35	
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)	
EPA 350.1	NO PREP	06/07/22	05/12/22 11:00	05/13/22 10:49	
Client ID: SSPF-MW	/0013-021.0-20220510	Lab ID: AF03374-03	Sampled: 05/10/22 16:00	Received: 05/11/22 15:35	
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)	
EPA 350.1	NO PREP	06/07/22	05/12/22 11:00	05/13/22 10:40	
Client ID: SSPF-MW0014-008.0-20220510		Lab ID: AF03374-04RE1	Sampled: 05/10/22 15:59	Received: 05/11/22 15:35	
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)	
EPA 350.1	NO PREP	06/07/22	05/12/22 11:00	05/13/22 11:03	
Client ID: SSPF-MW0016-016.0-20220510		Lab ID: AF03374-05RE1	Sampled: 05/10/22 15:27	Received: 05/11/22 15:35	
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)	
EPA 350.1	NO PREP	06/07/22	05/12/22 11:00	05/13/22 11:04	



## **SAMPLE DETECTION SUMMARY**

Client ID: SSPF-MW0004-009.5-20220510			Lab ID:	AF03374-01RE1			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Ammonia as N	3100		49	100	ug/L	EPA 350.1	
Client ID: SSPF-MW0006-010.0-20220510			Lab ID:	AF03374-02RE1			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Ammonia as N	4100		98	200	ug/L	EPA 350.1	
Client ID: SSPF-MW0013-021.0-20220510			Lab ID:	AF03374-03			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Ammonia as N	1300		9.8	20	ug/L	EPA 350.1	
Client ID: SSPF-MW0014-008.0-20220510			Lab ID:	AF03374-04RE1			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Ammonia as N	8700		200	400	ug/L	EPA 350.1	
Client ID: SSPF-MW0016-016.0-20220510			Lab ID:	AF03374-05RE1			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Ammonia as N	3800		98	200	ug/L	EPA 350.1	



Work Order: AF03374

Work Order: AF03374

Work Order: AF03374

#### **ANALYTICAL RESULTS**

**Description:** SSPF-MW0004-009.5-20220510 **Lab Sample ID:** AF03374-01 **Received:** 05/11/22 15:35

Matrix: Ground Water Sampled: 05/10/22 15:20

Project: NASA KSC - SSPF Sampled By: Greg Kusel, Dustin Slater

## **Classical Chemistry Parameters**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number] Results MDL **PQL** <u>Flag</u> **Units** DF **Batch Method** <u>Analyzed</u> By Notes Ammonia as N [7664-41-7]^ 3100 ug/L 5 49 100 2E12028 EPA 350.1 05/13/22 10:48 cbarr

**Description:** SSPF-MW0006-010.0-20220510 **Lab Sample ID:** AF03374-02 **Received:** 05/11/22 15:35

Matrix: Ground Water Sampled: 05/10/22 14:42

Project: NASA KSC - SSPF Sampled By: Greg Kusel, Dustin Slater

#### **Classical Chemistry Parameters**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number] **Results** Flag **Units** <u>DF</u> MDL **PQL Batch Method Analyzed** Ву **Notes** Ammonia as N [7664-41-7]^ 4100 ug/L 10 98 200 2E12028 EPA 350.1 05/13/22 10:49 cbarr

**Description:** SSPF-MW0013-021.0-20220510 **Lab Sample ID:** AF03374-03 **Received:** 05/11/22 15:35

Matrix: Ground Water Sampled: 05/10/22 16:00

Project: NASA KSC - SSPF Sampled By: Greg Kusel, Dustin Slater

#### Classical Chemistry Parameters

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number] Results **Units** DF MDL **PQL Batch Method Analyzed** By Notes Flag Ammonia as N [7664-41-7]^ 1300 ug/L 9.8 20 2F12028 EPA 350.1 05/13/22 10:40 charr

**Description:** SSPF-MW0014-008.0-20220510 **Lab Sample ID:**AF03374-04 **Received:** 05/11/22 15:35

Matrix: Ground Water Sampled: 05/10/22 15:59

Project: NASA KSC - SSPF Sampled By: Greg Kusel, Dustin Slater

## **Classical Chemistry Parameters**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number] MDL Results **Units** DF **PQL** Method Analyzed Flag Batch By Notes Ammonia as N [7664-41-7]^ 8700 ug/L 20 200 400 2E12028 EPA 350.1 05/13/22 11:03 cbarr

**Description:** SSPF-MW0016-016.0-20220510 **Lab Sample ID:** AF03374-05 **Received:** 05/11/22 15:35

Matrix: Ground Water Sampled: 05/10/22 15:27 Work Order: AF03374

Project: NASA KSC - SSPF Sampled By: Greg Kusel, Dustin Slater

#### Classical Chemistry Parameters

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number] Results **Units** MDL <u>PQL</u> **Batch Method** Flag DF <u>Analyzed</u> <u>By</u> **Notes** Ammonia as N [7664-41-7]^ 3800 10 200 2E12028 EPA 350.1 05/13/22 11:04 ug/L 98 cbarr



Classical Chemistry Parameters -	Quality Con	trol									
Batch 2E12028 - NO PREP											
Blank (2E12028-BLK1)					Prepare	ed: 05/12/202	2 11:00 Anal	yzed: 05/13/	2022 10:25		
					Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
Ammonia as N	9.8	U	20	ug/L							
LCS (2E12028-BS1)					Prepare	ed: 05/12/202	2 11:00 Anal	yzed: 05/13/	2022 10:27		
Accelerate	D lt	FI	DOL	11	Spike	Source		%REC		RPD	
Analyte	Result	<u>Flaq</u>	PQL	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
Ammonia as N	970		20	ug/L	1000		97	90-110			
Matrix Spike (2E12028-MS1)					Prepare	ed: 05/12/202	2 11:00 Anal	yzed: 05/13/	2022 10:32		
Source: AF03079-01											
Analyte	Result	Flag	POL	Units	Spike	Source	0/ 550	%REC		RPD	
		Flag			Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
Ammonia as N	930		20	ug/L	1000	9.8 U	93	90-110			
Matrix Spike (2E12028-MS2)					Prepare	ed: 05/12/202	2 11:00 Anal	yzed: 05/13/	2022 10:47		
Source: AF03540-01											
			201		Spike	Source		%REC		RPD	
<u>Analyte</u>	Result	<u>Flaq</u>	<u>PQL</u>	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
Ammonia as N	1400		20	ug/L	1000	460	98	90-110			
Matrix Spike Dup (2E12028-MSI	D1)				Prepare	ed: 05/12/202	2 11:00 Anal	yzed: 05/13/	2022 10:34		
Source: AF03079-01											
					Spike	Source		%REC		RPD	
<u>Analyte</u>	<u>Result</u>	<u>Flag</u>	<u>PQL</u>	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>Notes</u>

Ammonia as N

950

20

ug/L

1000

9.8 U

95

90-110

2

10



#### **FLAGS/NOTES AND DEFINITIONS**

- **PQL** PQL: Practical Quantitation Limit. The PQL presented is the laboratory MRL.
  - **B** Results are based upon membrane filter colony counts that are outside the method indicated ideal range.
  - The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).
  - J Estimated value.
  - K Off-scale low; Actual value is known to be less than the value given.
  - **L** Off-scale high; Actual value is known to be greater than value given.
  - **M** Presence of analyte is verified but not quantified; the actual value is less than the MRL but greater than the MDL.
  - **N** Presumptive evidence of presence of material.
  - **O** Sampled, but analysis lost or not performed.
  - **Q** Sample exceeded the accepted holding time.
  - **T** Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only and shall not be used in statistical analysis.
- **U** Indicates that the compound was analyzed for but not detected.
- **V** Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
- **Z** Too many colonies were present (TNTC); the numeric value represents the filtration volume.
- ? Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
- * Not reported due to interference.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.

			CHAIN OF	CUSTODY AND AN	ALYTICAL RE	QUEST R	ECORD	)		COC No	• (				Page:	1	of	1				
(ENI	ලෙ	Project Name:	NASA KSC							PO No.	138224				Project No.	60610905.Se	ubs 2021-2	23-Subs 2021-23	Phase:			
		Site Location:	Space Station Pro	cessing Facility						Send In	voice To:	Instruct	tions in MSA	# 195-24	548-GV03			EDD to:	Jennifer	Chastain	Cc: Teresa A	mentt Jennings
		TO No.: 80KSC	019F0071	AECOM Project Manager		Chris Marsh	nall			Deliver !	Sample Kits	То:	AECOM D	epot, 523	18th Stre	et, Orlando	0	Report to:	Jennifer	Chastain	Cc: Teresa A	mentt Jennings
Sampler/Phor	ne #	Greg Kusel / (7	72) 631-7426	Dustin Slater / (407) 766	-0747					Deliver !	Samples To	:	ENCO					Site-Spicific	WS#15 fro	m QAPP:	15-37	
Lab Name:		ENCO			Turnaround Tin	ne(specify):		Standard	d 14 day	Samp	le Analy	ysis R	equested	(Enter	numbe	er of con	tainers	for each t	est)			
Lab ID	Sample II	)		Location ID	Date	Time (Military)	Matrix Code	Sample Type	G=Grab	(3)	H2SO4 <2											
	(sys_samp	_code)		(sys_loc_code)	(YYYYMMDD)	(hhmm)	(1)	(2)	C=Comp	Total No. of Containers	Ammonia by EPA350.1		91									Comments
	SSPF-MW	0004-202205	20220510	SSPF-MW0004	202205/0	1520	wg	N	G	1	1											
	SSPF-MW	0006-202205	20220510	SSPF-MW0006	202205/0	1442	wg	N	G	1	1											-
	SSPF-MW	0013-202205	20020510	SSPF-MW0013	202205/0	1600	wg	N	G	1	1											
	SSPF-MW	0014-202205	20220510	SSPF-MW0014	202205/0	1559	WG	N	G	1	1											1
	SSPF-MW	0016-202205	20220510	SSPF-MW0016	202205/0	1527	wg	N	G	1	1											
								-														
Field Comm		#15				Lab Comm	ents:									Number o		Sample Ships s in shipment:	ment and	Delivery	Details	
Relinquished	A CONTRACTOR OF THE PARTY OF TH	iust Ly Jim	0	Date 5/04/22 1 11/22	Time 14: 20	Received by	(signature	Jun.	ed		5/1	Date 0/2	2 0	Time	,	Shipping C	Сотрапу	eck) Yes :	_ No			
2	Dru	ex Im	N 5	111/22	1535	2 Reps	ek!	1		- 1	5.11.	22	12	35		Tracking N						
	ient air 🗚	Air quality contr	nl ASR-Ashestas Cl	K=Caulk, DS=Storm drain	sediment GS-Soil	nas IC-IDW	Concrete	IDD=ID	N Colid ID	S-IDW co	il TDW-II	W Water	r IE-Eroo I	Droduct M		Date Ship		SC-Compati		r Cadina	<b></b>	50.5.1

Med 372 3.6°C

⁽¹⁾ Aa=Ambient air, AQ=Air quality control, ASB=Asbestos, CK=Caulk, DS=Storm drain sediment, GS=Soil gas, IC=IDW Concrete, IDD=IDW Soild, IDS=IDW soil, IDW=IDW Water, LF=Free Product, MA=Mastic, PC=Paint Chips, SC=Cement/Concrete, SE=Sediment, SL=Sludge, SO=Soil, SQ=Soil/Soil quality control, SD=Subsurface sediment, SL=Sludge, SO=Soil, SQ=Soil/Soil quality control, SD=Subsurface sediment, SL=Sludge, SO=Soil, SQ=Soil/Soil quality control, SD=Subsurface sediment, SQ=Soil (<6 in), SW=Swab or wipe, TA=Animal tissue, TQ=Tissue quality control, WG=Ground water, WU=Drinking water, WQ=Water quality control, WR=Ground water, WU=Storm water, WQ=Water quality control, SD=Subsurface water, WQ=Water quality control, WR=Subsurface wat

⁽²⁾ Sample Type: AB=Ambient Blk, EB=Equipment Blk, FB=Field Blk, FD=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Trip Blk

⁽³⁾ Preservative added: 4 DEG C=Cool to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C H2SO4=Hydrogen sulfate, H2SO4 <2=Adjust to pH < 2 with sulfuric acid, H3PO4=Phosphoric acid, H3PO4 <2=Adjust to pH < 2 with phosphoric acid, H3PO4=Phosphoric acid, H3PO4=Phosphoric acid, H3PO4 <2=Adjust to pH < 2 with phosphoric acid, H3PO4=Phosphoric acid, H3PO4=Ph

10775 Central Port Drive Orlando FL, 32824

Phone: 407.826.5314 FAX: 407.850.6945

Thursday, July 21, 2022
AECOM Technical Services, Inc. (SE004)
Attn: Teresa Amentt Jennings
150 N. Orange Ave, Suite 200
Orlando, FL 32801

RE: Laboratory Results for

Project Number: 60610905, Project Name/Desc: NASA KSC - Citgo Service Station

**ENCO Workorder(s): AF03366** 

Dear Teresa Amentt Jennings,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Wednesday, May 11, 2022.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Orlando. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

K. Oglnicki

Sincerely,

Kaitlin Dylnicki

Project Manager

Enclosure(s)



### **PROJECT NARRATIVE**

Client: AECOM Technical Services, Inc. (SE004)
Project: NASA KSC - Citgo Service Station

ENCO Project ID: AF03366

Overview

Project Manager

All samples submitted were analyzed by Environmental Conservation Laboratories, Inc. in accordance with the methods referenced in the laboratory report. Any particular difficulties encountered during sample handling and processing will be discussed in the Remarks section below.

Remarks

Analysis: EPA 8260D

This is an amendment to the report dated 05/26/22 to include additional analytes requested after initial reporting.

Kaitlin Dylnicki



# SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: CGO-MW	/0006-025.0-20220511	Lab ID: AF03366-01	Sampled: 05/11/22 13:35	Received: 05/11/22 15:35
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	<u>Prep Date/Time(s)</u>	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/25/22	05/16/22 00:00	05/16/22 15:07
EPA 8270E	EPA 3511_MS	05/18/22 06/26/22	05/17/22 14:39	05/18/22 21:53
Client ID: CGO-MW	/0018-025.0-20220511	Lab ID: AF03366-02	Sampled: 05/11/22 13:27	Received: 05/11/22 15:35
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/25/22	05/16/22 00:00	05/16/22 15:36
Client ID: CGO-MW	/0019-025.0-20220511	Lab ID: AF03366-03	Sampled: 05/11/22 13:59	Received: 05/11/22 15:35
<u>Parameter</u>	<u>Preparation</u>	<u> Hold Date/Time(s)</u>	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/25/22	05/16/22 00:00	05/16/22 16:05
Client ID: CGO-TB-	20220511-01	Lab ID: AF03366-04	Sampled: 05/11/22 07:00	Received: 05/11/22 15:35
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/25/22	05/16/22 00:00	05/16/22 16:34



## **SAMPLE DETECTION SUMMARY**

Client ID: CGO-MW0006-025.0-20220511			Lab ID:	AF03366-01			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
1-Methylnaphthalene	6.5		0.050	0.10	ug/L	EPA 8270E	
2-Methylnaphthalene	13		0.050	0.10	ug/L	EPA 8270E	
Naphthalene	1.9		0.050	0.10	ug/L	EPA 8270E	
Client ID: CGO-MW0018-025.0-20220511			Lab ID:	AF03366-02			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
1,2,4-Trimethylbenzene	12		0.69	1.0	ug/L	EPA 8260D	
1,3,5-Trimethylbenzene	2.4		0.58	1.0	ug/L	EPA 8260D	
Methyl-tert-Butyl Ether	31		0.60	1.0	ug/L	EPA 8260D	
o-Xylene	0.64	I	0.53	1.0	ug/L	EPA 8260D	
Client ID: CGO-MW0019-025.0-20220511	-		Lab ID:	AF03366-03		-	
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Methyl-tert-Butyl Ether	7.9		0.60	1.0	ug/L	EPA 8260D	



### **ANALYTICAL RESULTS**

**Description:** CGO-MW0006-025.0-20220511 Lab Sample ID: AF03366-01 **Received:** 05/11/22 15:35

Matrix: Ground Water Sampled: 05/11/22 13:35

Project: NASA KSC - Citgo Service Station Sampled By: Greg Kusel /Dustin Slater

## **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	DF	MDL	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
1,2,4-Trimethylbenzene [95-63-6]^	0.69	U	ug/L	1	0.69	1.0	2E16008	EPA 8260D	05/16/22 15:07	JMW	
1,3,5-Trimethylbenzene [108-67-8]^	0.58	U	ug/L	1	0.58	1.0	2E16008	EPA 8260D	05/16/22 15:07	JMW	
Benzene [71-43-2]^	0.71	U	ug/L	1	0.71	1.0	2E16008	EPA 8260D	05/16/22 15:07	JMW	
Isopropylbenzene [98-82-8]^	0.67	U	ug/L	1	0.67	1.0	2E16008	EPA 8260D	05/16/22 15:07	JMW	
m,p-Xylenes [108-38-3/106-42-3]^	1.3	U	ug/L	1	1.3	2.0	2E16008	EPA 8260D	05/16/22 15:07	JMW	
Methyl-tert-Butyl Ether [1634-04-4]^	0.60	U	ug/L	1	0.60	1.0	2E16008	EPA 8260D	05/16/22 15:07	JMW	
o-Xylene [95-47-6]^	0.53	U	ug/L	1	0.53	1.0	2E16008	EPA 8260D	05/16/22 15:07	JMW	
Xylenes (Total) [1330-20-7]^	1.3	U	ug/L	1	1.3	2.0	2E16008	EPA 8260D	05/16/22 15:07	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Rec</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	46	1	50.0	92 %	41-1	142	2E16008	EPA 8260D	05/16/22 15:07	JMW	
Dibromofluoromethane	<i>57</i>	1	50.0	115 %	<i>53-</i> 2	146	2E16008	EPA 8260D	05/16/22 15:07	JMW	
Toluene-d8	49	1	50.0	98 %	41-1	146	2E16008	EPA 8260D	05/16/22 15:07	JMW	

## Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
1-Methylnaphthalene [90-12-0]^	6.5		ug/L	1	0.050	0.10	2E17040	EPA 8270E	05/18/22 21:53	jfi	
2-Methylnaphthalene [91-57-6]^	13		ug/L	1	0.050	0.10	2E17040	EPA 8270E	05/18/22 21:53	jfi	
Naphthalene [91-20-3]^	1.9		ug/L	1	0.050	0.10	2E17040	EPA 8270E	05/18/22 21:53	jfi	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	% Rec	% Rec	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
2-Methylnaphthalene-d10	5.4	1	5.71	94 %	50-1	150	2E17040	EPA 8270E	05/18/22 21:53	ifi	

86 % Lab Sample ID: AF03366-02 **Description:** CGO-MW0018-025.0-20220511 Received: 05/11/22 15:35

50-150

2E17040

EPA 8270E

05/18/22 21:53

Work Order: AF03366

Matrix: Ground Water Sampled: 05/11/22 13:27

4.9

Project: NASA KSC - Citgo Service Station Sampled By: Greg Kusel /Dustin Slater

5.71

### **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	Flag	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	Ву	<u>Notes</u>
1,2,4-Trimethylbenzene [95-63-6]^	12		ug/L	1	0.69	1.0	2E16008	EPA 8260D	05/16/22 15:36	JMW	
1,3,5-Trimethylbenzene [108-67-8]^	2.4		ug/L	1	0.58	1.0	2E16008	EPA 8260D	05/16/22 15:36	JMW	
Benzene [71-43-2]^	0.71	U	ug/L	1	0.71	1.0	2E16008	EPA 8260D	05/16/22 15:36	JMW	
Isopropylbenzene [98-82-8]^	0.67	U	ug/L	1	0.67	1.0	2E16008	EPA 8260D	05/16/22 15:36	JMW	
m,p-Xylenes [108-38-3/106-42-3]^	1.3	U	ug/L	1	1.3	2.0	2E16008	EPA 8260D	05/16/22 15:36	JMW	
Methyl-tert-Butyl Ether [1634-04-4]^	31		ug/L	1	0.60	1.0	2E16008	EPA 8260D	05/16/22 15:36	JMW	
o-Xylene [95-47-6]^	0.64	I	ug/L	1	0.53	1.0	2E16008	EPA 8260D	05/16/22 15:36	JMW	
Xylenes (Total) [1330-20-7]^	1.3	U	ug/L	1	1.3	2.0	2E16008	EPA 8260D	05/16/22 15:36	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Rec</u>	<u>: Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	Notes
4-Bromofluorobenzene	46	1	50.0	91 %	41-1	142	2E16008	EPA 8260D	05/16/22 15:36	JMW	
Dibromofluoromethane	57	1	50.0	115 %	53-1	146	2E16008	EPA 8260D	05/16/22 15:36	JMW	
Toluene-d8	49	1	50.0	98 %	41-1	146	2E16008	EPA 8260D	05/16/22 15:36	JMW	

Fluoranthene-d10



### **ANALYTICAL RESULTS**

**Description:** CGO-MW0019-025.0-20220511 **Lab Sample ID:** AF03366-03 **Received:** 05/11/22 15:35

Matrix: Ground WaterSampled: 05/11/22 13:59Work Order: AF03366

**Project:** NASA KSC - Citgo Service Station Sampled By: Greg Kusel /Dustin Slater

## Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

zites situates continue unalitie [iizz le zes	102)										
Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<b>Analyzed</b>	<u>By</u>	<u>Notes</u>
1,2,4-Trimethylbenzene [95-63-6]^	0.69	U	ug/L	1	0.69	1.0	2E16008	EPA 8260D	05/16/22 16:05	JMW	
1,3,5-Trimethylbenzene [108-67-8]^	0.58	U	ug/L	1	0.58	1.0	2E16008	EPA 8260D	05/16/22 16:05	JMW	
Benzene [71-43-2]^	0.71	U	ug/L	1	0.71	1.0	2E16008	EPA 8260D	05/16/22 16:05	JMW	
Isopropylbenzene [98-82-8]^	0.67	U	ug/L	1	0.67	1.0	2E16008	EPA 8260D	05/16/22 16:05	JMW	
m,p-Xylenes [108-38-3/106-42-3]^	1.3	U	ug/L	1	1.3	2.0	2E16008	EPA 8260D	05/16/22 16:05	JMW	
Methyl-tert-Butyl Ether [1634-04-4]^	7.9		ug/L	1	0.60	1.0	2E16008	EPA 8260D	05/16/22 16:05	JMW	
o-Xylene [95-47-6]^	0.53	U	ug/L	1	0.53	1.0	2E16008	EPA 8260D	05/16/22 16:05	JMW	
Xylenes (Total) [1330-20-7]^	1.3	U	ug/L	1	1.3	2.0	2E16008	EPA 8260D	05/16/22 16:05	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	45	1	50.0	89 %	41	142	2E16008	EPA 8260D	05/16/22 16:05	JMW	
Dibromofluoromethane	56	1	50.0	113 %	<i>53</i>	146	2E16008	EPA 8260D	05/16/22 16:05	JMW	
Toluene-d8	48	1	50.0	96 %	41-	146	2E16008	EPA 8260D	05/16/22 16:05	JMW	

**Description:** CGO-TB-20220511-01 **Lab Sample ID:** AF03366-04 **Received:** 05/11/22 15:35

**Matrix:** Water **Sampled:** 05/11/22 07:00

Project: NASA KSC - Citgo Service Station Sampled By: ENCO ORL

### Volatile Organic Compounds by GCMS

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	DF	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	Method	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
1,2,4-Trimethylbenzene [95-63-6]^	0.69	U	ug/L	1	0.69	1.0	2E16008	EPA 8260D	05/16/22 16:34	JMW	
1,3,5-Trimethylbenzene [108-67-8]^	0.58	U	ug/L	1	0.58	1.0	2E16008	EPA 8260D	05/16/22 16:34	JMW	
Benzene [71-43-2]^	0.71	U	ug/L	1	0.71	1.0	2E16008	EPA 8260D	05/16/22 16:34	JMW	
Isopropylbenzene [98-82-8]^	0.67	U	ug/L	1	0.67	1.0	2E16008	EPA 8260D	05/16/22 16:34	JMW	
m,p-Xylenes [108-38-3/106-42-3]^	1.3	U	ug/L	1	1.3	2.0	2E16008	EPA 8260D	05/16/22 16:34	JMW	
Methyl-tert-Butyl Ether [1634-04-4]^	0.60	U	ug/L	1	0.60	1.0	2E16008	EPA 8260D	05/16/22 16:34	JMW	
o-Xylene [95-47-6]^	0.53	U	ug/L	1	0.53	1.0	2E16008	EPA 8260D	05/16/22 16:34	JMW	
Xylenes (Total) [1330-20-7]^	1.3	U	ug/L	1	1.3	2.0	2E16008	EPA 8260D	05/16/22 16:34	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	46	1	50.0	92 %	41	142	2E16008	EPA 8260D	05/16/22 16:34	JMW	
Dibromofluoromethane	56	1	50.0	113 %	<i>53</i>	146	2E16008	EPA 8260D	05/16/22 16:34	JMW	
Toluene-d8	49	1	50.0	98 %	41-	146	2E16008	EPA 8260D	05/16/22 16:34	JMW	



Volatile Organic Compounds by GCMS - Quality Control

Batch 2E16008 - EPA 5030B_MS

Blank (2E16008-BLK1)

Prepared: 05/16/2022 00:00 Analyzed: 05/16/2022 09:21

Analyte	<u>Result</u>	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1,2,4-Trimethylbenzene	0.69	U	1.0	ug/L							
1,3,5-Trimethylbenzene	0.58	U	1.0	ug/L							
Benzene	0.71	U	1.0	ug/L							
Isopropylbenzene	0.67	U	1.0	ug/L							
m,p-Xylenes	1.3	U	2.0	ug/L							
Methyl-tert-Butyl Ether	0.60	U	1.0	ug/L							
o-Xylene	0.53	U	1.0	ug/L							
Xylenes (Total)	1.3	U	2.0	ug/L							
4-Bromofluorobenzene	45			ug/L	50.0		90	41-142			
Dibromofluoromethane	<i>55</i>			ug/L	50.0		110	<i>53-146</i>			
Toluene-d8	48			ug/L	50.0		96	41-146			
LCS (2E16008-BS1)					Prepare	ed: 05/16/202	2 00:00 Ana	lyzed: 05/16/	2022 08:23		

Analyte	Result	<u>Flag</u>	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
1,2,4-Trimethylbenzene	20		1.0	ug/L	20.0		102	59-142			
1,3,5-Trimethylbenzene	20		1.0	ug/L	20.0		98	61-137			
Benzene	22		1.0	ug/L	20.0		108	56-136			
Isopropylbenzene	21		1.0	ug/L	20.0		105	60-132			
m,p-Xylenes	41		2.0	ug/L	40.0		104	64-133			
Methyl-tert-Butyl Ether	23		1.0	ug/L	20.0		115	51-145			
o-Xylene	21		1.0	ug/L	20.0		105	61-129			
4-Bromofluorobenzene	48			ug/L	50.0		97	41-142			
Dibromofluoromethane	<i>57</i>			ug/L	50.0		113	<i>53-146</i>			
Toluene-d8	50			ug/L	50.0		100	41-146			

Matrix Spike (2E16008-MS1)

Prepared: 05/16/2022 00:00 Analyzed: 05/16/2022 11:16

Source: AF03369-01

Analyte	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
1,2,4-Trimethylbenzene	22		1.0	ug/L	20.0	0.69 U	109	59-142			
1,3,5-Trimethylbenzene	21		1.0	ug/L	20.0	0.58 U	105	61-137			
Benzene	23		1.0	ug/L	20.0	0.71 U	115	56-136			
Isopropylbenzene	23		1.0	ug/L	20.0	0.67 U	113	60-132			
m,p-Xylenes	43		2.0	ug/L	40.0	1.3 U	108	64-133			
Methyl-tert-Butyl Ether	23		1.0	ug/L	20.0	0.60 U	113	51-145			
o-Xylene	22		1.0	ug/L	20.0	0.53 U	110	61-129			
4-Bromofluorobenzene	46			ug/L	50.0		92	41-142			
Dibromofluoromethane	54			ug/L	50.0		108	<i>53-146</i>			
Toluene-d8	48			ug/L	50.0		96	41-146			

Matrix Spike Dup (2E16008-MSD1)

Prepared: 05/16/2022 00:00 Analyzed: 05/16/2022 11:45

Source: AF03369-01

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	Units	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>Notes</u>
1,2,4-Trimethylbenzene	21		1.0	ug/L	20.0	0.69 U	105	59-142	4	25	
1,3,5-Trimethylbenzene	20		1.0	ug/L	20.0	0.58 U	102	61-137	3	24	
Benzene	22		1.0	ug/L	20.0	0.71 U	112	56-136	3	14	
Isopropylbenzene	22		1.0	ug/L	20.0	0.67 U	111	60-132	2	23	



### Volatile Organic Compounds by GCMS - Quality Control

Batch 2E16008 - EPA	<i>5030B</i>	MS -	Continued
---------------------	--------------	------	-----------

Matrix Spike Dup (2E16008-	Matrix Spike Dup (2E16008-MSD1) Continued					Prepared: 05/16/2022 00:00 Analyzed: 05/16/2022 11:45								
Source: AF03369-01														
<u>Analyte</u>	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes			
m,p-Xylenes	42		2.0	ug/L	40.0	1.3 U	106	64-133	2	18				
Methyl-tert-Butyl Ether	23		1.0	ug/L	20.0	0.60 U	114	51-145	0.6	22				
o-Xylene	21		1.0	ug/L	20.0	0.53 U	107	61-129	3	16				
4-Bromofluorobenzene	44			ug/L	50.0		88	41-142						
Dibromofluoromethane	54			ug/L	50.0		108	<i>53-146</i>						
Toluene-d8	47			ug/L	50.0		94	41-146						

#### emivolatile Organic Compounds by GCMS SIM - Quality Cor

#### Batch 2E17040 - EPA 3511_MS

Blank (2E17040-BLK1)

<u>Analyte</u>	<u>Result</u>	<u>Flaq</u>	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC	RPD	RPD <u>Limit</u>	<u>Notes</u>
1-Methylnaphthalene	0.050	U	0.10	ug/L						· <del></del>	
2-Methylnaphthalene	0.050	U	0.10	ug/L							

Prepared: 05/17/2022 14:39 Analyzed: 05/18/2022 20:05

Naphthalene 0.050 U 0.10 ug/L 2-Methylnaphthalene-d10 4.7 ug/L 5.71 83 50-150 Fluoranthene-d10 6.0 ug/L 5.71 106 50-150

LCS (2E17040-BS1) Prepared: 05/17/2022 14:39 Analyzed: 05/18/2022 20:27

Analyte	Result	<u>Flag</u>	<u>POL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1-Methylnaphthalene	4.7		0.10	ug/L	5.71		83	59-120			
2-Methylnaphthalene	4.7		0.10	ug/L	5.71		82	43-120			
Naphthalene	5.3		0.10	ug/L	5.71		92	68-120			
2-Methylnaphthalene-d10	4.2			ug/L	5.71		74	50-150			
Fluoranthene-d10	5.4			ug/L	5.71		95	50-150			

 Matrix Spike (2E17040-MS1)
 Prepared: 05/17/2022 14:39 Analyzed: 05/18/2022 20:48

Source: AF03780-02

					Spike	Source		%REC		RPD	
<u>Analyte</u>	Result	Flag	PQL	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
1-Methylnaphthalene	4.7		0.10	ug/L	5.71	0.050 U	82	59-120			
2-Methylnaphthalene	4.7		0.10	ug/L	5.71	0.050 U	83	43-120			
Naphthalene	4.8		0.10	ug/L	5.71	0.050 U	84	68-120			
2-Methylnaphthalene-d10	4.1			ug/L	5.71		72	50-150			
Fluoranthene-d10	5.9			ug/L	5.71		104	50-150			

 Matrix Spike Dup (2E17040-MSD1)
 Prepared: 05/17/2022 14:39 Analyzed: 05/18/2022 21:10

Source: AF03780-02

Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
1-Methylnaphthalene	5.4		0.10	ug/L	5.71	0.050 U	94	59-120	14	25	
2-Methylnaphthalene	5.4		0.10	ug/L	5.71	0.050 U	94	43-120	13	25	
Naphthalene	5.0		0.10	ug/L	5.71	0.050 U	87	68-120	3	25	
2-Methylnaphthalene-d10	4.3			ug/L	5.71		74	50-150			
Fluoranthene-d10	6.0			ug/L	5.71		106	50-150			



#### **FLAGS/NOTES AND DEFINITIONS**

- **PQL** PQL: Practical Quantitation Limit. The PQL presented is the laboratory MRL.
  - **B** Results are based upon membrane filter colony counts that are outside the method indicated ideal range.
  - The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).
  - J Estimated value.
- **K** Off-scale low; Actual value is known to be less than the value given.
- **L** Off-scale high; Actual value is known to be greater than value given.
- **M** Presence of analyte is verified but not quantified; the actual value is less than the MRL but greater than the MDL.
- **N** Presumptive evidence of presence of material.
- **O** Sampled, but analysis lost or not performed.
- **Q** Sample exceeded the accepted holding time.
- **T** Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only and shall not be used in statistical analysis.
- **U** Indicates that the compound was analyzed for but not detected.
- **V** Indicates that the analyte was detected in both the sample and the associated method blank.
- **Y** The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
- **Z** Too many colonies were present (TNTC); the numeric value represents the filtration volume.
- ? Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
- * Not reported due to interference.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.

		CHAIN OF	CUSTODY AND AN	ALYTICAL RI	EQUEST RI	CORD	Y		COC No.				Page:	1	of	1				
	ica)	Project Name: NASA KSC							PO No. 1	38224			Project No	. 60610905.Su	ıbs 2021-2	3-Subs 2021-23	Phase:			
(		Site Location: Citgo Service Stati	ion						Send Inv	oice To:	Instructions	in MSA # 195-2	24548-GV0	3		EDD to:	Jennifer (	Chastain	Cc: Teresa Ar	mentt Jennings
		TO No.: 80KSC019F0071	AECOM Project Manager:		Chris Marsh	all			Deliver S	ample Kit	s To: A	ECOM Depot, 52	3 18th Stre	eet, Orlando	)	Report to:	Jennifer (	Chastain	Cc: Teresa Ar	mentt Jennings
Sampler/Pho	ne #	Greg Kusel / (772) 631-7426	Dustin Slater / (407) 766	-0747					Deliver S	amples To	D: E	NCO				Site-Spicific \	WS#15 fron	n QAPP: 1	5-38	
Lab Name:		ENCO		Turnaround Tir	ne(specify):		Standard	14 day	Sampl	e Anal	ysis Requ	uested (Ent	er numb	er of con	tainers	for each te	est)			
Lab ID	Sample ID		Location ID	Date	Time (Military)	Matrix Code	Sample Type	G=Grab	(3)	HCL	4 DEG C									
	(sys_samp_	_025,0-	(sys_loc_code)	(YYYYMMDD)	(hhmm)	(1)	(2)	C=Comp	Total No. of Containers	Select VOC by SW8260B	Select PAH by SW8270C SIM									Comments
		2006-202205	CGO-MW0006	202205 / (	1335	WG	N	G	5	3	2									
	CGO-MWO	018-202265 -025.0-	CGO-MW0018	202205 //	1327	wg	N	G	3	3										
	CGO-MW0	019-202205 025.0-	CGO-MW0019	202205 //	1359	WG	N	G	3	3										
	CGO-TB-2	02205     - 0	CGO-TB ⊘ I	202205 //	0700	wQ	ТВ	G	3	3										
Field Comm	ments: er QAPP WS	#15-38			Lab Comme	ents:								Numbers		Sample Shipr	nent and I	Delivery [	)etails	
Relinquished	(signature	e)	Date	Time	Received by (	signature	2)				Date	Time		V 5	W 1972 W 10	in shipment: eck) Yes_<	No			
The	vus	2	5/04/22	12:15	1 8	real	1/14	Kel			/11/2		9	Shipping C						
12	very.	June 5	/11/22	1535	2 Ry	val.	D	<u> </u>		5	11.22	153		Tracking N	o:					
3	O Install	Alexander and a second			3					02900				Date Ship						
I) AA=Amb	ient air, AQ=	Air quality control, ASB=Asbestos, CR	t=Caulk, <b>DS</b> =Storm drain s	sediment, <b>GS</b> =Soil	gas, IC=IDW (	Concrete,	IDD=IDV	V Solid, IDS	=IDW soi	, IDW=I	DW Water, L	F=Free Product,	MA=Mast	ic, PC=Pain	t Chips,	SC=Cement/C	oncrete, SE	=Sedimer	nt, SL=Slude	ge, SO=Soil,

Med 217 3.0.°C

⁽¹⁾ AA=Ambient air, AQ=Air quality control, ASB=Asbestos, CK=Caulk, DS=Storm drain sediment, GS=Soil gas, IC=IDW Concrete, IDD=IDW Solid, IDS=IDW soil, IDW=IDW Water, LF=Free Product, MA=Mastic, PC=Paint Chips, SC=Cement/Concrete, SE=Sediment, SL=Sludge, SO=Soil SQ=Soil/Solid quality control, SSD=Subsurface sediment, SU=Surface soil (<6 in), SW=Swab or wipe, TA=Animal tissue, TP=Plant tissue, TQ=Tissue quality control, WG=Ground water, WL=Leachate, WO=Ocean water, WP=Drinking water, WQ=Water quality control, WR=Ground water effluent, WS=Surface water, WU=Storm water, WU=Storm water, WQ=Water quality control, WR=Ground water water.

⁽²⁾ Sample Type: AB=Ambient Blk, EB=Equipment Blk, FB=Field Blk, FD=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Trip Blk

⁽³⁾ Preservative added: 4 DEG C=Cool to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C H2SO4=Hydrogen sulfate, H2SO4 <2=Adjust to pH < 2 with sulfuric acid, H3PO4=Phosphoric acid, H3PO4 <2=Adjust to pH < 2 with phosphoric acid, H1PO4S=Sodium thiosulfate preservation, HNO3 <2=Adjust to pH < 2 with nitric acid, MeOH=Methanol preservation, Na2O352=Sodium thiosulfate, Na2O352 3/gal=Add 3 mt. 10% sodium thiosulfate per l-gal, Na2O352 4/4oz=4 drops of 10% sodium thiosulfate to 4 oz, NaHSO4 <2=Adjust to pH < 2 with sodium hydrogen sulfate, NaOH >9=Adjust to pH < 9 with sodium hydroxide, NaOH >9=Adjust to pH < 9 with sodium hydroxide, VitC 0.6/500=0.6 g of ascorbic acid to 500mLs, ZnAct 2/500=Add 2 mL of zinc acetate to 500mLs, ZnAct +NaOH Rev 8/19

10775 Central Port Drive Orlando FL, 32824

Phone: 407.826.5314 FAX: 407.850.6945

Tuesday, May 17, 2022
AECOM Technical Services, Inc. (SE004)
Attn: Teresa Amentt Jennings
150 N. Orange Ave, Suite 200
Orlando, FL 32801

RE: Laboratory Results for

Project Number: 60610905, Project Name/Desc: NASA KSC - FSA1

ENCO Workorder(s): AF03365

Dear Teresa Amentt Jennings,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Monday, May 9, 2022.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Orlando. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

K. Oglnicki

Sincerely,

Kaitlin Dylnicki

Project Manager

Enclosure(s)



# SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: FSA1-MV	V0001-005.5-20220509	Lab ID: A	F03365-01	Sampled: 05/09/22 12:01	Received: 05/09/22 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time	<u>e(s)</u>	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/23/22		05/12/22 00:00	05/12/22 10:57
EPA 8270E	EPA 3511_MS	05/16/22	06/25/22	05/16/22 11:00	05/16/22 15:05
FL-PRO	EPA 3510C	05/16/22	06/20/22	05/11/22 07:10	05/11/22 20:07
Client ID: FSA1-MV	V0001-005.5-20220509	Lab ID: A	F03365-01RE1	Sampled: 05/09/22 12:01	Received: 05/09/22 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time	<u>e(s)</u>	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8270E	EPA 3511_MS	05/16/22	06/25/22	05/16/22 11:00	05/17/22 10:40
Client ID: FSA1-MV	V0002-005.0-20220509	Lab ID: A	F03365-02	Sampled: 05/09/22 12:34	Received: 05/09/22 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time	<u>e(s)</u>	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/23/22		05/12/22 00:00	05/12/22 15:16
EPA 8270E	EPA 3511_MS	05/16/22	06/19/22	05/10/22 13:57	05/11/22 16:26
FL-PRO	EPA 3510C	05/16/22	06/20/22	05/11/22 07:10	05/11/22 20:35
Client ID: FSA1-MV	V0012R-006.0-20220509	Lab ID: A	F03365-03	Sampled: 05/09/22 10:52	Received: 05/09/22 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time	<u>e(s)</u>	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/23/22		05/12/22 00:00	05/12/22 15:45
EPA 8270E	EPA 3511_MS	05/16/22	06/19/22	05/10/22 13:57	05/11/22 16:47
FL-PRO	EPA 3510C	05/16/22	06/20/22	05/11/22 07:10	05/11/22 21:03
Client ID: FSA1-MV	V0014-006.0-20220509	Lab ID: A	F03365-04	Sampled: 05/09/22 11:34	Received: 05/09/22 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time	<u>e(s)</u>	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/23/22		05/12/22 00:00	05/12/22 16:14
EPA 8270E	EPA 3511_MS	05/16/22	06/19/22	05/10/22 13:57	05/11/22 17:09
FL-PRO	EPA 3510C	05/16/22	06/20/22	05/11/22 07:10	05/11/22 21:59
Client ID: FSA1-MV	V0017A-006.5-20220509	Lab ID: A	F03365-05	Sampled: 05/09/22 10:13	Received: 05/09/22 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time	<u>e(s)</u>	Prep Date/Time(s)	<u>Analysis Date/Time(s)</u>
EPA 8260D	EPA 5030B_MS	05/23/22		05/12/22 00:00	05/12/22 16:43
EPA 8270E	EPA 3511_MS	05/16/22	06/19/22	05/10/22 13:57	05/11/22 17:30
FL-PRO	EPA 3510C	05/16/22	06/20/22	05/11/22 07:10	05/11/22 22:27
Client ID: FSA1-MV	V0021-005.0-20220509	Lab ID: A	F03365-06	Sampled: 05/09/22 11:57	Received: 05/09/22 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time	<u>e(s)</u>	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/23/22		05/12/22 00:00	05/12/22 17:12
EPA 8270E	EPA 3511_MS	05/16/22	06/19/22	05/10/22 13:57	05/11/22 17:52
FL-PRO	EPA 3510C	05/16/22	06/20/22	05/11/22 07:10	05/11/22 22:55
		Lab ID: A	F03365-07	Sampled: 05/09/22 10:52	Received: 05/09/22 16:30
Client ID: FSA1-MV	V0022R-006.5-20220509				
Client ID: FSA1-MV  Parameter	V0022R-006.5-20220509 <u>Preparation</u>	Hold Date/Time	e(s)	Prep Date/Time(s)	Analysis Date/Time(s)
			<u>e(s)</u>	Prep Date/Time(s) 05/12/22 00:00	
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time	<b>e(s)</b> 06/19/22	· · · · · · · · · · · · · · · · · · ·	Analysis Date/Time(s)
Parameter EPA 8260D	Preparation EPA 5030B_MS	Hold Date/Time		05/12/22 00:00	Analysis Date/Time(s) 05/12/22 17:40
Parameter EPA 8260D EPA 8270E FL-PRO	Preparation EPA 5030B_MS EPA 3511_MS	Hold Date/Time 05/23/22 05/16/22 05/16/22	06/19/22	05/12/22 00:00 05/10/22 13:57	Analysis Date/Time(s) 05/12/22 17:40 05/11/22 18:13
Parameter EPA 8260D EPA 8270E FL-PRO	Preparation EPA 5030B_MS EPA 3511_MS EPA 3510C	Hold Date/Time 05/23/22 05/16/22 05/16/22	06/19/22 06/20/22 <b>F03365-08</b>	05/12/22 00:00 05/10/22 13:57 05/11/22 07:10	Analysis Date/Time(s) 05/12/22 17:40 05/11/22 18:13 05/11/22 23:23
Parameter EPA 8260D EPA 8270E FL-PRO Client ID: FSA1-MV	Preparation  EPA 5030B_MS  EPA 3511_MS  EPA 3510C  W0023-006.0-20220509	Hold Date/Time 05/23/22 05/16/22 05/16/22 Lab ID: A	06/19/22 06/20/22 <b>F03365-08</b>	05/12/22 00:00 05/10/22 13:57 05/11/22 07:10 Sampled: 05/09/22 12:27	Analysis Date/Time(s)  05/12/22 17:40  05/11/22 18:13  05/11/22 23:23  Received: 05/09/22 16:30
Parameter EPA 8260D EPA 8270E FL-PRO Client ID: FSA1-MV Parameter	Preparation  EPA 5030B_MS  EPA 3511_MS  EPA 3510C  W0023-006.0-20220509  Preparation	Hold Date/Time 05/23/22 05/16/22 05/16/22 Lab ID: A Hold Date/Time	06/19/22 06/20/22 <b>F03365-08</b>	05/12/22 00:00 05/10/22 13:57 05/11/22 07:10 Sampled: 05/09/22 12:27 Prep Date/Time(s)	Analysis Date/Time(s)  05/12/22 17:40  05/11/22 18:13  05/11/22 23:23  Received: 05/09/22 16:30  Analysis Date/Time(s)



# SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: FSA1-MV	V0027-020.0-20220509	Lab ID: AF03365-09		Sampled: 05/09/	22 11:22	Received: 05/09/22 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time	Hold Date/Time(s)		<u>/Time(s)</u>	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/23/22		05/12/22	00:00	05/12/22 18:38
EPA 8270E	EPA 3511_MS	05/16/22	06/19/22	05/10/22	13:57	05/11/22 18:56
FL-PRO	EPA 3510C	05/16/22	06/21/22	05/12/22	08:20	05/13/22 06:18
Client ID: FSA1-MV	V0028-020.0-20220509	Lab ID: A	F03365-10	Sampled: 05/09/	22 10:17	Received: 05/09/22 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time	<u>e(s)</u>	Prep Date	<u>/Time(s)</u>	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/23/22		05/13/22	00:00	05/13/22 15:03
EPA 8270E	EPA 3511_MS	05/16/22	06/19/22	05/10/22	13:57	05/11/22 19:18
Client ID: FSA1-MV	V0028-020.0-20220509	Lab ID: A	F03365-10RE1	Sampled: 05/09/	22 10:17	Received: 05/09/22 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time	e <u>(s)</u>	Prep Date	<u>/Time(s)</u>	Analysis Date/Time(s)
FL-PRO	EPA 3510C	05/16/22	06/25/22	05/16/22	08:25	05/16/22 13:05
Client ID: FSA1-TB	-20220509-01	Lab ID: A	F03365-11	Samuladi OF/00/	22.02.00	Page 14 05 (00 /22 16 20
	20220303 01		105505 11	Sampled: 05/09/	22 07:00	Received: 05/09/22 16:30
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time		Prep Date		Analysis Date/Time(s)
Parameter EPA 8260D						
·	Preparation EPA 5030B_MS	Hold Date/Time 05/23/22		Prep Date	<b>'Time(s)</b> 00:00	Analysis Date/Time(s)
EPA 8260D	Preparation EPA 5030B_MS	Hold Date/Time 05/23/22	<u>e(s)</u> F03365-12	<u>Prep Date</u> , 05/13/22	7Time(s) 00:00 22 07:00	Analysis Date/Time(s) 05/13/22 15:31



## **SAMPLE DETECTION SUMMARY**

Client ID: FSA1-MW0001-005.5-20220509			Lab ID:	AF03365-01			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Isopropylbenzene	14		0.67	1.0	ug/L	EPA 8260D	
Naphthalene	14		0.050	0.10	ug/L	EPA 8270E	
TPH (C8-C40)	1600		100	680	ug/L	FL-PRO	
Client ID: FSA1-MW0001-005.5-20220509			Lab ID:	AF03365-01RE1			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	MDL	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
1-Methylnaphthalene	33		0.10	0.20	ug/L	EPA 8270E	
2-Methylnaphthalene	34		0.10	0.20	ug/L	EPA 8270E	
Client ID: FSA1-MW0002-005.0-20220509			Lab ID:	AF03365-02			
<u>Analyte</u>	Results	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
1-Methylnaphthalene	0.50		0.050	0.10	ug/L	EPA 8270E	
2-Methylnaphthalene	0.29		0.050	0.10	ug/L	EPA 8270E	
Isopropylbenzene	2.9		0.67	1.0	ug/L	EPA 8260D	
Naphthalene	1.6		0.050	0.10	ug/L	EPA 8270E	
TPH (C8-C40)	1100		100	680	ug/L	FL-PRO	
Client ID: FSA1-MW0014-006.0-20220509			Lab ID:	AF03365-04			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
1-Methylnaphthalene	0.074	I	0.050	0.10	ug/L	EPA 8270E	
2-Methylnaphthalene	0.057	I	0.050	0.10	ug/L	EPA 8270E	
Naphthalene	0.080	I	0.050	0.10	ug/L	EPA 8270E	
Client ID: FSA1-MW0017A-006.5-20220509			Lab ID:	AF03365-05			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Isopropylbenzene	1.8		0.67	1.0	ug/L	EPA 8260D	
Naphthalene	0.20		0.050	0.10	ug/L	EPA 8270E	
Client ID: FSA1-MW0021-005.0-20220509			Lab ID:	AF03365-06			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Isopropylbenzene	2.1		0.67	1.0	ug/L	EPA 8260D	
Naphthalene	0.11		0.050	0.10	ug/L	EPA 8270E	
Client ID: FSA1-MW0023-006.0-20220509			Lab ID:	AF03365-08			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Naphthalene	0.11		0.050	0.10	ug/L	EPA 8270E	
Client ID: FSA1-MW0027-020.0-20220509			Lab ID:	AF03365-09			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Naphthalene	0.080	I	0.050	0.10	ug/L	EPA 8270E	
Client ID: FSA1-MW0028-020.0-20220509			Lab ID:	AF03365-10RE1			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
TPH (C8-C40)	490	I	100	680	ug/L	FL-PRO	



**Description:** FSA1-MW0001-005.5-20220509 **Lab Sample ID:** AF03365-01 **Received:** 05/09/22 16:30

Matrix:Ground WaterSampled: 05/09/22 12:01Work Order: AF03365Project:NASA KSC - FSA1Sampled By: Greg Kusel / Dustin Slater

# **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	Notes
Isopropylbenzene [98-82-8]^	14		ug/L	1	0.67	1.0	2E12005	EPA 8260D	05/12/22 10:57	nmc	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	<u>Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	45	1	50.0	89 %	41-1	42	2E12005	EPA 8260D	05/12/22 10:57	nmc	
Dibromofluoromethane	49	1	50.0	98 %	53-1	46	2E12005	EPA 8260D	05/12/22 10:57	nmc	
Toluene-d8	46	1	50.0	91 %	41-1	46	2E12005	EPA 8260D	05/12/22 10:57	nmc	

## Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	Flag	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
1-Methylnaphthalene [90-12-0]^	33		ug/L	2	0.10	0.20	2E16005	EPA 8270E	05/17/22 10:40	jfi	
2-Methylnaphthalene [91-57-6]^	34		ug/L	2	0.10	0.20	2E16005	EPA 8270E	05/17/22 10:40	jfi	
Naphthalene [91-20-3]^	14		ug/L	1	0.050	0.10	2E16005	EPA 8270E	05/16/22 15:05	jfi	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
2-Methylnaphthalene-d10	5.4	1	5.71	95 %	<i>50-1</i>	150	2E16005	EPA 8270E	05/16/22 15:05	jfi	
Fluoranthene-d10	5.7	1	5.71	100 %	<i>50-1</i>	150	2E16005	EPA 8270E	05/16/22 15:05	jfi	

## FL Petroleum Range Organics

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
TPH (C8-C40)^	1600		ug/L	1	100	680	2E11003	FL-PRO	05/11/22 20:07	JJB	
Surrogates	<u>Results</u>	<u>DF</u>	Spike Lvl	% Rec	% Rec	<u>Limits</u>	<u>Batch</u>	Method	<u>Analyzed</u>	<u>By</u>	Notes
n-Pentatriacontane	460	1	400	115 %	40-12	29	2E11003	FL-PRO	05/11/22 20:07	JJB	
o-Terphenvl	200		200	101 %	66-13		2E11003	FL-PRO	05/11/22 20:07	JJB	



**Description:** FSA1-MW0002-005.0-20220509 **Lab Sample ID:** AF03365-02 **Received:** 05/09/22 16:30

Matrix:Ground WaterSampled: 05/09/22 12:34Work Order: AF03365

**Project:** NASA KSC - FSA1 Sampled By: Greg Kusel /Dustin Slater

## Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
Isopropylbenzene [98-82-8]^	2.9		ug/L	1	0.67	1.0	2E12005	EPA 8260D	05/12/22 15:16	nmc	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	c Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	45	1	50.0	89 %	41-1	142	2E12005	EPA 8260D	05/12/22 15:16	nmc	
Dibromofluoromethane	<i>52</i>	1	50.0	104 %	<i>53-1</i>	146	2E12005	EPA 8260D	05/12/22 15:16	nmc	
Toluene-d8	46	1	50.0	91 %	41-1	146	2E12005	EPA 8260D	05/12/22 15:16	nmc	

## Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	DF	MDL	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
1-Methylnaphthalene [90-12-0]^	0.50		ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 16:26	jfi	
2-Methylnaphthalene [91-57-6]^	0.29		ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 16:26	jfi	
Naphthalene [91-20-3]^	1.6		ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 16:26	jfi	
Surrogates	Results	DF	Spike Lvl	% Rec	% Red	: Limits	<u>Batch</u>	Method	Analyzed	<u>By</u>	Notes
2-Methylnaphthalene-d10	6.6	1	5.71	115 %	50-1	150	2E10019	EPA 8270E	05/11/22 16:26	jfi	
Fluoranthene-d10	6.0		5.71	105 %	50-1		2E10019	EPA 8270E	05/11/22 16:26	ifi	

## FL Petroleum Range Organics

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
TPH (C8-C40)^	1100		ug/L	1	100	680	2E11003	FL-PRO	05/11/22 20:35	JJB	
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec	Limits	<u>Batch</u>	<u>Method</u>	Analyzed	<u>By</u>	<u>Notes</u>
n-Pentatriacontane	470	1	400	118 %	40-12	29	2E11003	FL-PRO	05/11/22 20:35	JJB	
o-Terphenyl	180	1	200	91 %	66-13	39	2E11003	FL-PRO	05/11/22 20:35	JJB	



**Description:** FSA1-MW0012R-006.0-20220509 **Lab Sample ID:** AF03365-03 **Received:** 05/09/22 16:30

Matrix: Ground WaterSampled: 05/09/22 10:52Work Order: AF03365

Sampled By: Greg Kusel /Dustin Slater

# **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Project: NASA KSC - FSA1

	,										
Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<b>Analyzed</b>	By	<u>Notes</u>
Isopropylbenzene [98-82-8]^	0.67	U	ug/L	1	0.67	1.0	2E12005	EPA 8260D	05/12/22 15:45	nmc	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	% Rec	% Rec	<u>Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	45	1	50.0	91 %	41-14	12	2E12005	EPA 8260D	05/12/22 15:45	nmc	
Dibromofluoromethane	53	1	50.0	106 %	53-14	16	2E12005	EPA 8260D	05/12/22 15:45	nmc	
Toluene-d8	48	1	50.0	96 %	41-14	16	2E12005	EPA 8260D	05/12/22 15:45	nmc	

## Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
1-Methylnaphthalene [90-12-0]^	0.050	U	ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 16:47	jfi	
2-Methylnaphthalene [91-57-6]^	0.050	U	ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 16:47	jfi	
Naphthalene [91-20-3]^	0.050	U	ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 16:47	jfi	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	% Rec	<u>% Rec</u>	: Limits	<u>Batch</u>	Method	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
2-Methylnaphthalene-d10	4.9	1	5.71	85 %	50-1	150	2E10019	EPA 8270E	05/11/22 16:47	jfi	
Fluoranthene-d10	6.7	1	5.71	118 %	50-1	150	2E10019	EPA 8270E	05/11/22 16:47	jfi	

## FL Petroleum Range Organics

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL PQ	<u>L Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>Ву</u>	<u>Notes</u>
TPH (C8-C40)^	100	U	ug/L	1	100 68	30 2E11003	FL-PRO	05/11/22 21:03	JJB	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec Lim	its <u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
n-Pentatriacontane	540	1	400	135 %	40-129	2E11003	FL-PRO	05/11/22 21:03	JJB	QS-03
o-Terphenyl	240	1	200	121 %	66-139	2E11003	FL-PRO	05/11/22 21:03	JJB	



**Description:** FSA1-MW0014-006.0-20220509 **Lab Sample ID:** AF03365-04 **Received:** 05/09/22 16:30

Sampled By: Greg Kusel /Dustin Slater

Matrix:Ground WaterSampled: 05/09/22 11:34Work Order: AF03365

# Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Project: NASA KSC - FSA1

Analyte [CAS Number]	Results	Flag	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
Isopropylbenzene [98-82-8]^	0.67	U	ug/L	1	0.67	1.0	2E12005	EPA 8260D	05/12/22 16:14	nmc	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	<u>Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	45	1	50.0	91 %	41-14	12	2E12005	EPA 8260D	05/12/22 16:14	nmc	
Dibromofluoromethane	51	1	50.0	103 %	53-14	16	2E12005	EPA 8260D	05/12/22 16:14	nmc	
Toluene-d8	47	1	50.0	93 %	41-14	16	2E12005	EPA 8260D	05/12/22 16:14	nmc	

# Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	DF	MDL	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
1-Methylnaphthalene [90-12-0]^	0.074	I	ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 17:09	jfi	
2-Methylnaphthalene [91-57-6]^	0.057	I	ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 17:09	jfi	
Naphthalene [91-20-3]^	0.080	I	ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 17:09	jfi	
Surrogates	Posults	DE	Snika I vl	% Per	% Par	r I imite	Ratch	Method	Analyzad	Rv	Notes
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
<u>Surrogates</u> 2-Methylnaphthalene-d10	<u>Results</u> 6.3	<u>DF</u> 1	<u>Spike Lvl</u> 5.71	<u>% Rec</u> 110 %	<u>% Rec</u> 50-1		<u><b>Batch</b></u> 2E10019	<u>Method</u> EPA 8270E	<u>Analyzed</u> 05/11/22 17:09	<u>By</u> jfi	<u>Notes</u>

## FL Petroleum Range Organics

Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL I	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
TPH (C8-C40)^	100	U	ug/L	1	100	680	2E11003	FL-PRO	05/11/22 21:59	JJB	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec Li	imits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	Notes
n-Pentatriacontane	490	1	400	121 %	40-129	)	2E11003	FL-PRO	05/11/22 21:59	JJB	
o-Terphenyl	210	1	200	106 %	66-139	,	2E11003	FL-PRO	05/11/22 21:59	JJB	



**Description:** FSA1-MW0017A-006.5-20220509 **Lab Sample ID:** AF03365-05 **Received:** 05/09/22 16:30

Matrix: Ground WaterSampled: 05/09/22 10:13Work Order: AF03365

**Project:** NASA KSC - FSA1 **Sampled By:** Greg Kusel /Dustin Slater

## Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<b>Analyzed</b>	By	<u>Notes</u>
Isopropylbenzene [98-82-8]^	1.8		ug/L	1	0.67	1.0	2E12005	EPA 8260D	05/12/22 16:43	nmc	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	44	1	50.0	88 %	41-1	42	2E12005	EPA 8260D	05/12/22 16:43	nmc	
Dibromofluoromethane	51	1	50.0	103 %	53-1	46	2E12005	EPA 8260D	05/12/22 16:43	nmc	
Toluene-d8	47	1	50.0	94 %	41-1	46	2E12005	EPA 8260D	05/12/22 16:43	nmc	

# Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	DF	<u>MDL</u>	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
1-Methylnaphthalene [90-12-0]^	0.050	U	ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 17:30	jfi	
2-Methylnaphthalene [91-57-6]^	0.050	U	ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 17:30	jfi	
Naphthalene [91-20-3]^	0.20		ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 17:30	jfi	
_				a. =	a					_	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
<u>Surrogates</u> 2-Methylnaphthalene-d10	<u>Results</u> 7.5	<u>DF</u>	<u>Spike Lvl</u> 5.71	<u>% Rec</u> 132 %	<u>% Rec</u> 50-1		<u>Batch</u> 2E10019	<u>Method</u> EPA 8270E	<u>Analyzed</u> 05/11/22 17:30	<u>By</u> jfi	<u>Notes</u>

## FL Petroleum Range Organics

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	DF	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
TPH (C8-C40)^	100	U	ug/L	1	100	680	2E11003	FL-PRO	05/11/22 22:27	JJB	
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec L	imits	Batch	<u>Method</u>	Analyzed	<u>Bv</u>	Notes
		<u> </u>						·	<u> </u>		HOLOS
n-Pentatriacontane	440	1	400	110 %	40-129	1	2E11003	FL-PRO	05/11/22 22:27	JJB	
o-Terphenyl	190			94 %	66-139		2E11003	FL-PRO	05/11/22 22:27	JJB	



# **ANALYTICAL RESULTS**

**Description:** FSA1-MW0021-005.0-20220509 **Lab Sample ID:** AF03365-06 **Received:** 05/09/22 16:30

Matrix: Ground Water Sampled: 05/09/22 11:57

**Project:** NASA KSC - FSA1 **Sampled By:** Greg Kusel /Dustin Slater

# **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
Isopropylbenzene [98-82-8]^	2.1		ug/L	1	0.67	1.0	2E12005	EPA 8260D	05/12/22 17:12	nmc	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	% Rec	% Rec	Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	44	1	50.0	88 %	41-1	42	2E12005	EPA 8260D	05/12/22 17:12	nmc	
Dibromofluoromethane	53	1	50.0	106 %	53-1	46	2E12005	EPA 8260D	05/12/22 17:12	nmc	
Toluene-d8	46	1	50.0	93 %	41-1	46	2E12005	EPA 8260D	05/12/22 17:12	nmc	

## Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	DF	MDL	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
1-Methylnaphthalene [90-12-0]^	0.050	U	ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 17:52	jfi	
2-Methylnaphthalene [91-57-6]^	0.050	U	ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 17:52	jfi	
Naphthalene [91-20-3]^	0.11		ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 17:52	jfi	
Surrogates	Results	DF	Spike Lvl	% Rec	% Red	Limits	<u>Batch</u>	Method	Analyzed	<u>By</u>	<u>Notes</u>
		_									
2-Methylnaphthalene-d10	<i>5.9</i>	1	<i>5.71</i>	<i>102 %</i>	<i>50-1</i>	50	2E10019	EPA 8270E	05/11/22 17:52	jfi	

## FL Petroleum Range Organics

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL PQ	<u>L Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>	
TPH (C8-C40)^	100	U	ug/L	1	100 686	0 2E11003	FL-PRO	05/11/22 22:55	JJB		
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	% Rec	% Rec Lim	its <u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>	
n-Pentatriacontane	610	1	400	152 %	40-129	2E11003	FL-PRO	05/11/22 22:55	JJB	E, QS-03	
o-Terphenyl	210	1	200	106 %	66-139	2E11003	FL-PRO	05/11/22 22:55	JJB		
o respiration.	210	-	200	200 70	00 100		, _ , , , ,	00, 11, 22 22.00	332		



**Description:** FSA1-MW0022R-006.5-20220509 **Lab Sample ID:** AF03365-07 **Received:** 05/09/22 16:30

Matrix:Ground WaterSampled: 05/09/22 10:52Work Order: AF03365

**Project:** NASA KSC - FSA1 **Sampled By:** Greg Kusel /Dustin Slater

## Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Isopropylbenzene [98-82-8]^	0.67	U	ug/L	1	0.67	1.0	2E12005	EPA 8260D	05/12/22 17:40	nmc	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	43	1	50.0	86 %	41-1	42	2E12005	EPA 8260D	05/12/22 17:40	nmc	
Dibromofluoromethane	51	1	50.0	102 %	53-1	46	2E12005	EPA 8260D	05/12/22 17:40	nmc	
Toluene-d8	45	1	50.0	90 %	41-1	46	2E12005	EPA 8260D	05/12/22 17:40	nmc	

## Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	Method	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
1-Methylnaphthalene [90-12-0]^	0.050	U	ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 18:13	jfi	
2-Methylnaphthalene [91-57-6]^	0.050	U	ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 18:13	jfi	
Naphthalene [91-20-3]^	0.050	U	ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 18:13	jfi	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
2-Methylnaphthalene-d10	5.9	1	5.71	103 %	<i>50-</i> 2	150	2E10019	EPA 8270E	05/11/22 18:13	jfi	
Fluoranthene-d10	7.4	1	5.71	129 %	<i>50-1</i>	150	2E10019	EPA 8270E	05/11/22 18:13	jfi	

## FL Petroleum Range Organics

Results	<u>Flag</u>	<u>Units</u>	DF	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
100	U	ug/L	1	100	680	2E11003	FL-PRO	05/11/22 23:23	JJB	
<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec L	imits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
570	1	400	142 %	40-129	)	2E11003	FL-PRO	05/11/22 23:23	JJB	QS-03
210	1	200	105 %	66-139	7	2E11003	FL-PRO	05/11/22 23:23	JJB	
	100 <b>Results</b> 570	100 U  Results DF  570 1	100         U         ug/L           Results         DF         Spike Lvl           570         1         400	100         U         ug/L         1           Results         DF         Spike Lvl         % Rec           570         1         400         142 %	100         U         ug/L         1         100           Results         DF         Spike Lvl         % Rec         % Rec L           570         1         400         142 %         40-125	100         U         ug/L         1         100         680           Results         DF         Spike Lvl         % Rec         % Rec Limits           570         1         400         142 %         40-129	100         U         ug/L         1         100         680         2E11003           Results         DF         Spike Lvl         % Rec         % Rec Limits         Batch           570         1         400         142 %         40-129         2E11003	100         U         ug/L         1         100         680         2E11003         FL-PRO           Results         DF         Spike Lvl         % Rec         % Rec Limits         Batch         Method           570         1         400         142 %         40-129         2E11003         FL-PRO	100         U         ug/L         1         100         680         2E11003         FL-PRO         05/11/22 23:23           Results         DF         Spike Lvl         % Rec         % Rec Limits         Batch         Method         Analyzed           570         1         400         142 %         40-129         2E11003         FL-PRO         05/11/22 23:23	100       U       ug/L       1       100       680       2E11003       FL-PRO       05/11/22 23:23       JJB         Results       DF       Spike Lvl       % Rec       % Rec       Limits       Batch       Method       Analyzed       By         570       1       400       142 %       40-129       2E11003       FL-PRO       05/11/22 23:23       JJB



**Description:** FSA1-MW0023-006.0-20220509 **Lab Sample ID:** AF03365-08 **Received:** 05/09/22 16:30

Matrix:Ground WaterSampled: 05/09/22 12:27Work Order: AF03365

**Project:** NASA KSC - FSA1 **Sampled By:** Greg Kusel /Dustin Slater

# **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	Method	<b>Analyzed</b>	<u>By</u>	<u>Notes</u>
Isopropylbenzene [98-82-8]^	0.67	U	ug/L	1	0.67	1.0	2E12005	EPA 8260D	05/12/22 18:09	nmc	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	<u>Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	Notes
4-Bromofluorobenzene	43	1	50.0	86 %	41-1	42	2E12005	EPA 8260D	05/12/22 18:09	nmc	
Dibromofluoromethane	53	1	50.0	105 %	53-14	46	2E12005	EPA 8260D	05/12/22 18:09	nmc	
Toluene-d8	46	1	50.0	93 %	41-1	46	2E12005	EPA 8260D	05/12/22 18:09	nmc	

## Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
1-Methylnaphthalene [90-12-0]^	0.050	U	ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 18:35	jfi	
2-Methylnaphthalene [91-57-6]^	0.050	U	ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 18:35	jfi	
Naphthalene [91-20-3]^	0.11		ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 18:35	jfi	
Surrogates	Results	DF	Spike Lvl	% Rec	% Red	Limits	Batch	Method	Analyzed	By	Notes
<u>Surrogates</u>											
2-Methylnaphthalene-d10	6.0	1	5.71	104 %	50-1		2E10019	EPA 8270E	05/11/22 18:35	<u>jf</u> i	

## FL Petroleum Range Organics

<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL PQ	<u> Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
100	U	ug/L	1	100 680	2E12007	FL-PRO	05/13/22 05:50	JJB	
<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec Limi	i <u>ts Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
570	1	<i>392</i>	147 %	40-129	2E12007	FL-PRO	05/13/22 05:50	JJB	QS-03
230	1	196	118 %	66-139	2E12007	FL-PRO	05/13/22 05:50	JJB	
	100 <b>Results</b> 570	100 U  Results DF  570 1	100     U     ug/L       Results     DF     Spike Lvl       570     1     392	100         U         ug/L         1           Results         DF         Spike Lvl         % Rec           570         1         392         147 %	100         U         ug/L         1         100         680           Results         DF         Spike Lvl         % Rec         % Rec Limit           570         1         392         147 %         40-129	100     U     ug/L     1     100     680     2E12007       Results     DF     Spike Lvl     % Rec     % Rec Limits     Batch       570     1     392     147 %     40-129     2E12007	100         U         ug/L         1         100         680         2E12007         FL-PRO           Results         DF         Spike Lvl         % Rec         % Rec         Limits         Batch         Method           570         1         392         147 %         40-129         2E12007         FL-PRO	100         U         ug/L         1         100         680         2E12007         FL-PRO         05/13/22 05:50           Results         DF         Spike Lvl         % Rec         % Rec Limits         Batch         Method         Analyzed           570         1         392         147 %         40-129         2E12007         FL-PRO         05/13/22 05:50	100       U       ug/L       1       100       680       2E12007       FL-PRO       05/13/22 05:50       JJB         Results       DF       Spike Lvl       % Rec       % Rec Limits       Batch       Method       Analyzed       By         570       1       392       147 %       40-129       2E12007       FL-PRO       05/13/22 05:50       JJB



### **ANALYTICAL RESULTS**

**Description:** FSA1-MW0027-020.0-20220509 **Lab Sample ID:** AF03365-09 **Received:** 05/09/22 16:30

Matrix: Ground Water Sampled: 05/09/22 11:22

**Project:** NASA KSC - FSA1 **Sampled By:** Greg Kusel /Dustin Slater

## Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<b>Analyzed</b>	By	<u>Notes</u>
Isopropylbenzene [98-82-8]^	0.67	U	ug/L	1	0.67	1.0	2E12005	EPA 8260D	05/12/22 18:38	nmc	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	<u>Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	44	1	50.0	89 %	41-14	12	2E12005	EPA 8260D	05/12/22 18:38	nmc	
Dibromofluoromethane	53	1	50.0	106 %	53-14	16	2E12005	EPA 8260D	05/12/22 18:38	nmc	
Toluene-d8	46	1	50.0	92 %	41-14	16	2E12005	EPA 8260D	05/12/22 18:38	nmc	

# Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
1-Methylnaphthalene [90-12-0]^	0.050	U	ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 18:56	jfi	
2-Methylnaphthalene [91-57-6]^	0.050	U	ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 18:56	jfi	
Naphthalene [91-20-3]^	0.080	I	ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 18:56	jfi	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
2-Methylnaphthalene-d10	5.1	1	5.71	89 %	<i>50-1</i>	150	2E10019	EPA 8270E	05/11/22 18:56	jfi	
Fluoranthene-d10	7.0	1	5.71	122 %	<i>50-1</i>	150	2E10019	EPA 8270E	05/11/22 18:56	jfi	

## FL Petroleum Range Organics

Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL F	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
TPH (C8-C40)^	100	U	ug/L	1	100	680	2E12007	FL-PRO	05/13/22 06:18	JJB	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	% Rec Li	imits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
n-Pentatriacontane	510	1	400	128 %	40-129		2E12007	FL-PRO	05/13/22 06:18	JJB	
o-Terphenyl	210	1	200	107 %	66-139		2E12007	FL-PRO	05/13/22 06:18	JJB	



### **ANALYTICAL RESULTS**

**Description:** FSA1-MW0028-020.0-20220509 **Lab Sample ID:** AF03365-10 **Received:** 05/09/22 16:30

Matrix: Ground Water Sampled: 05/09/22 10:17

Project: NASA KSC - FSA1 Sampled By: Greg Kusel /Dustin Slater

## **Volatile Organic Compounds by GCMS**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL_	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
Isopropylbenzene [98-82-8]^	0.67	U	ug/L	1	0.67	1.0	2E13004	EPA 8260D	05/13/22 15:03	nmc	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	% Rec	% Rec	<u>Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	45	1	50.0	90 %	41-14	2	2E13004	EPA 8260D	05/13/22 15:03	nmc	
Dibromofluoromethane	<i>55</i>	1	50.0	110 %	53-14	6	2E13004	EPA 8260D	05/13/22 15:03	nmc	
Toluene-d8	49	1	50.0	97 %	41-14	6	2E13004	EPA 8260D	05/13/22 15:03	nmc	

## Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
1-Methylnaphthalene [90-12-0]^	0.050	U	ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 19:18	jfi	
2-Methylnaphthalene [91-57-6]^	0.050	U	ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 19:18	jfi	
Naphthalene [91-20-3]^	0.050	U	ug/L	1	0.050	0.10	2E10019	EPA 8270E	05/11/22 19:18	jfi	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Rec</u>	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
2-Methylnaphthalene-d10	5.0	1	5.71	<i>87 %</i>	50-1	50	2E10019	EPA 8270E	05/11/22 19:18	jfi	
Fluoranthene-d10	6.6	1	5.71	116 %	50-1	50	2E10019	EPA 8270E	05/11/22 19:18	ifi	

### FL Petroleum Range Organics

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	Flag	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
TPH (C8-C40)^	490	I	ug/L	1	100	680	2E16007	FL-PRO	05/16/22 13:05	JJB	
		25	College Lord	0/ 8	a. 5		0-4-6	Mathad	Amalumad	<b></b>	Notes
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Kec</u>	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
<u>Surrogates</u> n-Pentatriacontane	<u>Kesuits</u> 470	<u>DF</u> 1	<u>Spike LVI</u> 400	<u>% Rec</u> 118 %	<u>% Red</u> 40-1		<u>Batcn</u> 2E16007	<u>Method</u> FL-PRO	<u>Analyzed</u> 05/16/22 13:05	<u><b>Бу</b></u> ЈЈВ	Notes

**Description:** FSA1-TB-20220509-01 **Lab Sample ID:** AF03365-11 **Received:** 05/09/22 16:30

 Matrix:
 Water
 Sampled: 05/09/22 07:00
 Work Order: AF03365

Project: NASA KSC - FSA1 Sampled By: ENCO ORL

### Volatile Organic Compounds by GCMS

Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	<u>DF</u>	MDL PO	<u>L</u> <u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
Isopropylbenzene [98-82-8]^	0.67	U	ug/L	1	0.67 1.	0 2E13004	EPA 8260D	05/13/22 15:31	nmc	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	% Rec Lim	<u>its Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	43	1	50.0	<i>87 %</i>	41-142	2E13004	EPA 8260D	05/13/22 15:31	nmc	
Dibromofluoromethane	53	1	50.0	105 %	<i>53-146</i>	2E13004	EPA 8260D	05/13/22 15:31	nmc	
Toluene-d8	46	1	50.0	92 %	41-146	2E13004	EPA 8260D	05/13/22 15:31	nmc	



## **ANALYTICAL RESULTS**

**Description:** FSA1-TB-20220509-02 Lab Sample ID: AF03365-12 **Received:** 05/09/22 16:30

Matrix: Water **Sampled:** 05/09/22 07:00 Project: NASA KSC - FSA1

Sampled By: ENCO ORL

# Volatile Organic Compounds by GCMS

	,										
Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
Isopropylbenzene [98-82-8]^	0.67	U	ug/L	1	0.67	1.0	2E13004	EPA 8260D	05/13/22 16:00	nmc	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	% Rec I	<u>Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	44	1	50.0	88 %	41-14.	2	2E13004	EPA 8260D	05/13/22 16:00	nmc	
Dibromofluoromethane	<i>53</i>	1	50.0	106 %	53-14	6	2E13004	EPA 8260D	05/13/22 16:00	nmc	
Toluene-d8	47	1	50.0	93 %	41-14	6	2E13004	EPA 8260D	05/13/22 16:00	nmc	



## Volatile Organic Compounds by GCMS - Quality Control

#### Batch 2E12005 - EPA 5030B_MS

Blank (2E12005-BLK1)	Prepared: 05/12/2022 00:00 Analyzed: 05/12/2022 10:28
Dialik (2C12003-DER1)	1 Tepared: 03/12/2022 00:00 Analyzed: 03/12/2022 10:20

<u>Analyte</u>	<u>Result</u>	Flag	PQL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
Isopropylbenzene	0.67	U	1.0	ug/L							
4-Bromofluorobenzene	43			ug/L	50.0		86	41-142			
Dibromofluoromethane	50			ug/L	50.0		100	<i>53-146</i>			
Toluene-d8	45			ug/L	50.0		91	41-146			
LCS (2F12005-RS1)					Prenare	ed: 05/12/202	2 00·00 Anal	vzed: 05/12/	2022 08:04		

Analyte	Result	Flag	POL	Units	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Isopropylbenzene	21		1.0	ug/L	20.0	· <del></del>	106	60-132			
4-Bromofluorobenzene	45			ug/L	50.0		89	41-142			
Dibromofluoromethane	53			ug/L	50.0		107	<i>53-146</i>			
Toluene-d8	49			ug/L	50.0		98	41-146			

Matrix Spike (2E12005-MS1) Prepared: 05/12/2022 00:00 Analyzed: 05/12/2022 08:33

Source: AF03365-01

<u>Analyte</u>	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Isopropylbenzene	37		1.0	ug/L	20.0	14	115	60-132			
4-Bromofluorobenzene	43			ug/L	50.0		87	41-142			
Dibromofluoromethane	51			ug/L	50.0		102	<i>53-146</i>			
Toluene-d8	46			ug/L	50.0		93	41-146			

Matrix Spike Dup (2E12005-MSD1) Prepared: 05/12/2022 00:00 Analyzed: 05/12/2022 09:02

Source: AF03365-01

					Spike	Source		%REC		RPD	
<u>Analyte</u>	Result	<u>Flaq</u>	<u>PQL</u>	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>Notes</u>
Isopropylbenzene	37		1.0	ug/L	20.0	14	115	60-132	0.2	23	
4-Bromofluorobenzene	44			ug/L	50.0		89	41-142			
Dibromofluoromethane	51			ug/L	50.0		103	<i>53-146</i>			
Toluene-d8	47			ug/L	50.0		94	41-146			

#### Batch 2E13004 - EPA 5030B_MS

Blank (2E13004-BLK1) Prepared: 05/13/2022 00:00 Analyzed: 05/13/2022 10:14

Ana	<u>llyte</u>	<u>Result</u>	<u>Flag</u>	PQL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
Isop	ropylbenzene	0.67	U	1.0	ug/L							
4-Br	omofluorobenzene	45			ug/L	50.0		91	41-142			
Dibr	omofluoromethane	53			ug/L	50.0		105	<i>53-146</i>			
Tolu	ene-d8	46			ug/L	50.0		93	41-146			
	LCS (2E13004-BS1)	Prepared: 05/13/2022 00:00 Analyzed: 05/13/2022 07:50										

Analyte	Result	Flag	PQL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
Isopropylbenzene	20		1.0	ug/L	20.0		99	60-132			
4-Bromofluorobenzene	42			ug/L	50.0		85	41-142			
Dibromofluoromethane	50			ug/L	50.0		100	<i>53-146</i>			
Toluene-d8	45			ug/L	50.0		91	41-146			



Batch 2E13004 - EF	A 5030B	MS - Continued
--------------------	---------	----------------

Matrix Spike (2E13004-MS1)					Prepare	ed: 05/13/202	2 00:00 Anal	yzed: 05/13/	2022 08:19				
Source: AF03650-01													
<u>Analyte</u>	<u>Result</u>	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes		
Isopropylbenzene	24		1.0	ug/L	20.0	0.67 U	118	60-132					
4-Bromofluorobenzene	43			ug/L	50.0		86	41-142					
Dibromofluoromethane	51			ug/L	50.0		102	<i>53-146</i>					
Toluene-d8	46			ug/L	50.0		93	41-146					
Matrix Spike Dup (2E13004-M	SD1)				Prepared: 05/13/2022 00:00 Analyzed: 05/13/2022 08:48								
Source: AF03650-01													
Analyte	Result	Flag	PQL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>		
Isopropylbenzene	23		1.0	ug/L	20.0	0.67 U	113	60-132	4	23			
4-Bromofluorobenzene	43			ug/L	50.0		85	41-142					
Dibromofluoromethane	50			ug/L	50.0		100	<i>53-146</i>					
Toluene-d8	46			ug/L	50.0		93	41-146					

## Batch 2E10019 - EPA 3511_MS

Semivolatile Organic Compounds by GCMS SIM - Quality Control

**Blank (2E10019-BLK1)** Prepared: 05/10/2022 13:57 Analyzed: 05/11/2022 12:29

Analyte	Result	Flag	PQL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1-Methylnaphthalene	0.050	U	0.10	ug/L							
2-Methylnaphthalene	0.050	U	0.10	ug/L							
Naphthalene	0.050	U	0.10	ug/L							
2-Methylnaphthalene-d10	4.9			ug/L	5.71		86	50-150			
Fluoranthene-d10	8.0			ug/L	5.71		140	50-150			
LCS (2E10019-BS1)				Prepare	ed: 05/10/202	2 13:57 Ana	lyzed: 05/11/	2022 12:51			

<u>Analyte</u>	<u>Result</u>	<u>Flaq</u>	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1-Methylnaphthalene	5.3		0.10	ug/L	5.71		92	59-120			
2-Methylnaphthalene	5.4		0.10	ug/L	5.71		94	43-120			
Naphthalene	5.7		0.10	ug/L	5.71		99	68-120			
2-Methylnaphthalene-d10	5.2			ug/L	5.71		91	50-150			
Fluoranthene-d10	6.9			ug/L	5.71		120	<i>50-150</i>			

 Matrix Spike (2E10019-MS1)
 Prepared: 05/10/2022 13:57 Analyzed: 05/11/2022 13:12

Source:	AF0357	4-02

Analyte	Result	Flag	PQL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
1-Methylnaphthalene	5.1		0.10	ug/L	5.71	0.050 U	89	59-120			
2-Methylnaphthalene	5.1		0.10	ug/L	5.71	0.050 U	90	43-120			
Naphthalene	5.3		0.10	ug/L	5.71	0.050 U	93	68-120			
2-Methylnaphthalene-d10	4.9			ug/L	5.71		86	50-150			
Fluoranthene-d10	6.5			ug/L	5.71		114	<i>50-150</i>			

 Matrix Spike Dup (2E10019-MSD1)
 Prepared: 05/10/2022 13:57 Analyzed: 05/11/2022 13:34

Source: AF03574-02

Spike Source %REC RPD **Analyte** Result Flag **PQL** <u>Units</u> %REC **Limits** RPD <u>Limit</u> Level Notes Result



#### Semivolatile Organic Compounds by GCMS SIM - Quality Control

Ratch	2F10010	- EPA 3511	MS -	Continued
Dalli	ZEIUUIJ :	- EPA JJII	- כויו	CUIILIIIUEU

Matrix Spike Dup (2E10019	9-MSD1) Continue	d		Prepared: 05/10/2022 13:57 Analyzed: 05/11/2022 13:34								
Source: AF03574-02												
Analyte	<u>Result</u>	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>	
1-Methylnaphthalene	4.1		0.10	ug/L	5.71	0.050 U	72	59-120	20	25		
2-Methylnaphthalene	4.1		0.10	ug/L	5.71	0.050 U	72	43-120	22	25		
Naphthalene	4.2		0.10	ug/L	5.71	0.050 U	74	68-120	23	25		
2-Methylnaphthalene-d10	4.4			ug/L	5.71		77	50-150				
Fluoranthene-d10	7.1			ug/L	5.71		125	<i>50-150</i>				
Ratch 2F16005 - FDA 35	11 MS											

#### Batch 2E16005 - EPA 3511_MS

Blank (2E16005-BLK1)

Avadusta	Possilh	- Flan	<b>DOI</b>	llaita.	Spike	Source	0/ PEC	%REC	222	RPD	Neter
Analyte	Result	Flag	PQL	Units	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
1-Methylnaphthalene	0.050	U	0.10	ua/I							

Prepared: 05/16/2022 11:00 Analyzed: 05/16/2022 13:17

1-Metry mapritualene	0.050	U	0.10	ug/L				
2-Methylnaphthalene	0.050	U	0.10	ug/L				
Naphthalene	0.050	U	0.10	ug/L				
2-Methylnaphthalene-d10	5.3			ug/L	5.71	92	50-150	
Fluoranthene-d10	6.2			ua/l	5 71	109	50-150	

LCS (2E16005-BS1) Prepared: 05/16/2022 11:00 Analyzed: 05/16/2022 13:39

					Spike	Source		%REC		RPD	
Analyte	Result	<u>Flag</u>	<u>PQL</u>	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>Notes</u>
1-Methylnaphthalene	5.7		0.10	ug/L	5.71		100	59-120			
2-Methylnaphthalene	5.7		0.10	ug/L	5.71		100	43-120			
Naphthalene	4.9		0.10	ug/L	5.71		85	68-120			
2-Methylnaphthalene-d10	5.6			ug/L	5.71		98	50-150			
Fluoranthene-d10	6.0			ua/L	5.71		106	50-150			

 Matrix Spike (2E16005-MS1)
 Prepared: 05/16/2022 11:00 Analyzed: 05/16/2022 14:01

Source: AF03780-01

Analyte	Result	Flag	PQL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1-Methylnaphthalene	4.9		0.10	ug/L	5.71	0.050 U	86	59-120			
2-Methylnaphthalene	4.9		0.10	ug/L	5.71	0.050 U	86	43-120			
Naphthalene	4.0		0.10	ug/L	5.71	0.050 U	70	68-120			
2-Methylnaphthalene-d10	5.4			ug/L	5.71		94	50-150			
Fluoranthene-d10	6.6			ug/L	5.71		115	<i>50-150</i>			

 Matrix Spike Dup (2E16005-MSD1)
 Prepared: 05/16/2022 11:00 Analyzed: 05/16/2022 14:22

Source: AF03780-01

<u>Analyte</u>	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1-Methylnaphthalene	5.1		0.10	ug/L	5.71	0.050 U	89	59-120	3	25	
2-Methylnaphthalene	5.0		0.10	ug/L	5.71	0.050 U	88	43-120	3	25	
Naphthalene	4.1		0.10	ug/L	5.71	0.050 U	72	68-120	4	25	
2-Methylnaphthalene-d10	4.7			ug/L	5.71		82	50-150			
Fluoranthene-d10	6.7			ug/L	5.71		117	50-150			

## FL Petroleum Range Organics - Quality Control

Batch 2E11003 - EPA 3510C



Batch 2E11003 - EPA 3510C - (	Continued														
Blank (2E11003-BLK1)					Prepare	ed: 05/11/202	2 07:10 Anal	yzed: 05/11/	2022 11:43						
<u>Analyte</u>	<u>Result</u>	<u>Flaq</u>	<u>POL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>				
ГРН (C8-C40)	100	U	680	ug/L											
n-Pentatriacontane	530			ug/L	400		132	40-129			QS-03				
o-Terphenyl	210			ug/L	200		106	66-139							
LCS (2E11003-BS1)					Prepare	ed: 05/11/202	2 07:10 Anal	yzed: 05/11/	2022 12:11						
Analyte	Result	Flag	POL	Units	Spike Level	Source	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes				
TPH (C8-C40)	7200	iluq	680	ug/L	6800	Result	106	66-119	KFD	Lillic	itotes				
n-Pentatriacontane	420			ug/L	400		104	40-129							
o-Terphenyl	230			ug/L	200		115	66-139							
Matrix Spike (2E11003-MS1)					Prepare	ed: 05/11/202	2 07:10 Anal	yzed: 05/11/	2022 12:39						
Source: AF03574-02  Analyte	Result	<u>Flag</u>	<u>POL</u>	<u>Units</u>	Spike Level	Source	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes				
грн (C8-C40)	8200		680	ug/L	6800	<u>Result</u> 100 U	121	65-123	2	<u> </u>	110105				
• •											00.03				
n-Pentatriacontane o-Terphenyl	550 230			ug/L	400 200		138 115	40-129 66-139			QS-03				
, ,				ug/L		1 05/44/202			2022 42 07						
Matrix Spike Dup (2E11003-MSD	L)				Prepare	ed: 05/11/202	2 07:10 Anai	yzea: 05/11/.	2022 13:07						
Source: AF03574-02					Spike	Source		%REC		RPD					
<u>Analyte</u>	Result	Flag	<u>PQL</u>	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>Notes</u>				
PH (C8-C40)	7600		680	ug/L	6800	100 U	112	65-123	8	20					
n-Pentatriacontane	500			ug/L	400		124	40-129							
o-Terphenyl	240			ug/L	200		120	66-139							
Batch 2E12007 - EPA 3510C															
Blank (2E12007-BLK1)					Prepare	ed: 05/12/202	2 08:20 Anal	yzed: 05/13/	2022 02:34						
Analyte	Result	Flag	POL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes				
TPH (C8-C40)	1200		680	ug/L							QB-				
n-Pentatriacontane	490			ug/L	400		122	40-129							
o-Terphenyl	190			ug/L	200		95	66-139							
LCS (2E12007-BS1)					Prepare	ed: 05/12/202	2 08:20 Anal	yzed: 05/13/	2022 03:02						
					Spike	Source		%REC		RPD					
<u>Analyte</u>	Result	<u>Flag</u>	POL	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>Notes</u>				
ГРН (C8-C40)	7000		680	ug/L	6800		103	66-119							
n-Pentatriacontane	330			ug/L	400		83	40-129							
o-Terphenyl	230			ug/L	200		116	66-139							
Matrix Spike (2E12007-MS1)					Prepared: 05/12/2022 08:20 Analyzed: 05/13/2022 03:30										
Source: AF03574-03					Spike	Source		%REC		RPD					
<u>Analyte</u>	Result	Flag	<u>POL</u>	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes				
TPH (C8-C40)	6500		680	ug/L	6800	100 U	96	65-123							



Batch 2E12007 - EPA 351	OC - Continued															
Matrix Spike (2E12007-MS1	) Continued				Prepar	ed: 05/12/202	2 08:20 Anal	yzed: 05/13/	2022 03:30							
Source: AF03574-03																
<u>Analyte</u>	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note					
n-Pentatriacontane	370			ug/L	400		93	40-129								
o-Terphenyl	210			ug/L	200		107	66-139								
Matrix Spike Dup (2E12007-	-MSD1)				Prepar	ed: 05/12/202	2 08:20 Anal	yzed: 05/13/	2022 03:58							
Source: AF03574-03																
<u>Analyte</u>	Result	Flag	PQL	<u>Units</u>	Spike Level	Source	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note					
TPH (C8-C40)	6900		680	ug/L	6800	<u>Result</u> 100 U	102	65-123	6	20	11010					
n-Pentatriacontane o-Terphenyl	420 230			ug/L ug/L	400 200		104 115	40-129 66-139								
Batch 2E16007 - EPA 351				ug/ L	200		113	00 133								
Blank (2E16007-BLK1)					Prepar	ed: 05/16/202	2 08:25 Anal	yzed: 05/16/	2022 10:45							
<u>Analyte</u>	Result	Flag	POL	<u>Units</u>	Spike	Source	0/ DEC	%REC	DDD	RPD	Note					
TPH (C8-C40)	100	U	680	ug/L	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Note					
			000		400		425	40.420								
n-Pentatriacontane o-Terphenyl	500 180			ug/L ug/L	400 200		125 92	40-129 66-139								
LCS (2E16007-BS1)	100			ug/ L	Prepared: 05/16/2022 08:25 Analyzed: 05/16/2022 11:13											
Analyte	Result	Flag	PQL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Note					
TPH (C8-C40)	5200		680	ug/L	6800	Kesuit	77	66-119		<u></u>						
n-Pentatriacontane	390			ug/L	400		96	40-129								
o-Terphenyl	<i>160</i>			ug/L	200		<i>82</i>	66-139								
Matrix Spike (2E16007-MS1	)			5.	Prepar	ed: 05/16/202	2 08:25 Anal	yzed: 05/16/	2022 11:41							
Source: AF03780-01																
Analyte	Result	Flag	POL	<u>Units</u>	Spike Level	Source	%REC	%REC Limits	RPD	RPD Limit	Note					
TPH (C8-C40)	5600	<u>r iu q</u>	680	ug/L	6800	<u>Result</u> 100 U	83	65-123	KFD	Lillie	Hote					
n-Pentatriacontane	440			ug/L	400		111	40-129								
o-Terphenyl	180			ug/L	200		89	66-139								
Matrix Spike Dup (2E16007-	-MSD1)				Prepar	ed: 05/16/202	2 08:25 Anal	yzed: 05/16/	2022 12:09							
Source: AF03780-01																
<u>Analyte</u>	<u>Result</u>	Flag	POL	<u>Units</u>	Spike	Source	0/spec	%REC	DDD	RPD Limit	Mata					
TPH (C8-C40)	6100	ı ıay	680	ug/L	Level 6800	Result 100 U	<b>%REC</b> 89	<u>Limits</u> 65-123	<b>RPD</b> 8	<u>Limit</u> 20	Note					
			000			100 0			υ	20						
n-Pentatriacontane	400			ug/L	400		101	40-129								



#### **FLAGS/NOTES AND DEFINITIONS**

- **POL** POL: Practical Quantitation Limit. The POL presented is the laboratory MRL.
  - **B** Results are based upon membrane filter colony counts that are outside the method indicated ideal range.
  - The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).
  - J Estimated value.
- **K** Off-scale low; Actual value is known to be less than the value given.
- **L** Off-scale high; Actual value is known to be greater than value given.
- **M** Presence of analyte is verified but not quantified; the actual value is less than the MRL but greater than the MDL.
- **N** Presumptive evidence of presence of material.
- Sampled, but analysis lost or not performed.
- **Q** Sample exceeded the accepted holding time.
- **T** Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only and shall not be used in statistical analysis.
- **U** Indicates that the compound was analyzed for but not detected.
- **V** Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
- **Z** Too many colonies were present (TNTC); the numeric value represents the filtration volume.
- ? Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
- * Not reported due to interference.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.
  - The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered an estimate (CLP E-flag).
- **QB-02** The method blank contains analyte at a concentration above the MDL and/or greater than one-half the MRL. The analyte was not detected in the sample.
- **QS-03** Surrogate recovery outside acceptance limits

-	CHAIN OF CUSTODY AND ANALYTICAL REQUEST RECORD													Page:	1	of	1					
		Project Name:	NASA KSC			-				PO No. 1	38224			Project N	o. 60610905.	Subs 2021-2	3-Subs 2021-23	Phase:				
		Site Location:	Fuel Storage Area	#1 Underground Storage Ta	nk					Send Inv	oice To:	Instructio	ns in MSA # 1	9S-24548-GV	)3		EDD to:	Jennifer Chastain Cc: Teresa Amentt Jenning				
		TO No.: 80KSCI	019F0071	AECOM Project Manager:		Chris Marshall				Deliver S	ample Kits	To:	AECOM Depot	, 523 18th St	reet, Orland	lo	Report to:	Jennifer Chastain Cc: Teresa Ament: Jenning			nentt Jennings	
Sampler/Phon	e #	Greg Kusel / (77	2) 631-7426	Dustin Slater / 407-766-074	17					Deliver S	amples To	);	ENCO				Site-Spicific V	VS#15 from	n QAPP; 1	5-5		
Lab Name:		ENCO			Turnaround Tim	e(specify):		Standard	14 day	Sample Analysis Requested (Enter number of containers for each test)												
					Doto	Time (Military)	Matrix	Sample	G=Grab	(3)	на	4 DEG C	H2SO4 <2									
Lab ID	Sample ID (sys_samp_			Location ID (sys_loc_code)	Date (YYYYMMDD)	(hhmm)	Code (1)	Type (2)	C=Comp	10	В.				<del> </del>	<del> </del>	<del> </del>	ľ	<del> </del> -			
(373_Sall4)_COUE)									Total No. of Container	sopropylbenzene by SW82608	elect PAH by SW8270C SIM	TRPH by FL PRO								Comments		
	FSA1-MW	0001-2 <del>022</del> 05	20220509	FSA1-MW0001	20220509	1201	WG	N	G	7	3	2	2									
-	FSA1-MW	0002-202205	2022050 P	FSA1-MW0002	20220509	1234	WG	N	G	7	3	2	2									
•		0012R- <del>20220</del> 5	00/ 0 =	FSA1-MW0012R	202205 09	1052	WG	N	G	7	3	2	2									
			-006.0 -	FSA1-MW0014	20220509	1134	WG	ĸ	G	7	3	2	2									
		0017A-202705		FSA1-MW0017A	202205 09	1013	WG	R	G	7	3	2	2									
	+	0021-20 <del>329</del> 5	-005.0-	FSA1-MW0021	202205 09	1157	wg	N	G	7	3	2	2									
	FSA1-MW	0022R- <del>292785</del>		FSA1-MW0022R	20220509	1052	WG	N	G	7	3	2	2									
		0023- <del>2022</del> 05		FSA1-MW0023	202205 09	1227	WG	N	G	7	3	2	2									
	FSA1-MW	10027-2 <del>02205</del>	20220301	FSA1-MW0027	20220509	1122	WG	N	G	7	3	2	2									
				FSA1-MW0028	202205 09	1017	WG	N	G	7	3	2	2									
_		202205 • 9 -		FSA1-TB O )	202205 09	0700	wq	ТВ	G	2	2				-							
	FSA 1 -	TR - 202	20509-02	FSA 1 - + BOZ	20 220509	0700	wa	TB	6	2	2			-								
FSA 1 - TB - 20220509 - 02 FSA 1 - TB 02 20220509							ents:			1	-			· · · · · ·			Sample Shipi	nent and	Delivery	Details		
Report only p	-														Number	of coolers	s in shipment:					
Relinquished	ished by (signature)  Date Time Received by (signature)										.51	Date /9/22	Tim 2. 070		Samples Iced?(check) YesNo Shipping Company:							
· 90	Breg June 5/9/22 1630 2 2 1630										20	1/00	$10^{\circ}$	<u> </u>	Tracking		=					
<del></del>	SI WA			.7 0 1	<i></i>	3	~F	<b>&gt;</b>		· <del>-</del>	— <del>)[</del> 4]	<u>. u - </u>	\\U_1		Date Sh							
(1) AA-Amh	iont air AO-	=Air quality contr	ni ASR=Ashestos (	K=Caulk, DS=Storm drain se	diment. GS=Soil	nas IC=IDW	Concrete.	IDD=IDV	V Solid, ID	S=IDW so	il. IDW=I	DW Water	. LF=Free Prox	Juct, MA=Ma	stic, <b>PC</b> =Pa	int Chips,	SC=Cement/C	oncrete, S	E=Sedime	nt, <b>SL</b> =Slude	ge, <b>SO</b> =Soil,	

^{\$}Q=Soit/Solid quality control, \$SD=Subsurface sediment, \$U=Surface soil (<6 in), \$W=Swab or wipe, \$TA=Animal tissue, \$TP=Plant tissue, \$TQ=Tissue quality control, \$WG=Ground water, \$WD=Drinking water, \$WD=D effluent, WS=Surface water, WU=Storm water, WW=Waste water

⁽²⁾ Sample Type: AB=Ambient Bik, EB=Equipment Bik, FB=Field Bik, FD=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Trip Bik

⁽³⁾ Preservative added: 4 DEG C=Cool to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C H2504=Hydrogen sulfate, H2504 <2=Adjust to pH < 2 with sulfuric acid, H3P04=Phosphoric acid, H3P04 <2=Adjust to pH <2 with phosphoric acid, H3P04 = Phosphoric acid, H3P04 (3) Preservative added: 4 DEG C=Cool to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C H2SO4=Hydrogen suitate, H2SO4 < 2=Adjust to pH < 2 with summir acid, H3PO4=ZH3DIST to pH < 2 with prosphoric acid, H3PO4=ZH3DIST to pH < 2 with prosphoric acid, H3PO4=ZH3DIST to pH < 2 with nitric H3PO4=ZH3DIST to pH < 2 with nitric acid, H3PO4=ZH3DIST to pH < 2 wi

10775 Central Port Drive Orlando FL, 32824

Phone: 407.826.5314 FAX: 407.850.6945

Thursday, May 26, 2022 AECOM Technical Services, Inc. (SE004) Attn: Teresa Amentt Jennings 150 N. Orange Ave, Suite 200 Orlando, FL 32801

RE: Laboratory Results for

Project Number: 60610905, Project Name/Desc: NASA KSC - Industrial Area

**ENCO Workorder(s): AF03378** 

Dear Teresa Amentt Jennings,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Thursday, May 12, 2022.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Orlando. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

K. Oglnicki

Sincerely,

Kaitlin Dylnicki

Project Manager

Enclosure(s)



#### SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: IA-IDW0	1-20220512	Lab ID: AF	03378-01	Sampled: 05/12/	22 13:15	Received: 05/12/22 14:52
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(	<u>s)</u>	Prep Date	/Time(s)	Analysis Date/Time(s)
EPA 6020B	EPA 3005A	11/08/22		05/17/22	09:54	05/23/22 18:00
EPA 8260D	EPA 5030B_MS	05/26/22		05/17/22	00:00	05/17/22 12:24
EPA 8270E	EPA 3511_MS	05/19/22	06/26/22	05/17/22	14:39	05/18/22 22:14
FL-PRO	EPA 3510C	05/19/22	06/25/22	05/16/22	08:25	05/16/22 13:33
Client ID: IA-IDW0	1-20220512	Lab ID: AF	03378-01RE1	Sampled: 05/12/	22 13:15	Received: 05/12/22 14:52
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(	<u>s)</u>	Prep Date	/Time(s)	Analysis Date/Time(s)
EPA 350.1	NO PREP	06/09/22		05/13/22	07:00	05/13/22 11:08
Client ID: IA-TB01-	20220512	Lab ID: AF	Lab ID: AF03378-02		22 13:00	Received: 05/12/22 14:52
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(	Hold Date/Time(s)		/Time(s)	Analysis Date/Time(s)
EPA 8260D	EPA 5030B_MS	05/26/22		05/17/22	00:00	05/17/22 12:52



#### **SAMPLE DETECTION SUMMARY**

Client ID: IA-IDW01-20220512			Lab ID:	AF03378-01			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
cis-1,2-Dichloroethene	1.4		0.53	1.0	ug/L	EPA 8260D	
Client ID: IA-IDW01-20220512			Lab ID:	AF03378-01RE1			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
Ammonia as N	2400		20	40	ug/L	EPA 350.1	



#### **ANALYTICAL RESULTS**

**Description:** IA-IDW01-20220512 **Lab Sample ID:** AF03378-01 **Received:** 05/12/22 14:52

Matrix:Ground WaterSampled: 05/12/22 13:15Work Order: AF03378

**Project:** NASA KSC - Industrial Area **Sampled By:** Greg Kusel /Dustin Slater

#### Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
1,2,4-Trimethylbenzene [95-63-6]^	0.69	U	ug/L	1	0.69	1.0	2E17007	EPA 8260D	05/17/22 12:24	JMW	
Benzene [71-43-2]^	0.71	U	ug/L	1	0.71	1.0	2E17007	EPA 8260D	05/17/22 12:24	JMW	
cis-1,2-Dichloroethene [156-59-2]^	1.4		ug/L	1	0.53	1.0	2E17007	EPA 8260D	05/17/22 12:24	JMW	
Isopropylbenzene [98-82-8]^	0.67	U	ug/L	1	0.67	1.0	2E17007	EPA 8260D	05/17/22 12:24	JMW	
m,p-Xylenes [108-38-3/106-42-3]^	1.3	U	ug/L	1	1.3	2.0	2E17007	EPA 8260D	05/17/22 12:24	JMW	
Methyl-tert-Butyl Ether [1634-04-4]^	0.60	U	ug/L	1	0.60	1.0	2E17007	EPA 8260D	05/17/22 12:24	JMW	
o-Xylene [95-47-6]^	0.53	U	ug/L	1	0.53	1.0	2E17007	EPA 8260D	05/17/22 12:24	JMW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	2E17007	EPA 8260D	05/17/22 12:24	JMW	
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	2E17007	EPA 8260D	05/17/22 12:24	JMW	
Xylenes (Total) [1330-20-7]^	1.3	U	ug/L	1	1.3	2.0	2E17007	EPA 8260D	05/17/22 12:24	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	45	1	50.0	89 %	41-	142	2E17007	EPA 8260D	05/17/22 12:24	JMW	
Dibromofluoromethane	<i>57</i>	1	50.0	114 %	53	146	2E17007	EPA 8260D	05/17/22 12:24	JMW	
Toluene-d8	48	1	50.0	96 %	41-	146	2E17007	EPA 8260D	05/17/22 12:24	JMW	

#### Semivolatile Organic Compounds by GCMS SIM

^ - ENCO Orlando certified analyte [NELAC E83182]

- ENCO Oriando certinea analyte [NELAC Eo.	0102]										
Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
1-Methylnaphthalene [90-12-0]^	0.050	U	ug/L	1	0.050	0.10	2E17040	EPA 8270E	05/18/22 22:14	jfi	
2-Methylnaphthalene [91-57-6]^	0.050	U	ug/L	1	0.050	0.10	2E17040	EPA 8270E	05/18/22 22:14	jfi	
Naphthalene [91-20-3]^	0.050	U	ug/L	1	0.050	0.10	2E17040	EPA 8270E	05/18/22 22:14	jfi	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	% Rec	% Rec	: Limits	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
2-Methylnaphthalene-d10	6.1	1	5.71	107 %	<i>50-1</i>	50	2E17040	EPA 8270E	05/18/22 22:14	jfi	
Fluoranthene-d10	6.5	1	5.71	114 %	50-1	150	2E17040	EPA 8270E	05/18/22 22:14	jfi	

### FL Petroleum Range Organics

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	<b>Results</b>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
TPH (C8-C40)^	100	U	ug/L	1	100	680	2E16007	FL-PRO	05/16/22 13:33	JJB	
<u>Surrogates</u>	Results	<u>DF</u>	Spike Lvl	% Rec	% Rec I	<u>Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
<u>Surrogates</u> n-Pentatriacontane	<u>Results</u> 520	<u>DF</u> 1	<u>Spike Lvl</u> 400	<u>% Rec</u> 130 %	<u>% Rec I</u> 40-12:		<u>Batch</u> 2E16007	<u>Method</u> FL-PRO	<u>Analyzed</u> 05/16/22 13:33	<u>By</u> JJB	Notes QS-03

#### Metals (total recoverable) by EPA 6000/7000 Series Methods

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Lead [7439-92-1]^	2.50	U	ua/L	1	2.50	5.00	2E16054	EPA 6020B	05/23/22 18:00	JMA	



#### **ANALYTICAL RESULTS**

**Description:** IA-IDW01-20220512 **Lab Sample ID:** AF03378-01 **Received:** 05/12/22 14:52

Matrix: Ground Water Sampled: 05/12/22 13:15

Project: NASA KSC - Industrial Area Sampled By: Greg Kusel /Dustin Slater

Work Order: AF03378

Work Order: AF03378

#### **Classical Chemistry Parameters**

^ - ENCO Orlando certified analyte [NELAC E83182]

Analyte [CAS Number] **Results** <u>Flag</u> <u>Units</u> <u>DF</u> <u>MDL</u> <u>PQL</u> **Batch** <u>Method</u> <u>Analyzed</u> <u>By</u> **Notes** 2400 2E12028 EPA 350.1 05/13/22 11:08 Ammonia as N [7664-41-7]^ ug/L 2 20 40 cbarr

**Description:** IA-TB01-20220512 **Lab Sample ID:** AF03378-02 **Received:** 05/12/22 14:52

Matrix: Water Sampled: 05/12/22 13:00

Project: NASA KSC - Industrial Area Sampled By: ENCO ORL

#### Volatile Organic Compounds by GCMS

^ - ENCO Orlando certified analyte [NELAC E83182]

^ - ENCO Orlando certified analyte [NELAC	E83182]										
Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<b>Batch</b>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
1,2,4-Trimethylbenzene [95-63-6]^	0.69	U	ug/L	1	0.69	1.0	2E17007	EPA 8260D	05/17/22 12:52	JMW	
Benzene [71-43-2]^	0.71	U	ug/L	1	0.71	1.0	2E17007	EPA 8260D	05/17/22 12:52	JMW	
cis-1,2-Dichloroethene [156-59-2]^	0.53	U	ug/L	1	0.53	1.0	2E17007	EPA 8260D	05/17/22 12:52	JMW	
Isopropylbenzene [98-82-8]^	0.67	U	ug/L	1	0.67	1.0	2E17007	EPA 8260D	05/17/22 12:52	JMW	
m,p-Xylenes [108-38-3/106-42-3]^	1.3	U	ug/L	1	1.3	2.0	2E17007	EPA 8260D	05/17/22 12:52	JMW	
Methyl-tert-Butyl Ether [1634-04-4]^	0.60	U	ug/L	1	0.60	1.0	2E17007	EPA 8260D	05/17/22 12:52	JMW	
o-Xylene [95-47-6]^	0.53	U	ug/L	1	0.53	1.0	2E17007	EPA 8260D	05/17/22 12:52	JMW	
Trichloroethene [79-01-6]^	0.89	U	ug/L	1	0.89	1.0	2E17007	EPA 8260D	05/17/22 12:52	JMW	
Vinyl chloride [75-01-4]^	0.71	U	ug/L	1	0.71	1.0	2E17007	EPA 8260D	05/17/22 12:52	JMW	
Xylenes (Total) [1330-20-7]^	1.3	U	ug/L	1	1.3	2.0	2E17007	EPA 8260D	05/17/22 12:52	JMW	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	<u>Spike Lvl</u>	<u>% Rec</u>	<u>% Re</u>	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	44	1	50.0	88 %	41-	142	2E17007	EPA 8260D	05/17/22 12:52	JMW	
Dibromofluoromethane	56	1	50.0	112 %	53-	146	2E17007	EPA 8260D	05/17/22 12:52	JMW	
Toluene-d8	47	1	50.0	95 %	41-	146	2E17007	EPA 8260D	05/17/22 12:52	JMW	



#### Volatile Organic Compounds by GCMS - Quality Control

#### Batch 2E17007 - EPA 5030B_MS

Blank (2E17007-BLK1)

Prepared: 05/17/2022 00:00 Analyzed: 05/17/2022 10:28

Prepared: 05/17/2022 00:00 Analyzed: 05/17/2022 08:04

<u>Analyte</u>	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
1,2,4-Trimethylbenzene	0.69	U	1.0	ug/L							
Benzene	0.71	U	1.0	ug/L							
cis-1,2-Dichloroethene	0.53	U	1.0	ug/L							
Isopropylbenzene	0.67	U	1.0	ug/L							
m,p-Xylenes	1.3	U	2.0	ug/L							
Methyl-tert-Butyl Ether	0.60	U	1.0	ug/L							
o-Xylene	0.53	U	1.0	ug/L							
Trichloroethene	0.89	U	1.0	ug/L							
Vinyl chloride	0.71	U	1.0	ug/L							
Xylenes (Total)	1.3	U	2.0	ug/L							
4-Bromofluorobenzene	44			ug/L	50.0		88	41-142			
Dibromofluoromethane	<i>55</i>			ug/L	50.0		111	<i>53-146</i>			
Toluene-d8	46			ug/L	50.0		93	41-146			

-					Spike	Source		%REC		RPD	
<u>Analyte</u>	<u>Result</u>	<u>Flaq</u>	<u>PQL</u>	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>Notes</u>
1,2,4-Trimethylbenzene	21		1.0	ug/L	20.0		104	59-142			
Benzene	22		1.0	ug/L	20.0		108	56-136			
cis-1,2-Dichloroethene	25		1.0	ug/L	20.0		126	56-128			
Isopropylbenzene	21		1.0	ug/L	20.0		105	60-132			
m,p-Xylenes	42		2.0	ug/L	40.0		105	64-133			
Methyl-tert-Butyl Ether	23		1.0	ug/L	20.0		115	51-145			
o-Xylene	21		1.0	ug/L	20.0		105	61-129			
Trichloroethene	23		1.0	ug/L	20.0		116	62-135			
Vinyl chloride	30		1.0	ug/L	20.0		149	20-167			
4-Bromofluorobenzene	45			ug/L	50.0		90	41-142			
Dibromofluoromethane	56			ug/L	50.0		112	<i>53-146</i>			
Toluene-d8	49			ua/L	50.0		98	41-146			

Matrix Spike (2E17007-MS1) Prepared: 05/17/2022 00:00 Analyzed: 05/17/2022 08:33

Source: AF03703-05

LCS (2E17007-BS1)

<u>Analyte</u>	Result	Flag	PQL	<u>Units</u>	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1,2,4-Trimethylbenzene	22		1.0	ug/L	20.0	0.69 U	111	59-142			
Benzene	24		1.0	ug/L	20.0	0.71 U	118	56-136			
cis-1,2-Dichloroethene	27		1.0	ug/L	20.0	0.53 U	134	56-128			QM-07
Isopropylbenzene	24		1.0	ug/L	20.0	0.67 U	118	60-132			
m,p-Xylenes	45		2.0	ug/L	40.0	1.3 U	113	64-133			
Methyl-tert-Butyl Ether	24		1.0	ug/L	20.0	0.60 U	121	51-145			
o-Xylene	23		1.0	ug/L	20.0	0.53 U	114	61-129			
Trichloroethene	25		1.0	ug/L	20.0	0.89 U	127	62-135			
Vinyl chloride	30		1.0	ug/L	20.0	0.71 U	148	20-167			
4-Bromofluorobenzene	45			ug/L	50.0		89	41-142			
Dibromofluoromethane	56			ug/L	50.0		111	<i>53-146</i>			
Toluene-d8	48			ug/L	50.0		97	41-146			



Volatile Organic Compounds by GCMS - Quality Control

Batch 2E17007 - EPA 5030B_MS - Continued

Matrix Spike Dup (2E17007-MSD1) Prepared: 05/17/2022 00:00 Analyzed: 05/17/2022 09:02

Source: AF03703-05

<u>Analyte</u>	<u>Result</u>	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1,2,4-Trimethylbenzene	21		1.0	ug/L	20.0	0.69 U	107	59-142	4	25	
Benzene	23		1.0	ug/L	20.0	0.71 U	115	56-136	2	14	
cis-1,2-Dichloroethene	26		1.0	ug/L	20.0	0.53 U	131	56-128	2	17	QM-07
Isopropylbenzene	23		1.0	ug/L	20.0	0.67 U	114	60-132	3	23	
m,p-Xylenes	44		2.0	ug/L	40.0	1.3 U	111	64-133	2	18	
Methyl-tert-Butyl Ether	24		1.0	ug/L	20.0	0.60 U	118	51-145	3	22	
o-Xylene	22		1.0	ug/L	20.0	0.53 U	111	61-129	3	16	
Trichloroethene	25		1.0	ug/L	20.0	0.89 U	126	62-135	0.4	20	
Vinyl chloride	29		1.0	ug/L	20.0	0.71 U	144	20-167	3	24	
4-Bromofluorobenzene	43			ug/L	50.0		87	41-142			
Dibromofluoromethane	54			ug/L	50.0		108	<i>53-146</i>			
Toluene-d8	48			ug/L	50.0		95	41-146			

Semivolatile Organic Compounds by GCMS SIM - Quality Control

Batch 2E17040 - EPA 3511_MS

Blank (2E17040-BLK1) Prepared: 05/17/2022 14:39 Analyzed: 05/18/2022 20:05

Ana	<u>lyte</u>	<u>Result</u>	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1-Me	thylnaphthalene	0.050	U	0.10	ug/L							
2-Me	thylnaphthalene	0.050	U	0.10	ug/L							
Naph	thalene	0.050	U	0.10	ug/L							
2-Me	thylnaphthalene-d10	4.7			ug/L	5.71		83	50-150			
Fluo	ranthene-d10	6.0			ug/L	5.71		106	<i>50-150</i>			
	LCS (2E17040-BS1)					Prepare	ed: 05/17/202	2 14:39 Anal	yzed: 05/18/2	2022 20:27		

<u>Analyte</u>	<u>Result</u>	Flag	PQL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1-Methylnaphthalene	4.7		0.10	ug/L	5.71		83	59-120			
2-Methylnaphthalene	4.7		0.10	ug/L	5.71		82	43-120			
Naphthalene	5.3		0.10	ug/L	5.71		92	68-120			
2-Methylnaphthalene-d10	4.2			ug/L	5.71		74	50-150			
Fluoranthene-d10	<i>5.4</i>			ug/L	5.71		95	50-150			

Matrix Spike (2E17040-MS1) Prepared: 05/17/2022 14:39 Analyzed: 05/18/2022 20:48

Source: AF03780-02

Analyte	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
1-Methylnaphthalene	4.7		0.10	ug/L	5.71	0.050 U	82	59-120			
2-Methylnaphthalene	4.7		0.10	ug/L	5.71	0.050 U	83	43-120			
Naphthalene	4.8		0.10	ug/L	5.71	0.050 U	84	68-120			
2-Methylnaphthalene-d10	4.1			ug/L	5.71		72	50-150			
Fluoranthene-d10	5.9			ug/L	5.71		104	<i>50-150</i>			

 Matrix Spike Dup (2E17040-MSD1)
 Prepared: 05/17/2022 14:39 Analyzed: 05/18/2022 21:10

Source: AF03780-02

Spike Source %REC RPD **Analyte** Flag **PQL Units** Result %REC RPD <u>Limits</u> Level Result <u>Limit</u> Notes



<b>Batch</b>	2E17040 -	FP4 3511	MS -	Continued

Matrix Spike Dup (2E1704)	Matrix Spike Dup (2E17040-MSD1) Continued					Prepared: 05/17/2022 14:39 Analyzed: 05/18/2022 21:10								
Source: AF03780-02														
Analyte	<u>Result</u>	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes			
1-Methylnaphthalene	5.4		0.10	ug/L	5.71	0.050 U	94	59-120	14	25				
2-Methylnaphthalene	5.4		0.10	ug/L	5.71	0.050 U	94	43-120	13	25				
Naphthalene	5.0		0.10	ug/L	5.71	0.050 U	87	68-120	3	25				
2-Methylnaphthalene-d10	4.3			ug/L	5.71		74	50-150						
Fluoranthene-d10	6.0			ug/L	5.71		106	50-150						

#### FL Petroleum Range Organics - Quality Control

#### Batch 2E16007 - EPA 3510C

Blank (2E16007-BLK1)

					0.11			0/ PEG			
nalyte	Result	Flag	PΩI	Unite	Spike	Source	0/s DEC	%REC	DDD	RPD	Notos

Prepared: 05/16/2022 08:25 Analyzed: 05/16/2022 10:45

<u>Analyte</u>		Result	Flag	PQL	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
TPH (C8-C40)		100	U	680	ug/L							
n-Pentatriacontane		500			ug/L	400		125	40-129			
o-Terphenyl		180			ug/L	200		92	66-139			
	>						1 0=1161000		1 0=14610			

LCS (2E16007-BS1) Prepared: 05/16/2022 08:25 Analyzed: 05/16/2022 11:13

Analyte	Result	Flag	PQL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
TPH (C8-C40)	5200		680	ug/L	6800		77	66-119			
n-Pentatriacontane	390			ug/L	400		96	40-129			
o-Terphenyl	160			ug/L	200		82	66-139			

Matrix Spike (2E16007-MS1) Prepared: 05/16/2022 08:25 Analyzed: 05/16/2022 11:41

Source: AF03780-01

						Spike	Source		%REC		RPD	
Analy	<u>te</u>	Result	<u>Flaq</u>	<u>PQL</u>	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
TPH (C	8-C40)	5600		680	ug/L	6800	100 U	83	65-123			
n-Penta	atriacontane	440			ug/L	400		111	40-129			
o-Terp	henyl	180			ug/L	200		89	66-139			

 Matrix Spike Dup (2E16007-MSD1)
 Prepared: 05/16/2022 08:25 Analyzed: 05/16/2022 12:09

Source: AF03780-01

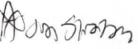
				Spike	Source		%REC		RPD	
<u>Analyte</u>	Result	<u>Flag</u> <u>POL</u>	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
TPH (C8-C40)	6100	680	ug/L	6800	100 U	89	65-123	8	20	
n-Pentatriacontane	400		ug/L	400		101	40-129			
o-Terphenyl	200		ug/L	200		101	66-139			

#### Metals (total recoverable) by EPA 6000/7000 Series Methods - Quality Control

#### Batch 2E16054 - EPA 3005A

Blank (2E16054-BLK1	Prepared: 05/17/2022 09:54 Analyzed: 05/23/2022 12:22
BIANK (ZE16054-BLK)	) Prepared: U5/1//2U2Z U9:54 Analyzed: U5/23/2U2Z 12:.

					Spike	Source		%REC		RPD	
<u>Analyte</u>	Result	Flag	PQL	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
Lead	2 50	- 11	5.00	ua/I							




				Quality Co							
Batch 2E16054 - EPA 3005	5A - Continued										
LCS (2E16054-BS1)					Prepare	ed: 05/17/202	2 09:54 Anal	yzed: 05/23/2	2022 12:25		
					Spike	Source		%REC		RPD	
<u>Analyte</u>	Result	<u>Flaq</u>	<u>PQL</u>	<u>Units</u>	Level	<u>Result</u>	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Not
ead	498		5.00	ug/L	500		100	80-120			
Matrix Spike (2E16054-MS2)	)				Prepare	ed: 05/17/202	2 09:54 Anal	yzed: 05/23/2	2022 14:58		
Source: AF03651-01					Spike	Source		%REC		RPD	
<u>Analyte</u>	Result	Flag	POL	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>No</u>
ead	488		25.0	ug/L	500	12.5 U	98	75-125			
Matrix Spike Dup (2E16054-I	MSD2)				Prepare	ed: 05/17/202	2 09:54 Anal	yzed: 05/23/2	2022 15:05		
Source: AF03651-01					- "	_					
Analyte	Result	Flag	PQL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	No
ead	487		25.0	ug/L	500	12.5 U	97	75-125	0.06	20	
Post Spike (2E16054-PS2)					Prepare	ed: 05/23/202	2 08:50 Anal	yzed: 05/23/2	2022 14:24		
Source: AF03651-01											
					Spike	Source		%REC		RPD	
<u>nalyte</u>	Result	Flag	POL	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	No
ad	47.5		0.500	ug/L	49.0	0.0530	97	75-125			
assical Chemistry Parameters	s - Quality Coll	LIOI									
Batch 2E12028 - NO PREP	'										
Blank (2E12028-BLK1)					Prepare	ed: 05/12/202	2 11:00 Anal	yzed: 05/13/2	2022 10:25		
					Spike	Source		%REC		RPD	
Analyte	Result	Flag	POL	Units	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>No</u>
mmonia as N	9.8	U	20	ug/L							
LCS (2E12028-BS1)					Prepare	ed: 05/12/202	2 11:00 Anal	yzed: 05/13/2	2022 10:27		
<u>nalyte</u>					Spike	Source		%REC		RPD	
	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>No</u>
	<u><b>Result</b></u> 970	<u>Flaq</u>	<b>POL</b> 20	<u>Units</u> ug/L	-		<b>%REC</b> 97		RPD		<u>No</u>
	970	<u>Flaq</u>			Level 1000		97	<u>Limits</u> 90-110			<u>No</u>
mmonia as N	970	<u>Flaq</u>			Level 1000	<u>Result</u>	97	<u>Limits</u> 90-110			<u>No</u>
mmonia as N  Matrix Spike (2E12028-MS1)  Source: AF03079-01	970		20	ug/L	Level 1000 Prepare  Spike	Result ed: 05/12/202	97 2 11:00 Anal	Limits 90-110 yzed: 05/13/2	2022 10:32	<u>Limit</u>	
mmonia as N  Matrix Spike (2E12028-MS1)  Source: AF03079-01  Analyte	970	Flag Flag	20 POL	ug/L <u>Units</u>	1000 Prepare  Spike Level	Result ed: 05/12/202	97 2 11:00 Anal	Limits 90-110 yzed: 05/13/2		<u>Limit</u>	No No
mmonia as N  Matrix Spike (2E12028-MS1)  Source: AF03079-01  malyte  mmonia as N	970 ) Result 930		20	ug/L	Level 1000 Prepare  Spike Level 1000	Result ed: 05/12/202. Source Result 9.8 U	97 2 11:00 Anal %REC 93	90-110 yzed: 05/13/3  %REC Limits 90-110	2022 10:32 RPD	<u>Limit</u>	
mmonia as N  Matrix Spike (2E12028-MS1)  Source: AF03079-01  malyte  mmonia as N  Matrix Spike (2E12028-MS2)	970 ) Result 930		20 POL	ug/L <u>Units</u>	Level 1000 Prepare  Spike Level 1000	Result ed: 05/12/202	97 2 11:00 Anal %REC 93	90-110 yzed: 05/13/3  %REC Limits 90-110	2022 10:32 RPD	<u>Limit</u>	
mmonia as N  Matrix Spike (2E12028-MS1)  Source: AF03079-01  malyte  mmonia as N	970 ) Result 930		20 POL	ug/L <u>Units</u>	Level 1000 Prepare  Spike Level 1000 Prepare	Result  ed: 05/12/202  Source Result 9.8 U  ed: 05/12/202	97 2 11:00 Anal %REC 93	Limits   90-110     yzed: 05/13/3     %REC   Limits   90-110     yzed: 05/13/3	2022 10:32 RPD	Limit RPD Limit	
Matrix Spike (2E12028-MS1)  Source: AF03079-01  Analyte  mmonia as N  Matrix Spike (2E12028-MS2)  Source: AF03540-01	970 ) Result 930		20 POL	ug/L <u>Units</u>	Level 1000 Prepare  Spike Level 1000	Result ed: 05/12/202. Source Result 9.8 U	97 2 11:00 Anal %REC 93	90-110 yzed: 05/13/3  %REC Limits 90-110	2022 10:32 RPD	<u>Limit</u>	No
mmonia as N  Matrix Spike (2E12028-MS1)  Source: AF03079-01  Analyte  mmonia as N  Matrix Spike (2E12028-MS2)  Source: AF03540-01	970    Result   930	Flag	20 POL 20	ug/L <u>Units</u> ug/L	Level 1000 Prepare  Spike Level 1000 Prepare  Spike	Result  ed: 05/12/202  Source  Result  9.8 U  ed: 05/12/202  Source	97 2 11:00 Anal %REC 93 2 11:00 Anal	### Company of the co	RPD 2022 10:47	RPD Limit	Nc
mmonia as N  Matrix Spike (2E12028-MS1)  Source: AF03079-01  malyte  mmonia as N  Matrix Spike (2E12028-MS2)  Source: AF03540-01	970  Result 930  Result 1400	Flag	20 POL 20	ug/L  Units  ug/L  Units	Spike Level 1000 Prepare Spike Level 1000 Prepare Spike Level 1000	Result  ed: 05/12/2020  Source  Result  9.8 U  ed: 05/12/2020  Source  Result	97 2 11:00 Anal  **REC 93 2 11:00 Anal  **CEC 98	Limits   90-110     yzed: 05/13/3     %REC   Limits   90-110     yzed: 05/13/3     %REC   Limits   90-110	RPD 2022 10:47 RPD	RPD Limit	
mmonia as N  Matrix Spike (2E12028-MS1)  Source: AF03079-01  malyte  mmonia as N  Matrix Spike (2E12028-MS2)  Source: AF03540-01  malyte  mmonia as N	970  Result 930  Result 1400	Flag	20 POL 20	ug/L  Units  ug/L  Units	Spike Level 1000 Prepare Spike Level 1000 Prepare Spike Level 1000	Result  ed: 05/12/202  Source Result 9.8 U  ed: 05/12/202  Source Result 460	97 2 11:00 Anal  **REC 93 2 11:00 Anal  **CEC 98	Limits   90-110     yzed: 05/13/3     %REC   Limits   90-110     yzed: 05/13/3     %REC   Limits   90-110	RPD 2022 10:47 RPD	RPD Limit	No
Matrix Spike (2E12028-MS1)  Source: AF03079-01  malyte mmonia as N  Matrix Spike (2E12028-MS2)  Source: AF03540-01  malyte mmonia as N  Matrix Spike Dup (2E12028-I Source: AF03079-01	970    Result   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   930   93	Flaq Flaq	POL 20	ug/L  Units  ug/L  Units  ug/L	Spike Level 1000 Prepare  Spike Level 1000 Prepare  Spike Level 1000 Prepare  Spike Spike	Result  ed: 05/12/202  Source Result 9.8 U  ed: 05/12/202  Source Result 460	97 2 11:00 Anal %REC 93 2 11:00 Anal %REC 98 2 11:00 Anal	## Company of the com	RPD 2022 10:47 RPD 2022 10:47	RPD Limit  RPD Limit	Nc Nc
Matrix Spike (2E12028-MS1)  Source: AF03079-01  Analyte  mmonia as N  Matrix Spike (2E12028-MS2)  Source: AF03540-01  Analyte  mmonia as N  Matrix Spike Dup (2E12028-MS2)	970  Result 930  Result 1400	Flag	20 POL 20	ug/L  Units  ug/L  Units	Spike Level 1000 Prepare Spike Level 1000 Prepare Spike Level 1000 Prepare	Result  ed: 05/12/202  Source Result 9.8 U  ed: 05/12/202  Source Result 460  ed: 05/12/202	97 2 11:00 Anal  **REC 93 2 11:00 Anal  **CEC 98	### Company of the co	RPD 2022 10:47 RPD	RPD Limit RPD Limit	Nc



#### **FLAGS/NOTES AND DEFINITIONS**

- **PQL** PQL: Practical Quantitation Limit. The PQL presented is the laboratory MRL.
  - **B** Results are based upon membrane filter colony counts that are outside the method indicated ideal range.
  - The reported value is between the laboratory method detection limit (MDL) and the practical quantitation limit (PQL).
  - J Estimated value.
  - K Off-scale low; Actual value is known to be less than the value given.
  - **L** Off-scale high; Actual value is known to be greater than value given.
- **M** Presence of analyte is verified but not quantified; the actual value is less than the MRL but greater than the MDL.
- **N** Presumptive evidence of presence of material.
- **O** Sampled, but analysis lost or not performed.
- **Q** Sample exceeded the accepted holding time.
- **T** Value reported is less than the laboratory method detection limit. The value is reported for informational purposes only and shall not be used in statistical analysis.
- **U** Indicates that the compound was analyzed for but not detected.
- **V** Indicates that the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an improperly preserved sample. The data may not be accurate.
- **Z** Too many colonies were present (TNTC); the numeric value represents the filtration volume.
- ? Data are rejected and should not be used. Some or all of the quality control data for the analyte were outside criteria, and the presence or absence of the analyte cannot be determined from the data.
- * Not reported due to interference.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.
- **QM-07** The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
- **QS-03** Surrogate recovery outside acceptance limits



		CHAIN	OF CUSTODY AND AN	ALYTICAL RE	OUEST RI	CORD	<u> </u>		COC No.					Page:	1	of	1				
			OI COSTODI AND AND	ALI IZONE ILE	<b>Q</b> 020				PO No. 1	38224				Project No.	60610905.Subs	2021-23-Sul	bs 2021-23	Phase:			
	E0)	Project Name: NASA KSC  Site Location: Industrial Area	a IDW						-		Instruction	ons in MSA	4 # 19S-24	1548-GV03	3	ED	DD to:	Jennifer (	Chastain	Cc: Teresa A	mentt Jennings
		TO No.: 80KSC019F0071	AECOM Project Manager:		Chris Marsh	all				ample Kit					et, Orlando	Re	port to:	Jennifer (	Chastain	Cc: Teresa A	mentt Jennings
Complet (Dhana			Dustin Slater / (407) 766-	0747					Deliver Samples To: ENCO Site-Spicific WS#15 from QAPP: 15-39												
Sampler/Phone	2 #	Greg Kusel / (772) 631-7426	Dustill States / (407) 700-	Turnaround Tim	na/spacifu\:		Standard	14 day				ESTE DIVERS	d ( Ente	r numbe	er of contai						
Lab Name:		ENCO		Turnaround Till				11,007	Sample Analysis Requested (Enter number of containers for each test)  (2) HCI A DEC C H2S04 A DEC C HN03 H2S04												
Lab ID	Sample ID	j	Location ID	Date	Time (Military)	Matrix Code	Type	G=Grab	(3)	HCL	4 DEG C	<2	4 DEG C	<2	<2						
	(sys_samp	_code)	(sys_loc_code)	(YYYYMMDD)	(hhmm)	(1)	(2)	C=Comp	Total No. of Containers	Select VOC by SW8260B	Select PAH by SW8270C SIM	TRPH by FL PRO	Select PFAS by 537	Lead by SW6010	Ammonia by EPA350.1						Comments
	IA-IDW0	1-202205 2	IA-IDW01	20220512	1315	IDW	IDW	G	11	3	2	2	2	1	1						
	IA-TB01-	20220512	IA-TB01	202205 12	1300	wQ	тв	G	2	2											
							_														
											+										
						-					-		-	-	+	-					
						-				-								-	-	-	+
										-						_		-			
																		_	-		
																			E		
Field Comm		5 #15-39			Lab Comn										Number of			oment and	Delivery	Details	
Relinquished			Date D5/04/22 5/12/22	Time 14:-00	Received by	/signatu	re) lla	6			pate 12/21		Time 0600	)	Samples Ico		x) Yes	No			
2	MAN	11	5/12/22	1452	2	1	4			3	alas	7 1	450	}	Tracking No	:					
3	of worth	1	os CK-Caulk DS-Storm drain		3		/			0			-		Date Shippe						III INC. PAR

GM413 0.700

⁽¹⁾ AA=Ambient air, AQ=Air quality control, ASB=Asbestos, CK=Caulk, DS=Storm drain sediment, GS=Soil gas, IC=IDW Concrete, IDD=IDW Solid, IDS=IDW water, LF=Free Product, MA=Mastic, PC=Paint Chips, SC=Cement/Concrete, SC=Soil gas, IC=IDW Concrete, IDD=IDW Solid, IDS=IDW water, LF=Free Product, MA=Mastic, PC=Paint Chips, SC=Cement/Concrete, SC=Soil gas, IC=IDW Concrete, IDD=IDW Solid, IDS=IDW water, LF=Free Product, MA=Mastic, PC=Paint Chips, SC=Cement/Concrete, SC=Soil gas, IC=IDW Concrete, IDD=IDW Solid, IDS=IDW water, LF=Free Product, MA=Mastic, PC=Paint Chips, SC=Cement/Concrete, SC=Soil gas, IC=IDW Concrete, IDD=IDW Solid, IDS=IDW water, LF=Free Product, MA=Mastic, PC=Paint Chips, SC=Cement/Concrete, SC=Soil gas, IC=IDW Concrete, IDD=IDW Solid, IDS=IDW water, LF=Free Product, MA=Mastic, PC=Paint Chips, SC=Cement/Concrete, IDD=IDW Solid, IDS=IDW water, LF=Free Product, MA=Mastic, PC=Paint Chips, SC=Cement/Concrete, IDD=IDW Solid, IDS=IDW water, IDD=IDW water, IDD=I

⁽²⁾ Sample Type: AB=Ambient Blk, EB=Equipment Blk, FB=Field Blk, FD=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Trip Blk

⁽³⁾ Preservative added: 4 DEG C=Cool to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C H2SO4=Hydrogen sulfate, H2SO4 <2=Adjust to pH < 2 with sulfuric acid, H3PO4=Phosphoric acid, H3PO4 <2=Adjust to pH < 2 with phosphoric acid, H3PO4=Phosphoric acid, H3PO4=Phos





a member of The GEL Group INC







PO Box 30712 Charleston, SC 29417 2040 Savage Road Charleston, SC 29407 P 843.556.8171 F 843.766.1178

gel.com

June 02, 2022

Kaitlin Dylnicki Environmental Conservation Laboratories, Inc. 10775 Central Port Drive Orlando, Florida 32824

Re: NASA PFAS - Dylnicki Work Order: 579915

SDG: AF03378

Dear Kaitlin Dylnicki:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on May 13, 2022. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 1614.

Sincerely,

Delaney Stone Project Manager

Delary Stone

Purchase Order: GELP20-0372

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# Certificate of Analysis Report for

ENCL001 Environmental Conservation Laboratories Client SDG: AF03378 GEL Work Order: 579915

#### The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Delaney Stone.

Reviewed by

Page 2 of 13 SDG: AF03378

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

### **Certificate of Analysis**

Project:

Client ID:

Report Date: June 2, 2022

ENCL00421

ENCL001

Company: Environmental Conservation Laboratories, Inc.

Address: 10775 Central Port Drive

Orlando, Florida 32824

Contact: Kaitlin Dylnicki

Project: NASA PFAS - Dylnicki

Client Sample ID: IA-IDW01-20220512

Sample ID: 579915001 Matrix: Water

Collect Date: 12-MAY-22 13:15 Receive Date: 13-MAY-22

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	PF	DF	Analyst Date	Time Batch	Method
LCMSMS PFCs										
EPA 537.1Mod PFCs by	LC-MS/MS	S "As Received"								
11-Chloroeicosafluoro-3- oxaundecane-1-sulfonic acid (1 Cl-PF3OUdS)	U	ND	0.000620	0.00177	ug/L	0.0188	1	JLS 05/19/22	2037 2266747	1
Hexafluoropropyleneoxide dimeacid (HFPO-DA)(Gen-X)	er U	ND	0.000620	0.00188	ug/L	0.0188	1			
9-Chlorohexadecafluoro-3- oxanonane-1-sulfonic acid (9-C PF3ONS)	U l-	ND	0.000620	0.00175	ug/L	0.0188	1			
N-Ethylperfluorooctane sulfonamido acetic acid (NEtFOSAA)	U	ND	0.00124	0.00376	ug/L	0.0188	1			
N-Methylperfluorooctane sulfonamido acetic acid (NMeFOSAA)	U	ND	0.00124	0.00376	ug/L	0.0188	1			
Perfluorobutane sulfonic acid (PFBS)		0.00232	0.000620	0.00167	ug/L	0.0188	1			
Perfluorodecanoic acid (PFDA)	U	ND	0.000732	0.00188	ug/L	0.0188	1			
Perfluorododecanoic acid (PFD)		ND	0.000620	0.00188	ug/L	0.0188	1			
Perfluoroheptanoic acid (PFHpA	A)	0.00462	0.000620	0.00188	ug/L	0.0188	1			
Perfluorohexane sulfonic acid (PFHxS)		0.0128	0.000620	0.00171	ug/L	0.0188	1			
Perfluorohexanoic acid (PFHxA	.)	0.00725	0.000751	0.00188	ug/L	0.0188	1			
Perfluorononanoic acid (PFNA)	U	ND	0.000620	0.00188	ug/L	0.0188	1			
Perfluorooctane sulfonic acid (PFOS)		0.0208	0.000751	0.00188	ug/L	0.0188	1			
Perfluorooctanoic acid (PFOA)		0.0154	0.000751	0.00188	ug/L	0.0188	1			
Perfluorotetradecanoic acid (PFTDA)	U	ND	0.000751	0.00188	ug/L	0.0188	1			
Perfluorotridecanoic acid (PFTr	DA) U	ND	0.000620	0.00188	ug/L	0.0188	1			
Perfluoroundecanoic acid (PFUnDA)	U	ND	0.000620	0.00188	ug/L	0.0188	1			
4,8-Dioxa-3H-perfluorononanoi acid (DONA)	c U	ND	0.000620	0.00188	ug/L	0.0188	1			
The following Prep Meth-	ods were pe	erformed:								
Method	Description	1		Analyst	Date	,	Time	Prep Batch		
EPA 537.1 Mod, PFAS, Compl	PFCs Extracti	ion in Liquid		MM3	05/17/22		1102	2266743		

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

**Certificate of Analysis** 

Report Date: June 2, 2022

Company: Environmental Conservation Laboratories, Inc.

Address: 10775 Central Port Drive

Orlando, Florida 32824

Contact: Kaitlin Dylnicki

Project: NASA PFAS - Dylnicki

Client Sample ID: IA-IDW01-20220512 Project: ENCL00421 Sample ID: 579915001 Client ID: ENCL001

Parameter	Qualifier Result	DL	RL	Units	PF	DF Analyst Date	Time Batch	Method
The following Ar	nalytical Methods were performed:							
Method	Description			1	Analys	st Comments		
1	EPA 537 1 Mod. PFAS. Compliant with OSM Table	e B-15			-			

#### **Notes:**

Column headers are defined as follows:

DF: Dilution Factor

DL: Detection Limit

MDA: Minimum Detectable Activity

Lc/LC: Critical Level

PF: Prep Factor

RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 13 SDG: AF03378

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

# **QC Summary**

Report Date: June 2, 2022

Page 1 of 5

**Environmental Conservation Laboratories, Inc.** 

10775 Central Port Drive

Orlando, Florida Kaitlin Dylnicki

Workorder: 579915

**Contact:** 

Parmname	NOM	Sample Qual	QC	Units	RPD/D%	REC%	Range	Anlst	Date	Time
Perfluorinated Compounds Batch 2266747 ——										
QC1205093480 LCS 11-Chloroeicosafluoro-3- oxaundecane-1-sulfonic acid (11- Cl-PF3OUdS)	0.0198		0.0200	ug/L		101	(59%-144%)	) JLS	05/19/2	2 15:56
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	0.0210		0.0203	ug/L		97	(67%-136%)	)		
9-Chlorohexadecafluoro-3- oxanonane-1-sulfonic acid (9-Cl- PF3ONS)	0.0195		0.0187	ug/L		96	(68%-135%)	)		
Hexafluoropropyleneoxide dimer acid (HFPO-DA)(Gen-X)	0.0210		0.0216	ug/L		103	(67%-144%)	)		
N-Ethylperfluorooctane sulfonamido acetic acid (NEtFOSAA)	0.0210		0.0230	ug/L		109	(57%-139%)	)		
N-Methylperfluorooctane sulfonamido acetic acid (NMeFOSAA)	0.0210		0.0220	ug/L		105	(59%-145%)	)		
Perfluorobutane sulfonic acid (PFBS)	0.0186		0.0189	ug/L		102	(70%-144%)	)		
Perfluorodecanoic acid (PFDA)	0.0210		0.0198	ug/L		94	(65%-145%)	)		
Perfluorododecanoic acid (PFDOA)	0.0210		0.0218	ug/L		104	(65%-137%)	)		
Perfluoroheptanoic acid (PFHpA)	0.0210		0.0213	ug/L		101	(71%-133%)	)		
Perfluorohexane sulfonic acid (PFHxS)	0.0191		0.0234	ug/L		123	(67%-145%)	)		
Perfluorohexanoic acid (PFHxA)	0.0210		0.0242	ug/L		115	(70%-138%)	)		
Perfluorononanoic acid (PFNA)	0.0210		0.0212	ug/L		101	(69%-133%)	)		
Perfluorooctane sulfonic acid (PFOS)	0.0210		0.0213	ug/L		101	(65%-145%)	)		

Page 5 of 13 SDG: AF03378

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

# **QC Summary**

Workorder: 579915 Page 2 of 5

Parmname	NOM	Sample Qual	QC	Units	RPD/D%	REC%	Range A	nlst	Date Time
<b>Perfluorinated Compounds</b> Batch 2266747									
Perfluorooctanoic acid (PFOA)	0.0210		0.0221	ug/L		105	(66%-139%)	JLS	05/19/22 15:56
Perfluorotetradecanoic acid (PFTDA)	0.0210		0.0207	ug/L		99	(66%-138%)		
Perfluorotridecanoic acid (PFTrDA)	0.0210		0.0220	ug/L		105	(58%-140%)		
Perfluoroundecanoic acid (PFUnDA)	0.0210		0.0207	ug/L		99	(63%-135%)		
QC1205093481 LCSD 11-Chloroeicosafluoro-3- oxaundecane-1-sulfonic acid (11- Cl-PF3OUdS)	0.0196		0.0169	ug/L	17	86	(0%-27%)		05/19/22 16:23
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	0.0208		0.0186	ug/L	9	90	(0%-26%)		
9-Chlorohexadecafluoro-3- oxanonane-1-sulfonic acid (9-Cl- PF3ONS)	0.0194		0.0172	ug/L	8	89	(0%-26%)		
Hexafluoropropyleneoxide dimer acid (HFPO-DA)(Gen-X)	0.0208		0.0229	ug/L	6	110	(0%-25%)		
N-Ethylperfluorooctane sulfonamido acetic acid (NEtFOSAA)	0.0208		0.0213	ug/L	8	102	(0%-27%)		
N-Methylperfluorooctane sulfonamido acetic acid (NMeFOSAA)	0.0208		0.0201	ug/L	9	97	(0%-27%)		
Perfluorobutane sulfonic acid (PFBS)	0.0184		0.0179	ug/L	5	98	(0%-35%)		
Perfluorodecanoic acid (PFDA)	0.0208		0.0211	ug/L	6	102	(0%-26%)		
Perfluorododecanoic acid (PFDOA)	0.0208		0.0214	ug/L	2	103	(0%-26%)		
Perfluoroheptanoic acid (PFHpA)	0.0208		0.0237	ug/L	11	114	(0%-23%)		
Perfluorohexane sulfonic acid (PFHxS)	0.0190		0.0209	ug/L	11	110	(0%-27%)		

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

## **QC Summary**

Workorder: 579915 Page 3 of 5

Parmname	NOM	Sample Qual	QC	Units	RPD/D%	REC%	Range Anlst	Date Time
Perfluorinated Compounds		, and programmed the control of the						
Batch 2266747								
Perfluorohexanoic acid (PFHxA)	0.0208		0.0221	ug/L	9	106	(0%-27%) JL	S 05/19/22 16:23
Doubly arrangement is said (DENIA)	0.0209		0.0216	ng/I	2	104	(00/ 250/)	
Perfluorononanoic acid (PFNA)	0.0208		0.0216	ug/L	2	104	(0%-25%)	
Perfluorooctane sulfonic acid	0.0208		0.0185	ug/L	14	89	(0%-25%)	
(PFOS)								
Perfluorooctanoic acid (PFOA)	0.0208		0.0217	ug/L	2	104	(0%-27%)	
1 6111461 6 6 6 11 6 12 7	0.0200		0.0217	<i>ug,</i> 2	_	10.	(070 2170)	
Perfluorotetradecanoic acid (PFTDA)	0.0208		0.0220	ug/L	6	106	(0%-26%)	
(ITIDA)								
Perfluorotridecanoic acid	0.0208		0.0220	ug/L	0	106	(0%-31%)	
(PFTrDA)								
	0.0200		0.0225	77	0	100	(00/, 200/)	
Perfluoroundecanoic acid (PFUnDA)	0.0208		0.0227	ug/L	9	109	(0%-30%)	
(								
QC1205093479 MB		••		_				
11-Chloroeicosafluoro-3- oxaundecane-1-sulfonic acid (11-		U	ND	ug/L				05/19/22 15:47
Cl-PF3OUdS)								
4,8-Dioxa-3H-perfluorononanoic		U	ND	ug/L				
acid (DONA)								
			NID	/T				
9-Chlorohexadecafluoro-3- oxanonane-1-sulfonic acid (9-Cl-		U	ND	ug/L				
PF3ONS)								
Hexafluoropropyleneoxide dimer		U	ND	ug/L				
acid (HFPO-DA)(Gen-X)								
N-Ethylperfluorooctane		U	ND	, na/I				
sulfonamido acetic acid		O	ND	ug/L				
(NEtFOSAA)								
N-Methylperfluorooctane		U	ND	ug/L				
sulfonamido acetic acid (NMeFOSAA)								
Perfluorobutane sulfonic acid		U	ND	ug/L				
(PFBS)		C	ND	ug/L				
Perfluorodecanoic acid (PFDA)		U	ND	ug/L				

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

### **QC Summary**

579915 Workorder: Page 4 of 5 QC **Parmname NOM** Sample Qual Units RPD/D% REC% Range Anlst Date Time **Perfluorinated Compounds** Batch 2266747 Perfluorododecanoic acid (PFDOA) U ND ug/L JLS 05/19/22 15:47 U ND Perfluoroheptanoic acid (PFHpA) ug/L U Perfluorohexane sulfonic acid ND ug/L (PFHxS) U ND Perfluorohexanoic acid (PFHxA) ug/L U ND Perfluorononanoic acid (PFNA) ug/L U Perfluorooctane sulfonic acid ND ug/L (PFOS) U Perfluorooctanoic acid (PFOA) ND ug/L U ND Perfluorotetradecanoic acid ug/L (PFTDA) U ND Perfluorotridecanoic acid ug/L (PFTrDA) Perfluoroundecanoic acid U ND ug/L (PFUnDA)

#### **Notes:**

The Qualifiers in this report are defined as follows:

- ** Analyte is a surrogate compound
- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B The target analyte was detected in the associated blank.
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- E Concentration of the target analyte exceeds the instrument calibration range
- I The reported value is greater than or equal to the laboratory method detection limit but less than the laboratory practical quantitation limit.
- J The reported value is greater than or equal to the laboratory method detection limit but less than the laboratory practical quantitation limit.

Page 8 of 13 SDG: AF03378

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

### **QC Summary**

Page 5 of 5 Parmname **NOM** Sample Qual QC Units RPD/D% REC% Range Anlst Date Time

JNX Non Calibrated Compound

579915

- Organics--Presumptive evidence based on mass spectral library search to make a tentative identification of the analyte (TIC). Quantitation is based on nearest internal standard response factor
- N Presumptive evidence based on mass spectral library search to make a tentative identification of the analyte (TIC). Quantitation is based on nearest internal standard response factor
- N/A RPD or %Recovery limits do not apply.
- N1 See case narrative

Workorder:

- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Ρ Organics--The concentrations between the primary and confirmation columns/detectors is >40% different. For HPLC, the difference is >70%.
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- Sample held beyond the accepted holding time. This code shall be used if the value is derived from a sample that was prepared or analyzed after the Q approved holding time restrictions for sample preparation or analysis.
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- UJ Compound cannot be extracted
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ٨ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where the duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 9 of 13 SDG: AF03378

#### LCMSMS-Misc Technical Case Narrative Environmental Conservation Laboratories SDG #: AF03378

Work Order #: 579915

**Product:** The Extraction and Analysis of Per and Polyfluroalkyl Substances Using LCMSMS

Analytical Method: EPA 537.1 Mod, PFAS, Compliant with QSM Table B-15

**Analytical Procedure:** GL-OA-E-076 REV# 12 **Analytical Batches:** 2266747 and 2266743

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID# Client Sample Identification

579915001 IA-IDW01-20220512 1205093479 Method Blank (MB)

1205093480 Laboratory Control Sample (LCS)

1205093481 Laboratory Control Sample Duplicate (LCSD)

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

#### **Miscellaneous Information**

#### **Additional Comments**

Additional sample was not provided for matrix QC.

#### **Certification Statement**

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 10 of 13 SDG: AF03378

#### SUBCONTRACT ORDER

ENCO Orlando AF03378

### RECEIVING LABORATORY:

Stendard GELTAT

GEL Laboratories, Inc. (SC)

2040 Savage Road Charleston, SC 29407 Phone :(843) 556-8171

Fax: (843) 766-1178

Project State of Origin: Florida

**SENDING LABORATORY:** 

**ENCO Orlando** 

10775 Central Port Drive Orlando, FL 32824 Phone: 407.826.5314

Fax: 407.850.6945

Project Manager: Kaitlin Dylnicki

Sub Lab ID	Originating Lab ID	Client Matrix	Date Sampled	Sample Comments
Well-Market Market Mark	IA-IDW01-20220512	Ground Water	12-May-22 13:15	
Analysis	Due	Expires		Analysis Comments
PFAS	19-May-22 15:00	26-May-22 13:15		14 analyte 537 GELP21-0027

Containers Supplied: 250mLP (J) 250mLP (K) 5mLV (L)

Released By

Date

Received By

Date

Released By Date Received By Date

Page 1 of 1

लबा	Laboratories LLC
-----	------------------

SAMPLE RECEIPT & REVIEW FORM Client: SDG/AR/COC/Work Order: 5 4915/5 Received By: Date Received: FedEx Express FedEx Ground UPS Field Services Courier Carrier and Tracking Number 5583 3250 9070 Suspected Hazard Information ž *If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation. Hazard Class Shipped: IIN# If UN2910, Is the Radioactive Shipment Survey Compliant? Yes____No___ A)Shipped as a DOT Hazardous? B) Did the client designate the samples are to be COC notation or radioactive stickers on containers equal client designation. received as radioactive? Maximum Net Counts Observed* (Observed Counts - Area Background Counts): C) Did the RSO classify the samples as Classified as: Rad 1 Rad 2 Rad 3 radioactive? COC notation or hazard labels on containers equal client designation. D) Did the client designate samples are hazardous? If D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium E) Did the RSO identify possible hazards? N NA No Sample Receipt Criteria Comments/Qualifiers (Required for Non-Conforming Items) Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Shipping containers received intact and scaled? Chain of custody documents included Circle Applicable: Client contacted and provided COC with shipment? Preservation Method Wet Ice To Packs Dry ice None Other: Samples requiring cold preservation *all temperatures are recorded in Celsius TEMP: within  $(0 \le 6 \text{ deg. C})$ ?* Daily check performed and passed on IR Temperature Device Serial #:1R2-21 Secondary Temperature Device Serial # (If Applicable): temperature gun? Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Sample containers intact and sealed? ample ID's and Containers Affected: Samples requiring chemical preservation at proper pH? If Preservation added, Lot#: If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes___ No__ NA__ (If unknown, select No) Do any samples require Volatile 7 Are liquid VOA vials free of headspace? Yes___ No__ NA_ Analysis? Sample ID's and containers affected: ID's and tests affected: 8 Samples received within holding time? ID's and containers affected: Sample ID's on COC match ID's on Date & time on COC match date & time Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) on bottles? Circle Applicable: No container count on COC Other (describe) Number of containers received match number indicated on COC? Are sample containers identifiable as GEL provided by use of GEL labels? COC form is properly signed in Circle Applicable: Not relinquished Other (describe) relinquished/received sections? Comments (Use Continuation Form if needed):

GL-CHL-SR-001 Rev 7

PM (or PMA) review; Initials

List of current GEL Certifications as of 02 June 2022

Alabama Alaska Alaska Drinking Water	42200 17–018
	17-018
Alaska Drinking Water	
	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	90129
Kentucky Wastewater	90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122022-4
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2019–165
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-22-20
Utah NELAP	SC000122021-36
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

# **ANALYTICAL REPORT**

### PREPARED FOR

Attn: Teresa Amentt Jennings AECOM Technical Services Inc. 150 North Orange Avenue Suite 200 Orlando, Florida 32801

Generated 11/29/2022 6:46:42 PM

## **JOB DESCRIPTION**

NASA KSC Industrial Area SDG NUMBER EHF

### **JOB NUMBER**

670-9611-1

Eurofins Orlando 481 Newburyport Avenue Altamonte Springs FL 32701

## **Eurofins Orlando**

#### **Job Notes**

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

### **Authorization**

Generated 11/29/2022 6:46:42 PM

Authorized for release by Kaitlin Dylnicki, Project Manager kaitlin.dylnicki@et.eurofinsus.com (407)339-5984 2

8

9

10

12

13

15

Laboratory Job ID: 670-9611-1 SDG: EHF

# **Table of Contents**

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	11
Lab Chronicle	12
Certification Summary	13
Method Summary	14
Sample Summary	15
Chain of Custody	16
Receipt Checklists	17

3

4

6

8

10

11

13

14

15

### **Definitions/Glossary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-9611-1

SDG: EHF

#### **Qualifiers**

#### **GC/MS VOA**

Qualifier **Qualifier Description** 

Indicates that the compound was analyzed for but not detected.

#### **Glossary**

Abbreviation These commonly used abbreviations may or may not be present	in this report.
--------------------------------------------------------------------------	-----------------

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER** 

Dil Fac **Dilution Factor** 

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

**PQL Practical Quantitation Limit** 

**PRES** Presumptive QC **Quality Control** 

Relative Error Ratio (Radiochemistry) **RER** 

Reporting Limit or Requested Limit (Radiochemistry) RL

**RPD** Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

**TNTC** Too Numerous To Count

**Eurofins Orlando** 

#### **Case Narrative**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-9611-1

SDG: EHF

Job ID: 670-9611-1

**Laboratory: Eurofins Orlando** 

**Narrative** 

Job Narrative 670-9611-1

#### Comments

No additional comments.

#### Receipt

The samples were received on 11/15/2022 3:30 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.5° C.

#### GC/MS VOA

Method 8260B: The continuing calibration verification (CCV) associated with batch 670-12318 recovered above the upper control limit for Vinyl chloride. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data har been reported. The associated sample is impacted: (CCVIS 670-12318/3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **VOA Prep**

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

### **Detection Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-9611-1

SDG: EHF

Client Sample ID: EHF-MW0001-025.0-20221115 Lab Sample ID: 670-9611-1

No Detections.

Client Sample ID: EHF-MW0004-017.5-20221115 Lab Sample ID: 670-9611-2

Analyte	Result Qualifier	PQL	MDL Unit	Dil Fac D	Method	Prep Type
Vinyl chloride	5.4	1.0	0.50 ug/L		8260B	Total/NA

Client Sample ID: EHF-MW0005-020.0-20221115 Lab Sample ID: 670-9611-3

No Detections.

Lab Sample ID: 670-9611-4 Client Sample ID: EHF-TB01-20221115

No Detections.

5

Job ID: 670-9611-1 SDG: EHF

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

-----I- ID- 070 0044 4

Client Sample ID: EHF-MW0001-025.0-20221115

Lab Sample ID: 670-9611-1 Matrix: Water

Date Collected: 11/15/22 10:31 Date Received: 11/15/22 15:30

Method: SW846 8260B - Vo	_	Compoun Qualifier	ds (GC/MS)	MDL	Unit	D	Prepared	Analvzed	Dil Fac
Vinyl chloride	0.50		1.0		ug/L	<u>-</u> .		11/23/22 22:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		80 - 120					11/23/22 22:57	1
4-Bromofluorobenzene (Surr)	97		80 - 120					11/23/22 22:57	1
Dibromofluoromethane (Surr)	98		80 - 120					11/23/22 22:57	1

Client Sample ID: EHF-MW0004-017.5-20221115

Lab Sample ID: 670-9611-2

Matrix: Water

Date Collected: 11/15/22 11:49 Date Received: 11/15/22 15:30

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	5.4		1.0	0.50	ug/L			11/28/22 15:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		80 - 120			•		11/28/22 15:52	1
4-Bromofluorobenzene (Surr)	97		80 - 120					11/28/22 15:52	1
Dibromofluoromethane (Surr)	93		80 - 120					11/28/22 15:52	1

Client Sample ID: EHF-MW0005-020.0-20221115

Lab Sample ID: 670-9611-3

Matrix: Water

Date Collected: 11/15/22 11:10 Date Received: 11/15/22 15:30

Method: SW846 8260B - Vo	latile Organic	Compoun	ds (GC/MS)						
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.50	U	1.0	0.50	ug/L			11/23/22 23:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100	-	80 - 120			•		11/23/22 23:37	1
4-Bromofluorobenzene (Surr)	97		80 - 120					11/23/22 23:37	1
Dibromofluoromethane (Surr)	99		80 - 120					11/23/22 23:37	1

Client Sample ID: EHF-TB01-20221115

Lab Sample ID: 670-9611-4

Matrix: Water

Date Collected: 11/15/22 10:00 Date Received: 11/15/22 15:30

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.50	U	1.0	0.50	ug/L			11/23/22 23:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		80 - 120					11/23/22 23:58	1
4-Bromofluorobenzene (Surr)	97		80 - 120					11/23/22 23:58	1
Dibromofluoromethane (Surr)	100		80 - 120					11/23/22 23:58	1

### **Surrogate Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-9611-1

SDG: EHF

### Method: 8260B - Volatile Organic Compounds (GC/MS)

**Matrix: Water Prep Type: Total/NA** 

			Pe	rcent Surro	gate Reco
		TOL	BFB	DBFM	
Lab Sample ID	Client Sample ID	(80-120)	(80-120)	(80-120)	
670-9547-P-1 MS	Matrix Spike	101	98	99	
670-9611-1	EHF-MW0001-025.0-20221115	99	97	98	
670-9611-2	EHF-MW0004-017.5-20221115	97	97	93	
670-9611-3	EHF-MW0005-020.0-20221115	100	97	99	
670-9611-4	EHF-TB01-20221115	101	97	100	
670-9772-C-1 DU	Duplicate	100	99	97	
670-9963-D-1 MS	Matrix Spike	98	95	94	
670-9963-D-1 MSD	Matrix Spike Duplicate	99	97	95	
LCS 670-12318/4	Lab Control Sample	101	97	99	
LCS 670-12445/4	Lab Control Sample	99	98	92	
MB 670-12318/6	Method Blank	100	97	99	
MB 670-12445/6	Method Blank	96	94	93	
	Method Blank				

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-9611-1

Client Sample ID: Method Blank

**Client Sample ID: Matrix Spike** 

50 - 150

Prep Type: Total/NA

SDG: EHF

### Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 670-12318/6

**Matrix: Water** 

**Analysis Batch: 12318** 

	Prep Type: Total/NA

MB MB Analyte Result Qualifier PQL **MDL** Unit Prepared Dil Fac Analyzed Vinyl chloride 0.50 ug/L 11/23/22 17:31 0.50 U 1.0

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	100		80 - 120	11/23/22 17:31	1
4-Bromofluorobenzene (Surr)	97		80 - 120	11/23/22 17:31	1
Dibromofluoromethane (Surr)	99		80 - 120	11/23/22 17:31	1

Lab Sample ID: LCS 670-12318/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA **Matrix: Water** 

**Analysis Batch: 12318** 

		Spike	LCS	LCS				%Rec	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl chloride	 	20.0	25.6		ug/L		128	50 - 150	

LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 101 80 - 120 97 80 - 120 4-Bromofluorobenzene (Surr) 80 - 120 Dibromofluoromethane (Surr) 99

Lab Sample ID: 670-9547-P-1 MS

**Matrix: Water** 

Vinyl chloride

Analysis Batch: 12318					
	Sample Sample	Spike	MS MS	%Rec	
Analyte	Result Qualifier	Added	Result Qualifier Unit	D %Rec Limits	

27.5

ug/L

20.0

MS MS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 101 80 - 120 4-Bromofluorobenzene (Surr) 98 80 - 120 Dibromofluoromethane (Surr) 99 80 - 120

0.50 U

Lab Sample ID: 670-9772-C-1 DU **Client Sample ID: Duplicate** Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 12318** 

	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RP	)	Limit
Vinyl chloride	0.50	U	 0.50	U	ug/L			5 -	

	DU DU								
Surrogate	%Recovery	Qualifier	Limits						
Toluene-d8 (Surr)	100		80 - 120						
4-Bromofluorobenzene (Surr)	99		80 - 120						
Dibromofluoromethane (Surr)	97		80 - 120						

**Eurofins Orlando** 

Job ID: 670-9611-1

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

SDG: EHF

### Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 670-12445/6 **Client Sample ID: Method Blank** 

**Matrix: Water** 

**Analysis Batch: 12445** 

Prep Type: Total/NA

MB MB PQL Analyte Result Qualifier **MDL** Unit Prepared Analyzed Dil Fac D Vinyl chloride 11/28/22 11:08 0.50 U 1.0 0.50 ug/L

MB MB

Surrogate	%Recovery	Qualifier	Limits	Pi	repared	Analyzed	Dil Fac	
Toluene-d8 (Surr)	96		80 - 120			11/28/22 11:08	1	
4-Bromofluorobenzene (Surr)	94		80 - 120			11/28/22 11:08	1	
Dibromofluoromethane (Surr)	93		80 - 120			11/28/22 11:08	1	

Lab Sample ID: LCS 670-12445/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 12445** 

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits 20.0 Vinyl chloride 23.7 ug/L 118 50 - 150

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		80 - 120
4-Bromofluorobenzene (Surr)	98		80 - 120
Dibromofluoromethane (Surr)	92		80 - 120

Lab Sample ID: 670-9963-D-1 MS Client Sample ID: Matrix Spike Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 12445** 

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Vinyl chloride 0.50 U 20.0 24.2 ug/L 121 50 - 150

MS MS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	98		80 - 120
4-Bromofluorobenzene (Surr)	95		80 - 120
Dibromofluoromethane (Surr)	94		80 - 120

Lab Sample ID: 670-9963-D-1 MSD **Client Sample ID: Matrix Spike Duplicate Matrix: Water** Prep Type: Total/NA

**Analysis Batch: 12445** 

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Vinyl chloride	0.50	U	20.0	22.8		ug/L		114	50 - 150	6	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		80 - 120
4-Bromofluorobenzene (Surr)	97		80 - 120
Dibromofluoromethane (Surr)	95		80 - 120

**Eurofins Orlando** 

### **QC Association Summary**

Client: AECOM Technical Services Inc.
Project/Site: NASA KSC Industrial Area

Job ID: 670-9611-1 SDG: EHF

### **GC/MS VOA**

#### **Analysis Batch: 12318**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-9611-1	EHF-MW0001-025.0-20221115	Total/NA	Water	8260B	
670-9611-3	EHF-MW0005-020.0-20221115	Total/NA	Water	8260B	
670-9611-4	EHF-TB01-20221115	Total/NA	Water	8260B	
MB 670-12318/6	Method Blank	Total/NA	Water	8260B	
LCS 670-12318/4	Lab Control Sample	Total/NA	Water	8260B	
670-9547-P-1 MS	Matrix Spike	Total/NA	Water	8260B	
670-9772-C-1 DU	Duplicate	Total/NA	Water	8260B	

#### **Analysis Batch: 12445**

<b>Lab Sample ID</b> 670-9611-2	Client Sample ID EHF-MW0004-017.5-20221115	Prep Type Total/NA	Matrix Water	Method 8260B	Prep Batch
MB 670-12445/6	Method Blank	Total/NA	Water	8260B	
LCS 670-12445/4	Lab Control Sample	Total/NA	Water	8260B	
670-9963-D-1 MS	Matrix Spike	Total/NA	Water	8260B	
670-9963-D-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	

3

4

6

9

10

13

14

15

#### **Lab Chronicle**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

SDG: EHF

Job ID: 670-9611-1

Client Sample ID: EHF-MW0001-025.0-20221115

Lab Sample ID: 670-9611-1

**Matrix: Water** 

10

Date Collected: 11/15/22 10:31 Date Received: 11/15/22 15:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	12318	K1P	EET ORL	11/23/22 22:57

Client Sample ID: EHF-MW0004-017.5-20221115

Lab Sample ID: 670-9611-2

**Matrix: Water** 

Date Collected: 11/15/22 11:49 Date Received: 11/15/22 15:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B			12445	K1P	EET ORL	11/28/22 15:52

Lab Sample ID: 670-9611-3 Client Sample ID: EHF-MW0005-020.0-20221115 Date Collected: 11/15/22 11:10 **Matrix: Water** 

Date Received: 11/15/22 15:30

Batch **Batch** Dilution Batch **Prepared** or Analyzed **Prep Type** Method **Factor Number Analyst** Type Run Lab 11/23/22 23:37 EET ORL Total/NA Analysis 8260B 12318 K1P

Client Sample ID: EHF-TB01-20221115 Lab Sample ID: 670-9611-4

Date Collected: 11/15/22 10:00 **Matrix: Water** 

Date Received: 11/15/22 15:30

Batch **Batch** Dilution Batch **Prepared Prep Type** Method Run **Factor Number Analyst** or Analyzed Type Lab Analysis 8260B 12318 K1P EET ORL 11/23/22 23:58 Total/NA

**Laboratory References:** 

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984

**Eurofins Orlando** 

## **Accreditation/Certification Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-9611-1

SDG: EHF

## **Laboratory: Eurofins Orlando**

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	<b>Expiration Date</b>
Florida	NFI AP	F83018	06-30-23

## **Method Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-9611-1

SDG: EHF

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	EET ORL
5030C	Purge and Trap	SW846	EET ORL

#### **Protocol References:**

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### **Laboratory References:**

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984

## **Sample Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-9611-1

SDG: EHF

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
670-9611-1	EHF-MW0001-025.0-20221115	Water	11/15/22 10:31	11/15/22 15:30
670-9611-2	EHF-MW0004-017.5-20221115	Water	11/15/22 11:49	11/15/22 15:30
670-9611-3	EHF-MW0005-020.0-20221115	Water	11/15/22 11:10	11/15/22 15:30
670-9611-4	EHF-TB01-20221115	Water	11/15/22 10:00	11/15/22 15:30

Altamonte Springs, FL 32701 Phone: 407-339-5984 Fax: 407-260-6110

**Eurofins Orlando** 481 Newburyport Avenue

: eurofins

Carrier Tracking No(s):

M - Hexane
N - None
O - ASNAC2
P - NA2CAS
Q - NA2SCO3
R - NA2SCO3
S - NA2SCO3
S - NA2SCO4
T - TSP Dodecahydrate Special Instructions/Note: Ver: 06/08/2021 2 - other (specify) U - Acetone V - MCAA W - pH 4-5 Y - Trizma Months Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month) Preservation Codes: COC No: 670-2831-1007.1 A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
F - MaHSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid Page 1 of 1 l - Ice J - DI Water K - EDTA L - EDA Archive For Total Number of containers 2 Date/Time: lethod of Shipment Disposal By Lab State of Origin: **Analysis Requested** 670-9611 Chain of Custody 安 Sooler Temperature(s) °C and Other Remarks Special Instructions/QC Requirements: Lab PM: Dylnicki, Kaitlin E-Mail: Kaitlin dylnicki@et.eurofinsus.com Return To Client eceived by: Received by: Received by: 8560B - (MOD) VC **Z** (oM to seY) GSM/SM mtores Time: Field Filtered Sample (Yes or No) Company Company BT=Tissue, A=Air) (W=water, S=solid, O=waste/oil, Preservation Code: Water Water Water Water Matrix Company Type (C=comp, G=grab) Radiological Sample G E 1550 J T ∆ Yes ∆ No Sampler Dystra Slater 407-766- 0747 Sample 641 2 000 1231 3 Date: Unknown 11/11/11 FAT Requested (days): Due Date Requested: Sample Date 11/15/12 11 18/22 11/18/22 wo#: 60610905 Project #: 67001282 11/52 Date/Time: 138224 Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No.: 150 North Orange Avenue Suite 200 teresa.amentt.jennings@aecom.com aret aret AECOM Technical Services Inc. EHF-MW0004-017.5-202211 | EHF-MW0001-025.0-2022111 Possible Hazard Identification EHF-MW0005-020.0-2022111/ NASA KSC Industrial Area Empty Kit Relinquished by: Teresa Amentt Jennings Custody Seals Intact: △ Yes △ No Client Information Sample Identification EHF-TB&1 -20221111 919-461-1282(Tel) Non-Hazard inquished by: linquished by: linquished by State, Zip: FL, 32801 Orlando

## **Login Sample Receipt Checklist**

Client: AECOM Technical Services Inc.

Job Number: 670-9611-1

SDG Number: EHF

11/29/2022

Login Number: 9611 List Source: Eurofins Orlando

List Number: 1

Creator: Hartley, Tyler

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

**Eurofins Orlando** 

## **ANALYTICAL REPORT**

## PREPARED FOR

Attn: Teresa Amentt Jennings AECOM Technical Services Inc. 150 North Orange Avenue Suite 200 Orlando, Florida 32801

Generated 11/29/2022 1:42:36 PM

## **JOB DESCRIPTION**

NASA KSC Industrial Area SDG NUMBER Engineering Delvelopment Laboratory

## **JOB NUMBER**

670-9604-1

Eurofins Orlando 481 Newburyport Avenue Altamonte Springs FL 32701

## **Eurofins Orlando**

### **Job Notes**

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

### **Authorization**

Generated 11/29/2022 1:42:36 PM

Authorized for release by Kaitlin Dylnicki, Project Manager kaitlin.dylnicki@et.eurofinsus.com (407)339-5984 А

<u>:</u>

6

9

10

4.0

13

14

Laboratory Job ID: 670-9604-1 SDG: Engineering Delvelopment Laboratory

## **Table of Contents**

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	11
Lab Chronicle	12
Certification Summary	13
Method Summary	14
Sample Summary	15
Chain of Custody	16
Receipt Checklists	17

### **Definitions/Glossary**

Client: AECOM Technical Services Inc.

Job ID: 670-9604-1

Project/Site: NASA KSC Industrial Area

SDG: Engineering Delvelopment Laboratory

3

### **Qualifiers**

**GC/MS VOA** 

Qualifier Qualifier Description

U Indicates that the compound was analyzed for but not detected.

**Glossary** 

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

**Eurofins Orlando** 

Page 4 of 17

11/29/2022

### **Case Narrative**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-9604-1 SDG: Engineering Delvelopment Laboratory

Job ID: 670-9604-1

**Laboratory: Eurofins Orlando** 

Narrative

Job Narrative 670-9604-1

#### Comments

No additional comments.

#### Receipt

The samples were received on 11/15/2022 3:30 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.5° C.

#### **GC/MS VOA**

Method 8260B: The continuing calibration verification (CCV) associated with batch 670-12318 recovered above the upper control limit for Vinyl chloride. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data har been reported. The associated sample is impacted: (CCVIS 670-12318/3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### **VOA Prep**

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

## **Detection Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-9604-1 SDG: Engineering Delvelopment Laboratory

## Client Sample ID: EDL-MW0004-035.0-20221115

Lab	Sampl	e ID:	670-9	9604-1

Analyte	Result Qualifier	PQL	MDL Unit	Dil Fac D	Method	Prep Type
Vinyl chloride	2.1	1.0	0.50 ug/L	1	8260B	Total/NA

## Client Sample ID: EDL-MW0006R-035.0-20221115

Lab	Sami	nle	ID:	670	-9604-2
	Ouili		<b>.</b>	010	

Analyte	Result Qualifier	PQL	MDL Unit	Dil Fac D	Method	Prep Type
Vinyl chloride	1.5	1.0	0.50 ug/L		8260B	Total/NA

Client Sample ID: EDL-TB-202211 Lab Sample ID: 670-9604-3

No Detections.

7

8

10

12

13

## **Client Sample Results**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-9604-1 SDG: Engineering Delvelopment Laboratory

SDG. Engineering Delvelopment Laboratory

Client Sample ID: EDL-MW0004-035.0-20221115

Date Collected: 11/15/22 13:00 Date Received: 11/15/22 15:30 Lab Sample ID: 670-9604-1

Matrix: WG

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	2.1		1.0	0.50	ug/L			11/28/22 15:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		80 - 120					11/28/22 15:01	1
4-Bromofluorobenzene (Surr)	95		80 - 120					11/28/22 15:01	1
Dibromofluoromethane (Surr)	93		80 - 120					11/28/22 15:01	1

Client Sample ID: EDL-MW0006R-035.0-20221115 Lab Sample ID: 670-9604-2

Date Collected: 11/15/22 13:36 Date Received: 11/15/22 15:30

Method: SW846 8260B - Volatile Organic Compounds (GC/MS) Result Qualifier Analyte PQL **MDL** Unit D Prepared Analyzed Dil Fac Vinyl chloride 1.0 0.50 ug/L 11/28/22 15:18 1.5 Surrogate %Recovery Qualifier Dil Fac Limits Prepared Analyzed Toluene-d8 (Surr) 96 80 - 120 11/28/22 15:18 4-Bromofluorobenzene (Surr) 95 80 - 120 11/28/22 15:18 Dibromofluoromethane (Surr) 95 80 - 120 11/28/22 15:18

Client Sample ID: EDL-TB-202211 Lab Sample ID: 670-9604-3

Date Collected: 11/15/22 12:30

Date Received: 11/15/22 15:30

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.50	U	1.0	0.50	ug/L			11/23/22 20:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		80 - 120			•		11/23/22 20:14	1
4-Bromofluorobenzene (Surr)	99		80 - 120					11/23/22 20:14	1
Dibromofluoromethane (Surr)	99		80 - 120					11/23/22 20:14	1

3

<del>+</del>

6

9

**Matrix: WG** 

Matrix: WQ

11

13

14

## **Surrogate Summary**

Client: AECOM Technical Services Inc. Job ID: 670-9604-1 Project/Site: NASA KSC Industrial Area SDG: Engineering Delvelopment Laboratory

## Method: 8260B - Volatile Organic Compounds (GC/MS)

**Matrix: Water** Prep Type: Total/NA

			Pe	ercent Surrog	ate Recovery (Acceptance Limits)
		TOL	BFB	DBFM	
Lab Sample ID	Client Sample ID	(80-120)	(80-120)	(80-120)	
670-9547-P-1 MS	Matrix Spike	101	98	99	
670-9772-C-1 DU	Duplicate	100	99	97	
670-9963-D-1 MS	Matrix Spike	98	95	94	
670-9963-D-1 MSD	Matrix Spike Duplicate	99	97	95	
LCS 670-12318/4	Lab Control Sample	101	97	99	
LCS 670-12445/4	Lab Control Sample	99	98	92	
MB 670-12318/6	Method Blank	100	97	99	
MB 670-12445/6	Method Blank	96	94	93	

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

## Method: 8260B - Volatile Organic Compounds (GC/MS)

Prep Type: Total/NA **Matrix: WG** 

		Percent Surrogate Recovery (Acceptance Limits)							
		TOL	BFB	DBFM					
Lab Sample ID	Client Sample ID	(80-120)	(80-120)	(80-120)					
670-9604-1	EDL-MW0004-035.0-20221115	99	95	93					
670-9604-2	EDL-MW0006R-035.0-2022111 5	96	95	95					

**Surrogate Legend** 

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

### Method: 8260B - Volatile Organic Compounds (GC/MS)

**Matrix: WQ** Prep Type: Total/NA

_			Pe	ercent Surre
		TOL	BFB	DBFM
Lab Sample ID	Client Sample ID	(80-120)	(80-120)	(80-120)
670-9604-3	EDL-TB-202211	99	99	99

Surrogate Legend

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Page 8 of 17

Client: AECOM Technical Services Inc. Job ID: 670-9604-1 Project/Site: NASA KSC Industrial Area

SDG: Engineering Delvelopment Laboratory

## Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 670-12318/6

**Matrix: Water** 

**Analysis Batch: 12318** 

Client Sample ID: Method Blank
Prep Type: Total/NA

MB MB Result Qualifier PQL **MDL** Unit Dil Fac Analyte Prepared Analyzed Vinyl chloride 0.50 U 1.0 0.50 ug/L 11/23/22 17:31

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 100 80 - 120 11/23/22 17:31 4-Bromofluorobenzene (Surr) 97 80 - 120 11/23/22 17:31 Dibromofluoromethane (Surr) 99 80 - 120 11/23/22 17:31

Lab Sample ID: LCS 670-12318/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

**Analysis Batch: 12318** 

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl chloride	20.0	25.6		ug/L		128	50 - 150	

LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 101 80 - 120 97 80 - 120 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) 99 80 - 120

Ma

**Analysis Batch: 12318** 

ab Sample ID: 670-9547-P-1 WS	Client Sample ID: Matrix Spike
atrix: Water	Prep Type: Total/NA

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Unit D %Rec Limits Vinyl chloride 0.50 U 20.0 27.5 ug/L 137 50 - 150

MS MS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 101 80 - 120 4-Bromofluorobenzene (Surr) 98 80 - 120 Dibromofluoromethane (Surr) 99 80 - 120

Lab Sample ID: 670-9772-C-1 DU **Client Sample ID: Duplicate** Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 12318** 

	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RP	)	Limit
Vinyl chloride	0.50	U	 0.50	U	ug/L			5 -	

	DU	DU	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	100		80 - 120
4-Bromofluorobenzene (Surr)	99		80 - 120
Dibromofluoromethane (Surr)	97		80 - 120

**Eurofins Orlando** 

Job ID: 670-9604-1

SDG: Engineering Delvelopment Laboratory

## Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Method Blank Lab Sample ID: MB 670-12445/6

**Matrix: Water** 

**Analysis Batch: 12445** 

Client: AECOM Technical Services Inc.

Project/Site: NASA KSC Industrial Area

•	
	Prep Type: Total/NA

MB MB Analyte Result Qualifier PQL **MDL** Unit Analyzed Dil Fac Prepared Vinyl chloride 11/28/22 11:08 0.50 U 1.0 0.50 ug/L

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 80 - 120 Toluene-d8 (Surr) 96 11/28/22 11:08 4-Bromofluorobenzene (Surr) 94 80 - 120 11/28/22 11:08 Dibromofluoromethane (Surr) 93 80 - 120 11/28/22 11:08

Lab Sample ID: LCS 670-12445/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

**Analysis Batch: 12445** 

		Spike	LCS	LCS				%Rec	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl chloride		20.0	23.7		ug/L		118	50 - 150	

LCS LCS %Recovery Qualifier Surrogate Limits Toluene-d8 (Surr) 99 80 - 120 80 - 120 4-Bromofluorobenzene (Surr) 98 80 - 120 Dibromofluoromethane (Surr) 92

Client Sample ID: Matrix Spike Lab Sample ID: 670-9963-D-1 MS Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 12445** 

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl chloride	0.50	U	20.0	24.2		ug/L		121	50 - 150	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	98		80 - 120
4-Bromofluorobenzene (Surr)	95		80 - 120
Dibromofluoromethane (Surr)	94		80 - 120

Lab Sample ID: 670-9963-D-1 MSD **Client Sample ID: Matrix Spike Duplicate** Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 12445** 

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Vinyl chloride	0.50	U	20.0	22.8		ug/L		114	50 - 150	6	30

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		80 - 120
4-Bromofluorobenzene (Surr)	97		80 - 120
Dibromofluoromethane (Surr)	95		80 - 120

**Eurofins Orlando** 

## **QC Association Summary**

Client: AECOM Technical Services Inc.

Project/Site: NASA KSC Industrial Area

Job ID: 670-9604-1

SDG: Engineering Delvelopment Laboratory

## **GC/MS VOA**

### **Analysis Batch: 12318**

<b>Lab Sample ID</b> 670-9604-3	Client Sample ID EDL-TB-202211	Prep Type Total/NA	Matrix WQ	Method 8260B	Prep Batch
MB 670-12318/6	Method Blank	Total/NA	Water	8260B	
LCS 670-12318/4	Lab Control Sample	Total/NA	Water	8260B	
670-9547-P-1 MS	Matrix Spike	Total/NA	Water	8260B	
670-9772-C-1 DU	Duplicate	Total/NA	Water	8260B	

### **Analysis Batch: 12445**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-9604-1	EDL-MW0004-035.0-20221115	Total/NA	WG	8260B	
670-9604-2	EDL-MW0006R-035.0-20221115	Total/NA	WG	8260B	
MB 670-12445/6	Method Blank	Total/NA	Water	8260B	
LCS 670-12445/4	Lab Control Sample	Total/NA	Water	8260B	
670-9963-D-1 MS	Matrix Spike	Total/NA	Water	8260B	
670-9963-D-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	

4

0

9

10

12

13

14

### **Lab Chronicle**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-9604-1 SDG: Engineering Delvelopment Laboratory

Client Sample ID: EDL-MW0004-035.0-20221115

Lab Sample ID: 670-9604-1 Date Collected: 11/15/22 13:00

Matrix: WG

Date Received: 11/15/22 15:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	12445	K1P	EET ORL	11/28/22 15:01

Client Sample ID: EDL-MW0006R-035.0-20221115 Lab Sample ID: 670-9604-2

Date Collected: 11/15/22 13:36 **Matrix: WG** 

Date Received: 11/15/22 15:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	12445	K1P	EET ORL	11/28/22 15:18

Lab Sample ID: 670-9604-3 Client Sample ID: EDL-TB-202211

Date Collected: 11/15/22 12:30 **Matrix: WQ** 

Date Received: 11/15/22 15:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	12318	K1P	EET ORL	11/23/22 20:14

**Laboratory References:** 

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984

## **Accreditation/Certification Summary**

Client: AECOM Technical Services Inc.

Project/Site: NASA KSC Industrial Area

Job ID: 670-9604-1

SDG: Engineering Delvelopment Laboratory

### **Laboratory: Eurofins Orlando**

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Florida	NELAP	F83018	06-30-23

9

3

4

7

12

4 A

## **Method Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

**Method Description** 

Purge and Trap

Volatile Organic Compounds (GC/MS)

Job ID: 670-9604-1 SDG: Engineering Delvelopment Laboratory

**EET ORL** 

Protocol	Laboratory
SW846	EET ORL

SW846

#### **Protocol References:**

Method

8260B

5030C

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### **Laboratory References:**

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984

3

4

**O** 

7

9

11

13

14

## **Sample Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-9604-1 SDG: Engineering Delvelopment Laboratory

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
670-9604-1	EDL-MW0004-035.0-20221115	WG	11/15/22 13:00	11/15/22 15:30
670-9604-2	EDL-MW0006R-035.0-20221115	WG	11/15/22 13:36	11/15/22 15:30
670-9604-3	EDL-TB-202211	WQ	11/15/22 12:30	11/15/22 15:30

(3) Preservative added: 4 DEG C=Cool to 4 degrees, Dank=Store in Darkness, store cool at 4 degrees C H2SO4=hydrogen sulfate, H2SO4 <2=Adjust to pH < 2 with sulfaric acid, H3DO4=Phosphoric acid, H3DO4 <2=Adjust to pH < 2 with hibric acid, H3DO4S=Sodium bisulfate preservation, HNO3 <2=Adjust to pH < 2 with nitric acid, MeOH=Methanol preservation, Na2O3S2=Sodium thiosulfate, Na2O3S2 3/gal=Add 3 mL 10% sodium thiosulfate per-gal, Na2O3S2 4/4oz=4 drops of 10% sodium thiosulfate to 4 oz, NaHSO4 <2=Adjust to pH > 12 with sodium hydroxide, NaOH > 12 with sodium hydroxide, NaOH > 12 with sodium hydroxide, NaOH > 9=Adjust to pH > 9 with sodium hydroxide, VitC 0.6/500=0.6 g of ascorbic acid to 500mLs, ZnAct 2/500=Add 2 mL of zinc acetate to 500mLs, ZnAct 2/500=Add 2 mL of zinc acetate to 500mLs, ZnAct 2/500=Add 2 mL of zinc acetate to 500mLs, ZnAct 2/500=Add 2 mL of zinc acetate to 500mLs, ZnAct 2/500=Add 2 mL of zinc acetate to 500mLs, ZnAct 2/500=Add 2 mL of zinc acetate to 500mLs, ZnAct 2/500=Add 3 mL of zinc acetate to 500mLs, ZnAct 2/500=Add 3 mL of zinc acetate to 500mLs, ZnAct 2/500=Add 3 mL of zinc acetate to 500mLs, ZnAct 2/500=Add 3 mL of zinc acetate to 500mLs, ZnAct 2/500=Add 3 mL of zinc acetate to 500mLs, ZnAct 2/500=Add 3 mL of zinc 200mLs, ZnAct 2/500=Add 3 mL of zinc 500mLs, ZnAc

(2) Sample Type: AB=Ambient Bik, EB=Equipment Bik, FB=Field Bik, FD=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Trip Bik

			CHAIN (	CHAIN OF CUSTODY AND ANALYTICAL REQ	LYTICAL RE	QUEST RECORD	CORD		COC No.			Page: 1 of	1			
Standard	eurof		NASA KSC - In	dustrial Area					PO No. 138	8224		Project No. 60610905.Subs 20.	121-23-Subs 2021-	23 Phase:		
One-size			Engineering De	evelopment Laboratory					Send Invoi	1	uctions in MSA # 195-24	1548-GV03	EDD to:	Jennifer Chastair		ntt Jennings
Color   Control   Color   Colo		TO No.: 80KSC	.019F0071	AECOM Project Manager:		Chris Marsha	II cc: Greg I	(usel	Deliver Sar	mple Kits To:	AECOM Depot, 523	18th Street, Orlando	Report to:	Jennifer Chastair	1	ntt Jennings
Delivation   Europhy   Delivation   Transport of Transp	Sampler/Phone #		72) 631-7426						Deliver Sar	mples To:	Eurofins Orlando		Site-Spicific	WS#15 from QAPP	: 15-36	
Charles   December   Contains	Lab Name:	Eurofins			Turnaround Tin	e(specify):	Str	indard 14 day	Sample	: Analysis	Requested (Ente	r number of containe	rs for each t	est)		
ED-190006-035-020211    ED-190006-035-02021    ED-19006-035-02021    ED-190006-035-02021    ED-190006-035-02021    ED-190006-035-02021    ED-190006-035-02021    ED-190006-035-02021		mple ID /s_samp_code)		Location ID (sys_loc_code)	Date (үүүүммрр)	Time (Military) (hhmm)		ample G=Grab (2) C=Comp		고 B0928WS Vd abholnde by SW8260B						Comments
ED-TB-20211   C   ED-TB-20211   C   ED-TB   202111   C   1335   WG   N   G   3   3   3   4   4   4   4   4   4   4		)L-MW0004-035.0-202.	21115	EDL-MW0004	2022111	رمي	WG		ю	^ m						
EBC-TB-202211   EDC-TB   2022211   123	THE STATE OF THE S	N-MW0006R-035.0-20	12211 (5	EDL-MW0006R	202211 (5	1336	WG		м	ъ						
Field Comments:	E	л-тв-202211		EDL-TB	20221113	1230	WQ		7	2						
Field Comments:																
Field Comments:  Report only per QAPP WS #15-36  Refinquished by Ganture   Pake   Time   Received by (signeture)   C   C   C   C   C   C   C   C   C				670-9604 Che	ain of Custod											
Reinquistre by Ignature 1 Time Received by (signature) Date Time Samples Iced? (check) Yes No Samples Iced. (check) Yes No Samples I	Field Commen	<b>bs:</b> APP WS #15-36				Тар Сотте	nts:						Sample Shi	oment and Delive	ry Details	
1 Tracking No: 2 3 3 (1) AA=Ambient air, AQ=Air quality control, ASB=Asbestos, CK=Caulk, DS=Storm drain sediment, GS=Soil gas, IC=IDW concrete, IDD=IDW soil, IDW=IDW water, LF=Free Product, MA=Mastic, PC=Paint Chips, SC=Cement/Concrete, SE=Sediment, SL=Sludge, SO=Sequent control, SSD=Subsurface sediment, SU=Surface soil (<6 in), SW=Swab or wipe, TA=Animal tissue, TQ=Tissue quality control, WG=Ground water, WB=Coccan water, WB=C	Relinquished by	gnatue)		11/5/22 15	Time	Received by (	Signature)		(1)	Date Date	1536		check) Yesny:	1 1		
(1) AA=Ambient air, AQ=Air quality control, ASB=Asbestos, CK=Caulk, DS=Storm drain sediment, GS=Soil gas, IC=IDW Concrete, IDD=IDW soil, IDW=IDW water, IF=Free Product, MA=Mastic, PC=Paint Chips, SC=Cement/Concrete, SE=Sediment, SL=Sludge, SO=Spessive and the sediment, SU=Surface soil (<6 in), SW=Swab or wipe, TA=Animal tissue, TQ=Tissue quality control, WG=Ground water, WI=Leachate, WQ=Coran water, WP=Drinking water, WP=Coran water,	3					3						Tracking No:				
CHICAL WATER WITH WATER	(1) AA=Ambient SQ=Soil/Solid que effluent. WS=Sun	air, AQ=Air quality contro ility control, SSD=Subsurf. face water. WU=Storm wa	ol, ASB=Asbestos, face sediment, SU	CK=Caulk, DS=Storm drain sed =Surface soil (<6 in), SW=Swab water	iment, GS=Soil g.	ns, IC=IDW Co.	ncrete, IDD= Plant tissue,	IDW Solid, IDS: TQ=Tissue quali	=IDW soil, IC ity control, W	W=IDW Wate G=Ground wa	er, LF=Free Product, MA ter, WL=Leachate, WO:	=Mastic, PC=Paint Chips, S =Ocean water, WP=Drinkir	SC=Cement/Con	crete, SE=Sedimen Nater quality contro	t, SL=Sludge, SO:	=Soil,

## Login Sample Receipt Checklist

Client: AECOM Technical Services Inc.

Job Number: 670-9604-1 SDG Number: Engineering Delvelopment Laboratory

List Source: Eurofins Orlando

Login Number: 9604 List Number: 1

Creator: Hartley, Tyler

orcator. Harticy, Tyler		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

9

6

8

10

12

13

# **ANALYTICAL REPORT**

## PREPARED FOR

Attn: Teresa Amentt Jennings AECOM Technical Services Inc. 150 North Orange Avenue Suite 200 Orlando Florida 32801

Generated 11/23/2022 11:06:33 AM

## **JOB DESCRIPTION**

NASA KSC Industrial Area SDG NUMBER GSSP

## **JOB NUMBER**

670-9210-1



## 2

## **Table of Contents**

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Surrogate Summary	12
QC Sample Results	14
QC Association Summary	18
Lab Chronicle	20
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Receipt Checklists	28
A P	20

3

6

0

9

11

12

14

### **Definitions/Glossary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-9210-1

SDG: GSSP

### **Qualifiers**

### **GC/MS VOA**

Qualifier Qualifier Description

The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U Indicates that the compound was analyzed for but not detected.

**GC/MS Semi VOA** 

Qualifier Qualifier Description

U Indicates that the compound was analyzed for but not detected.

**Glossary** 

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

6

7

a

4 4

12

1/

13

**Eurofins Orlando** 

### **Case Narrative**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-9210-1

SDG: GSSP

Job ID: 670-9210-1

**Laboratory: Eurofins Orlando** 

Narrative

Job Narrative 670-9210-1

#### Receipt

The samples were received on 11/9/2022 8:20 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.3°C

### GC/MS VOA

Method 8260B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 670-11690 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8260B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 670-11756 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

### GC/MS Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 670-9210-1

SDG: GSSP

5

Client Sample ID: GSSP-MW0034-006.0-20221108 Lab Sample ID: 670-9210-1 No Detections Client Sample ID: GSSP-MW0035-020-20221108 Lab Sample ID: 670-9210-2 **MDL** Unit Dil Fac D Method Analyte Result Qualifier **PQL Prep Type** 8260B Vinyl chloride 2.9 1.0 0.50 ug/L Total/NA Client Sample ID: GSSP-MW0053-020.0-20221108 Lab Sample ID: 670-9210-3 Analyte Result Qualifier **PQL MDL** Unit Dil Fac D Method **Prep Type** Vinyl chloride 75 1.0 0.50 ug/L 8260B Total/NA Client Sample ID: GSSP-MW0059-018.5-20221108 Lab Sample ID: 670-9210-4 No Detections. Client Sample ID: GSSP-MW0060-012.5-20221108 Lab Sample ID: 670-9210-5 No Detections. Client Sample ID: GSSP-MW0061-018.5-20221108 Lab Sample ID: 670-9210-6 No Detections Client Sample ID: GSSP-MW0062-012.5-20221108 Lab Sample ID: 670-9210-7 Analyte Result Qualifier **PQL MDL** Unit Dil Fac D Method **Prep Type** Vinyl chloride 5.6 1.0 0.50 ug/L 8260B Total/NA Client Sample ID: GSSP-MW0063-018.5-20221108 Lab Sample ID: 670-9210-8 Analyte **PQL** MDL Unit Dil Fac D Method Result Qualifier **Prep Type** Vinyl chloride 0.74 Ī 1.0 0.50 ug/L 8260B Total/NA Client Sample ID: GSSP-TB01-20221108 Lab Sample ID: 670-9210-9 No Detections. Client Sample ID: GSSP-MW0036-035.0-20221108 Lab Sample ID: 670-9210-10 No Detections. Client Sample ID: GSSP-MW0024R-020.0-20221108 Lab Sample ID: 670-9210-11 Analyte Result Qualifier **PQL MDL** Unit Dil Fac D Method **Prep Type** 

Client Sample ID: GSSP-MW0013-003.5-20221108	Lab Sample ID: 670-9210-12

0.18

0.091 ug/L

18

No Detections.

Naphthalene

Client: AECOM Technical Services Inc.

Project/Site: NASA KSC Industrial Area

Client Sample ID: GSSP-MW0019-020.0-20221108 Lab Sample ID: 670-9210-13

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.78	l –	1.0	0.50	ug/L	1	_	8260B	Total/NA
trans-1,2-Dichloroethene	0.74	I	1.0	0.50	ug/L	1		8260B	Total/NA
Vinyl chloride	93		1.0	0.50	ug/L	1		8260B	Total/NA

This Detection Summary does not include radiochemical test results.

**Eurofins Orlando** 

Total/NA

8270D SIM

## **Detection Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-9210-1 SDG: GSSP

## Client Sample ID: GSSP-MW0020-030.0-20221108

Lab	Sample	e ID:	670-	9210	<b>-14</b>

Analyte	Result Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
trans-1,2-Dichloroethene	1.5	1.0	0.50	ug/L	1	_	8260B	Total/NA
Vinyl chloride	230	5.0	2.5	ug/L	5		8260B	Total/NA

No Detections.

## **Client Sample Results**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

SDG: GSSP Client Sample ID: GSSP-MW0034-006.0-20221108

Lab Sample ID: 670-9210-1

Job ID: 670-9210-1

Date Collected: 11/08/22 12:30 Matrix: Ground Water Date Received: 11/09/22 08:20

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 20:29	1
Tetrachloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 20:29	1
trans-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 20:29	1
Trichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 20:29	1
Vinyl chloride	0.50	U	1.0	0.50	ug/L			11/18/22 20:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		80 - 120					11/18/22 20:29	1

Client Sample ID: GSSP-MW0035-020-20221108 Lab Sample ID: 670-9210-2

Date Collected: 11/08/22 12:56 **Matrix: Ground Water** 

Date Received: 11/09/22 08:20

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 20:46	1
Tetrachloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 20:46	1
trans-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 20:46	1
Trichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 20:46	1
Vinyl chloride	2.9		1.0	0.50	ug/L			11/18/22 20:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96		80 - 120					11/18/22 20:46	1

Method: SW846 8270D SIM -	<b>Semivolatile</b>	Organic C	ompounds (	GC/MS	SIM)				
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.091	U	0.18	0.091	ug/L		11/09/22 15:33	11/20/22 12:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate 2-methylnaphthalene-d10	<b>%Recovery</b> 73	Qualifier	Limits 50 - 170					Analyzed 11/20/22 12:15	Dil Fac

Client Sample ID: GSSP-MW0053-020.0-20221108 Lab Sample ID: 670-9210-3 **Matrix: Ground Water** 

Date Collected: 11/08/22 14:11 Date Received: 11/09/22 08:20

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 21:03	1
Tetrachloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 21:03	1
trans-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 21:03	1
Trichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 21:03	1
Vinyl chloride	75		1.0	0.50	ug/L			11/18/22 21:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		80 - 120					11/18/22 21:03	1

Method: SW846 8270D SIM - S	Semivolatile	Organic C	ompounds (	GC/MS S	SIM)				
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.091	U	0.18	0.091	ug/L		11/09/22 15:33	11/20/22 12:34	1

**Eurofins Orlando** 

Page 7 of 29

## **Client Sample Results**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

SDG: GSSP

Job ID: 670-9210-1

Date Collected: 11/08/22 14:11 Date Received: 11/09/22 08:20 Matrix: Ground Water

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-methylnaphthalene-d10	103		50 - 170	11/09/22 15:33	11/20/22 12:34	1
Fluoranthene-d10 (Surr)	89		50 - 170	11/09/22 15:33	11/20/22 12:34	1

Date Collected: 11/08/22 12:54 Date Received: 11/09/22 08:20 Matrix: Ground Water

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 20:53	1
Tetrachloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 20:53	1
trans-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 20:53	1
Trichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 20:53	1
Vinyl chloride	0.50	U	1.0	0.50	ug/L			11/18/22 20:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		80 - 120			-		11/18/22 20:53	1

Date Collected: 11/08/22 13:30 Matrix: Ground Water

Date Received: 11/09/22 08:20

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 21:11	1
Tetrachloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 21:11	1
trans-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 21:11	1
Trichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 21:11	1
Vinyl chloride	0.50	U	1.0	0.50	ug/L			11/18/22 21:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		80 - 120			-		11/18/22 21:11	1

Client Sample ID: GSSP-MW0061-018.5-20221108

Lab Sample ID: 670-9210-6

Date Collected: 11/08/22 14:04

Matrix: Ground Water

Date Received: 11/09/22 08:20

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 21:28	1
Tetrachloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 21:28	1
trans-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 21:28	1
Trichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 21:28	1
Vinyl chloride	0.50	U	1.0	0.50	ug/L			11/18/22 21:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		80 - 120					11/18/22 21:28	1

**Eurofins Orlando** 

3

5

6

9

11

16

14

15

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Date Collected: 11/08/22 11:05

SDG: GSSP

Job ID: 670-9210-1

Lab Sample ID: 670-9210-7

**Matrix: Ground Water** 

Date Received: 11/09/22 08:20

Client Sample ID: GSSP-MW0062-012.5-20221108

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 21:45	1
Tetrachloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 21:45	1
trans-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 21:45	1
Trichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 21:45	1
Vinyl chloride	5.6		1.0	0.50	ug/L			11/18/22 21:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		80 - 120					11/18/22 21:45	1

Client Sample ID: GSSP-MW0063-018.5-20221108

Lab Sample ID: 670-9210-8 Date Collected: 11/08/22 12:13 **Matrix: Ground Water** 

Date Received: 11/09/22 08:20

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 22:02	1
Tetrachloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 22:02	1
trans-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 22:02	1
Trichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 22:02	1
Vinyl chloride	0.74	I	1.0	0.50	ug/L			11/18/22 22:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		80 - 120					11/18/22 22:02	1

Client Sample ID: GSSP-TB01-20221108

Lab Sample ID: 670-9210-9 Date Collected: 11/08/22 07:00 **Matrix: Trip Blank** 

Date Received: 11/09/22 08:20

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 22:19	1
Tetrachloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 22:19	1
trans-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 22:19	1
Trichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 22:19	1
Vinyl chloride	0.50	U	1.0	0.50	ug/L			11/18/22 22:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)			80 - 120					11/18/22 22:19	1

Client Sample ID: GSSP-MW0036-035.0-20221108

Lab Sample ID: 670-9210-10 Date Collected: 11/08/22 12:07 **Matrix: Ground Water** 

Date Received: 11/09/22 08:20

Method: SW846 8260B - Vola	tile Organic	Compounds	(GC/MS)						
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 22:36	1
Tetrachloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 22:36	1
trans-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 22:36	1
Trichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 22:36	1
Vinyl chloride	0.50	U	1.0	0.50	ug/L			11/18/22 22:36	1

**Eurofins Orlando** 

Page 9 of 29

### **Client Sample Results**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Client Sample ID: GSSP-MW0036-035.0-20221108

Lab Sample ID: 670-9210-10 **Matrix: Ground Water** 

Job ID: 670-9210-1

SDG: GSSP

Date Collected: 11/08/22 12:07 Date Received: 11/09/22 08:20

Surrogate %Recovery Qualifier Limits Analyzed Dil Fac Prepared Toluene-d8 (Surr) 101 80 - 120 11/18/22 22:36

Client Sample ID: GSSP-MW0024R-020.0-20221108 Lab Sample ID: 670-9210-11

**Matrix: Ground Water** Date Collected: 11/08/22 13:37

Date Received: 11/09/22 08:20

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 22:54	1
Tetrachloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 22:54	1
trans-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 22:54	1
Trichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 22:54	1
Vinyl chloride	0.50	U	1.0	0.50	ug/L			11/18/22 22:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		80 - 120					11/18/22 22:54	1

Analyte		Qualifier	Compounds ( PQL	MDL	•	D	Prepared	Analyzed	Dil Fac
Naphthalene	18		0.18	0.091	ug/L		11/09/22 15:33	11/20/22 12:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-methylnaphthalene-d10	132		50 - 170				11/09/22 15:33	11/20/22 12:54	1
Fluoranthene-d10 (Surr)	123		50 - 170				11/00/22 15:33	11/20/22 12:54	1

Lab Sample ID: 670-9210-12 Client Sample ID: GSSP-MW0013-003.5-20221108

Date Collected: 11/08/22 14:41 **Matrix: Ground Water** 

Date Received: 11/09/22 08:20

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 23:11	1
Tetrachloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 23:11	1
trans-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 23:11	1
Trichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 23:11	1
Vinyl chloride	0.50	U	1.0	0.50	ug/L			11/18/22 23:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		80 - 120					11/18/22 23:11	1

Client Sample ID: GSSP-MW0019-020.0-20221108 Lab Sample ID: 670-9210-13

Date Collected: 11/08/22 15:25 **Matrix: Ground Water** 

Date Received: 11/09/22 08:20

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.78	T T	1.0	0.50	ug/L			11/18/22 23:28	1
Tetrachloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 23:28	1
trans-1,2-Dichloroethene	0.74	I	1.0	0.50	ug/L			11/18/22 23:28	1
Trichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 23:28	1
Vinyl chloride	93		1.0	0.50	ug/L			11/18/22 23:28	1

**Eurofins Orlando** 

Page 10 of 29

## **Client Sample Results**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

SDG: GSSP

Lab Sample ID: 670-9210-13

Job ID: 670-9210-1

Client Sample ID: GSSP-MW0019-020.0-20221108

**Matrix: Ground Water** 

Date Collected: 11/08/22 15:25 Date Received: 11/09/22 08:20

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 103 80 - 120 11/18/22 23:28

Client Sample ID: GSSP-MW0020-030.0-20221108 Lab Sample ID: 670-9210-14

Date Collected: 11/08/22 14:56 **Matrix: Ground Water** 

Date Received: 11/09/22 08:20

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 23:45	1
Tetrachloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 23:45	1
trans-1,2-Dichloroethene	1.5		1.0	0.50	ug/L			11/18/22 23:45	1
Trichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 23:45	1
Vinyl chloride	230		5.0	2.5	ug/L			11/21/22 16:17	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		80 - 120					11/18/22 23:45	1
Toluene-d8 (Surr)	102		80 - 120					11/21/22 16:17	5

Lab Sample ID: 670-9210-15 Client Sample ID: GSSP-MW0044R-030.0-20221108

Date Collected: 11/08/22 15:14 **Matrix: Ground Water** 

Date Received: 11/09/22 08:20

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/19/22 00:02	1
Tetrachloroethene	0.50	U	1.0	0.50	ug/L			11/19/22 00:02	1
trans-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/19/22 00:02	1
Trichloroethene	0.50	U	1.0	0.50	ug/L			11/19/22 00:02	1
Vinyl chloride	0.50	U	1.0	0.50	ug/L			11/19/22 00:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		80 - 120			-		11/19/22 00:02	1

11/23/2022

## **Surrogate Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-9210-1

SDG: GSSP

## Method: 8260B - Volatile Organic Compounds (GC/MS)

**Matrix: Ground Water Prep Type: Total/NA** 

		Percent Surrogate Recovery (Acceptance Limi
	TOL	
Sample ID Client Sample ID	(80-120)	
0210-1 GSSP-MW0034-006.0-20221108	98	
210-2 GSSP-MW0035-020-20221108	96	
2210-3 GSSP-MW0053-020.0-2022110 8	98	
9210-4 GSSP-MW0059-018.5-2022110 8	101	
210-5 GSSP-MW0060-012.5-2022110 8	102	
9210-6 GSSP-MW0061-018.5-2022110 8	102	
9210-7 GSSP-MW0062-012.5-2022110 8	101	
9210-8 GSSP-MW0063-018.5-2022110 8	100	
9210-10 GSSP-MW0036-035.0-2022110 8	101	
9210-11 GSSP-MW0024R-020.0-202211 08	101	
9210-12 GSSP-MW0013-003.5-2022110 8	102	
210-13 GSSP-MW0019-020.0-2022110 8	103	
210-14 GSSP-MW0020-030.0-2022110 8	101	
210-14 GSSP-MW0020-030.0-2022110 8	102	
210-15 GSSP-MW0044R-030.0-202211 08	101	
urrogate Legend		

Method: 8260B - Volatile Organic Compounds (GC/MS)

**Matrix: Trip Blank** Prep Type: Total/NA

_			Percent Surrogate Recovery (Acceptance Limits)
		TOL	
Lab Sample ID	Client Sample ID	(80-120)	
670-9210-9	GSSP- TB01-20221108	101	
Surrogate Legend			
TOL = Toluene-d8 (	Surr)		

## Method: 8260B - Volatile Organic Compounds (GC/MS)

**Matrix: Water** Prep Type: Total/NA

_			Percent Surrogate Recov
		TOL	
Lab Sample ID	Client Sample ID	(80-120)	
660-125053-C-4 MS	Matrix Spike	97	
660-125053-C-4 MSD	Matrix Spike Duplicate	98	
670-9256-B-1 MS	Matrix Spike	96	
670-9256-B-1 MSD	Matrix Spike Duplicate	90	
670-9976-B-1 MS	Matrix Spike	102	
670-9976-B-1 MSD	Matrix Spike Duplicate	101	

**Eurofins Orlando** 

Page 12 of 29

## **Surrogate Summary**

Client: AECOM Technical Services Inc. Job ID: 670-9210-1 Project/Site: NASA KSC Industrial Area SDG: GSSP

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

**Matrix: Water** Prep Type: Total/NA

		TOL	
Lab Sample ID	Client Sample ID	(80-120)	
LCS 670-11690/4	Lab Control Sample	100	
LCS 670-11756/7	Lab Control Sample	98	
LCS 670-11879/4	Lab Control Sample	101	
MB 670-11690/6	Method Blank	101	
MB 670-11756/9	Method Blank	95	
MB 670-11879/6	Method Blank	100	
Surrogate Legend			
TOL = Toluene-d8 (	Surr)		

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

**Matrix: Ground Water** Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)						
		2MN	FLN10						
Lab Sample ID	Client Sample ID	(50-170)	(50-170)						
670-9210-2	GSSP-MW0035-020-20221108	73	67						
670-9210-3	GSSP-MW0053-020.0-2022110 8	103	89						
670-9210-11	GSSP-MW0024R-020.0-202211 08	132	123						
Surrogate Legend									
2MN = 2-methylnaphtha	alene-d10								
FLN10 = Fluoranthene-	d10 (Surr)								

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

**Matrix: Water** Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)					
Lab Sample ID	Client Sample ID	2MN (50-170)	FLN10 (50-170)				
LCS 670-10751/1-A	Lab Control Sample	110	109				
LCSD 670-10751/2-A	Lab Control Sample Dup	113	111				
MB 670-10751/3-A	Method Blank	122	127				
Surrogate Legend							
2MN = 2-methylnaphth	nalene-d10						
FLN10 = Fluoranthene	e-d10 (Surr)						

**Eurofins Orlando** 

Page 13 of 29

## **QC Sample Results**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-9210-1

SDG: GSSP

### Method: 8260B - Volatile Organic Compounds (GC/MS)

%Recovery Qualifier

101

Lab Sample ID: MB 670-11690/6

**Matrix: Water** 

**Analysis Batch: 11690** 

<b>Client Sample ID: Method Blank</b>
Prep Type: Total/NA

	МВ	МВ							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 18:02	1
Tetrachloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 18:02	1
trans-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 18:02	1
Trichloroethene	0.50	U	1.0	0.50	ug/L			11/18/22 18:02	1
Vinyl chloride	0.50	U	1.0	0.50	ug/L			11/18/22 18:02	1
	МВ	МВ							

Limits

0...:

80 - 120

Lab Sample ID: LCS 670-11690/4

**Matrix: Water** 

Toluene-d8 (Surr)

Surrogate

**Analysis Batch: 11690** 

Client Sample ID:	: Lab Control Sample
	Prep Type: Total/NA

Prepared

Analyzed

11/18/22 18:02

	<b>Spike</b>	LUS	LUS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene	20.0	21.7		ug/L		109	50 - 150	
Tetrachloroethene	20.0	22.0		ug/L		110	50 - 150	
trans-1,2-Dichloroethene	20.0	21.3		ug/L		106	50 - 150	
Trichloroethene	20.0	21.5		ug/L		108	50 - 150	
Vinyl chloride	20.0	20.4		ug/L		102	50 - 150	

LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 100 80 - 120

Lab Sample ID: 670-9256-B-1 MS

**Matrix: Water** 

**Analysis Batch: 11690** 

Client Sample ID: Matrix Spike	
Prep Type: Total/NA	

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene	0.50	U	20.0	21.2		ug/L		106	50 - 150	
Tetrachloroethene	0.50	U	20.0	20.3		ug/L		101	50 - 150	
trans-1,2-Dichloroethene	0.50	U	20.0	19.3		ug/L		97	50 - 150	
Trichloroethene	0.50	U	20.0	20.4		ug/L		102	50 - 150	
Vinyl chloride	0.50	U	20.0	21.6		ug/L		108	50 - 150	
	MS	MS								

Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 96 80 - 120

Lab Sample ID: 670-9256-B-1 MSD

**Matrix: Water** 

**Analysis Batch: 11690** 

Client Sample ID	: Matrix Spike Duplicate
	Prep Type: Total/NA

RPD Sample Sample Spike MSD MSD %Rec Result Qualifier Added RPD Limit Analyte Result Qualifier Unit D %Rec Limits cis-1,2-Dichloroethene 0.50 U 20.0 26.5 50 - 150 30 ug/L 133 22 Tetrachloroethene 0.50 U 20.0 25.4 ug/L 127 50 - 150 23 30 trans-1,2-Dichloroethene 20.0 25.8 30 0.50 U ug/L 129 50 - 150 29 Trichloroethene 0.50 U 20.0 26.9 ug/L 135 50 - 150 27 30 Vinyl chloride 0.50 U 20.0 25.4 ug/L 127 50 - 150 16 30

**Eurofins Orlando** 

Page 14 of 29

Dil Fac

Client: AECOM Technical Services Inc.

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

**Client Sample ID: Matrix Spike Duplicate** 

Job ID: 670-9210-1 SDG: GSSP

Prep Type: Total/NA

**Matrix: Water Analysis Batch: 11690** 

Project/Site: NASA KSC Industrial Area

Lab Sample ID: 670-9256-B-1 MSD

MSD MSD

%Recovery Qualifier Limits Surrogate Toluene-d8 (Surr) 90 80 - 120

Lab Sample ID: MB 670-11756/9 Client Sample ID: Method Blank

**Matrix: Water** 

**Analysis Batch: 11756** 

Prep Type: Total/NA

MB MB Result Qualifier PQL MDL Unit **Analyte** Prepared Analyzed Dil Fac 11/18/22 17:23 cis-1,2-Dichloroethene 0.50 U 1.0 0.50 ug/L Tetrachloroethene 0.50 U 1.0 0.50 ug/L 11/18/22 17:23 trans-1,2-Dichloroethene 0.50 U 1.0 0.50 ug/L 11/18/22 17:23 Trichloroethene 0.50 U 1.0 0.50 ug/L 11/18/22 17:23 Vinyl chloride 0.50 U 1.0 0.50 ug/L 11/18/22 17:23

MB MB

Limits Dil Fac Surrogate %Recovery Qualifier Prepared Analyzed Toluene-d8 (Surr) 95 80 - 120 11/18/22 17:23

Lab Sample ID: LCS 670-11756/7

**Matrix: Water** 

**Analysis Batch: 11756** 

**Client Sample ID: Lab Control Sample Prep Type: Total/NA** 

LCS LCS Spike %Rec Added Result Qualifier Limits Analyte Unit %Rec cis-1,2-Dichloroethene 20.0 18.8 ug/L 94 50 - 150 Tetrachloroethene 20.0 17.6 ug/L 88 50 - 150 trans-1,2-Dichloroethene 20.0 16.6 ug/L 83 50 - 150 Trichloroethene 20.0 18.2 ug/L 91 50 - 150 Vinyl chloride 20.0 20.2 ug/L 101 50 - 150

LCS LCS

Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 98 80 - 120

Lab Sample ID: 660-125053-C-4 MS Client Sample ID: Matrix Spike

**Matrix: Water** 

**Analysis Batch: 11756** 

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tetrachloroethene	0.50	U	20.0	21.8		ug/L		109	50 - 150	
trans-1,2-Dichloroethene	1.0		20.0	21.8		ug/L		104	50 - 150	
Trichloroethene	0.50	U	20.0	23.2		ug/L		116	50 - 150	

MS MS

Surrogate %Recovery Qualifier Limits 80 - 120 Toluene-d8 (Surr) 97

Lab Sample ID: 660-125053-C-4 MSD Client Sample ID: Matrix Spike Duplicate

**Matrix: Water** 

**Analysis Batch: 11756** 

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Tetrachloroethene	0.50	U	20.0	21.7		ug/L		108	50 - 150	1	30

**Eurofins Orlando** 

Page 15 of 29

Prep Type: Total/NA

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-9210-1

SDG: GSSP

## Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 660-125053-C-4 MSD

**Matrix: Water** 

**Analysis Batch: 11756** 

**Client Sample ID: Matrix Spike Duplicate** 

Prep Type: Total/NA

MSD MSD %Rec **RPD** Sample Sample Spike Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit trans-1.2-Dichloroethene 1.0 20.0 21.0 ug/L 100 50 - 150 4 30 Trichloroethene 0.50 U 20.0 22.9 ug/L 115 50 - 150 30

MSD MSD

Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 98 80 - 120

Client Sample ID: Method Blank

Lab Sample ID: MB 670-11879/6

**Matrix: Water** 

cis-1,2-Dichloroethene

Tetrachloroethene

**Analyte** 

**Analysis Batch: 11879** 

Prep Type: Total/NA

MB MB Result Qualifier PQL **MDL** Unit D Prepared Analyzed Dil Fac 0.50 U 1.0 0.50 ug/L 11/21/22 10:45 0.50 U 1.0 0.50 ug/L 11/21/22 10:45

0.50 ug/L trans-1,2-Dichloroethene 0.50 U 1.0 11/21/22 10:45 0.50 U 11/21/22 10:45 Trichloroethene 1.0 0.50 ug/L 11/21/22 10:45 Vinyl chloride 0.50 U 1.0 0.50 ug/L

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 100 80 - 120 11/21/22 10:45

Lab Sample ID: LCS 670-11879/4

**Matrix: Water** 

**Analysis Batch: 11879** 

**Client Sample ID: Lab Control Sample** 

**Prep Type: Total/NA** 

LCS LCS %Rec Spike Analyte Added Result Qualifier Unit %Rec Limits cis-1,2-Dichloroethene 20.0 22.3 ug/L 112 50 - 150 Tetrachloroethene 20.0 21.9 ug/L 109 50 - 150trans-1.2-Dichloroethene 20.0 21.7 ug/L 108 50 - 150 Trichloroethene 50 - 150 20.0 22.3 ug/L 112 Vinyl chloride 20.0 19.3 ug/L 96 50 - 150

LCS LCS

%Recovery Qualifier Limits Surrogate 80 - 120 Toluene-d8 (Surr) 101

Lab Sample ID: 670-9976-B-1 MS

**Matrix: Water** 

Vinyl chloride

**Analysis Batch: 11879** 

Client Sample ID: Matrix Spike **Prep Type: Total/NA** 

50 - 150

119

Sample Sample MS MS %Rec Spike Result Qualifier **Analyte** Added Result Qualifier Unit %Rec Limits cis-1,2-Dichloroethene 0.50 U 20.0 26.4 ug/L 132 50 - 150 Tetrachloroethene 0.50 U 20.0 25.9 ug/L 129 50 - 150 trans-1,2-Dichloroethene 0.50 U 20.0 25.6 ug/L 128 50 - 150 ug/L Trichloroethene 0.50 U 20.0 27.0 135 50 - 150 20.0

23.8

ug/L

0.50 U MS MS

Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 102 80 - 120

**Eurofins Orlando** 

Page 16 of 29

11/23/2022

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-9210-1

SDG: GSSP

## Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 670-9976-B-1 MSD

**Matrix: Water** 

<b>Client Sample ID:</b>	Matrix Spike Duplicate
	Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
cis-1,2-Dichloroethene	0.50	U	20.0	25.2		ug/L		126	50 - 150	5	30
Tetrachloroethene	0.50	U	20.0	25.7		ug/L		129	50 - 150	1	30
trans-1,2-Dichloroethene	0.50	U	20.0	25.4		ug/L		127	50 - 150	1	30
Trichloroethene	0.50	U	20.0	26.1		ug/L		130	50 - 150	3	30
Vinyl chloride	0.50	U	20.0	23.5		ug/L		118	50 - 150	1	30
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
Toluene-d8 (Surr)	101		80 - 120								

## Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

MR MR

Lab Sample ID: MB 670-10751/3-A

**Matrix: Water** 

**Analysis Batch: 11836** 

**Client Sample ID: Method Blank** Prep Type: Total/NA Prep Batch: 10751

	IVID	IVID							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.091	U	0.18	0.091	ug/L		11/09/22 15:33	11/20/22 10:56	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-methylnaphthalene-d10	122		50 - 170				11/09/22 15:33	11/20/22 10:56	1
Fluoranthene-d10 (Surr)	127		50 - 170				11/09/22 15:33	11/20/22 10:56	1

Lab Sample ID: LCS 670-10751/1-A

**Analysis Batch: 11836** 

**Matrix: Water** 

**Client Sample ID: Lab Control Sample Prep Type: Total/NA** Prep Batch: 10751

LCS LCS %Rec Spike Analyte Added Result Qualifier Unit D %Rec Limits Naphthalene 3.64 3.55 50 - 170 ug/L

	LCS LCS	
Surrogate	%Recovery Qualifier	Limits
2-methylnaphthalene-d10	110	50 - 170
Fluoranthene-d10 (Surr)	109	50 - 170

100 100

Lab Sample II

**Matrix: Water** 

**Analysis Batch: 11836** 

ID: LCSD 670-10751/2-A	Client Sample ID: Lab Control Sample Dup
r	Prep Type: Total/NA
tch: 11836	Pren Batch: 10751

-	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	3.64	3.64		ug/L		100	50 - 170	2	30

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
2-methylnaphthalene-d10	113		50 - 170
Fluoranthene-d10 (Surr)	111		50 - 170

# **QC Association Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

**GC/MS VOA** 

**Analysis Batch: 11690** 

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-9210-4	GSSP-MW0059-018.5-20221108	Total/NA	Ground Water	8260B	
670-9210-5	GSSP-MW0060-012.5-20221108	Total/NA	<b>Ground Water</b>	8260B	
670-9210-6	GSSP-MW0061-018.5-20221108	Total/NA	<b>Ground Water</b>	8260B	
670-9210-7	GSSP-MW0062-012.5-20221108	Total/NA	Ground Water	8260B	
670-9210-8	GSSP-MW0063-018.5-20221108	Total/NA	<b>Ground Water</b>	8260B	
670-9210-9	GSSP- TB01-20221108	Total/NA	Trip Blank	8260B	
670-9210-10	GSSP-MW0036-035.0-20221108	Total/NA	Ground Water	8260B	
670-9210-11	GSSP-MW0024R-020.0-20221108	Total/NA	<b>Ground Water</b>	8260B	
670-9210-12	GSSP-MW0013-003.5-20221108	Total/NA	<b>Ground Water</b>	8260B	
670-9210-13	GSSP-MW0019-020.0-20221108	Total/NA	Ground Water	8260B	
670-9210-14	GSSP-MW0020-030.0-20221108	Total/NA	<b>Ground Water</b>	8260B	
670-9210-15	GSSP-MW0044R-030.0-20221108	Total/NA	<b>Ground Water</b>	8260B	
MB 670-11690/6	Method Blank	Total/NA	Water	8260B	
LCS 670-11690/4	Lab Control Sample	Total/NA	Water	8260B	
670-9256-B-1 MS	Matrix Spike	Total/NA	Water	8260B	

**Analysis Batch: 11756** 

Matrix Spike Duplicate

670-9256-B-1 MSD

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-9210-1	GSSP-MW0034-006.0-20221108	Total/NA	Ground Water	8260B	
670-9210-2	GSSP-MW0035-020-20221108	Total/NA	<b>Ground Water</b>	8260B	
670-9210-3	GSSP-MW0053-020.0-20221108	Total/NA	<b>Ground Water</b>	8260B	
MB 670-11756/9	Method Blank	Total/NA	Water	8260B	
LCS 670-11756/7	Lab Control Sample	Total/NA	Water	8260B	
660-125053-C-4 MS	Matrix Spike	Total/NA	Water	8260B	
660-125053-C-4 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	

Total/NA

Water

**Analysis Batch: 11879** 

Lab Sample ID 670-9210-14	Client Sample ID  GSSP-MW0020-030.0-20221108	Prep Type Total/NA	Matrix Ground Water	Method 8260B	Prep Batch
MB 670-11879/6	Method Blank	Total/NA	Water	8260B	
LCS 670-11879/4	Lab Control Sample	Total/NA	Water	8260B	
670-9976-B-1 MS	Matrix Spike	Total/NA	Water	8260B	
670-9976-B-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	

## **GC/MS Semi VOA**

Prep Batch: 10751

<b>Lab Sample ID</b> 670-9210-2	Client Sample ID GSSP-MW0035-020-20221108	Prep Type Total/NA	Matrix Ground Water	Method 3511	Prep Batch
670-9210-3	GSSP-MW0053-020.0-20221108	Total/NA	Ground Water	3511	
670-9210-11	GSSP-MW0024R-020.0-20221108	Total/NA	Ground Water	3511	
MB 670-10751/3-A	Method Blank	Total/NA	Water	3511	
LCS 670-10751/1-A	Lab Control Sample	Total/NA	Water	3511	
LCSD 670-10751/2-A	Lab Control Sample Dup	Total/NA	Water	3511	

**Analysis Batch: 11836** 

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-9210-2	GSSP-MW0035-020-20221108	Total/NA	Ground Water	8270D SIM	10751
670-9210-3	GSSP-MW0053-020.0-20221108	Total/NA	<b>Ground Water</b>	8270D SIM	10751
670-9210-11	GSSP-MW0024R-020.0-20221108	Total/NA	Ground Water	8270D SIM	10751

**Eurofins Orlando** 

8260B

Job ID: 670-9210-1

SDG: GSSP

# **QC Association Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-9210-1

SDG: GSSP

# GC/MS Semi VOA (Continued)

## **Analysis Batch: 11836 (Continued)**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 670-10751/3-A	Method Blank	Total/NA	Water	8270D SIM	10751
LCS 670-10751/1-A	Lab Control Sample	Total/NA	Water	8270D SIM	10751
LCSD 670-10751/2-A	Lab Control Sample Dup	Total/NA	Water	8270D SIM	10751

Job ID: 670-9210-1 SDG: GSSP

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Client Sample ID: GSSP-MW0034-006.0-20221108

Date Collected: 11/08/22 12:30 Date Received: 11/09/22 08:20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	11756	K1P	EET ORL	11/18/22 20:29

Client Sample ID: GSSP-MW0035-020-20221108

Date Collected: 11/08/22 12:56 Date Received: 11/09/22 08:20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	11756	K1P	EET ORL	11/18/22 20:46
Total/NA	Prep	3511			10751	ОН	EET ORL	11/09/22 15:33
Total/NA	Analysis	8270D SIM		1	11836	JI	EET ORL	11/20/22 12:15

Client Sample ID: GSSP-MW0053-020.0-20221108

Date Collected: 11/08/22 14:11 Date Received: 11/09/22 08:20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	11756	K1P	EET ORL	11/18/22 21:03
Total/NA	Prep	3511			10751	ОН	EET ORL	11/09/22 15:33
Total/NA	Analysis	8270D SIM		1	11836	JI	EET ORL	11/20/22 12:34

Client Sample ID: GSSP-MW0059-018.5-20221108

Date Collected: 11/08/22 12:54 Date Received: 11/09/22 08:20

Analysis

_							
	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Type	Method	Run	Factor	Number Analyst	Lab	or Analyzed

11690 K1P

8260B Client Sample ID: GSSP-MW0060-012.5-20221108

Date Collected: 11/08/22 13:30 Date Received: 11/09/22 08:20

Total/NA

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	11690	K1P	EET ORL	11/18/22 21:11

Client Sample ID: GSSP-MW0061-018.5-20221108

Date Collected: 11/08/22 14:04 Date Received: 11/09/22 08:20

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Type	Method	Run	Factor	Number Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B			11690 K1P	EET ORL	11/18/22 21:28

Lab Sample ID: 670-9210-1 **Matrix: Ground Water** 

**Matrix: Ground Water** 

**Matrix: Ground Water** 

**Matrix: Ground Water** 

**Matrix: Ground Water** 

**Matrix: Ground Water** 

Lab Sample ID: 670-9210-2

Lab Sample ID: 670-9210-3

Lab Sample ID: 670-9210-4

Lab Sample ID: 670-9210-5

Lab Sample ID: 670-9210-6

FFT ORI 11/18/22 20:53

**Eurofins Orlando** 

Job ID: 670-9210-1 SDG: GSSP

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

SDG: GSSP Lab Sample ID: 670-9210-7

Lab Sample ID: 670-9210-8

Lab Sample ID: 670-9210-9

Lab Sample ID: 670-9210-10

Lab Sample ID: 670-9210-11

Lab Sample ID: 670-9210-12

Lab Sample ID: 670-9210-13

**Matrix: Ground Water** 

**Matrix: Ground Water** 

**Matrix: Trip Blank** 

**Matrix: Ground Water** 

**Matrix: Ground Water** 

**Matrix: Ground Water** 

**Matrix: Ground Water** 

Client Sample ID: GSSP-MW0062-012.5-20221108

Date Collected: 11/08/22 11:05 Date Received: 11/09/22 08:20

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	11690	K1P	EET ORL	11/18/22 21:45

Client Sample ID: GSSP-MW0063-018.5-20221108

Date Collected: 11/08/22 12:13 Date Received: 11/09/22 08:20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B			11690	K1P	EET ORL	11/18/22 22:02

Client Sample ID: GSSP-TB01-20221108

Date Collected: 11/08/22 07:00 Date Received: 11/09/22 08:20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	11690	K1P	EET ORL	11/18/22 22:19

Client Sample ID: GSSP-MW0036-035.0-20221108

Date Collected: 11/08/22 12:07 Date Received: 11/09/22 08:20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	11690	K1P	EET ORL	11/18/22 22:36

Client Sample ID: GSSP-MW0024R-020.0-20221108

Date Collected: 11/08/22 13:37 Date Received: 11/09/22 08:20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	11690	K1P	EET ORL	11/18/22 22:54
Total/NA	Prep	3511			10751	ОН	EET ORL	11/09/22 15:33
Total/NA	Analysis	8270D SIM		1	11836	JI	EET ORL	11/20/22 12:54

Client Sample ID: GSSP-MW0013-003.5-20221108

Date Collected: 11/08/22 14:41 Date Received: 11/09/22 08:20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	11690	K1P	EET ORL	11/18/22 23:11

Client Sample ID: GSSP-MW0019-020.0-20221108

Date Collected: 11/08/22 15:25 Date Received: 11/09/22 08:20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	11690	K1P	EET ORL	11/18/22 23:28

**Eurofins Orlando** 

## **Lab Chronicle**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Client Sample ID: GSSP-MW0020-030.0-20221108

SDG: GSSP

Lab Sample ID: 670-9210-14

Job ID: 670-9210-1

**Matrix: Ground Water** 

Date Collected: 11/08/22 14:56 Date Received: 11/09/22 08:20

Batch Batch Dilution Batch Prepared Method Number Analyst or Analyzed **Prep Type** Type Run **Factor** Lab Total/NA Analysis 8260B 11690 K1P EET ORL 11/18/22 23:45 Total/NA **EET ORL** 11/21/22 16:17 Analysis 8260B 5 11879 K1P

Client Sample ID: GSSP-MW0044R-030.0-20221108 Lab Sample ID: 670-9210-15

Date Collected: 11/08/22 15:14 **Matrix: Ground Water** 

Date Received: 11/09/22 08:20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	11690	K1P	EET ORL	11/19/22 00:02

**Laboratory References:** 

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984

# **Accreditation/Certification Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-9210-1 SDG: GSSP

## **Laboratory: Eurofins Orlando**

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority Florida		<b>ogram</b> ELAP	E83018	Expiration Date 06-30-23
The following analyte the agency does not		ort, but the laboratory is not c	ertified by the governing authority.	This list may include analytes for wh
Analysis Method	Prep Method	Matrix	Analyte	
8270D SIM				

4

5

7

9

11

16

14

## **Method Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-9210-1

SDG: GSSP

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	EET ORL
8270D SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	EET ORL
3511	Microextraction of Organic Compounds	SW846	EET ORL
5030C	Purge and Trap	SW846	EET ORL

#### **Protocol References:**

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### **Laboratory References:**

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984

# **Sample Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

GSSP-MW0044R-030.0-20221108

670-9210-15

Job ID: 670-9210-1

SDG: GSSP

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
670-9210-1	GSSP-MW0034-006.0-20221108	Ground Water	11/08/22 12:30	11/09/22 08:20
670-9210-2	GSSP-MW0035-020-20221108	<b>Ground Water</b>	11/08/22 12:56	11/09/22 08:20
670-9210-3	GSSP-MW0053-020.0-20221108	Ground Water	11/08/22 14:11	11/09/22 08:20
670-9210-4	GSSP-MW0059-018.5-20221108	Ground Water	11/08/22 12:54	11/09/22 08:20
670-9210-5	GSSP-MW0060-012.5-20221108	<b>Ground Water</b>	11/08/22 13:30	11/09/22 08:20
670-9210-6	GSSP-MW0061-018.5-20221108	Ground Water	11/08/22 14:04	11/09/22 08:20
670-9210-7	GSSP-MW0062-012.5-20221108	Ground Water	11/08/22 11:05	11/09/22 08:20
670-9210-8	GSSP-MW0063-018.5-20221108	<b>Ground Water</b>	11/08/22 12:13	11/09/22 08:20
670-9210-9	GSSP- TB01-20221108	Trip Blank	11/08/22 07:00	11/09/22 08:20
670-9210-10	GSSP-MW0036-035.0-20221108	Ground Water	11/08/22 12:07	11/09/22 08:20
670-9210-11	GSSP-MW0024R-020.0-20221108	<b>Ground Water</b>	11/08/22 13:37	11/09/22 08:20
670-9210-12	GSSP-MW0013-003.5-20221108	<b>Ground Water</b>	11/08/22 14:41	11/09/22 08:20
670-9210-13	GSSP-MW0019-020.0-20221108	Ground Water	11/08/22 15:25	11/09/22 08:20
670-9210-14	GSSP-MW0020-030.0-20221108	Ground Water	11/08/22 14:56	11/09/22 08:20

**Ground Water** 

11/08/22 15:14 11/09/22 08:20

Control formation   Cont	Client Information Client Contact: Teresa Amentt Jennings Company: AECOM Technical Services Inc. Address: City: Orlando									
Control   Cont	Client Contact: Teresa Amentt Jennings Company: AECOM Technical Services Inc. Address: To North Orange Avenue Suite 200 City:	Sampler: Gre			Lab PM: Dylnicki,	Kaitlin	Carrier Tracking No	o(s):	COC No: 670-2831-1002.1	
The control of the	Company: AECOM Technical Services Inc. Address: City: Orlando	Phone: 773 -	631-74	36	E-Mail: kaitlin.dy	nicki@et.eurofinsus.com	State of Origin:		Page:	
The column   Sumple Date   S	Address. 150 North Orange Avenue Suite 200 City: Orlando			PWSID:		Analysis	Requested		Job #:	
The control of the	City: Orlando	Due Date Requeste	ij						Preservation Code	
Total   Colored Colo		TAT Requested (da	ys):		_   					M - nexalle N - None O - AsNaO2
Company   Comp	State, Ztp. FL, 32801	Compliance Project	∆ Yes	No.						P - Na2O4S Q - Na2SO3
Figure   Company   Compa	Phone: 919-461-1282(Tel)	PO#: 138224								n - Nazszos S - H2SO4 T - TSP Dodecahydrate
17   17   17   18   18   18   18   18	Email: teresa.amentt.jennings@aecom.com	WO #: 60610905				370-9210 Chain of Custody		<b>S</b>	n - Ascorbic Acid I - Ice J - DI Water	U - Acetone V - MCAA
First   First   Showe   Show	Project Name: NASA KSC Industrial Area	Project #: 67001282			<u>)</u> e	0 0	-	tainer	K - EDTA L - EDA	w - pri 4-5 Y - Trizma Z - other (specify)
Sample Date   Company   Sample   Company   Sample Date   Company   Sample   Company   Sample   Company   Sample Date   Company   Sample   Company   Sample Date   Company   Sample   Company   Sample Date	- IA LT.	SSOW#:				N ASAIK		of con		
Simple Date   Tree Section   Simple Date   Tree Section   Tree S			Sample	Sample Type (C=comp,	beteilia ble	(MOD) - 809		tal Number		
1/3/22   1256   Water   Water   5 3 2	Sample Identification	Sample Date		_ (	<u>ال</u> ا	28 2		)1 >		tructions/Note:
11/3/27   256   Water   3 2	GSSP-MW0034-0460-202211@%	30	1230	2	1	· m		(0)		
1411   Water   3 2	GSSP-MW0035-020.0-202211c5	35	1256	_	Water	-		2		
1350   Water   3	GSSP-MW0053-020.0-202211 ⊖ <i>⊈</i>		1411	_	Water			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
14 Oy   Water   2	GSSP-MW0059-018.5-202211 ⇔ §		1254		Water	W		3		
1404   Water   2	GSSP-MW0060-012.5-202211 o %		1330		Water	3		w		
11 05   Water   3   3   3   3   3   3   3   3   3	GSSP-MW0061-018.5-202211 09		hohi		Water	iv		111		
	GSSP-MW0062-012.5-202211 <i>c</i> %		1105		Water	i		100		
1   1   2   2   2   2   2   3   3   4   2   4   2   4   4   2   4   4   4	GSSP-MW0063-018.5-20221109		1213	->	Water	w		w		
1   4   2   1   3   6   1   3   1   1   1   2   1   1   1   2   1   1		>	0200	ac	Water	d		26		
ant □   1   4   22   1337   C   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3   W   3	6550-MW0036-03510-20221105	18	1207	9		3		W	palled	EHE
Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)   Special Instructions/QC Requirements:   Date:	655y - MWOSZ4R-0,000-0,000-000	8	20	9	<u>&gt;</u>	W 3 1		4	-	n thu
Special Instructions/QC Requirements:   Date:	ant			adiological		Sample Disposal ( A fee may   C   Return To Client	Disposal By Lab	nples are retain	ed longer than 1 in thise For	ths
Date/Time:         Company         Received by:         Method of Shipment:           Date/Time:         Company         Received by:         Date/Time:           Date/Time:         Company         Received by:         Date/Time:           Date/Time:         Company         Received by:         Date/Time:           Lustody Seal No.:         Cooler Temperature(s) °C and Other Remarks:         (7.3)	Deliverable Requested: I, II, III, IV, Other (specify)					Special Instructions/QC Require	ments:			
Date/Time:   Date/Time:   Company   Received by:   Date/Time:   Date	Empty Kit Relinquished by:		Date:		П		Method of Sh	nipment:		
Date/Time:         Company         Received by:         Date/Time:         Date/Tim	көшпquisned by:	Date/Time:		<u> </u>	Sompany	Received by:	ä	Jate/Time:		Company
balls Intact: Custody Seal No.:  Date/Time: Company Received by: Date/Time: Oooler Temperature(s) °C and Other Remarks: (7.3)	Relinquished by:	Date/Time:			Company	Received by:	ă	Jate/Time:		Company
Custody Seal No.: Cooler Temperature(s) °C and Other Remarks.		Date/Time:			Sompany	Received by:	Ö	JI Z	0280	Company
						Cooler Temperature(s) °C and Oth	r Remarks:		.6.	

Ver: 06/08/2021

Company Sompany

0820

Date/Time:

Cooler Temperature(s) °C and Other Remarks:

Received by:

Company

Date/Time:

( ).

# Chain of Custody Record

Altamonte Springs, FL 32701 Phone: 407-339-5984 Fax: 407-260-6110

**Eurofins Orlando** 481 Newburyport Avenue

. eurofins

Special Instructions/Note: Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon Preservation Codes: COC No: 670-2831-1006.1 H - Ascorbic Acid C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH Page 1 of 1 Job #: 3 Taken I - Ice J - DI Water K - EDTA L - EDA 3 taken G - Amchlor Taken Taken Total Mumber of containers Date/Time: Date/Time: Method of Shipment Sarrier Tracking No(s): State of Origin: **Analysis Requested** Lab PM: Dylnicki, Kaitlin E-Mail: kaitlin.dylnicki@et.eurofinsus.com Received by: Received by: 8560B - (MOD) VC 7 3 3 Water MM Perform MS/MSD (Yes or No) Time: Field Filtered Sample (Yes or No) Type (W=water, In Secold C=comp, O=waste/oil, C=grab) BT=Tissue, A=Arr) (W=water, S=solid, O=waste/oil, Preservation Code: Water Matrix Water Water Company Radiological Sample compliance Project: A Yes A No 1525 1441 1456 1514 Sample Time Unknown Date: FAT Requested (days): **Date Requested:** Sample Date 11/8/22 Project #: 67001282 SSOW#: wo #: 60610905 PO#: 138224 Date/Time Date/Time: :hone: Poison B Skin Irritant 6550 - MWOG44R-0300 - 2022 1108 20221104 20221108 2022 1108 Deliverable Requested: I, II, III, IV, Other (specify) 4ddress: 150 North Orange Avenue Suite 200 eresa.amentt.jennings@aecom.com - 5550 - MWOOLY - 0250 6550 - MWOCZO - 0300-Flammable 550-MW0013-003.5 Possible Hazard Identification AECOM Technical Services Inc. E-BE-MW0006R-035.0-2022+1 5DL MW0004-035.0-202211 Project Name: NASA KSC Industrial Area Empty Kit Relinquished by: Feresa Amentt Jennings Client Information Sample Identification EBL-78 -202211 919-461-1282(Tel) Non-Hazard inquished by: linquished by: State, Zip: FL, 32801 Orlando 6K GK

K:r

でなる EHE

Srom.

Kit KIL

Crow

K.T

EDL EHF

Fram Trans.

Months

N. None N. None O. AsNa02 P. Na204S Q. Na2S03 R. Na2S03 R. PSD04 J. T. TSP Dodecahydrate U. Acetone W. pH 44.5 Y. Tifzma Z. other (specify)

Page 27 of 29

nquished by:

Custody Seal No.:

Custody Seals Intact: △ Yes △ No

## **Login Sample Receipt Checklist**

Client: AECOM Technical Services Inc.

Job Number: 670-9210-1

SDG Number: GSSP

11/23/2022

Login Number: 9210 List Source: Eurofins Orlando

List Number: 1

Creator: Hartley, Tyler

Creator. Hartiey, Tyler		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
ls the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

**Eurofins Orlando** 

# **Eurofins Orlando**

## **Job Notes**

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

## **Authorization**

Generated 11/23/2022 11:06:33 AM

Authorized for release by Kaitlin Dylnicki, Project Manager kaitlin.dylnicki@et.eurofinsus.com (407)339-5984 9

46

13

4 E

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Teresa Amentt Jennings AECOM Technical Services Inc. 150 North Orange Avenue Suite 200 Orlando, Florida 32801

Generated 12/7/2022 5:57:12 PM

# **JOB DESCRIPTION**

NASA KSC Industrial Area

## **JOB NUMBER**

670-9608-1

Eurofins Orlando 481 Newburyport Avenue Altamonte Springs FL 32701

# **Eurofins Orlando**

## **Job Notes**

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

## **Authorization**

Generated 12/7/2022 5:57:12 PM

Authorized for release by Kaitlin Dylnicki, Project Manager kaitlin.dylnicki@et.eurofinsus.com (407)339-5984 11

12

13

15

# **Table of Contents**

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	10
Isotope Dilution Summary	11
QC Sample Results	12
QC Association Summary	20
Lab Chronicle	22
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Receipt Checklists	28

9

4

6

8

10

12

13

15

## **Definitions/Glossary**

Client: AECOM Technical Services Inc.

Project/Site: NASA KSC Industrial Area

Job ID: 670-9608-1

#### Qualifiers

G	$\hat{}$	/ B. A		<b>\</b> /	$\overline{}$	
	1.7	W		w		Δ
•	v		•		v	_

Qualifier Qualifier Description

The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U Indicates that the compound was analyzed for but not detected.

#### GC/MS Semi VOA

Qualifier Qualifier Description

J3 Estimated value; value may not be accurate. Spike recovery or RPD outside of criteria.

U Indicates that the compound was analyzed for but not detected.

**HPLC/IC** 

Qualifier Qualifier Description

The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U Indicates that the compound was analyzed for but not detected.

**LCMS** 

Qualifier Qualifier Description

* Isotope Dilution analyte is outside acceptance limits.

The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

J Estimated value; value may not be accurate.

U Indicates that the compound was analyzed for but not detected.

**General Chemistry** 

Qualifier Qualifier Description

J3 Estimated value; value may not be accurate. Spike recovery or RPD outside of criteria.

U Indicates that the compound was analyzed for but not detected.

## **Glossary**

Abbreviation	These commonly	/ used abbreviations ma	y or may not b	e present in this report.
--------------	----------------	-------------------------	----------------	---------------------------

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

**Eurofins Orlando** 

Page 4 of 29 12/7/2022

2

J

4

5

6

7

8

16

. .

40

13

ь

# **Definitions/Glossary**

Client: AECOM Technical Services Inc.

Project/Site: NASA KSC Industrial Area

Job ID: 670-9608-1

# **Glossary (Continued)**

Abbreviation	These commonly used abbreviations may or may not be present in this report.
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

5

0

10

12

14

15

#### **Case Narrative**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-9608-1

Job ID: 670-9608-1

**Laboratory: Eurofins Orlando** 

**Narrative** 

Job Narrative 670-9608-1

#### Receipt

The samples were received on 11/15/2022 3:30 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.5°C

#### **GC/MS VOA**

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC/MS Semi VOA

Method 8270E_SIM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 670-11420 and analytical batch 670-12624 recovered outside control limits for the following analytes: Naphthalene.

Method 8270E_SIM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 670-11420 and analytical batch 670-11532 recovered outside control limits for the following analytes: Naphthalene.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### **PFAS**

Method PFC_IDA: The sample injection standard peak areas in the following sample: IA-IDW01-20221115 (670-9608-1) are outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sampleThe recovery for the labeled isotope(s) 13C3 PFBS and 13C5 PFPeA in the following sample: IA-IDW01-20221115 (670-9608-1) is outside the QC acceptance limits due to the matrix of the sample.

Method PFC_IDA: The recovery for the labeled isotope(s) M2-6:2 FTS in the following sample: IA-IDW01-20221115 (670-9608-1) is outside the QC acceptance limits. Since the recovery is high and the native analyte is not detected in the sample, the data is reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### **General Chemistry**

Method 365.4: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 670-12948 and analytical batch 670-13353 were outside control limits for one or more analytes, see QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

_

6

7

8

1 1

12

10

15

# **Detection Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-9608-1

Lab Sample ID: 670-9608-2

## Client Sample ID: IA-IDW01-20221115

Lab Sample ID: 670-9608-1

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	0.91	Ī	1.0	0.50	ug/L		_	8260B	Total/NA
Nitrate as N	420	1	800	400	ug/L	2		300.0	Total/NA
Perfluorobutanesulfonic acid	0.00067	1	0.0017	0.00044	ug/L	1		537 IDA	Total/NA
Perfluorobutanoic acid	0.0056		0.0044	0.0017	ug/L	1		537 IDA	Total/NA
Perfluoroheptanoic acid	0.0019		0.0017	0.00044	ug/L	1		537 IDA	Total/NA
Perfluorohexanesulfonic acid	0.0018		0.0017	0.00044	ug/L	1		537 IDA	Total/NA
Perfluorohexanoic acid	0.0019		0.0017	0.00079	ug/L	1		537 IDA	Total/NA
Perfluorononanoic acid	0.00048	IJ	0.0017	0.00044	ug/L	1		537 IDA	Total/NA
Perfluorooctanesulfonic acid	0.0035		0.0017	0.00087	ug/L	1		537 IDA	Total/NA
Perfluorooctanoic acid	0.0046		0.0017	0.00044	ug/L	1		537 IDA	Total/NA
Perfluoropentanoic acid	0.00092	1	0.0017	0.00044	ug/L	1		537 IDA	Total/NA
Total Phosphorus as P	180		100	40	ug/L	1		365.4	Total/NA

## Client Sample ID: IA-TB01-20221115

No Detections.

# **Client Sample Results**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Date Collected: 11/15/22 14:15

Date Received: 11/15/22 15:30

Matrix: Water

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.50	U	1.0	0.50	ug/L			11/23/22 22:16	1
Trichloroethene	0.50	U	1.0	0.50	ug/L			11/23/22 22:16	1
Vinyl chloride	0.91	1	1.0	0.50	ug/L			11/28/22 15:35	1
cis-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/23/22 22:16	1
trans-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/23/22 22:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96		80 - 120					11/28/22 15:35	1

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.050	U J3	0.18	0.050	ug/L		11/16/22 14:04	11/29/22 20:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-methylnaphthalene-d10	117		50 - 150				11/16/22 14:04	11/29/22 20:33	1
Fluoranthene-d10 (Surr)	96		50 - 150				11/16/22 14:04	11/29/22 20:33	1

Method: MCAWW 300.0 - Anioi	ns, ion Chromatograph	ı <b>y</b>					
Analyte	Result Qualifier	PQL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	420 I	800	400 ug/L			11/16/22 22:47	2

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
11CI-PF3OUdS	0.00044	U	0.0017	0.00044	ug/L		11/28/22 07:14	12/04/22 06:25	1
4:2 Fluorotelomer sulfonic acid	0.00044	U	0.0017	0.00044	ug/L		11/28/22 07:14	12/04/22 06:25	1
6:2 Fluorotelomer sulfonic acid	0.0037	U	0.0044	0.0037	ug/L		11/28/22 07:14	12/04/22 06:25	1
8:2 Fluorotelomer sulfonic acid	0.00087	U	0.0026	0.00087	ug/L		11/28/22 07:14	12/04/22 06:25	1
9CI-PF3ONS	0.00044	U	0.0017	0.00044	ug/L		11/28/22 07:14	12/04/22 06:25	1
DONA	0.00044	U	0.0017	0.00044	ug/L		11/28/22 07:14	12/04/22 06:25	1
HFPODA	0.00087	U	0.0026	0.00087	ug/L		11/28/22 07:14	12/04/22 06:25	1
NEtFOSAA	0.00044	U	0.0026	0.00044	ug/L		11/28/22 07:14	12/04/22 06:25	1
NMeFOSAA	0.00052	U	0.0017	0.00052	ug/L		11/28/22 07:14	12/04/22 06:25	1
NMeFOSA	0.00087	U	0.0026	0.00087	ug/L		11/28/22 07:14	12/04/22 06:25	1
Perfluorobutanesulfonic acid	0.00067	1	0.0017	0.00044	ug/L		11/28/22 07:14	12/04/22 06:25	1
Perfluorobutanoic acid	0.0056		0.0044	0.0017	ug/L		11/28/22 07:14	12/04/22 06:25	1
Perfluorodecanesulfonic acid	0.00044	U	0.0017	0.00044	ug/L		11/28/22 07:14	12/04/22 06:25	1
Perfluorodecanoic acid	0.00044	U	0.0017	0.00044	ug/L		11/28/22 07:14	12/04/22 06:25	1
Perfluorododecanoic acid	0.00044	U	0.0017	0.00044	ug/L		11/28/22 07:14	12/04/22 06:25	1
Perfluoroheptanesulfonic acid	0.00044	U	0.0017	0.00044	ug/L		11/28/22 07:14	12/04/22 06:25	1
Perfluoroheptanoic acid	0.0019		0.0017	0.00044	ug/L		11/28/22 07:14	12/04/22 06:25	1
Perfluorohexanesulfonic acid	0.0018		0.0017	0.00044	ug/L		11/28/22 07:14	12/04/22 06:25	1
Perfluorohexanoic acid	0.0019		0.0017	0.00079	ug/L		11/28/22 07:14	12/04/22 06:25	1
Perfluorononanesulfonic acid	0.00044	U	0.0017	0.00044	ug/L		11/28/22 07:14	12/04/22 06:25	1
Perfluorononanoic acid	0.00048	IJ	0.0017	0.00044	ug/L		11/28/22 07:14	12/04/22 06:25	1
Perfluorooctanesulfonamide	0.00061	U	0.0017	0.00061	ug/L		11/28/22 07:14	12/04/22 06:25	1
Perfluorooctanesulfonic acid	0.0035		0.0017	0.00087	ug/L		11/28/22 07:14	12/04/22 06:25	1
Perfluorooctanoic acid	0.0046		0.0017	0.00044	ug/L		11/28/22 07:14	12/04/22 06:25	1
Perfluoropentanesulfonic acid	0.00044	U	0.0017	0.00044	ug/L		11/28/22 07:14	12/04/22 06:25	1
Perfluoropentanoic acid	0.00092	T.	0.0017	0.00044	ug/L		11/28/22 07:14	12/04/22 06:25	1
Perfluorotetradecanoic acid	0.00044	U	0.0017	0.00044	ug/L		11/28/22 07:14	12/04/22 06:25	1
Perfluorotridecanoic acid	0.00044	U	0.0017	0.00044			11/28/22 07:14	12/04/22 06:25	1

**Eurofins Orlando** 

Page 8 of 29 12/7/2022

2

Job ID: 670-9608-1

3

5

9

11

12

14

15

## **Client Sample Results**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Date Received: 11/15/22 15:30

Client Sample ID: IA-IDW01-20221115 Lab Sample ID: 670-9608-1

Date Collected: 11/15/22 14:15

**Matrix: Water** 

Job ID: 670-9608-1

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroundecanoic acid	0.00044	U	0.0017	0.00044	ug/L		11/28/22 07:14	12/04/22 06:25	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
M2-4:2 FTS	198		10 - 200				11/28/22 07:14	12/04/22 06:25	1
M2-6:2 FTS	269	*	17 - 200				11/28/22 07:14	12/04/22 06:25	1
M2-8:2 FTS	191		33 - 200				11/28/22 07:14	12/04/22 06:25	1
13C2-PFDoDA	118		17 - 176				11/28/22 07:14	12/04/22 06:25	1
13C2 PFTeDA	85		10 - 179				11/28/22 07:14	12/04/22 06:25	1
13C3 HFPO-DA	81		17 - 185				11/28/22 07:14	12/04/22 06:25	1
13C3 PFBS	281	*	16 - 200				11/28/22 07:14	12/04/22 06:25	1
13C3 PFHxS	127		28 - 188				11/28/22 07:14	12/04/22 06:25	1
13C4 PFBA	119		42 - 165				11/28/22 07:14	12/04/22 06:25	1
13C4 PFHpA	104		31 - 182				11/28/22 07:14	12/04/22 06:25	1
13C5 PFPeA	230	*	38 - 187				11/28/22 07:14	12/04/22 06:25	1
13C6 PFDA	124		49 - 163				11/28/22 07:14	12/04/22 06:25	1
13C8 PFOA	124		48 - 162				11/28/22 07:14	12/04/22 06:25	1
13C8 PFOS	137		51 - 159				11/28/22 07:14	12/04/22 06:25	1
13C8 FOSA	77		10 - 168				11/28/22 07:14	12/04/22 06:25	1
d3-NMeFOSAA	114		31 - 174				11/28/22 07:14	12/04/22 06:25	1
d3-NMePFOSA	21		10 - 155				11/28/22 07:14	12/04/22 06:25	1
13C5 PFHxA	91		24 - 179				11/28/22 07:14	12/04/22 06:25	1
13C7 PFUnA	125		34 - 174				11/28/22 07:14	12/04/22 06:25	1
13C9 PFNA	139		51 - 167				11/28/22 07:14	12/04/22 06:25	1
d5-NEtFOSAA	134		29 - 195				11/28/22 07:14	12/04/22 06:25	1

General Chemistry										
Analyte	Result	Qualifier	PQL	MDL	Unit	D	)	Prepared	Analyzed	Dil Fac
Total Phosphorus as P (EPA 365.4)	180		100	40	ug/L			12/01/22 09:49	12/05/22 11:44	1

**Client Sample ID: IA-TB01-20221115** Lab Sample ID: 670-9608-2

Date Collected: 11/15/22 14:00 **Matrix: Water** Date Received: 11/15/22 15:30

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.50	U	1.0	0.50	ug/L			11/23/22 22:36	1
Trichloroethene	0.50	U	1.0	0.50	ug/L			11/23/22 22:36	1
Vinyl chloride	0.50	U	1.0	0.50	ug/L			11/23/22 22:36	1
cis-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/23/22 22:36	1
trans-1,2-Dichloroethene	0.50	U	1.0	0.50	ug/L			11/23/22 22:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		80 - 120					11/23/22 22:36	1

**Eurofins Orlando** 

## **Surrogate Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-9608-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		TOL	
Lab Sample ID	Client Sample ID	(80-120)	
670-9547-P-1 MS	Matrix Spike	101	
670-9608-1	IA-IDW01-20221115	96	
670-9608-2	IA-TB01-20221115	100	
670-9772-C-1 DU	Duplicate	100	
670-9963-D-1 MS	Matrix Spike	98	
670-9963-D-1 MSD	Matrix Spike Duplicate	99	
LCS 670-12318/4	Lab Control Sample	101	
LCS 670-12445/4	Lab Control Sample	99	
MB 670-12318/6	Method Blank	100	
MB 670-12445/6	Method Blank	96	

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

Matrix: Water Prep Type: Total/NA

			Percent 9	Surrogate Recovery (Acceptance Limits)
		2MN	FLN10	
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	
670-9608-1	IA-IDW01-20221115	117	96	
LCS 670-11420/1-A	Lab Control Sample	91	91	
LCSD 670-11420/2-A	Lab Control Sample Dup	116	110	
MB 670-11420/3-A	Method Blank	74	69	

2MN = 2-methylnaphthalene-d10

FLN10 = Fluoranthene-d10 (Surr)

7

9

11

14

## **Isotope Dilution Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-9608-1

Method: 537 IDA - EPA 537 Isotope Dilution

**Matrix: Water** Prep Type: Total/NA

			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		M242FTS	M262FTS	M282FTS	PFDoDA	PFTDA	HFPODA	C3PFBS	C3PFHS
Lab Sample ID	Client Sample ID	(10-200)	(17-200)	(33-200)	(17-176)	(10-179)	(17-185)	(16-200)	(28-188)
670-9608-1	IA-IDW01-20221115	198	269 *	191	118	85	81	281 *	127
LCS 410-321038/3-A	Lab Control Sample	115	119	129	117	105	110	132	134
LCSD 410-321038/4-A	Lab Control Sample Dup	117	111	100	86	71	103	140	128
MB 410-321038/1-A	Method Blank	108	109	112	106	94	100	125	120
			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFBA	C4PFHA	PFPeA	C6PFDA	C8PFOA	C8PFOS	<b>PFOSA</b>	d3NMFOS
Lab Sample ID	Client Sample ID	(42-165)	(31-182)	(38-187)	(49-163)	(48-162)	(51-159)	(10-168)	(31-174)
670-9608-1	IA-IDW01-20221115	119	104	230 *	124	124	137	77	114
LCS 410-321038/3-A	Lab Control Sample	133	125	138	131	129	145	126	121
LCSD 410-321038/4-A	Lab Control Sample Dup	132	122	138	108	124	128	98	97
MB 410-321038/1-A	Method Blank	119	114	133	120	113	132	111	110
			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		d3NMFSA	13C5PHA	13C7PUA	C9PFNA	d5NEFOS			
Lab Sample ID	Client Sample ID	(10-155)	(24-179)	(34-174)	(51-167)	(29-195)			
670-9608-1	IA-IDW01-20221115	21	91	125	139	134			
LCS 410-321038/3-A	Lab Control Sample	95	127	134	138	127			
LCSD 410-321038/4-A	Lab Control Sample Dup	85	126	97	129	96			
MB 410-321038/1-A	Method Blank	87	114	125	128	117			

Surrogate Legend

M242FTS = M2-4:2 FTS

M262FTS = M2-6:2 FTS

M282FTS = M2-8:2 FTS

PFDoDA = 13C2-PFDoDA

PFTDA = 13C2 PFTeDA

HFPODA = 13C3 HFPO-DA

C3PFBS = 13C3 PFBS

C3PFHS = 13C3 PFHxS

PFBA = 13C4 PFBA

C4PFHA = 13C4 PFHpA

PFPeA = 13C5 PFPeA

C6PFDA = 13C6 PFDA

C8PFOA = 13C8 PFOA

C8PFOS = 13C8 PFOS

PFOSA = 13C8 FOSA

d3NMFOS = d3-NMeFOSAA

d3NMFSA = d3-NMePFOSA

13C5PHA = 13C5 PFHxA

13C7PUA = 13C7 PFUnA

C9PFNA = 13C9 PFNA

d5NEFOS = d5-NEtFOSAA

**Eurofins Orlando** 

Page 11 of 29

Client: AECOM Technical Services Inc.

Job ID: 670-9608-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 670-12318/6

Project/Site: NASA KSC Industrial Area

**Matrix: Water** 

**Analysis Batch: 12318** 

Client Sample ID: Method Blank Prep Type: Total/NA

**Client Sample ID: Lab Control Sample** 

**Client Sample ID: Matrix Spike** 

Prep Type: Total/NA

Prep Type: Total/NA

MB MB Analyte Result Qualifier PQL **MDL** Unit Prepared Analyzed Dil Fac D Tetrachloroethene 0.50 U 1.0 0.50 ug/L 11/23/22 17:31 Trichloroethene 0.50 U 1.0 0.50 ug/L 11/23/22 17:31 0.50 U 1.0 Vinyl chloride 0.50 ug/L 11/23/22 17:31 cis-1,2-Dichloroethene 0.50 U 1.0 0.50 ug/L 11/23/22 17:31 trans-1.2-Dichloroethene 0.50 U 1.0 0.50 ug/L 11/23/22 17:31

MB MB %Recovery Qualit

 Surrogate
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 Toluene-d8 (Surr)
 100
 80 - 120
 11/23/22 17:31
 1

Lab Sample ID: LCS 670-12318/4

Matrix: Water

**Analysis Batch: 12318** 

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Tetrachloroethene 20.0 20.5 ug/L 103 50 - 150 20.0 Trichloroethene 24.5 ug/L 122 50 - 150 20.0 Vinyl chloride 25.6 ug/L 128 50 - 150 cis-1,2-Dichloroethene 20.0 23.4 ug/L 117 50 - 150 trans-1,2-Dichloroethene 20.0 24.5 122 50 - 150 ug/L

LCS LCS

 Surrogate
 %Recovery
 Qualifier
 Limits

 Toluene-d8 (Surr)
 101
 80 - 120

Lab Sample ID: 670-9547-P-1 MS

**Matrix: Water** 

**Analysis Batch: 12318** 

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Tetrachloroethene	0.50	U	20.0	21.4		ug/L		107	50 - 150
Trichloroethene	0.50	U	20.0	25.3		ug/L		126	50 - 150
Vinyl chloride	0.50	U	20.0	27.5		ug/L		137	50 - 150
cis-1,2-Dichloroethene	0.50	U	20.0	23.8		ug/L		119	50 - 150
trans-1,2-Dichloroethene	0.50	U	20.0	25.5		ug/L		128	50 - 150

MS MS

Lab Sample ID: 670-9772-C-1 DU

**Matrix: Water** 

**Analysis Batch: 12318** 

·C-1 DU	Client Sample ID: Duplicate
	Prep Type: Total/NA

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Tetrachloroethene	0.50	U	0.50	U	ug/L		NC	
Trichloroethene	0.50	U	0.50	U	ug/L		NC	
Vinyl chloride	0.50	U	0.50	U	ug/L		NC	
cis-1,2-Dichloroethene	0.50	U	0.50	U	ug/L		NC	
trans-1,2-Dichloroethene	0.50	U	0.50	U	ug/L		NC	

**Eurofins Orlando** 

Page 12 of 29 12/7/2022

Client: AECOM Technical Services Inc. Job ID: 670-9608-1 Project/Site: NASA KSC Industrial Area

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 670-9772-C-1 DU

**Matrix: Water** 

**Analysis Batch: 12318** 

DU DU

Limits Surrogate %Recovery Qualifier 80 - 120 Toluene-d8 (Surr) 100

Lab Sample ID: MB 670-12445/6

**Matrix: Water** 

**Analysis Batch: 12445** 

Client Sample ID: Method Blank

Prep Type: Total/NA

**Client Sample ID: Duplicate** 

**Prep Type: Total/NA** 

MB MB Result Qualifier PQL MDL Unit Dil Fac **Analyte** Prepared Analyzed 11/28/22 11:08 Tetrachloroethene 0.50 U 1.0 0.50 ug/L Trichloroethene 0.50 U 1.0 0.50 ug/L 11/28/22 11:08 Vinyl chloride 0.50 U 1.0 0.50 ug/L 11/28/22 11:08 cis-1,2-Dichloroethene 0.50 U 1.0 0.50 ug/L 11/28/22 11:08 trans-1,2-Dichloroethene 0.50 U 1.0 0.50 ug/L 11/28/22 11:08

MB MB

Limits Dil Fac Surrogate %Recovery Qualifier Prepared Analyzed Toluene-d8 (Surr) 96 80 - 120 11/28/22 11:08

Lab Sample ID: LCS 670-12445/4

**Matrix: Water** 

**Analysis Batch: 12445** 

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA

LCS LCS Spike %Rec Added Result Qualifier %Rec Limits Analyte Unit Tetrachloroethene 20.0 50 - 150 19.0 ug/L 95 Trichloroethene 20.0 20.3 ug/L 101 50 - 150 Vinyl chloride 20.0 23.7 ug/L 118 50 - 150 cis-1,2-Dichloroethene 20.0 19.9 ug/L 100 50 - 150 trans-1,2-Dichloroethene 20.0 19.1 ug/L 96 50 - 150

LCS LCS

Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 99 80 - 120

**Matrix: Water** 

**Analysis Batch: 12445** 

Lab Sample ID: 670-9963-D-1 MS **Client Sample ID: Matrix Spike** Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tetrachloroethene	0.50	U	20.0	22.8		ug/L		114	50 - 150	
Trichloroethene	0.50	U	20.0	23.6		ug/L		118	50 - 150	
Vinyl chloride	0.50	U	20.0	24.2		ug/L		121	50 - 150	
cis-1,2-Dichloroethene	0.50	U	20.0	22.6		ug/L		113	50 - 150	
trans-1,2-Dichloroethene	0.50	U	20.0	21.2		ug/L		106	50 - 150	

MS MS Surrogate %Recovery Qualifier Limits 80 - 120 Toluene-d8 (Surr) 98

**Eurofins Orlando** 

Client: AECOM Technical Services Inc. Job ID: 670-9608-1 Project/Site: NASA KSC Industrial Area

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 670-9963-D-1 MSD

**Matrix: Water** 

**Analysis Batch: 12445** 

**Client Sample ID: Matrix Spike Duplicate** 

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Tetrachloroethene	0.50	U	20.0	21.8		ug/L		109	50 - 150	4	30
Trichloroethene	0.50	U	20.0	23.1		ug/L		116	50 - 150	2	30
Vinyl chloride	0.50	U	20.0	22.8		ug/L		114	50 - 150	6	30
cis-1,2-Dichloroethene	0.50	U	20.0	22.3		ug/L		111	50 - 150	1	30
trans-1,2-Dichloroethene	0.50	U	20.0	20.6		ug/L		103	50 - 150	3	30
	MCD	MCD									

MSD MSD

Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 80 - 120

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 670-11420/3-A

**Matrix: Water** 

**Analysis Batch: 11532** 

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

Prep Batch: 11420

MB MB

Analyte	Result Qua	alifier PQL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.050 U	0.18	0.050 ug/L		11/16/22 10:21	11/17/22 10:36	1

MB MB

Surrogate	%Recovery Qua	ualifier Limits	Prepared	Analyzed	Dil Fac
2-methylnaphthalene-d10	74	50 - 150	11/16/22 10:21	11/17/22 10:36	1
Fluoranthene-d10 (Surr)	69	50 - 150	11/16/22 10:21	11/17/22 10:36	1

Lab Sample ID: LCS 670-11420/1-A

**Matrix: Water** 

**Analysis Batch: 11532** 

**Client Sample ID: Lab Control Sample** 

**Prep Type: Total/NA** Prep Batch: 11420

LCS LCS Spike %Rec

Analyte Added Result Qualifier Unit D %Rec Limits Naphthalene 60 - 140 3.64 3.04 ug/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-methylnaphthalene-d10	91		50 - 150
Fluoranthene-d10 (Surr)	91		50 - 150

Lab Sample ID: LCSD 670-11420/2-A

**Matrix: Water** 

**Analysis Batch: 11532** 

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

Prep Batch: 11420

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	3.64	4.37	J3	ug/L	_	120	60 - 140	36	25

LCSD LCSD

Surrogate	%Recovery Qu	ualifier	Limits
2-methylnaphthalene-d10			50 - 150
Fluoranthene-d10 (Surr)	110		50 - 150

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 670-11468/4

**Matrix: Water** 

**Analysis Batch: 11468** 

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier PQL **MDL** Unit Analyzed Dil Fac Analyte D Prepared 400 Nitrate as N 200 U 200 ug/L 11/16/22 20:52

Lab Sample ID: LCS 670-11468/5 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 11468** 

Spike LCS LCS %Rec Added Result Qualifier D %Rec Limits Analyte Unit 4000 90 - 110 Nitrate as N 4130 ug/L 103

Lab Sample ID: LCSD 670-11468/6 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

**Analysis Batch: 11468** 

Spike LCSD LCSD %Rec RPD Added Result Qualifier Limits RPD Limit Analyte Unit %Rec Nitrate as N 4000 4070 102 90 - 110 ug/L

Lab Sample ID: 670-9582-A-1 MS **Client Sample ID: Matrix Spike Matrix: Water Prep Type: Total/NA** 

**Analysis Batch: 11468** 

Spike MS MS %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 8740 Nitrate as N 3700 5000 ug/L 101 80 - 120

Lab Sample ID: 670-9582-A-1 MSD

**Matrix: Water** 

**Analysis Batch: 11468** 

RPD Sample Sample Spike MSD MSD %Rec Analyte Result Qualifier Added RPD Result Qualifier Unit %Rec Limits Limit Nitrate as N 5000 9080 3700 ug/L 107 80 - 120 20

Method: 537 IDA - EPA 537 Isotope Dilution

Lab Sample ID: MB 410-321038/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 323404

мв мв Result Qualifier PQL **MDL** Unit Prepared Analyte Analyzed Dil Fac 11CI-PF3OUdS 11/28/22 07:14 0.00050 U 0.0020 0.00050 ug/L 12/04/22 04:23 4:2 Fluorotelomer sulfonic acid 0.00050 U 0.0020 0.00050 ug/L 11/28/22 07:14 12/04/22 04:23 6:2 Fluorotelomer sulfonic acid 0.0042 U 0.0050 0.0042 ug/L 11/28/22 07:14 12/04/22 04:23 8:2 Fluorotelomer sulfonic acid 0.0010 U 0.0030 0.0010 ug/L 11/28/22 07:14 12/04/22 04:23 9CI-PF3ONS 0.00050 U 0.0020 0.00050 ug/L 11/28/22 07:14 12/04/22 04:23 **DONA** 0.00050 U 0.0020 0.00050 ug/L 11/28/22 07:14 12/04/22 04:23 **HFPODA** 0.0010 U 0.0030 0.0010 ug/L 11/28/22 07:14 12/04/22 04:23 **NEtFOSAA** 0.00050 ug/L 11/28/22 07:14 12/04/22 04:23 0.00050 U 0.0030 **NMeFOSAA** 0.00060 U 0.0020 0.00060 ua/L 11/28/22 07:14 12/04/22 04:23 **NMeFOSA** 0.0010 U 0.0030 0.0010 ug/L 11/28/22 07:14 12/04/22 04:23 Perfluorobutanesulfonic acid 0.00050 U 0.0020 0.00050 ug/L 11/28/22 07:14 12/04/22 04:23 0.0050 0.0020 ug/L 11/28/22 07:14 12/04/22 04:23 Perfluorobutanoic acid 0.0020 U Perfluorodecanesulfonic acid 0.00050 U 0.0020 0.00050 ug/L 11/28/22 07:14 12/04/22 04:23

**Eurofins Orlando** 

Job ID: 670-9608-1

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 321038

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-9608-1

# Method: 537 IDA - EPA 537 Isotope Dilution (Continued)

Lab Sample ID: MB 410-321038/1-A

**Matrix: Water** 

**Analysis Batch: 323404** 

**Client Sample ID: Method Blank** 

**Prep Type: Total/NA** 

**Prep Batch: 321038** 

	MB	MB							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorodecanoic acid	0.00050	U	0.0020	0.00050	ug/L		11/28/22 07:14	12/04/22 04:23	1
Perfluorododecanoic acid	0.00050	U	0.0020	0.00050	ug/L		11/28/22 07:14	12/04/22 04:23	1
Perfluoroheptanesulfonic acid	0.00050	U	0.0020	0.00050	ug/L		11/28/22 07:14	12/04/22 04:23	1
Perfluoroheptanoic acid	0.00050	U	0.0020	0.00050	ug/L		11/28/22 07:14	12/04/22 04:23	1
Perfluorohexanesulfonic acid	0.00050	U	0.0020	0.00050	ug/L		11/28/22 07:14	12/04/22 04:23	1
Perfluorohexanoic acid	0.00090	U	0.0020	0.00090	ug/L		11/28/22 07:14	12/04/22 04:23	1
Perfluorononanesulfonic acid	0.00050	U	0.0020	0.00050	ug/L		11/28/22 07:14	12/04/22 04:23	1
Perfluorononanoic acid	0.00050	U	0.0020	0.00050	ug/L		11/28/22 07:14	12/04/22 04:23	1
Perfluorooctanesulfonamide	0.00070	U	0.0020	0.00070	ug/L		11/28/22 07:14	12/04/22 04:23	1
Perfluorooctanesulfonic acid	0.0010	U	0.0020	0.0010	ug/L		11/28/22 07:14	12/04/22 04:23	1
Perfluorooctanoic acid	0.00050	U	0.0020	0.00050	ug/L		11/28/22 07:14	12/04/22 04:23	1
Perfluoropentanesulfonic acid	0.00050	U	0.0020	0.00050	ug/L		11/28/22 07:14	12/04/22 04:23	1
Perfluoropentanoic acid	0.00050	U	0.0020	0.00050	ug/L		11/28/22 07:14	12/04/22 04:23	1
Perfluorotetradecanoic acid	0.00050	U	0.0020	0.00050	ug/L		11/28/22 07:14	12/04/22 04:23	1
Perfluorotridecanoic acid	0.00050	U	0.0020	0.00050	ug/L		11/28/22 07:14	12/04/22 04:23	1
Perfluoroundecanoic acid	0.00050	U	0.0020	0.00050	ug/L		11/28/22 07:14	12/04/22 04:23	1
	MB	MB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
M2_1:2 FTS	108		10 200				11/28/22 07:14	12/04/22 04:23	

Perfluoroundecanoic acid	0.00050	U	0.0020	0.00050 ug/L	11/28/22 07:14	12/04/22 04:23	1
	MB	MB					
Isotope Dilution	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
M2-4:2 FTS	108		10 - 200		11/28/22 07:14	12/04/22 04:23	1
M2-6:2 FTS	109		17 - 200		11/28/22 07:14	12/04/22 04:23	1
M2-8:2 FTS	112		33 - 200		11/28/22 07:14	12/04/22 04:23	1
13C2-PFDoDA	106		17 - 176		11/28/22 07:14	12/04/22 04:23	1
13C2 PFTeDA	94		10 - 179		11/28/22 07:14	12/04/22 04:23	1
13C3 HFPO-DA	100		17 - 185		11/28/22 07:14	12/04/22 04:23	1
13C3 PFBS	125		16 - 200		11/28/22 07:14	12/04/22 04:23	1
13C3 PFHxS	120		28 - 188		11/28/22 07:14	12/04/22 04:23	1
13C4 PFBA	119		42 - 165		11/28/22 07:14	12/04/22 04:23	1
13C4 PFHpA	114		31 - 182		11/28/22 07:14	12/04/22 04:23	1
13C5 PFPeA	133		38 - 187		11/28/22 07:14	12/04/22 04:23	1
13C6 PFDA	120		49 - 163		11/28/22 07:14	12/04/22 04:23	1
13C8 PFOA	113		48 - 162		11/28/22 07:14	12/04/22 04:23	1
13C8 PFOS	132		51 - 159		11/28/22 07:14	12/04/22 04:23	1
13C8 FOSA	111		10 - 168		11/28/22 07:14	12/04/22 04:23	1
d3-NMeFOSAA	110		31 - 174		11/28/22 07:14	12/04/22 04:23	1
d3-NMePFOSA	87		10 - 155		11/28/22 07:14	12/04/22 04:23	1
13C5 PFHxA	114		24 - 179		11/28/22 07:14	12/04/22 04:23	1
13C7 PFUnA	125		34 - 174		11/28/22 07:14	12/04/22 04:23	1
13C9 PFNA	128		51 - 167		11/28/22 07:14	12/04/22 04:23	1
d5-NEtFOSAA	117		29 - 195		11/28/22 07:14	12/04/22 04:23	1

Lab Sample ID: LCS 410-321038/3-A

**Matrix: Water** 

Analysis Batch: 323404

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
<b>Prep Batch: 321038</b>

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
11CI-PF3OUdS	0.0238	0.0169		ug/L		71	53 - 139	
4:2 Fluorotelomer sulfonic acid	0.0239	0.0193		ug/L		81	55 - 139	
6:2 Fluorotelomer sulfonic acid	0.0243	0.0195		ug/L		80	28 - 173	
8:2 Fluorotelomer sulfonic acid	0.0245	0.0188		ug/L		77	55 - 138	

**Eurofins Orlando** 

Page 16 of 29

12/7/2022

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-9608-1

# Method: 537 IDA - EPA 537 Isotope Dilution (Continued)

Lab Sample ID: LCS 410-321038/3-A

**Matrix: Water** 

**Analysis Batch: 323404** 

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 321038 %Rec

Analysis Baton. 020404	Spike	LCS	LCS		%Rec
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits
9CI-PF3ONS	0.0238	0.0178	ug/L		59 - 135
DONA	0.0242	0.0218	ug/L	90	55 - 143
HFPODA	0.0256	0.0237	ug/L	93	50 - 135
NEtFOSAA	0.0256	0.0214	ug/L	84	55 - 134
NMeFOSAA	0.0256	0.0225	ug/L	88	59 - 140
NMeFOSA	0.0256	0.0239	ug/L	93	64 - 143
Perfluorobutanesulfonic acid	0.0227	0.0202	ug/L	89	53 - 138
Perfluorobutanoic acid	0.0256	0.0204	ug/L	80	59 - 136
Perfluorodecanesulfonic acid	0.0247	0.0178	ug/L	72	55 - 137
Perfluorodecanoic acid	0.0256	0.0240	ug/L	94	56 - 138
Perfluorododecanoic acid	0.0256	0.0220	ug/L	86	59 - 143
Perfluoroheptanesulfonic acid	0.0244	0.0207	ug/L	85	56 - 140
Perfluoroheptanoic acid	0.0256	0.0221	ug/L	86	59 - 145
Perfluorohexanesulfonic acid	0.0233	0.0202	ug/L	87	58 - 134
Perfluorohexanoic acid	0.0256	0.0218	ug/L	85	58 - 139
Perfluorononanesulfonic acid	0.0246	0.0188	ug/L	76	59 - 136
Perfluorononanoic acid	0.0256	0.0224	ug/L	88	61 - 139
Perfluorooctanesulfonamide	0.0256	0.0228	ug/L	89	43 - 167
Perfluorooctanesulfonic acid	0.0237	0.0210	ug/L	89	45 - 150
Perfluorooctanoic acid	0.0256	0.0226	ug/L	88	51 - 145
Perfluoropentanesulfonic acid	0.0240	0.0222	ug/L	92	55 - 140
Perfluoropentanoic acid	0.0256	0.0198	ug/L	78	57 - 141
Perfluorotetradecanoic acid	0.0256	0.0220	ug/L	86	62 _ 139
Perfluorotridecanoic acid	0.0256	0.0209	ug/L	82	58 - 146
Perfluoroundecanoic acid	0.0256	0.0229	ug/L	89	60 - 141
LCS LCS					

CS	LCS
----	-----

	LUS	LUJ	
Isotope Dilution	%Recovery	Qualifier	Limits
M2-4:2 FTS	115		10 - 200
M2-6:2 FTS	119		17 - 200
M2-8:2 FTS	129		33 - 200
13C2-PFDoDA	117		17 - 176
13C2 PFTeDA	105		10 - 179
13C3 HFPO-DA	110		17 - 185
13C3 PFBS	132		16 - 200
13C3 PFHxS	134		28 - 188
13C4 PFBA	133		42 - 165
13C4 PFHpA	125		31 - 182
13C5 PFPeA	138		38 - 187
13C6 PFDA	131		49 - 163
13C8 PFOA	129		48 - 162
13C8 PFOS	145		51 ₋ 159
13C8 FOSA	126		10 - 168
d3-NMeFOSAA	121		31 - 174
d3-NMePFOSA	95		10 - 155
13C5 PFHxA	127		24 - 179
13C7 PFUnA	134		34 - 174
13C9 PFNA	138		51 - 167
d5-NEtFOSAA	127		29 - 195

**Eurofins Orlando** 

2

Λ

6

8

40

11

13

. -

Client: AECOM Technical Services Inc. Job ID: 670-9608-1 Project/Site: NASA KSC Industrial Area

## Method: 537 IDA - EPA 537 Isotope Dilution (Continued)

Lab Sample ID: LCSD 410-321038/4-A **Client Sample ID: Lab Control Sample Dup** 

**Matrix: Water** 

**Analysis Batch: 323404** 

**Prep Type: Total/NA** 

**Prep Batch: 321038** 

-	Spike	LCSD LC	LCSD				%Rec		RPD
Analyte	Added	Result Qu	alifier	Unit	D	%Rec	Limits	RPD	Limit
11CI-PF3OUdS	0.0238	0.0156		ug/L		65	53 - 139	8	30
4:2 Fluorotelomer sulfonic acid	0.0239	0.0190		ug/L		80	55 - 139	1	30
6:2 Fluorotelomer sulfonic acid	0.0243	0.0202		ug/L		83	28 - 173	4	30
8:2 Fluorotelomer sulfonic acid	0.0245	0.0205		ug/L		84	55 - 138	9	30
9CI-PF3ONS	0.0238	0.0182		ug/L		76	59 - 135	2	30
DONA	0.0242	0.0219		ug/L		91	55 - 143	0	30
HFPODA	0.0256	0.0254		ug/L		99	50 - 135	7	30
NEtFOSAA	0.0256	0.0227		ug/L		89	55 - 134	6	30
NMeFOSAA	0.0256	0.0240		ug/L		94	59 - 140	6	30
NMeFOSA	0.0256	0.0252		ug/L		98	64 - 143	5	30
Perfluorobutanesulfonic acid	0.0227	0.0192		ug/L		85	53 - 138	5	30
Perfluorobutanoic acid	0.0256	0.0200		ug/L		78	59 - 136	2	30
Perfluorodecanesulfonic acid	0.0247	0.0163		ug/L		66	55 - 137	9	30
Perfluorodecanoic acid	0.0256	0.0257		ug/L		100	56 - 138	7	30
Perfluorododecanoic acid	0.0256	0.0251		ug/L		98	59 - 143	14	30
Perfluoroheptanesulfonic acid	0.0244	0.0212		ug/L		87	56 - 140	3	30
Perfluoroheptanoic acid	0.0256	0.0224		ug/L		88	59 - 145	1	30
Perfluorohexanesulfonic acid	0.0233	0.0205		ug/L		88	58 - 134	1	30
Perfluorohexanoic acid	0.0256	0.0220		ug/L		86	58 - 139	1	30
Perfluorononanesulfonic acid	0.0246	0.0184		ug/L		75	59 - 136	2	30
Perfluorononanoic acid	0.0256	0.0235		ug/L		92	61 - 139	5	30
Perfluorooctanesulfonamide	0.0256	0.0253		ug/L		99	43 - 167	10	30
Perfluorooctanesulfonic acid	0.0237	0.0220		ug/L		93	45 - 150	5	30
Perfluorooctanoic acid	0.0256	0.0224		ug/L		88	51 - 145	1	30
Perfluoropentanesulfonic acid	0.0240	0.0217		ug/L		90	55 - 140	2	30
Perfluoropentanoic acid	0.0256	0.0208		ug/L		81	57 - 141	5	30
Perfluorotetradecanoic acid	0.0256	0.0264		ug/L		103	62 - 139	18	30
Perfluorotridecanoic acid	0.0256	0.0219		ug/L		86	58 - 146	5	30
Perfluoroundecanoic acid	0.0256	0.0258		ug/L		101	60 - 141	12	30

	LOOD	LUUD	
Isotope Dilution	%Recovery	Qualifier	Limits
M2-4:2 FTS	117		10 - 200
M2-6:2 FTS	111		17 - 200
M2-8:2 FTS	100		33 - 200
13C2-PFDoDA	86		17 - 176
13C2 PFTeDA	71		10 - 179
13C3 HFPO-DA	103		17 - 185
13C3 PFBS	140		16 - 200
13C3 PFHxS	128		28 - 188
13C4 PFBA	132		42 - 165
13C4 PFHpA	122		31 - 182
13C5 PFPeA	138		38 - 187
13C6 PFDA	108		49 - 163
13C8 PFOA	124		48 - 162
13C8 PFOS	128		51 - 159
13C8 FOSA	98		10 - 168
d3-NMeFOSAA	97		31 - 174
d3-NMePFOSA	85		10 - 155

**Eurofins Orlando** 

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Method: 537 IDA - EPA 537 Isotope Dilution (Continued)

Dil Fac

ol Sample Dup
Type: Total/NA
Batch: 321038

Job ID: 670-9608-1

Lab Sample ID: LCSD 410-321038/4-A Matrix: Water Analysis Batch: 323404			Client Sample ID: Lab Control Sample Du Prep Type: Total/N Prep Batch: 32103
	LCSD LCSD		•
Isotope Dilution	%Recovery Qualifie	r Limits	
13C5 PFHxA	126	24 - 179	
13C7 PFUnA	97	34 - 174	
13C9 PFNA	129	51 - 167	
d5-NEtFOSAA	96	29 - 195	

Method: 365.4 - Phosphorus, Total

Lab Sample ID: MB 670-12948/2-A **Matrix: Water** 

Lab Sample ID: LCS 670-12948/1-A

**Analysis Batch: 13353** 

**Analysis Batch: 13353** 

**Matrix: Water** 

Total Phosphorus as P

Analyte

MB MB

Result Qualifier Analyte Total Phosphorus as P

40 U

PQL 100

Spike

Added

1500

Spike

Added

1500

**MDL** Unit 40 ug/L

LCS LCS

MS MS

12800 J3

Result Qualifier

1480

Result Qualifier

Unit

ug/L

Unit

ug/L

**Client Sample ID: Lab Control Sample** 

Prepared

%Rec

53

Prep Type: Total/NA Prep Batch: 12948 %Rec

**Prep Type: Total/NA** 

**Prep Type: Total/NA** 

Prep Batch: 12948

Prep Batch: 12948

Analyzed

Prep Type: Total/NA Prep Batch: 12948

D %Rec Limits 99 90 - 110

%Rec

Limits

85 - 115

12/01/22 09:49 12/05/22 11:23

Client Sample ID: Method Blank

Lab Sample ID: 670-9568-A-1-A MS **Client Sample ID: Matrix Spike Matrix: Water** 

**Analysis Batch: 13353** 

Sample Sample

Result Qualifier Total Phosphorus as P 12000 J3

Lab Sample ID: 670-9568-A-1-B MSD **Matrix: Water** 

Total Phosphorus as P

**Analysis Batch: 13353** Sample Sample

12000 J3

Spike Result Qualifier Added 1500

MSD MSD 12900 J3

Result Qualifier

Unit ug/L

%Rec

Limits 60 85 - 115

%Rec

Client Sample ID: Matrix Spike Duplicate

Limit

RPD

**Eurofins Orlando** 

# **QC Association Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-9608-1

## **GC/MS VOA**

## **Analysis Batch: 12318**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-9608-1	IA-IDW01-20221115	Total/NA	Water	8260B	
670-9608-2	IA-TB01-20221115	Total/NA	Water	8260B	
MB 670-12318/6	Method Blank	Total/NA	Water	8260B	
LCS 670-12318/4	Lab Control Sample	Total/NA	Water	8260B	
670-9547-P-1 MS	Matrix Spike	Total/NA	Water	8260B	
670-9772-C-1 DU	Duplicate	Total/NA	Water	8260B	

## **Analysis Batch: 12445**

<b>Lab Sample ID</b> 670-9608-1	Client Sample ID  IA-IDW01-20221115	Prep Type Total/NA	Water	Method 8260B	Prep Batch
MB 670-12445/6	Method Blank	Total/NA	Water	8260B	
LCS 670-12445/4	Lab Control Sample	Total/NA	Water	8260B	
670-9963-D-1 MS	Matrix Spike	Total/NA	Water	8260B	
670-9963-D-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	

## **GC/MS Semi VOA**

#### Prep Batch: 11420

<b>Lab Sample ID</b> 670-9608-1	Client Sample ID IA-IDW01-20221115	Prep Type Total/NA	Matrix Water	Method 3511	Prep Batch
MB 670-11420/3-A	Method Blank	Total/NA	Water	3511	
LCS 670-11420/1-A	Lab Control Sample	Total/NA	Water	3511	
LCSD 670-11420/2-A	Lab Control Sample Dup	Total/NA	Water	3511	

#### **Analysis Batch: 11532**

Lab Sample ID MB 670-11420/3-A	Client Sample ID  Method Blank	Prep Type Total/NA	Matrix Water	Method 8270E SIM	Prep Batch
LCS 670-11420/1-A	Lab Control Sample	Total/NA	Water	8270E SIM	11420
LCSD 670-11420/2-A	Lab Control Sample Dup	Total/NA	Water	8270E SIM	11420

## **Analysis Batch: 12624**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-9608-1	IA-IDW01-20221115	Total/NA	Water	8270E SIM	11420

## **HPLC/IC**

## **Analysis Batch: 11468**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-9608-1	IA-IDW01-20221115	Total/NA	Water	300.0	
MB 670-11468/4	Method Blank	Total/NA	Water	300.0	
LCS 670-11468/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 670-11468/6	Lab Control Sample Dup	Total/NA	Water	300.0	
670-9582-A-1 MS	Matrix Spike	Total/NA	Water	300.0	
670-9582-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

#### **LCMS**

#### Prep Batch: 321038

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-9608-1	IA-IDW01-20221115	Total/NA	Water	537 IDA	
670-9608-1 - RA	IA-IDW01-20221115	Total/NA	Water	537 IDA	
MB 410-321038/1-A	Method Blank	Total/NA	Water	537 IDA	

**Eurofins Orlando** 

Page 20 of 29 12/7/2022

# **QC Association Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-9608-1

## **LCMS (Continued)**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 410-321038/3-A	Lab Control Sample	Total/NA	Water	537 IDA	
LCSD 410-321038/4-A	Lab Control Sample Dup	Total/NA	Water	537 IDA	

## Analysis Batch: 323404

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-9608-1	IA-IDW01-20221115	Total/NA	Water	537 IDA	321038
MB 410-321038/1-A	Method Blank	Total/NA	Water	537 IDA	321038
LCS 410-321038/3-A	Lab Control Sample	Total/NA	Water	537 IDA	321038
LCSD 410-321038/4-A	Lab Control Sample Dup	Total/NA	Water	537 IDA	321038

## Analysis Batch: 324236

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-9608-1 - RA	IA-IDW01-20221115	Total/NA	Water	537 IDA	321038

## **General Chemistry**

## Prep Batch: 12948

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Ba
670-9608-1	IA-IDW01-20221115	Total/NA	Water	365.2/365.3/365
MB 670-12948/2-A	Method Blank	Total/NA	Water	365.2/365.3/365
LCS 670-12948/1-A	Lab Control Sample	Total/NA	Water	365.2/365.3/365
670-9568-A-1-A MS	Matrix Spike	Total/NA	Water	365.2/365.3/365
670-9568-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Water	365.2/365.3/365

#### **Analysis Batch: 13353**

<b>Lab Sample ID</b> 670-9608-1	Client Sample ID IA-IDW01-20221115	Prep Type Total/NA	Matrix Water	Method 365.4	Prep Batch 12948
MB 670-12948/2-A	Method Blank	Total/NA	Water	365.4	12948
LCS 670-12948/1-A	Lab Control Sample	Total/NA	Water	365.4	12948
670-9568-A-1-A MS	Matrix Spike	Total/NA	Water	365.4	12948
670-9568-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Water	365.4	12948

2

5

7

ŏ

10

11

13

14

15

#### **Lab Chronicle**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Lab Sample ID: 670-9608-1

**Matrix: Water** 

Job ID: 670-9608-1

Client Sample ID: IA-IDW01-20221115

Date Collected: 11/15/22 14:15 Date Received: 11/15/22 15:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B			12318	K1P	EET ORL	11/23/22 22:16
Total/NA	Analysis	8260B		1	12445	K1P	EET ORL	11/28/22 15:35
Total/NA	Prep	3511			11420	ОН	EET ORL	11/16/22 14:04
Total/NA	Analysis	8270E SIM		1	12624	JI	EET ORL	11/29/22 20:33
Total/NA	Analysis	300.0		2	11468	YS	EET ORL	11/16/22 22:47
Total/NA	Prep	537 IDA			321038	RC3V	ELLE	11/28/22 07:14
Total/NA	Analysis	537 IDA		1	323404	PY4D	ELLE	12/04/22 06:25
Total/NA	Prep	537 IDA	RA		321038	RC3V	ELLE	11/28/22 07:14
Total/NA	Analysis	537 IDA	RA	1	324236	DTA4	ELLE	12/06/22 17:31
Total/NA	Prep	365.2/365.3/365			12948	AT	EET ORL	12/01/22 09:49
Total/NA	Analysis	365.4		1	13353	AT	EET ORL	12/05/22 11:44

Client Sample ID: IA-TB01-20221115

Date Collected: 11/15/22 14:00

Date Received: 11/15/22 15:30

Lab Sample ID: 670-9608-2

**Matrix: Water** 

Batch **Batch** Dilution Batch Prepared Method **Factor** Number Analyst or Analyzed **Prep Type** Type Run Lab 11/23/22 22:36 8260B 12318 K1P EET ORL Total/NA Analysis

#### **Laboratory References:**

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984 ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

**Eurofins Orlando** 

Page 22 of 29

12/7/2022

# **Accreditation/Certification Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-9608-1

#### **Laboratory: Eurofins Orlando**

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority Florida		ogram	Identification Number	Expiration Date		
		ELAP	E83018	06-30-23		
<b>T</b>						
the agency does not o	•	ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which		
	•	ort, but the laboratory is r Matrix	not certified by the governing authority.  Analyte	This list may include analytes for which		

## Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Florida	NELAP	E87997	06-30-23	

**Eurofins Orlando** 

Page 23 of 29 12/7/2022

e

1

6

6

9

10

12

14

15

## **Method Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-9608-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	EET ORL
8270E SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	EET ORL
300.0	Anions, Ion Chromatography	MCAWW	EET ORL
537 IDA	EPA 537 Isotope Dilution	EPA	ELLE
365.4	Phosphorus, Total	EPA	EET ORL
3511	Microextraction of Organic Compounds	SW846	EET ORL
365.2/365.3/365	Phosphorus, Total	MCAWW	EET ORL
5030C	Purge and Trap	SW846	EET ORL
537 IDA	EPA 537 Isotope Dilution	EPA	ELLE

#### **Protocol References:**

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### **Laboratory References:**

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984 ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

2

- 0

6

_

9

10

40

13

15

# **Sample Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-9608-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
670-9608-1	IA-IDW01-20221115	Water	11/15/22 14:15	11/15/22 15:30
670-9608-2	IA-TB01-20221115	Water	11/15/22 14:00	11/15/22 15:30

1

6

R

9

10

12

. .

. .

• eurofins

**Chain of Custody Record** 

Phone: 407-339-5984 Fax: 407-260-6110

Altamonte Springs, FL 32701

**Eurofins Orlando** 

481 Newburyport Avenue

481 Newburyport Avenue Altamonte Springs, FL 32701 **Chain of Custody Record** 



🔆 eurofins

Phone: 407-339-5984 Fax: 407-260-6110																			
Client Information (Sub Contract Lab)					РМ: nicki, Kaitlin					Carrier Tracking No(s):					COC No: 670-1684.1				
Client Contact: Shipping/Receiving	Phone: E-M. kait									State of Origin: Florida				Page: Page 1 of 1					
Company: Eurofins Lancaster Laboratories Environm						Accreditations Required (See note): NELAP - Florida											Job #: 670-9608-1		
Address:	Due Date Requeste	d:	_							-						_	Preservation Codes	A:	
2425 New Holland Pike, ,	12/6/2022				<u> </u>	_	_		A	nalysis	Req	uested	<u>t</u>			- 1	A - HCI	M - Hexane N - None	
City: Lancaster	TAT Requested (da	ys):			П		80									- 1	C - Zn Acetate	0 - AsNaO2 P - Na2O4S	
State, Zip: PA, 17601							3815-2									- 1	E - NaHSU4	Q - Na2SO3 R - Na2S2O3	
Phone: 717-656-2300(Tel)	PO #:				ွ		CS W	W.P									G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate U - Acetone	
Email:	wo #:				ž b	or No)	ASA K	PreScr				1					J - DI Water	V - MCAA W - pH 4-5	
Project Name: NASA KSC Industrial Area	Project #: 67001282				اڠ	S Or	N (aa	FAS			11					in K-EDIA			
Site:	SSOW#:			_		اڠ	FC (M	FAS/P								of contain	Other:		
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time		Matrix (www.ster, 8=eolid, O-weste/oll, '=Tissue, A=Akr	Field Filtered S.	Perform MS/MSD (Yes	PFC_IDA/3535_PFC (MOD) NASA KCS WS#15-2 DOD	PRE_SCREEN_PFAS/PFAS_ProScn_W								Total Number o	Special Ins	tructions/Note:	
			Preservation	on Code:	$\Delta$	X,	_	_					-		$\perp$	$\triangle$			
IA-IDW01-20221115 (670-9608-1)	11/15/22	14:15 Eastern		Water	$\coprod$		X	×	_			$\perp$			$\square$	2			
					$\sqcup$	1		-	_			_			+	4			
					H	+	_	-	-			-			$\sqcup$				
					H	+			-		-	-							
					Н	+			-	$\vdash$	-	-	+-		+				
			-		+	-		-	-				+	$\vdash$	+-	-			
					H	+	-		-		-	_	+-		+	$\dashv$			
				-	H	+					+-	+	+						
Note: Since laboratory accreditations are subject to change, Eurofins Environdoes not currently maintain accreditation in the State of Origin listed above status should be brought to Eurofins Environment Testing Southeast, LLC a	for analysis/tests/matrix bei	ng analyzed, ti	he samples must	be shipped	back to	the i	Eurol	fins Env	rironmen	Testing Sc	outheas	t, LLC lab	oratory	or other in	struction	ns wil	If be provided. Any cha	anges to accreditation	
Possible Hazard Identification					1	Sam	_			-				-			ed longer than 1 r	•	
Unconfirmed	Diam. D.E				-				To Clie			isposal	By La	ab		<b>Irch</b>	ive For	Months	
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver		2			Spe	cial	Instru	ctions/C	C Requi	remer								
Empty Kit Relinquished by:	Date/Time:	Date:			Tim							Ме	thod of	Shipment:					
Relinquished by: BB	11/16	123	39	ompany				ived by:						Date/Tim				Company	
Relinquished by:	Date/Time:			ompany		-	Recei	ived by:						Date/Tim	0:	_		Company	
Relinquished by:	Date/Time:		C	ompany		I	Recei	ived by:			)			Date/Tim	1171	12	2 1005	Company	
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No							Coole	er Temp	)erature(1	) C and O	ther Re	marks:	0-	7	-/				

## **Login Sample Receipt Checklist**

Client: AECOM Technical Services Inc.

Job Number: 670-9608-1

Login Number: 9608 List Source: Eurofins Orlando

List Number: 1

Creator: Hartley, Tyler

Question       Answer       Comment         Radioactivity wasn't checked or is        >= background as measured by a survey meter.       N/A         The cooler's custody seal, if present, is intact.       True         Sample custody seals, if present, are intact.       True         The cooler or samples do not appear to have been compromised or tampered with.       True         Samples were received on ice.       True         Cooler Temperature is acceptable.       True         COC is present.       True         COC is filled out in ink and legible.       True         COC is filled out with all pertinent information.       True         Is the Field Sampler's name present on COC?       True         There are no discrepancies between the containers received and the COC.       True         Samples are received within Holding Time (excluding tests with immediate HTS)       True         Sample containers have legible labels.       True         Containers are not broken or leaking.       True         Sample collection date/times are provided.       True         Appropriate sample containers are used.       True         Sample bottles are completely filled.       True         Sample Preservation Verified.       N/A         There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs <td< th=""></td<>
meter. The cooler's custody seal, if present, is intact.  Sample custody seals, if present, are intact. True  The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice.  Cooler Temperature is acceptable.  Cooler Temperature is recorded.  True  COC is present.  COC is filled out in ink and legible.  True  COC is filled out with all pertinent information.  Is the Field Sampler's name present on COC?  True  There are no discrepancies between the containers received and the COC.  Samples are received within Holding Time (excluding tests with immediate HTS)  Sample containers have legible labels.  True  Cotainers are not broken or leaking.  Sample collection date/times are provided.  Appropriate sample containers are used.  Sample bottles are completely filled.  True  Sample Preservation Verified.  There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs  Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").  Multiphasic samples are not present.  True
Sample custody seals, if present, are intact.  True The cooler or samples do not appear to have been compromised or tampered with.  Samples were received on ice.  Cooler Temperature is acceptable.  True Cooler Temperature is recorded.  True COC is present.  True COC is filled out in ink and legible.  True COC is filled out with all pertinent information.  Is the Field Sampler's name present on COC?  True There are no discrepancies between the containers received and the COC.  Samples are received within Holding Time (excluding tests with immediate HTs)  Sample containers have legible labels.  True Containers are not broken or leaking.  Sample collection date/times are provided.  Appropriate sample containers are used.  True Sample bottles are completely filled.  True Sample Preservation Verified.  There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs  Containers requiring zero headspace have no headspace or bubble is <a href="mailto:firue">6</a> True  Tru
The cooler or samples do not appear to have been compromised or tampered with.  Samples were received on ice.  Cooler Temperature is acceptable.  True  Cooler Temperature is recorded.  True  COC is present.  COC is filled out in ink and legible.  COC is filled out with all pertinent information.  Is the Field Sampler's name present on COC?  True  Samples are received within Holding Time (excluding tests with immediate HTs)  Sample containers have legible labels.  True  Containers are not broken or leaking.  Sample collection date/times are provided.  Appropriate sample containers are used.  Sample bottles are completely filled.  Sample Preservation Verified.  True  Sample Preservation Verified.  True  Sample Sufficient vol. for all requested analyses, incl. any requested  MS/MSDs  Containers requiring zero headspace have no headspace or bubble is  **Gomm (1/4").  Multiphasic samples are not present.  True
tampered with.  Samples were received on ice.  Cooler Temperature is acceptable.  Crue  Cooler Temperature is recorded.  True  COC is present.  True  COC is filled out in ink and legible.  COC is filled out with all pertinent information.  Is the Field Sampler's name present on COC?  True  There are no discrepancies between the containers received and the COC.  Samples are received within Holding Time (excluding tests with immediate HTs)  Sample containers have legible labels.  Containers are not broken or leaking.  Sample collection date/times are provided.  Appropriate sample containers are used.  Sample Preservation Verified.  True  Sample Preservation Verified.  True  Sample Preservation Verified.  True  MS/MSDs  Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").  Multiphasic samples are not present.
Cooler Temperature is acceptable.  Cooler Temperature is recorded.  True  COC is present.  True  COC is filled out in ink and legible.  True  COC is filled out with all pertinent information.  Is the Field Sampler's name present on COC?  True  There are no discrepancies between the containers received and the COC.  Samples are received within Holding Time (excluding tests with immediate HTs)  Sample containers have legible labels.  True  Containers are not broken or leaking.  Sample collection date/times are provided.  Appropriate sample containers are used.  True  Sample bottles are completely filled.  Sample Preservation Verified.  There is sufficient vol. for all requested analyses, incl. any requested  MS/MSDs  Containers requiring zero headspace have no headspace or bubble is  <6mm (1/4").  Multiphasic samples are not present.  True  T
Cooler Temperature is recorded.  COC is present.  True  COC is filled out in ink and legible.  True  COC is filled out with all pertinent information.  Is the Field Sampler's name present on COC?  True  There are no discrepancies between the containers received and the COC.  Samples are received within Holding Time (excluding tests with immediate HTs)  Sample containers have legible labels.  Containers are not broken or leaking.  Sample collection date/times are provided.  Appropriate sample containers are used.  True  Sample bottles are completely filled.  Sample Preservation Verified.  There is sufficient vol. for all requested analyses, incl. any requested  MS/MSDs  Containers requiring zero headspace have no headspace or bubble is <incl. analyses="" any="" are="" not="" present.="" requested="" td="" true="" true<=""></incl.>
COC is present.  COC is filled out in ink and legible.  True  COC is filled out with all pertinent information.  Is the Field Sampler's name present on COC?  True  There are no discrepancies between the containers received and the COC.  True  Samples are received within Holding Time (excluding tests with immediate HTs)  Sample containers have legible labels.  True  Containers are not broken or leaking.  Sample collection date/times are provided.  Appropriate sample containers are used.  True  Sample bottles are completely filled.  True  Sample Preservation Verified.  True  Sample Preservation Verified.  True  MS/MSDs  Containers requiring zero headspace have no headspace or bubble is <fer a="" be="" container="" or="" should="" td="" true="" true<=""></fer>
COC is filled out in ink and legible.  COC is filled out with all pertinent information.  It is the Field Sampler's name present on COC?  There are no discrepancies between the containers received and the COC.  True  Samples are received within Holding Time (excluding tests with immediate HTs)  Sample containers have legible labels.  Containers are not broken or leaking.  Sample collection date/times are provided.  Appropriate sample containers are used.  True  Sample bottles are completely filled.  Sample Preservation Verified.  Thee  Sample Preservation Verified.  Thee  MS/MSDs  Containers requiring zero headspace have no headspace or bubble is  **Comparison of the comparison of the co
COC is filled out with all pertinent information.  Is the Field Sampler's name present on COC?  There are no discrepancies between the containers received and the COC.  True  Samples are received within Holding Time (excluding tests with immediate HTs)  Sample containers have legible labels.  True  Containers are not broken or leaking.  Sample collection date/times are provided.  Appropriate sample containers are used.  True  Sample bottles are completely filled.  True  Sample Preservation Verified.  There is sufficient vol. for all requested analyses, incl. any requested  MS/MSDs  Containers requiring zero headspace have no headspace or bubble is $                                                            $
Is the Field Sampler's name present on COC?  True There are no discrepancies between the containers received and the COC.  True Samples are received within Holding Time (excluding tests with immediate HTs) Sample containers have legible labels.  True Containers are not broken or leaking.  True Sample collection date/times are provided.  Appropriate sample containers are used.  True Sample bottles are completely filled.  True Sample Preservation Verified.  There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs  Containers requiring zero headspace have no headspace or bubble is
There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate HTs)  Sample containers have legible labels. True Containers are not broken or leaking. True Sample collection date/times are provided. True Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. N/A There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs  Containers requiring zero headspace have no headspace or bubble is <6mm (1/4"). True  Multiphasic samples are not present. True
Samples are received within Holding Time (excluding tests with immediate HTs)  Sample containers have legible labels.  Containers are not broken or leaking.  Sample collection date/times are provided.  Appropriate sample containers are used.  True  Sample bottles are completely filled.  True  Sample Preservation Verified.  There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs  Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").  Multiphasic samples are not present.  True
HTs) Sample containers have legible labels.  Containers are not broken or leaking.  True Sample collection date/times are provided.  Appropriate sample containers are used.  True Sample bottles are completely filled.  True Sample Preservation Verified.  True Sample Preservation Verified.  True MS/MSDs  Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").  Multiphasic samples are not present.  True  True  True  True  True
Containers are not broken or leaking.  Sample collection date/times are provided.  Appropriate sample containers are used.  Sample bottles are completely filled.  Sample Preservation Verified.  True  Sample Preservation Verified.  There is sufficient vol. for all requested analyses, incl. any requested  MS/MSDs  Containers requiring zero headspace have no headspace or bubble is <a href="mailto:containers">containers requiring zero headspace have no headspace or bubble is  True  True  True  True  True  True  True  True  True</a>
Sample collection date/times are provided.  Appropriate sample containers are used.  True  Sample bottles are completely filled.  True  Sample Preservation Verified.  There is sufficient vol. for all requested analyses, incl. any requested  MS/MSDs  Containers requiring zero headspace have no headspace or bubble is  <6mm (1/4").  Multiphasic samples are not present.  True  True  True  True
Appropriate sample containers are used.  Sample bottles are completely filled.  True  Sample Preservation Verified.  There is sufficient vol. for all requested analyses, incl. any requested  MS/MSDs  Containers requiring zero headspace have no headspace or bubble is  <6mm (1/4").  Multiphasic samples are not present.  True  True  True
Sample bottles are completely filled.  Sample Preservation Verified.  True  Sample Preservation Verified.  N/A  There is sufficient vol. for all requested analyses, incl. any requested  MS/MSDs  Containers requiring zero headspace have no headspace or bubble is  <6mm (1/4").  Multiphasic samples are not present.  True  True
Sample Preservation Verified.  There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs  Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").  Multiphasic samples are not present.  N/A  True  True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs  Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").  Multiphasic samples are not present.  True
MS/MSDs  Containers requiring zero headspace have no headspace or bubble is <pre>&lt;6mm (1/4").</pre> Multiphasic samples are not present. True
<6mm (1/4").  Multiphasic samples are not present.  True
• • •
Samples do not require splitting or compositing.  True
Residual Chlorine Checked. N/A

3

4

_____

7

9

11

13

4 5

## **Login Sample Receipt Checklist**

Client: AECOM Technical Services Inc. Job Number: 670-9608-1

Login Number: 9608 List Source: Eurofins Lancaster Laboratories Environment Testing, LLC
List Number: 2 List Creation: 11/17/22 04:25 PM

Creator: Foreman, Leah M

Question	Answer	Comment
The cooler's custody seal is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable ( =6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV: Container Temperature is acceptable ( =6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
Sample custody seals are intact.	N/A	
VOA sample vials do not have headspace >6mm in diameter (none, if from WV)?	N/A	

Λ

5

7

9

11

13

11 12

14

# **ANALYTICAL REPORT**

## PREPARED FOR

Attn: Teresa Amentt Jennings AECOM Technical Services Inc. 150 North Orange Avenue Suite 200 Orlando, Florida 32801 Generated 1/17/2023 4:49:01 PM

# **JOB DESCRIPTION**

NASA KSC Industrial Area SDG NUMBER Environmental Health Facility

## **JOB NUMBER**

670-12834-1

Eurofins Orlando 481 Newburyport Avenue Altamonte Springs FL 32701



# **Eurofins Orlando**

#### **Job Notes**

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

### **Authorization**

Generated 1/17/2023 4:49:01 PM

Authorized for release by Kaitlin Dylnicki, Project Manager kaitlin.dylnicki@et.eurofinsus.com (407)339-5984

13

Laboratory Job ID: 670-12834-1 SDG: Environmental Health Facility

# **Table of Contents**

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	12
Lab Chronicle	13
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	21

______

6

8

10

12

## **Definitions/Glossary**

Client: AECOM Technical Services Inc.

Project/Site: NASA KSC Industrial Area

Job ID: 670-12834-1

SDG: Environmental Health Facility

#### **Qualifiers**

#### **GC/MS VOA**

Qualifier Qualifier Description

U Indicates that the compound was analyzed for but not detected.

### **Glossary**

CNF

Appreviation	These commonly used appreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit

Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

**Eurofins Orlando** 

Page 4 of 21 1/17/2023

#### **Case Narrative**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-12834-1 SDG: Environmental Health Facility

Job ID: 670-12834-1

**Laboratory: Eurofins Orlando** 

Narrative

Job Narrative 670-12834-1

#### Receipt

The samples were received on 1/11/2023 4:50 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.0°C

#### **GC/MS VOA**

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

5

6

Ŏ

10

11

12

14

## **Detection Summary**

	Detect	ion Sun	IIIIai y	,		
Client: AECOM Technical Services Project/Site: NASA KSC Industrial						Job ID: 670-12834-1 mental Health Facility
Client Sample ID: EHF-DP	Γ0001-010.0-202301	10			Lab Sample	ID: 670-12834-1
No Detections.						
Client Sample ID: EHF-DP	Γ0001-015.0-202301	10			Lab Sample	EID: 670-12834-2
No Detections.						
Client Sample ID: EHF-DP	Γ0001-020.0-202301	10			Lab Sample	ID: 670-12834-3
No Detections.						
Client Sample ID: EHF-DP	Γ0001-030.0-202301	10			Lab Sample	EID: 670-12834-4
Analyte	Result Qualifier	PQL	MDL	Unit	Dil Fac D Metho	od Prep Type
Vinyl chloride	1.4	1.0	0.71	ug/L	1 8260D	Total/NA
Client Sample ID: EHF-DP	Γ0001-040.0-202301	10			Lab Sample	ID: 670-12834-5
No Detections.						
Client Sample ID: EHF-DP	Γ0001-050.0-202301	10			Lab Sample	ID: 670-12834-6
No Detections.						
Client Sample ID: EHF-DP7	Γ0002-010.0-202301	10			Lab Sample	ID: 670-12834-7
No Detections.						
Client Sample ID: EHF-DP	Γ0002-015.0-202301	10			Lab Sample	ID: 670-12834-8
Analyte	Result Qualifier	PQL	MDL	Unit	Dil Fac D Metho	od Prep Type
Vinyl chloride	15	1.0	0.71	ug/L	1	) Total/NA
Client Sample ID: EHF-DP	Г0002-020.0-202301	10			Lab Sample	ID: 670-12834-9
Analyte	Result Qualifier	PQL		Unit	Dil Fac D Metho	
Vinyl chloride	19	1.0	0.71	ug/L	1 8260D	
Client Sample ID: EHF-DP	Г0002-030.0-202301	10			Lab Sample I	ID: 670-12834-10
No Detections.						
Client Sample ID: EHF-DPT0002-040.0-20230110 Lab Sample ID: 670-12834-11						
No Detections.						
Client Sample ID: EHF-DP	Γ0002-050.0-202301	10			Lab Sample I	ID: 670-12834-12

This Detection Summary does not include radiochemical test results.

No Detections.

**Eurofins Orlando** 

1/17/2023

Page 6 of 21

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-12834-1

SDG: Environmental Health Facility

Client Sample ID: EHF-DPT0001-010.0-20230110 Date Collected: 01/10/23 08:35

Lab Sample ID: 670-12834-1 **Matrix: Ground Water** 

Date Received: 01/11/23 16:50

Method: SW846 8260D - Vola	atile Organic	Compound	ds by GC/MS						
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/13/23 15:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		40 - 146					01/13/23 15:47	1
Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr)	101 98		40 - 146 41 - 142					01/13/23 15:47 01/13/23 15:47	1 1

Client Sample ID: EHF-DPT0001-015.0-20230110

Lab Sample ID: 670-12834-2

Date Collected: 01/10/23 08:55 Date Received: 01/11/23 16:50

**Matrix: Ground Water** 

Mothod: CW04C 00C0D Voletile Orga

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/13/23 16:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		40 - 146			•		01/13/23 16:38	1
4-Bromofluorobenzene (Surr)	97		41 - 142					01/13/23 16:38	1
Dibromofluoromethane (Surr)	104		53 - 146					01/13/23 16:38	1

Client Sample ID: EHF-DPT0001-020.0-20230110

Lab Sample ID: 670-12834-3

Date Collected: 01/10/23 09:20 Date Received: 01/11/23 16:50

**Matrix: Ground Water** 

Method: SW846 8260D - Vo	olatile Organic	Compoun	ds by GC/MS						
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/13/23 17:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		40 - 146			-		01/13/23 17:12	1
4-Bromofluorobenzene (Surr)	97		41 - 142					01/13/23 17:12	1

Client Sample ID: EHF-DPT0001-030.0-20230110

Lab Sample ID: 670-12834-4

**Matrix: Ground Water** Date Collected: 01/10/23 09:50

Date Received: 01/11/23 16:50

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	1.4		1.0	0.71	ug/L			01/13/23 17:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		40 - 146			•		01/13/23 17:29	1
4-Bromofluorobenzene (Surr)	98		41 - 142					01/13/23 17:29	1
Dibromofluoromethane (Surr)	105		53 - 146					01/13/23 17:29	1

1/17/2023

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-12834-1

SDG: Environmental Health Facility

Client Sample ID: EHF-DPT0001-040.0-20230110

Lab Sample ID: 670-12834-5

Date Collected: 01/10/23 10:15 Date Received: 01/11/23 16:50

Matrix:	<b>Ground</b>	Water

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/13/23 17:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		40 - 146					01/13/23 17:46	1
4-Bromofluorobenzene (Surr)	98		41 - 142					01/13/23 17:46	1
Dibromofluoromethane (Surr)	105		53 - 146					01/13/23 17:46	1

Client Sample ID: EHF-DPT0001-050.0-20230110 Lab Sample ID: 670-12834-6

Date Collected: 01/10/23 10:45 Date Received: 01/11/23 16:50

**Matrix: Ground Water** 

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/13/23 18:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		40 - 146			-		01/13/23 18:03	1
4-Bromofluorobenzene (Surr)	99		41 - 142					01/13/23 18:03	1
Dibromofluoromethane (Surr)	103		53 - 146					01/13/23 18:03	1

Client Sample ID: EHF-DPT0002-010.0-20230110 Lab Sample ID: 670-12834-7

Date Collected: 01/10/23 11:25 Date Received: 01/11/23 16:50

**Matrix: Ground Water** 

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	PQL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71 ug/L			01/13/23 18:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		40 - 146				01/13/23 18:20	1
4-Bromofluorobenzene (Surr)	100		41 - 142				01/13/23 18:20	1
Dibromofluoromethane (Surr)	104		53 - 146				01/13/23 18:20	1

Lab Sample ID: 670-12834-8 Client Sample ID: EHF-DPT0002-015.0-20230110 **Matrix: Ground Water** 

Date Collected: 01/10/23 12:05 Date Received: 01/11/23 16:50

Method: SW846 8260D - Volatile Organic Compounds by GC/MS Analyte Result Qualifier PQL MDL Unit Prepared Analyzed Dil Fac Vinyl chloride 15 1.0 0.71 ug/L 01/13/23 18:37 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 99 40 - 146 01/13/23 18:37 4-Bromofluorobenzene (Surr) 41 - 142 100 01/13/23 18:37 Dibromofluoromethane (Surr) 104 53 - 146 01/13/23 18:37

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-12834-1 SDG: Environmental Health Facility

Client Sample ID: EHF-DPT0002-020.0-20230110

Lab Sample ID: 670-12834-9 Date Collected: 01/10/23 12:25 **Matrix: Ground Water** 

Date Received: 01/11/23 16:50

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	19		1.0	0.71	ug/L			01/13/23 18:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		40 - 146					01/13/23 18:54	1
4-Bromofluorobenzene (Surr)	100		41 - 142					01/13/23 18:54	1
Dibromofluoromethane (Surr)	102		53 - 146					01/13/23 18:54	1

Client Sample ID: EHF-DPT0002-030.0-20230110

Lab Sample ID: 670-12834-10 Date Collected: 01/10/23 12:45 **Matrix: Ground Water** 

Date Received: 01/11/23 16:50

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/13/23 19:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		40 - 146					01/13/23 19:11	1
4-Bromofluorobenzene (Surr)	95		41 - 142					01/13/23 19:11	1
Dibromofluoromethane (Surr)	103		53 ₋ 146					01/13/23 19:11	1

Client Sample ID: EHF-DPT0002-040.0-20230110 Lab Sample ID: 670-12834-11 **Matrix: Ground Water** 

Date Collected: 01/10/23 13:10

Date Received: 01/11/23 16:50

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/13/23 19:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		40 - 146			•		01/13/23 19:28	1
4-Bromofluorobenzene (Surr)	99		41 - 142					01/13/23 19:28	1
Dibromofluoromethane (Surr)	102		53 - 146					01/13/23 19:28	4

Client Sample ID: EHF-DPT0002-050.0-20230110 Lab Sample ID: 670-12834-12

Date Collected: 01/10/23 13:35 Date Received: 01/11/23 16:50

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/13/23 19:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		40 - 146			•		01/13/23 19:45	1
4-Bromofluorobenzene (Surr)	101		41 - 142					01/13/23 19:45	1
4-bioinolluolobelizelle (Sull)	101							0171072010.10	

**Matrix: Ground Water** 

Page 9 of 21

## **Surrogate Summary**

Client: AECOM Technical Services Inc. Job ID: 670-12834-1 Project/Site: NASA KSC Industrial Area SDG: Environmental Health Facility

Method: 8260D - Volatile Organic Compounds by GC/MS

**Matrix: Ground Water Prep Type: Total/NA** 

		TOL	BFB	DBFM	e Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(40-146)	(41-142)	(53-146)	
670-12834-1	EHF-DPT0001-010.0-20230110	101	98	104	
670-12834-1 MS	EHF-DPT0001-010.0-20230110	98	95	101	
670-12834-2	EHF-DPT0001-015.0-20230110	100	97	104	
670-12834-2 DU	EHF-DPT0001-015.0-20230110	100	102	102	
670-12834-3	EHF-DPT0001-020.0-20230110	99	97	103	
670-12834-4	EHF-DPT0001-030.0-20230110	101	98	105	
670-12834-5	EHF-DPT0001-040.0-20230110	99	98	105	
670-12834-6	EHF-DPT0001-050.0-20230110	102	99	103	
670-12834-7	EHF-DPT0002-010.0-20230110	101	100	104	
670-12834-8	EHF-DPT0002-015.0-20230110	99	100	104	
670-12834-9	EHF-DPT0002-020.0-20230110	101	100	102	
670-12834-10	EHF-DPT0002-030.0-20230110	100	95	103	
670-12834-11	EHF-DPT0002-040.0-20230110	98	99	102	
670-12834-12	EHF-DPT0002-050.0-20230110	97	101	102	

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260D - Volatile Organic Compounds by GC/MS

**Matrix: Water** Prep Type: Total/NA

			Pe	ercent Surro	gate Recovery (Acceptance Limits
		TOL	BFB	DBFM	
Lab Sample ID	Client Sample ID	(40-146)	(41-142)	(53-146)	
LCS 670-18322/6	Lab Control Sample	100	96	102	
MB 670-18322/29	Method Blank	101	97	105	

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

**Eurofins Orlando** 

Page 10 of 21

Client: AECOM Technical Services Inc. Job ID: 670-12834-1 Project/Site: NASA KSC Industrial Area SDG: Environmental Health Facility

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 670-18322/29

**Matrix: Water** 

**Analysis Batch: 18322** 

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier PQL **MDL** Unit Analyzed Dil Fac Analyte D Prepared 01/13/23 15:10 Vinyl chloride 0.71 U 1.0 0.71 ug/L

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 101 40 - 146 01/13/23 15:10 4-Bromofluorobenzene (Surr) 97 41 - 142 01/13/23 15:10 Dibromofluoromethane (Surr) 105 53 - 146 01/13/23 15:10

Lab Sample ID: LCS 670-18322/6 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 18322** 

LCS LCS %Rec Spike Added Result Qualifier Unit %Rec Limits Analyte Vinyl chloride 20.0 20.4 102 20 - 167 ug/L

LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 100 40 - 146 4-Bromofluorobenzene (Surr) 41 - 142 96 Dibromofluoromethane (Surr) 102 53 - 146

Client Sample ID: EHF-DPT0001-010.0-20230110 Lab Sample ID: 670-12834-1 MS Prep Type: Total/NA

**Matrix: Ground Water** 

**Analysis Batch: 18322** 

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Vinyl chloride 0.71 U 20.0 27.6 ug/L 138 20 - 167

MS MS %Recovery Surrogate Qualifier Limits Toluene-d8 (Surr) 98 40 - 146 4-Bromofluorobenzene (Surr) 95 41 - 142 Dibromofluoromethane (Surr) 101 53 - 146

Lab Sample ID: 670-12834-2 DU Client Sample ID: EHF-DPT0001-015.0-20230110 **Matrix: Ground Water** Prep Type: Total/NA

**Analysis Batch: 18322** 

Sample Sample DU DU **RPD** Analyte Result Qualifier Result Qualifier Unit D **RPD** I imit Vinyl chloride 0.71 U 0.71 U ug/L NC 30

DU DU Surrogate %Recovery Qualifier Limits 40 - 146 Toluene-d8 (Surr) 100 4-Bromofluorobenzene (Surr) 102 41 - 142 Dibromofluoromethane (Surr) 102 53 - 146

# **QC Association Summary**

Client: AECOM Technical Services Inc.

Project/Site: NASA KSC Industrial Area

Job ID: 670-12834-1

SDG: Environmental Health Facility

## **GC/MS VOA**

#### **Analysis Batch: 18322**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-12834-1	EHF-DPT0001-010.0-20230110	Total/NA	Ground Water	8260D	
670-12834-2	EHF-DPT0001-015.0-20230110	Total/NA	<b>Ground Water</b>	8260D	
670-12834-3	EHF-DPT0001-020.0-20230110	Total/NA	<b>Ground Water</b>	8260D	
670-12834-4	EHF-DPT0001-030.0-20230110	Total/NA	Ground Water	8260D	
670-12834-5	EHF-DPT0001-040.0-20230110	Total/NA	<b>Ground Water</b>	8260D	
670-12834-6	EHF-DPT0001-050.0-20230110	Total/NA	<b>Ground Water</b>	8260D	
670-12834-7	EHF-DPT0002-010.0-20230110	Total/NA	Ground Water	8260D	
670-12834-8	EHF-DPT0002-015.0-20230110	Total/NA	<b>Ground Water</b>	8260D	
670-12834-9	EHF-DPT0002-020.0-20230110	Total/NA	<b>Ground Water</b>	8260D	
670-12834-10	EHF-DPT0002-030.0-20230110	Total/NA	Ground Water	8260D	
670-12834-11	EHF-DPT0002-040.0-20230110	Total/NA	<b>Ground Water</b>	8260D	
670-12834-12	EHF-DPT0002-050.0-20230110	Total/NA	<b>Ground Water</b>	8260D	
MB 670-18322/29	Method Blank	Total/NA	Water	8260D	
LCS 670-18322/6	Lab Control Sample	Total/NA	Water	8260D	
670-12834-1 MS	EHF-DPT0001-010.0-20230110	Total/NA	<b>Ground Water</b>	8260D	
670-12834-2 DU	EHF-DPT0001-015.0-20230110	Total/NA	Ground Water	8260D	

Eurofins Orlando

SDG: Environmental Health Facility

Client Sample ID: EHF-DPT0001-010.0-20230110

Date Collected: 01/10/23 08:35 Date Received: 01/11/23 16:50

Lab Sample ID: 670-12834-1 **Matrix: Ground Water** 

**Matrix: Ground Water** 

**Matrix: Ground Water** 

**Matrix: Ground Water** 

**Matrix: Ground Water** 

**Matrix: Ground Water** 

Job ID: 670-12834-1

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Type	Method	Run	Factor	Number Analy	/st Lab	or Analyzed
Total/NA	Analysis	8260D		1	18322 JW	EET ORL	01/13/23 15:47

Client Sample ID: EHF-DPT0001-015.0-20230110 Lab Sample ID: 670-12834-2

Date Collected: 01/10/23 08:55

Date Received: 01/11/23 16:50										
Batch	Batch	Dilution	Batch	Prepared						

**Prep Type** Type Method Run **Factor** Number Analyst Lab or Analyzed Total/NA Analysis 8260D 18322 JW EET ORL 01/13/23 16:38

Client Sample ID: EHF-DPT0001-020.0-20230110 Lab Sample ID: 670-12834-3 **Matrix: Ground Water** 

Date Collected: 01/10/23 09:20 Date Received: 01/11/23 16:50

	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Analysis	8260D			18322	JW	EET ORL	01/13/23 17:12	

Client Sample ID: EHF-DPT0001-030.0-20230110 Lab Sample ID: 670-12834-4

Date Collected: 01/10/23 09:50 Date Received: 01/11/23 16:50

Batch **Batch** Dilution Batch **Prepared Prep Type** Method **Factor Number Analyst** or Analyzed Type Run Lab Total/NA Analysis 8260D 18322 JW EET ORL 01/13/23 17:29

Client Sample ID: EHF-DPT0001-040.0-20230110 Lab Sample ID: 670-12834-5

Date Collected: 01/10/23 10:15 Date Received: 01/11/23 16:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	18322	JW	EET ORL	01/13/23 17:46

Client Sample ID: EHF-DPT0001-050.0-20230110 Lab Sample ID: 670-12834-6

Date Collected: 01/10/23 10:45 Date Received: 01/11/23 16:50

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Type	Method	Run	Factor	Number Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D			18322 JW	EET ORL	01/13/23 18:03

Client Sample ID: EHF-DPT0002-010.0-20230110 Lab Sample ID: 670-12834-7

Date Collected: 01/10/23 11:25 Date Received: 01/11/23 16:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	18322	JW	EET ORL	01/13/23 18:20

#### **Lab Chronicle**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-12834-1 SDG: Environmental Health Facility

Client Sample ID: EHF-DPT0002-015.0-20230110

Date Collected: 01/10/23 12:05 Date Received: 01/11/23 16:50

Lab Sample ID: 670-12834-8

Lab Sample ID: 670-12834-10

Lab Sample ID: 670-12834-11

Lab Sample ID: 670-12834-12

**Matrix: Ground Water** 

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	18322	JW	EET ORL	01/13/23 18:37

Client Sample ID: EHF-DPT0002-020.0-20230110 Lab Sample ID: 670-12834-9

Date Collected: 01/10/23 12:25 Date Received: 01/11/23 16:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	18322	JW	EET ORL	01/13/23 18:54

Client Sample ID: EHF-DPT0002-030.0-20230110

Date Collected: 01/10/23 12:45

Date Received: 01/11/23 16:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	18322	JW	EET ORL	01/13/23 19:11

Client Sample ID: EHF-DPT0002-040.0-20230110

Date Collected: 01/10/23 13:10

Date Received: 01/11/23 16:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	18322	JW	EET ORL	01/13/23 19:28

Client Sample ID: EHF-DPT0002-050.0-20230110

Date Collected: 01/10/23 13:35 Date Received: 01/11/23 16:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	18322	JW	EET ORL	01/13/23 19:45

**Laboratory References:** 

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984

**Eurofins Orlando** 

Page 14 of 21

1/17/2023

# **Accreditation/Certification Summary**

Client: AECOM Technical Services Inc.

Project/Site: NASA KSC Industrial Area

Job ID: 670-12834-1

SDG: Environmental Health Facility

### **Laboratory: Eurofins Orlando**

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Florida	NFI AP	F83018	06-30-23

9

3

4

5

7

0

4 4

4.0

13

14

## **Method Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

**Method Description** 

Purge and Trap

Volatile Organic Compounds by GC/MS

Job ID: 670-12834-1 SDG: Environmental Health Facility

**EET ORL** 

Protocol	Laboratory
SW846	EET ORL

SW846

#### **Protocol References:**

Method

8260D

5030C

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### **Laboratory References:**

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984

# **Sample Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-12834-1 SDG: Environmental Health Facility

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
670-12834-1	EHF-DPT0001-010.0-20230110	Ground Water	01/10/23 08:35	01/11/23 16:50
670-12834-2	EHF-DPT0001-015.0-20230110	<b>Ground Water</b>	01/10/23 08:55	01/11/23 16:50
670-12834-3	EHF-DPT0001-020.0-20230110	Ground Water	01/10/23 09:20	01/11/23 16:50
670-12834-4	EHF-DPT0001-030.0-20230110	Ground Water	01/10/23 09:50	01/11/23 16:50
670-12834-5	EHF-DPT0001-040.0-20230110	<b>Ground Water</b>	01/10/23 10:15	01/11/23 16:50
670-12834-6	EHF-DPT0001-050.0-20230110	Ground Water	01/10/23 10:45	01/11/23 16:50
670-12834-7	EHF-DPT0002-010.0-20230110	Ground Water	01/10/23 11:25	01/11/23 16:50
670-12834-8	EHF-DPT0002-015.0-20230110	Ground Water	01/10/23 12:05	01/11/23 16:50
670-12834-9	EHF-DPT0002-020.0-20230110	Ground Water	01/10/23 12:25	01/11/23 16:50
670-12834-10	EHF-DPT0002-030.0-20230110	Ground Water	01/10/23 12:45	01/11/23 16:50
670-12834-11	EHF-DPT0002-040.0-20230110	Ground Water	01/10/23 13:10	01/11/23 16:50
670-12834-12	EHF-DPT0002-050.0-20230110	<b>Ground Water</b>	01/10/23 13:35	01/11/23 16:50

Л

5

6

0

9

10

11

13

14

											Page:	10 1	4		
eurofins	Project Name:	NASA KSC - Industrial Area						PO No.	PO No. 148674		Project No. 6	Project No. 60610905.5ubs 2021-23-5ubs 2021-23 Phase:	ubs 2021-23 p	hase:	
	Site Location:	Environmental Health Facility						Send In	Send Invoice To:	Instructions in M	Instructions in MSA # 195-24548-GV03	EDI	EDD to:	Jennifer Chastain	Cc: Teresa Amentt Jennings
	TO No.: 80KSC019F0071	AECOM Project Manager:			Chris Marshall			Deliver	Deliver Sample Kits To:		AECOM Depot, 523 18th Street, Orlando		Report to:	Jennifer Chastain	Cc: Teresa Amentt Jennings
Sampler/Phone #	Greg Kusel / (772) 631-7426							Deliver	Deliver Samples To:		Eurofins Orlando	Site	e-Spicific WS	Site-Spicific WS#15 from QAPP: 15-33	5-33
Lab Name:	Eurofins			Turnaround Time(specify):	e(specify):	St.	Standard 14 day		ole Analy	sis Request	Sample Analysis Requested (Ener number of containers for each test)	of containers for	each test)		
Lab ID Samp	Sample ID	Location ID	Sample Depth			V	Sample G=Grab	(3)	FG						
-5/(s)	(s/s_samp_code)	(opc_code)	(feet below land surface)	(YYYYMMDD)	(hhmm)	(1)	(2) C=Comp	ਤੂ Total No. of Containers	Vinyl chlande by SW8260B						Comments
EHF	EHF-DPT0001-010.0-202301 / 👨	EHF-DPT0001	010.0	202301/0	5850	9M	z	m							
EHF-	EHF-DPT0001-015.0-202301 10	EHF-DPT0001	015.0	202301 10	2880	WG	z	m	3						
EHF.	EHF-DPT0001-020.0-202301 10	EHF-DPT0001	020.0	202301/0	0920	WG	z	ю	8						
EHF.	EHF-DPT0001-030.0-202301 1 C	EHF-DPT0001	030.0	202301 /O	0360	WG	z	e .	3						
EHF-	EHF-DPT0001-040.0-202301 10	EHF-DPT0001	0.40.0	20230110 1015	1015	WG	z	ю	3						
EHF.	EHF-DPT0001-050.0-202301 10	EHF-DPT0001	0.050	202301 10 1045	5401	WG	g Z	m	3						
EHF.	EHF-DPT0002-010.0-202301 10	EHF-DPT0002	010.0	202301 10 1125	1125	WG	z	E	8						
EHF-	EHF-DPT0002-015.0-202301 /O	EHF-DPT0002	015.0	C) 108202	1205	WG	z	т	8						
EHF	EHF-DPT0002-020.0-202301 10	EHF-DPT0002	0.000	202301/0	1235	9M	z	E	8		670-1283	670-12834 Chain of C. 124			
EHF.	EHF-DPT0002-030.0-202301 /O	EHF-DPT0002	030.0	202301 10	1245	WG	z	m			-	ISDO IO	ody		
EHF-	EHF-DPT0002-040.0-20230110	EHF-DPT0002	040.0	202301 10	1310	WG	z	e						-	
EHF-	EHF-DPT0002-050.0-202301	EHF-DPT0002	0.050	202301 10	1335	WG	z	m	3						
Field Comments: Report only per QAPP WS #15-33	P WS #15-33				Lab Comments:	ži Ži	'					Sample Ship	nple Shipme	Sample Shipment and Delivery Details	Details
Relinquished by (signature)	(mature)	Date   1   23		Time	Peceived by (signature)	gnature)	11) J	300	24	Dalings	Time / 1/5	Samples Iced?(check) Yes_Shipping Company:	YesNo		
2 6	0				2 1 MC		17:	1841	5		1650	Tracking No:			
3	3				3			>			Г	Date Shipped:			

			בייייי כי כיכי כי יייים אימין וייים ארכין ארכיות		CAL NEGOL	SI NECORI	•		000 No	.0		Page:	1 of 1		
eurofins.	Project Name:	NASA KSC - Industrial Area	dustnal Area						PO No	PO No. 148674		Project No. 6061	Project No. 60610905.5ubs 2021-23-5ubs 2021-23 Phase:	-23 Phase:	
	Site Location:	Environmental	Environmental Health Facility						Send 1	Send Invoice To: Ir	structions in M:	Instructions in MSA # 19S-24548-GV03	EDD to:	Jennifer Chastain	Cc: Teresa Amentt Jennings
	TO No.: 80KSC019F0071	19F0071	AECOM Project Manager:			Chris Marshall	=		Delive	Deliver Sample Kits To:		AECOM Depot, 523 18th Street, Orlando	rlando Report to:	Jennifer Chastain	Cc: Teresa Amentt Jennings
Sampler/Phone #	Greg Kusel / (772) 631-7426	) 631-7426							Delive	Deliver Samples To:	Eurofin	Eurofins Orlando	Site-Spicifi	Site-Spicific WS#15 from QAPP: 15-33	15-33
Lab Name:	Eurofins				Turnaround Time(specify):	ne(specify):	25	Standard 14 day		ple Analys	is Request	Sample Analysis Requested (Enter number of containers for each test)	containers for each u	(tsa)	
Lab ID Samy	Sample ID (sys_samp_crode)		Location ID (sys_loc_code)	Sample Depth (feet below land surface)	Date (YYYYMMDD)	Time (Military) (hhmm)	Matrix Ss Code (1)	Sample G=Grat (2) C=Comp	Gerab  Gerab  Grap  Comp	Vinyl chloride by SW82608					Comments
EHF	EHF-DPT0001-010.0-202301 / 🐔	101 / 101	EHF-DPT0001	010.0	202301/	5880	9M	z	3	8					
EHF	EHF-DPT0001-015.0-202301 10	0/ 10	EHF-DPT0001	015.0	202301 10	2580	WG	z	3	3					
EHF	EHF-DPT0001-020.0-202301 1	C/ 101	EHF-DPT0001	0.020	202301 / 0	0420	9M	z	3	3					
EHF	EHF-DPT0001-030.0-202301 1 C	0/ 10	EHF-DPT0001	030.0	202301 10	0360	WG	z	3	8					
EHF	EHF-DPT0001-040.0-202301	01 1C	EHF-DPT0001	0.040.0	202301 10	1015	WG	z	3	е					
EHF	EHF-DPT0001-050.0-202301 10	01 10	EHF-DPT0001	0.050	202301 10	1045	9M	z	9	3					
EHF	EHF-DPT0002-010.0-202301 10	0/ 10	EHF-DPT0002	010.0	202301 10	1125	9M	z	9	6					
EHF	EHF-DPT0002-015.0-202301 / C	0/ 10	EHF-DPT0002	015.0	202301 /	1205	WG	z	3	3					
EHF	EHF-DPT0002-020.0-202301 10	0/ 10	EHF-DPT0002	0.020	202301/0	1225	WG	z	3	6		670-12834	670-12834 Chain of Clistodia		
EHF	EHF-DPT0002-030.0-202301 /	S/ 101	EHF-DPT0002	030.0	202301 10	1245	9M	z	3	8		-	Castody		
EHE	EHF-DPT0002-040.0-202301/O	0/10	EHF-DPT0002	040.0	202301 10	1310	9M	z	3	m				_	
EHF.	ЕНF-DPT0002-050.0-202301 $j\mathcal{O}$	O! 10:	EHF-DPT0002	0.050	202301 10	1335	WG	z	3	e.					
Field Comments:						Lab Comments:	nts:						Sample Sh	Sample Shipment and Delivery Details	y Details
Report only per QAPP WS #15-33	P WS #15-33							1	2			Nun	Number of coolers in shipment:	23	
Relinquished by (signature)	inature)		Date //// /23		Time	Peceived by (signature)	Signature)	100	Sall	Et	111/23	Time Sam	Samples Iced?(check) Yes_Shipping Company:	No	
2	0					2 1 mc	4.1	77	11/25/11	5		165 O Track	Tracking No:		
			3 Date Shipped:			3						Date	Date Shipped:		

(2) Sample Type: AB=Ambent Bik, FB=Field Bik, FB=Field Duplicate Sample, JDW=Investigative-Derived Waste, MIS=Incremental Sampling Nethodology, N=Normal Environmental Sample, TB=Trip Bik

APPERATED AGE C=Cotol to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C H2SO4=Hydrogen sulfate, H2SO4 <2=Adjust to pH < 2 with sulfure, acid, H3PO4=Phosphoric acid, H3PO4=Phosphoric acid, H3PO4 <2=Adjust to pH < 2 with indire acid, MGO1=Phosphoric acid, H3PO4=Phosphoric acid, H3P

	5	CHAIN OF CUSTODY AND ANALYTICAL REQUEST RECORD	ANALYTI	CAL REQUE	ST RECORD			COC No.	· o		Page:	1 of	1		
Purofine	Project Name: NASA KSC - Industrial Area	idustrial Area						PO No.	PO No. 148674		Project No	Project No. 60610905.Subs 2021-23-Subs 2021-23		Phase:	
* carolina	Site Location:	Environmental Health Facility						Send I	Send Invoice To:	Instructions in MSA # 195-24548-GV03	# 19S-24548-GV03	ED	_	Jennifer Chastain	Cc: Teresa Amentt Jennings
	TO No.: 80KSC019F0071	AECOM Project Manager:			Chris Marshall	_		Deliver	Deliver Sample Kits To:		AECOM Depot, 523 18th Street, Orlando		Report to:	Jennifer Chastain	Cc: Teresa Amentt Jennings
Sampler/Phone #	Greg Kusel / (772) 631-7426							Deliver	Deliver Samples To:	Eurofins Orlando	Orlando	Sit	e-Spicific WS	Site-Spicific WS#15 from OAPP: 15-33	15-33
Lab Name:	Eurofins			Turnaround Time(specify):	ne(specify):	SS	Standard 14 day		ple Analy	rsis Requestec	(Enter numbe	Sample Analysis Requested (Enter number of containers for each test)	each test		
Lab ID Sample ID (sys_samp.	Sample ID (sys_samp_code)	Location ID (sys_loc_code)	Sample Depth (feet below land surface)	раtе (үүүүммрр))	Time (Millary) (thmm)	Matrix Scode (1)	Sample G=Grat (2) C=Comp	General Mo. of Containers	AGSS8W2 yd abholda lynivi						Comments
EHF-DP	EHF-DPT0001-010.0-202301 / 🚓	EHF-DPT0001	010.0	202301/0	5850	WG	z	e 9	m						
EHF-DP	EHF-DPT0001-015.0-202301 FC	EHF-DPT0001	015.0	202301 10	2580	WG	z	3	3						
GHF-DP	EHF-DPT0001-020.0-202301 10	EHF-DPT0001	0.020	202301/0	0420	WG	z	3							
EHF-DP	EHF-DPT0001-030.0-202301 / C	EHF-DPT0001	030.0	202301 /O	0360	WG	z	3							
EHF-DP	EHF-DPT0001-040.0-202301   C	EHF-DPT0001	0.040	202301 10 1015	1015	WG	z	3	3						
EHF-DP	EHF-DPT0001-050.0-202301 ,O	EHF-DPT0001	0.050	202301 10 1045	5401	WG	z	3							
EHF-DP	EHF-DPT0002-010.0-202301 10	EHF-DPT0002	0.010	202301 10	1125	WG	z	e 9	E						
EHF-DP	EHF-DPT0002-015.0-202301 ) C	EHF-DPT0002	015.0	202301 10		WG	z	9	ю						
EHF-DP	EHF-DPT0002-020.0-202301 10	EHF-DPT0002	0.020	202301/0	1225	5M	z	3	6		670-128	670-12834 Chain of C.			
EHF-DP	ЕНF-DPT0002-030.0-202301 1	EHF-DPT0002	030.0	202301 10	1245	WG	z	3	3		-	ISPO IS	ody		
EHF-DP	EHF-DPT0002-040.0-20230110	EHF-DPT0002	040.0	202301 10	1310	9M	z	3	Е						
EHF-DP	EHF-DPT0002-050.0-202301	EHF-DPT0002	0.050	202301 10	1335	WG	z	3	3						
Field Comments: Report only per OAPP WS #15-33	VS #15-33				Lab Comments:	nts:						Sample Ship	nple Shipm shipment:	Sample Shipment and Delivery Details in shipment:	y Details
Relinquished by (signature)	ture)	Date	-	Time	Received by (s	ed by (signature)	1/2		24	Date United	Time / 4/5	Samples Iced?(check) Yes_Shipping Company:		No	
No in	min	1110			2 0 000	2	x :	11/11	0	100	1650	Tracking No:			
					2			>				Date Shinned:			

As a Ambient an (Ap air quality control, ASB-abbestos, CK=Caulit, D5=Storm drain sediment, G5=Stol gas, IC=IDW Concrete, IDD=IDW solid, IDS=IDW solid, IDS=I

## **Login Sample Receipt Checklist**

Client: AECOM Technical Services Inc.

Job Number: 670-12834-1

1/17/2023

SDG Number: Environmental Health Facility

List Source: Eurofins Orlando

Login Number: 12834 List Number: 1

Creator: Clerisier. Meline

Creator: Clerisier, Meline		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

**Eurofins Orlando** 

12

14

# **ANALYTICAL REPORT**

## PREPARED FOR

Attn: Teresa Amentt Jennings AECOM Technical Services Inc. 150 North Orange Avenue Suite 200 Orlando, Florida 32801 Generated 1/17/2023 9:40:22 AM

# **JOB DESCRIPTION**

NASA KSC Industrial Area SDG NUMBER Environmental Health Facility

## **JOB NUMBER**

670-12833-1

Eurofins Orlando 481 Newburyport Avenue Altamonte Springs FL 32701



# **Eurofins Orlando**

#### **Job Notes**

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

### **Authorization**

Generated 1/17/2023 9:40:22 AM

Authorized for release by Kaitlin Dylnicki, Project Manager kaitlin.dylnicki@et.eurofinsus.com (407)339-5984

Laboratory Job ID: 670-12833-1 SDG: Environmental Health Facility

# **Table of Contents**

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	11
Lab Chronicle	12
Certification Summary	13
Method Summary	14
Sample Summary	15
Chain of Custody	16
Receipt Checklists	19

3

6

8

10

11

13

14

## **Definitions/Glossary**

Client: AECOM Technical Services Inc. Job ID: 670-12833-1 Project/Site: NASA KSC Industrial Area SDG: Environmental Health Facility

**Qualifiers** 

**GC/MS VOA** 

Qualifier **Qualifier Description** 

Indicates that the compound was analyzed for but not detected.

**Glossary** 

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER** 

Dil Fac **Dilution Factor** 

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

**PQL Practical Quantitation Limit** 

**PRES** Presumptive QC **Quality Control** 

**RER** Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

**RPD** Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

**TNTC** Too Numerous To Count

**Eurofins Orlando** 

Page 4 of 19

#### **Case Narrative**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-12833-1

SDG: Environmental Health Facility

Job ID: 670-12833-1

**Laboratory: Eurofins Orlando** 

**Narrative** 

Job Narrative 670-12833-1

#### Receipt

The samples were received on 1/11/2023 4:50 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.0°C

#### **Receipt Exceptions**

Trip Blank was listed on COC but sample containers were not received.

#### GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

# **Detection Summary**

Client: AECOM Technical Services Inc.	Job ID: 670-12833-1
Project/Site: NASA KSC Industrial Area	SDG: Environmental Health Facility
Client Sample ID: EHF-DPT0003-010.0-20230110	Lab Sample ID: 670-12833-1
No Detections.	
Client Sample ID: EHF-DPT0003-015.0-20230110	Lab Sample ID: 670-12833-2
No Detections.	
Client Sample ID: EHF-DPT0003-020.0-20230110	Lab Sample ID: 670-12833-3
No Detections.	
Client Sample ID: EHF-DPT0003-030.0-20230110	Lab Sample ID: 670-12833-4
No Detections.	
Client Sample ID: EHF-DPT0003-040.0-20230110	Lab Sample ID: 670-12833-5
No Detections.	
Client Sample ID: EHF-DPT0003-050.0-20230110	Lab Sample ID: 670-12833-6
No Detections.	

This Detection Summary does not include radiochemical test results.

**Eurofins Orlando** 

## **Client Sample Results**

Job ID: 670-12833-1 Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area SDG: Environmental Health Facility

Client Sample ID: EHF-DPT0003-010.0-20230110

Lab Sample ID: 670-12833-1 Date Collected: 01/10/23 14:05 **Matrix: Ground Water** 

Date Received: 01/11/23 16:50

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/13/23 12:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		40 - 146					01/13/23 12:34	1
4-Bromofluorobenzene (Surr)	103		41 - 142					01/13/23 12:34	1
Dibromofluoromethane (Surr)	101		53 - 146					01/13/23 12:34	1

Client Sample ID: EHF-DPT0003-015.0-20230110

Lab Sample ID: 670-12833-2 **Matrix: Ground Water** Date Collected: 01/10/23 14:25

Date Received: 01/11/23 16:50

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/13/23 12:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		40 - 146					01/13/23 12:53	1
4-Bromofluorobenzene (Surr)	102		41 - 142					01/13/23 12:53	1
Dibromofluoromethane (Surr)	98		53 ₋ 146					01/13/23 12:53	1

Client Sample ID: EHF-DPT0003-020.0-20230110 Lab Sample ID: 670-12833-3 **Matrix: Ground Water** 

Date Collected: 01/10/23 14:45

Date Received: 01/11/23 16:50

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/13/23 13:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100	-	40 - 146			-		01/13/23 13:13	1
4-Bromofluorobenzene (Surr)	101		41 - 142					01/13/23 13:13	1
Dibromofluoromethane (Surr)	100		53 - 146					01/13/23 13:13	1

Client Sample ID: EHF-DPT0003-030.0-20230110 Lab Sample ID: 670-12833-4 Date Collected: 01/10/23 15:05 **Matrix: Ground Water** 

Date Received: 01/11/23 16:50

Analyte	Result	Qualifier	PQL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71 ug/L			01/13/23 13:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		40 - 146				01/13/23 13:32	1
4 D	103		41 - 142				01/13/23 13:32	1
4-Bromofluorobenzene (Surr)	103		41 - 142				01/13/23 13.32	,

**Eurofins Orlando** 

1/17/2023

## **Client Sample Results**

Client: AECOM Technical Services Inc.

Job ID: 670-12833-1

Project/Site: NASA KSC Industrial Area

SDG: Environmental Health Facility

Client Sample ID: EHF-DPT0003-040.0-20230110 Lab Sample ID: 670-12833-5

Date Collected: 01/10/23 15:25 Matrix: Ground Water

Date Received: 01/11/23 16:50

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/13/23 13:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		40 - 146					01/13/23 13:52	1
4-Bromofluorobenzene (Surr)	100		41 - 142					01/13/23 13:52	1
Dibromofluoromethane (Surr)	102		53 - 146					01/13/23 13:52	1

Client Sample ID: EHF-DPT0003-050.0-20230110 Lab Sample ID: 670-12833-6

Date Collected: 01/10/23 15:50 Matrix: Ground Water

Date Received: 01/11/23 16:50

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/13/23 14:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		40 - 146					01/13/23 14:12	1
4-Bromofluorobenzene (Surr)	100		41 - 142					01/13/23 14:12	1
Dibromofluoromethane (Surr)	100		53 ₋ 146					01/13/23 14:12	1

3

4

6

8

3

11

13

14

## **Surrogate Summary**

Client: AECOM Technical Services Inc.

Project/Site: NASA KSC Industrial Area

Job ID: 670-12833-1

SDG: Environmental Health Facility

## Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Ground Water Prep Type: Total/NA

			Pe	ercent Surro
		TOL	BFB	DBFM
Lab Sample ID	Client Sample ID	(40-146)	(41-142)	(53-146)
670-12833-1	EHF-DPT0003-010.0-20230110	101	103	101
670-12833-2	EHF-DPT0003-015.0-20230110	99	102	98
670-12833-3	EHF-DPT0003-020.0-20230110	100	101	100
670-12833-4	EHF-DPT0003-030.0-20230110	100	103	99
670-12833-5	EHF-DPT0003-040.0-20230110	101	100	102
670-12833-6	EHF-DPT0003-050.0-20230110	100	100	100
Surrogate Legend				

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

#### Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		TOL	BFB	DBFM					
Lab Sample ID	Client Sample ID	(40-146)	(41-142)	(53-146)					
660-126179-C-2 MS	Matrix Spike	100	100	101					
670-12786-E-1 DU	Duplicate	99	101	98					
LCS 670-18265/4	Lab Control Sample	99	101	100					
MB 670-18265/6	Method Blank	98	104	98					

#### **Surrogate Legend**

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

**Eurofins Orlando** 

Page 9 of 19 1/17/2023

Client: AECOM Technical Services Inc. Job ID: 670-12833-1 Project/Site: NASA KSC Industrial Area SDG: Environmental Health Facility

## Method: 8260D - Volatile Organic Compounds by GC/MS

MD MD

98

Lab Sample ID: MB 670-18265/6

**Matrix: Water** 

**Analysis Batch: 18265** 

	IVID	IAID							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/13/23 09:33	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		40 - 146			-		01/13/23 09:33	1
4-Bromofluorobenzene (Surr)	104		41 - 142					01/13/23 09:33	1

53 - 146

Lab Sample ID: LCS 670-18265/4

**Matrix: Water** 

**Analysis Batch: 18265** 

Dibromofluoromethane (Surr)

١		Spike	LCS	LCS				%Rec	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Vinyl chloride	20.0	19.8		ug/L		99	20 - 167	

	LUS	LUS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		40 - 146
4-Bromofluorobenzene (Surr)	101		41 - 142
Dibromofluoromethane (Surr)	100		53 - 146

Lab Sample ID: 660-126179-C-2 MS

**Matrix: Water** 

Vinyl chloride

Analysis Batch: 18265										•
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	

26.1

ug/L

20.0

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	100		40 - 146
4-Bromofluorobenzene (Surr)	100		41 - 142
Dibromofluoromethane (Surr)	101		53 ₋ 146

0.71 U

Lab Sample ID: 670-12786-E-1 DU

**Matrix: Water** 

**Analysis Batch: 18265** 

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Vinyl chloride	0.71	U	0.71	U	ug/L		 NC	30

	DU	DU	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		40 - 146
4-Bromofluorobenzene (Surr)	101		41 - 142
Dibromofluoromethane (Surr)	98		53 - 146

**Eurofins Orlando** 

1/17/2023

**Client Sample ID: Method Blank** 

01/13/23 09:33

Client Sample ID: Matrix Spike

20 - 167

**Client Sample ID: Duplicate** 

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

## **QC Association Summary**

Client: AECOM Technical Services Inc.

Project/Site: NASA KSC Industrial Area

Job ID: 670-12833-1

SDG: Environmental Health Facility

### **GC/MS VOA**

#### **Analysis Batch: 18265**

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-12833-1	EHF-DPT0003-010.0-20230110	Total/NA	Ground Water	8260D	
670-12833-2	EHF-DPT0003-015.0-20230110	Total/NA	<b>Ground Water</b>	8260D	
670-12833-3	EHF-DPT0003-020.0-20230110	Total/NA	<b>Ground Water</b>	8260D	
670-12833-4	EHF-DPT0003-030.0-20230110	Total/NA	Ground Water	8260D	
670-12833-5	EHF-DPT0003-040.0-20230110	Total/NA	<b>Ground Water</b>	8260D	
670-12833-6	EHF-DPT0003-050.0-20230110	Total/NA	<b>Ground Water</b>	8260D	
MB 670-18265/6	Method Blank	Total/NA	Water	8260D	
LCS 670-18265/4	Lab Control Sample	Total/NA	Water	8260D	
660-126179-C-2 MS	Matrix Spike	Total/NA	Water	8260D	
670-12786-E-1 DU	Duplicate	Total/NA	Water	8260D	

4

**5** 

9

40

111

13

14

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Lab Sample ID: 670-12833-1

Client Sample ID: EHF-DPT0003-010.0-20230110

**Matrix: Ground Water** 

Date Collected: 01/10/23 14:05 Date Received: 01/11/23 16:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D			18265	JW	EET ORL	01/13/23 12:34

Client Sample ID: EHF-DPT0003-015.0-20230110

Lab Sample ID: 670-12833-2

Date Collected: 01/10/23 14:25 Date Received: 01/11/23 16:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D			18265	JW	EET ORL	01/13/23 12:53

Client Sample ID: EHF-DPT0003-020.0-20230110

Lab Sample ID: 670-12833-3

Date Collected: 01/10/23 14:45 Date Received: 01/11/23 16:50

**Matrix: Ground Water** 

**Matrix: Ground Water** 

Batch Batch Dilution Batch Prepared or Analyzed **Prep Type** Method **Factor Number Analyst** Type Run Lab EET ORL 01/13/23 13:13 Total/NA Analysis 8260D 18265 JW

Client Sample ID: EHF-DPT0003-030.0-20230110

Lab Sample ID: 670-12833-4

Date Collected: 01/10/23 15:05

**Matrix: Ground Water** 

**Matrix: Ground Water** 

**Matrix: Ground Water** 

Date Received: 01/11/23 16:50

l		Batch	Batch		Dilution	Batch			Prepared
l	Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
	Total/NA	Analysis	8260D		1	18265	JW	EET ORL	01/13/23 13:32

Client Sample ID: EHF-DPT0003-040.0-20230110

Lab Sample ID: 670-12833-5

Date Collected: 01/10/23 15:25 Date Received: 01/11/23 16:50

Batch Batch Dilution Batch Prepared Method Number Analyst or Analyzed **Prep Type** Type Run **Factor** Lab 01/13/23 13:52 Total/NA Analysis 8260D 18265 JW **EET ORL** 

Client Sample ID: EHF-DPT0003-050.0-20230110

8260D

Lab Sample ID: 670-12833-6

01/13/23 14:12

EET ORL

18265 JW

Date Collected: 01/10/23 15:50 Date Received: 01/11/23 16:50

Analysis

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run **Factor Number Analyst** or Analyzed Lab

**Laboratory References:** 

Total/NA

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984

## **Accreditation/Certification Summary**

Client: AECOM Technical Services Inc.

Project/Site: NASA KSC Industrial Area

Job ID: 670-12833-1

SDG: Environmental Health Facility

#### **Laboratory: Eurofins Orlando**

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Florida	NFI AP	F83018	06-30-23

3

4

5

7

. .

11

13

## **Method Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-12833-1 SDG: Environmental Health Facility

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET ORL
5030C	Purge and Trap	SW846	EET ORL

#### **Protocol References:**

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### **Laboratory References:**

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984

## **Sample Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-12833-1 SDG: Environmental Health Facility

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
670-12833-1	EHF-DPT0003-010.0-20230110	Ground Water	01/10/23 14:05	01/11/23 16:50
670-12833-2	EHF-DPT0003-015.0-20230110	Ground Water	01/10/23 14:25	01/11/23 16:50
670-12833-3	EHF-DPT0003-020.0-20230110	Ground Water	01/10/23 14:45	01/11/23 16:50
670-12833-4	EHF-DPT0003-030.0-20230110	Ground Water	01/10/23 15:05	01/11/23 16:50
670-12833-5	EHF-DPT0003-040.0-20230110	Ground Water	01/10/23 15:25	01/11/23 16:50
670-12833-6	EHF-DPT0003-050.0-20230110	Ground Water	01/10/23 15:50	01/11/23 16:50

Ś

	CHA	CHAIN OF CUSTODY AND ANALYTICAL RE	ANALYTI	CAL REQUE	EQUEST RECORD			COC No			Page: 1 of	1		
enrofine	Project Name: NASA KSC - Industrial Area	Istrial Area						PO No.	PO No. 138224		Project No. 60610905, Subs 2021-23-Subs 2021-23	3-Subs 2021-23	Phase:	
	Site Location: Environmental Health Facility	ealth Facility						Send Ir	Send Invoice To:	Instructions in MSA # 195-24548-GV03		EDD to:	Jennifer Chastain	Cc: Teresa Amentt Jennings
	TO No.: 80KSC019F0071	AECOM Project Manager:			Chris Marshall	_		Deliver	Deliver Sample Kits To:		AECOM Depot, 523 18th Street, Orlando	Report to:	Jennifer Chastain	Cc: Teresa Amentt Jennings
Sampler/Phone #	Greg Kusel / (772) 631-7426							Deliver	Deliver Samples To:	Eurofins Orlando		Site-Spicific \	Site-Spicific WS#15 from QAPP: 15-33	-33
Lab Name:	Eurofins			Turnaround Tim	und Time(specify):	St	Standard 14 day	Samı	ole Analy	sis Requested (Ent	Sample Analysis Requested (Enter number of containers for each test)	or each te.	st)	
Lab ID Sar	Sample ID (۶γ5_samp_code)	Location ID (5ys_loc_code)	Sample Depth (feet below land surface)	Date (YYYYYMMDD)	Time (Military) (hhmm)	Matrix Si Code (1)	Sample G=Grab (2) C=Comp		D 8					
								Total No. of Contai	Vinyl chlande by SW82608					Comments
#	EHF-DPT0003-010.0-202301 10	EHF-DPT0003	0.010	20230110	1405	WG	z	m	٣					
#	EHF-DPT0003-015.0-202301 /O	EHF-DPT0003	012.0	202301 10	1425	WG	z	m	е					
#	EHF-DPT0003-020.0-202301 / C	EHF-DPT0003	0.020	202301 10	1445	WG	z	٣	E					
#	EHF-DPT0003-030.0-202301	EHF-DPT0003	030.0	20230110	1505	WG	z	т	Е					
#	EHF-DPT0003-040.0-202301 10	EHF-DPT0003	0.40.0	20230110	1525	WG	z	ю	3					
#	EHF-DPT0003-050.0-202301 10	EHF-DPT0003	0.050	202301 IO	1550	WG	z	е	3	670-1	670-12833 Chairi or custody			
-2	EHF-TB-20230110	0 EHK- TBO	)	20230110	0700 10		18 -	46	K					
										f				
Field Comments: Report only per QAPP WS #15-33	IS: APP WS #15-33				Lab Comments:	ıts:					Sample Ship	Sample Ship	Sample Shipment and Delivery Details in shipment:	oetails
Relinquished by (signature)	signature) / //www.	Date   1/11 /23		Time   515	Gecelog by (	Manue .	3	regard		Date 1/11/25	Date 11 12 1516 Samples Iced?(check) Yes. Shipping Company:	eck) Yes	No	
2	0				) )	MC	?		11111	23 16	L STO Tracking No:			
3	3				3			)			Date Shipped:			

=Air quality control, ASB=Asbestos, CK=Caulk, DS=Storm drain sediment, GS=Soli gas, IC=IDW Concrete, IDD=IDW Solid, IDD=IDW Waler, LF=Free Product, MA=Maxitc, PC=Paint Chips, SC=Cement/Concrete, SE=Sediment, SL=Studge, SO=Soli, SQ=Soli/Solid solid in the sediment, SU=Surface water, WP=Drinking water, WP=Drinking water, WP=Drinking water, WP=Drinking water, WP=Drinking water, WP=Surface water, WP=Drinking wate (1) AA=Ambient air, AQ=Air quality co quality control, SSD=Subsurface sedim WU=Storm water, WW=Waste water

(2) Sample Type: AB=Ambient Bik, EB=Equipment Bik, FB=Field Bik, FD=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Trip Bik

(3) Preservative added: 4 DEG C=Cool to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C #3504=14/drogen sulfate, #1504 < 2 = Adjust to pH < 2 with bydrockloin card, #1904 < 2 = Adjust to pH < 2 with bydrockloin card, #1904 < 2 = Adjust to pH < 2 with bydrockloin card, #1904 < 2 = Adjust to pH < 2 with bydrockloin bydroxide, who have a few solid memory in the solid memory with the phosphoric and #1904 < 2 = Adjust to pH < 2 with bydroxide, who have a few solid memory with a few solid memory wi

4C If NO

		200	G INCITAL AND SUBSTITUTION OF THE COLUMN STATE	7	21010	1									
			AN OF COSTOD AND	AIVALTIIV	AL REQUE	בלחבשו אברטאם			COC No.	.0		Page: 1 of	1		
eurofins.		Project Name: NASA KSC - Industrial Area	strial Area						PO No.	PO No. 138224		Project No. 60610905, Subs 2021-23-Subs 2021-23 Phase:	121-23-5ubs 2021-23	Phase:	
		Site Location: Environmental Health Facility	ealth Facility						Send I.	Send Invoice To: Inst	Instructions in MSA # 19S-24548-GV03	24548-GV03	EDD to:	Jennifer Chastain	Cc: Teresa Amentt Jennings
		TO No.: 80KSC019F0071	AECOM Project Manager:			Chris Marshall	=		Deliver	Deliver Sample Kits To:		AECOM Depot, 523 18th Street, Orlando	Report to:	Jennifer Chastain	Cc: Teresa Amentt Jennings
Sampler/Phone #		Greg Kusel / (772) 631-7426							Deliver	Deliver Samples To:	Eurofins Orlando		Site-Spicific \	Site-Spicific WS#15 from QAPP: 15-33	5-33
Lab Name:	-	Eurofins			Turnaround Time(specify):	e(specify):	SS	Standard 14 day		ple Analysis	Requested (Ent	Sample Analysis Requested (Enter number of containers for each test)	rs for each te.	st)	
Lab ID	Sample ID (sys_samp_code)	(apoo	Location ID (sys_loc_code)	Sample Depth (feet below land surface)	Date (YYYYYMMDD)	Time (Military) (hhmm)	Matrix Ss Code (1)	Sample G-Grat (2) C=Comp	George Grap (3)	☐ 809Z8MS AQ ƏPUQIYƏ MUNA					Comments
	EHF-DPT00	EHF-DPT0003-010.0-202301 10	EHF-DPT0003	0.010	20230110	1405	WG	z	3	٤					
	EHF-DPT00	EHF-DPT0003-015.0-202301 /O	EHF-DPT0003	015.0	202301 10	1425	WG	z	3	м					
200	EHF-DPT00	EHF-DPT0003-020.0-202301 /C	EHF-DPT0003	0.020	202301 10	1445	WG	z	3	Е					
	EHF-DPT00	EHF-DPT0003-030.0-202301	EHF-DPT0003	030.0	20230110	1505	WG	z	3	8					
	EHF-DPT00	EHF-DPT0003-040.0-202301	EHF-DPT0003	040.0	20230110	1525	WG	z	3	ĸ				_	
	EHF-DPT00	EHF-DPT0003-050.0-202301	EHF-DPT0003	0.050	202301 IO	1550	WG	z	3	m	670-12	670-12833 Chain of Custody	ó		
	ガサガ	EHF-TB-20230110	0 EHK- 7801	)	30,230110	0700 W		78	4	K					
Field Comments: Report only per QAP	Field Comments: Report only per QAPP WS #15-33	15-33				Lab Comments:	ıts:					Number of cool	Sample Ship Number of coolers in shipment:	Sample Shipment and Delivery Details in shipment:	Details
Relinquished 1	Relinquished by (signature)	Just Just	Date   1/11/23		Time 1515	(ecched by (s	Market S	3	Reg	San Dai	Date MI (253	Samples Iced?(check) Yes. Shipping Company:	(check) Yesany:	No	
3 2	0					2	2		2	111112	3 16	16 STO Tracking No:			
(1) AA=Amb	ient air, AQ=	(1) AA-Ambiert at AQ-Arr quality control, ASB-Aspestos, CK-Caulik, DS-Storm drain sediment, GS-Storm drain sediment, GS-S	:K=Caulk, DS=Storm drain sed	iment, GS=Soi	l qas, IC=IDW C	oncrete. IDD=	'DW Solid.	TDC=TDW co	MUT-MUT	oord - I E- Eroo	Darding MA-Machin	China China CC - Comont			

quality control, SSD=Subsurface sediment, SU=Surface sediment, SU=Surface sediment, W=Ground water, WP=Drinking water, WP=Drinking water, WP=Drinking water, WP=Drinking water, WP=Drinking water, WP=Cound water, WP=Surface sediment, WR=Ground water with water, WP=Surface sediment, WR=Ground water with water, WP=Surface water, WP=Surface water with water 
(2) Sample Type: AB=Ambient Bik, FB=Field Bik, FB=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Trip Bik

(3) Preservative added: 4 DEG C=Cool to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C #12504=Hydrogen sulfate, #12504 <2.= Adjust to pH < 2 with sulfuric acid, #3P04 <2.= Adjust to pH < 2 with sulfuric acid, #3P04 <2.= Adjust to pH < 2 with nitric acid, #60 = Sodium thiosulfate per Figs. Na20352 3/40z=4 drops of 10% sodium thiosulfate to 4 oz, Na1504 = Sodium thiosulfate per Figs. Na20352 4/40z=4 drops of 10% sodium thiosulfate to 4 oz, Na1504 = Sodium thiosulfate per Figs. Na20352 4/40z=4 drops of 10% sodium thiosulfate per Figs. Na20352 4/40z=4 drops of 10% sodium thiosulfate to 4 oz, Na1504 = Sodius to pH > 9 = Zinc acetate and NaOH to PH>9; store cool at C INO preservative added leave blank

Rev 8/19

								-						
	CHAIN	CHAIN OF CUSTODY AND ANALYTICAL REQUEST RECORD	ANALYTI	CAL REQUE	ST RECORE	•		COC No.	No.		Page: 1 of	1		
eurofins	Project Name: NASA KSC - Industrial Area	ial Area						8 N	PO No. 138224		Project No. 60610905, Subs 2021-23-Subs 2021-23 Phase:	21-23-Subs 2021-23	Phase:	
	Site Location: Environmental Health Facility	th Facility						Send	Send Invoice To: I	Instructions in MSA # 195-24548-GV03	15-24548-GV03	EDD to:	Jennifer Chastain Cc: Teresa Amentt Jennings	tt Jennings
	TO No.: 80KSC019F0071	AECOM Project Manager:			Chris Marshall	=		Deliv	Deliver Sample Kits To:		AECOM Depot, 523 18th Street, Orlando	Report to:	Jennifer Chastain Cc: Teresa Amentt Jennings	tt Jennings
Sampler/Phone #	Greg Kusel / (772) 631-7426							Deliv	Deliver Samples To:	Eurofins Orlando	op	Site-Spicific V	Site-Spicific WS#15 from QAPP: 15-33	
Lab Name:	Eurofins			Turnaround Time(specify):	e(specify):	Sy.	Standard 14 day		nple Analys	is Requested (E	Sample Analysis Requested (Enter number of containers for each test)	s for each tes	<i>t</i> )	
Lab ID Sample ID (sys_samp_crode)		Location ID (sys_loc_code)	Sample Depth (feet below land surface)	Date (үүүүммбр)	Time (Military) (hhmm)	Matrix Solution (1)	Sample G=Grat (2) C=Comp	G G G G G G G G G G G G G G G G G G G	Final chloride by SW82608				Š	Comments
EHF-DPT(	EHF-DPT0003-010.0-202301 1	EHF-DPT0003	0.010	20230110	1405	WG	z	3						
EHF-DPT(	EHF-DPT0003-015.0-202301 /O	EHF-DPT0003	015.0	202301 10	1425	WG	z	3	ъ					
EHF-DPT(	EHF-DPT0003-020.0-202301	EHF-DPT0003	020.0	202301 10	11/45	WG	z	3	m					
EHF-DPT(	EHF-DPT0003-030.0-202301 C	EHF-DPT0003	030.0	202301/0	1505	WG	z	9	m					
EHF-DPT(	EHF-DPT0003-040.0-202301 🛟	EHF-DPT0003	040.0	202301 10	1525	WG	z	9	e e					
EHF-DPTC	EHF-DPT0003-050.0-202301 10	EHF-DPT0003	0.050	202301 IO	1550	WG	z	9	6	-029	670-12833 Chain of Custody	ay		
ME	EHF-TB-20230110	EME- 7801	1	30,230110		-	18	4	L.					
Field Comments:	# 15.23				Lab Comments:	nts:						Sample Shipr	Sample Shipment and Delivery Details	
Support of the control of the contro							0				Number of coolers in shipment:	ers in shipment:		
reminquished by (signature)	Just 1	J11 /23		Time   515	ece ph (	by (signature)	3	neg	rapid	Date MILES	Shipping Company:	check) Yesny:	No	
2					2	MC	)		/////	23	1 6 S O Tracking No:			
					3			)			Date Chipped:			3 Date Shipped:

quality control, SSD=Subsurface sediment, SU=Surface soil (<6 in), SW=Swab or wire, TA=Animal tissue, TP=Plant tissue, TQ=Tissue quality control, WG=Ground water, WL=Leachate, WQ=Ocean water, WP=Drinking water, WQ=Water quality control, WR=Ground water, WB=Drinking water, WQ=Water quality control, WR=Ground water, WB=Surface water, WQ=Water quality control, WR=Ground water, WB=Drinking water, WQ=Water quality control, WR=Water quality control, WR=Water quality control, WR=Water quality control, WR=Water quality control, WB=Drinking water, WQ=Water quality control, WR=Water quality control, WB=Drinking water, WQ=Water quality control, WB=Drinking wa

(2) Sample Type: AB-Ambenn Bik, FB=Field Bik, FB=Field Bik, FB=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Nethodology, N=Normal Environmental Sample, TB=Trip Bik

(3) Preservative added: 4 DEG C=Cool to 4 degrees. Dark=Store in Darkness, store cool at 4 degrees C H2SO4=Hydrogen sulfate, H2SO4 C2=Adjust to pH < 2 with sulfure acd, H3PO4=Phosphoric acd, H3PO4=Phosphoric acd, H3PO4 C2=Adjust to pH < 2 with intire acd, MeOH=Methand preservation, Na2O3S2=Sodium thiosulfate in 10% sodium thiosulfate to 4 c2, Na4SO4 C2=Adjust to pH < 2 with sodium hydrogen sulfate, Na0H=N=Paper (NaCO+Paper) Nation (NaCO+Pap

## **Login Sample Receipt Checklist**

Client: AECOM Technical Services Inc.

Job Number: 670-12833-1

SDG Number: Environmental Health Facility

Login Number: 12833 List Source: Eurofins Orlando

List Number: 1

**Creator: Clerisier, Meline** 

Creator. Cierisier, Menne		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

4

6

8

10

12

13

13

. .

# **ANALYTICAL REPORT**

## PREPARED FOR

Attn: Teresa Amentt Jennings AECOM Technical Services Inc. 150 North Orange Avenue Suite 200 Orlando, Florida 32801

Generated 1/20/2023 9:37:08 AM

# **JOB DESCRIPTION**

NASA KSC Industrial Area SDG NUMBER Ransom Road Landfill

## **JOB NUMBER**

670-12961-1

Eurofins Orlando 481 Newburyport Avenue Altamonte Springs FL 32701



## **Eurofins Orlando**

#### **Job Notes**

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

#### **Authorization**

Generated 1/20/2023 9:37:08 AM

Authorized for release by Kaitlin Dylnicki, Project Manager kaitlin.dylnicki@et.eurofinsus.com (407)339-5984

Laboratory Job ID: 670-12961-1 SDG: Ransom Road Landfill

# **Table of Contents**

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	8
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	14
Lab Chronicle	15
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	23

40

11

13

14

#### **Definitions/Glossary**

Client: AECOM Technical Services Inc.

Job ID: 670-12961-1

Project/Site: NASA KSC Industrial Area

SDG: Ransom Road Landfill

**Qualifiers** 

	VOA

Qualifier	Qualifier Description
I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U Indicates that the compound was analyzed for but not detected.

**Glossary** 

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

 NEG
 Negative / Absent

 POS
 Positive / Present

 PQL
 Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

**Eurofins Orlando** 

1/20/2023

Page 4 of 23

4

Δ

5

7

9

10

4.6

13

L

#### **Case Narrative**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-12961-1 SDG: Ransom Road Landfill

Job ID: 670-12961-1

**Laboratory: Eurofins Orlando** 

Narrative

Job Narrative 670-12961-1

#### Receipt

The samples were received on 1/13/2023 1:23 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.0°C

#### GC/MS VOA

Method 8260D: The method requirement for no headspace was not met. The following volatile samples were analyzed with headspace in the sample container(s): RRLF-DPT0020-048.0-20230112 (670-12961-5), RRLF-DPT0022-028.0-20230112 (670-12961-13), RRLF-DPT0022-038.0-20230112 (670-12961-14) and RRLF-DPT0022-048.0-20230112 (670-12961-15). The samples had significant amount of sediment in the vials and had to be transferred into another vial to avoid potential damage to the instruments.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

_

4

5

6

7

11

12

4 /

## **Detection Summary**

Project/Site: NASA KSC Industria							som Road Landfill
Client Sample ID: RRLF-DI					l a		D: 670-12961-1
No Detections.	10020 00010 20200111					oumpio ii	21 010 12001 1
Client Sample ID: RRLF-DI	PT0020-018.0-20230111				La	ıb Sample II	D: 670-12961-2
No Detections.							
Client Sample ID: RRLF-DI	PT0020-028 0-20230111				la	h Sample II	D: 670-12961-3
No Detections.	10020 020.0 20200111					is cumple in	3.070 12001 0
Client Sample ID: RRLF-DI	DT0020_038_0_20230442				l a	h Sample II	D: 670-12961-4
No Detections.	F 10020-030.0-20230112				La	ib Sample ii	J. 070-12901 <del>-4</del>
	DT0020 040 0 20220442				1.5	h Comple II	D. 670 40064 F
Client Sample ID: RRLF-DI	P10020-048.0-20230112				La	ib Sample II	D: 670-12961-5
No Detections.							
Client Sample ID: RRLF-DI	PT0021-008.0-20230111				La	b Sample II	D: 670-12961-6
Analyte	Result Qualifier	PQL	MDL		Dil Fac		Prep Type
Vinyl chloride	0.81 I	1.0	0.71	ug/L	1	8260D	Total/NA
Client Sample ID: RRLF-DI	PT0021-018.0-20230111				La	b Sample II	D: 670-12961-7
No Detections.							
Client Sample ID: RRLF-DI	PT0021-028.0-20230111				La	b Sample II	D: 670-12961-8
No Detections.							
Client Sample ID: RRLF-DI	PT0021-038.0-20230111				La	b Sample II	D: 670-12961-9
No Detections.							
Client Sample ID: RRLF-DI	PT0021-048.0-20230111				Lab	Sample ID	: 670-12961-10
No Detections.							
Client Sample ID: RRLF-DI	PT0022-008.0-20230112				Lab	Sample ID	: 670-12961-11
Analyte	Result Qualifier	PQL	MDL	Unit	Dil Fac	D Method	Prep Type
Vinyl chloride	14	1.0	0.71	ug/L	1	8260D	Total/NA
Client Sample ID: RRLF-DI	PT0022-018.0-20230112				Lab	Sample ID	: 670-12961-12
Analyte	Result Qualifier	PQL	MDL	Unit	Dil Fac	D Method	Prep Type
Vinyl chloride	13	1.0	0.71	ug/L	1	8260D	Total/NA
Client Sample ID: RRLF-DI	PT0022-028.0-20230112				Lab	Sample ID	: 670-12961-13
Analyte	Result Qualifier	PQL	MDL	Unit	Dil Fac	D Method	Prep Type
Vinyl chloride	8.6	1.0	0.71	ug/L	1	8260D	Total/NA
Client Sample ID: RRLF-DI	PT0022-038.0-20230112				Lab	Sample ID	: 670-12961-14
No Detections.							
Client Sample ID: RRLF-DI	PT0022-048.0-20230112				Lab	Sample ID	: 670-12961-15
No Detections.							

This Detection Summary does not include radiochemical test results.

Client: AECOM Technical Services Inc.

Eurofins Orlando

1/20/2023

Job ID: 670-12961-1

Page 6 of 23

## **Detection Summary**

Client: AECOM Technical Services Inc.
Project/Site: NASA KSC Industrial Area

Job ID: 670-12961-1 SDG: Ransom Road Landfill

2

Lab Sample ID: 670-12961-16

No Detections.

Client Sample ID: RRLF-TB-20230110

4

5

7

10

12

12

45

This Detection Summary does not include radiochemical test results.

#### **Client Sample Results**

Client: AECOM Technical Services Inc. Job ID: 670-12961-1 Project/Site: NASA KSC Industrial Area SDG: Ransom Road Landfill

Client Sample ID: RRLF-DPT0020-008.0-20230111

Lab Sample ID: 670-12961-1 Date Collected: 01/11/23 15:40 **Matrix: Water** 

Date Received: 01/13/23 13:23

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/18/23 10:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		40 - 146					01/18/23 10:33	1
4-Bromofluorobenzene (Surr)	101		41 - 142					01/18/23 10:33	1
Dibromofluoromethane (Surr)	101		53 - 146					01/18/23 10:33	1

Client Sample ID: RRLF-DPT0020-018.0-20230111

Lab Sample ID: 670-12961-2 Date Collected: 01/11/23 15:55 **Matrix: Water** 

Date Received: 01/13/23 13:23

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/18/23 12:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		40 - 146			-		01/18/23 12:29	1
4-Bromofluorobenzene (Surr)	100		41 - 142					01/18/23 12:29	1
Dibromofluoromethane (Surr)	99		53 ₋ 146					01/18/23 12:29	1

Client Sample ID: RRLF-DPT0020-028.0-20230111

Lab Sample ID: 670-12961-3 Date Collected: 01/11/23 16:20 **Matrix: Water** 

Date Received: 01/13/23 13:23

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/18/23 12:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		40 - 146			-		01/18/23 12:49	1
4-Bromofluorobenzene (Surr)	99		41 - 142					01/18/23 12:49	1
Dibromofluoromethane (Surr)	100		53 ₋ 146					01/18/23 12:49	

Client Sample ID: RRLF-DPT0020-038.0-20230112

Lab Sample ID: 670-12961-4 Date Collected: 01/12/23 08:05 **Matrix: Water** 

Date Received: 01/13/23 13:23

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/18/23 13:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		40 - 146			•		01/18/23 13:08	1
4-Bromofluorobenzene (Surr)	98		41 - 142					01/18/23 13:08	1
Dibromofluoromethane (Surr)	100		53 ₋ 146					01/18/23 13:08	1

**Eurofins Orlando** 

#### **Client Sample Results**

Client: AECOM Technical Services Inc. Job ID: 670-12961-1 Project/Site: NASA KSC Industrial Area SDG: Ransom Road Landfill

Client Sample ID: RRLF-DPT0020-048.0-20230112

Date Collected: 01/12/23 08:40 Date Received: 01/13/23 13:23 Lab Sample ID: 670-12961-5

Matrix: Water

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/18/23 13:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		40 - 146			-		01/18/23 13:28	1
4-Bromofluorobenzene (Surr)	101		41 - 142					01/18/23 13:28	1
Dibromofluoromethane (Surr)	102		53 - 146					01/18/23 13:28	1

Client Sample ID: RRLF-DPT0021-008.0-20230111

Date Collected: 01/11/23 12:15 Date Received: 01/13/23 13:23 Lab Sample ID: 670-12961-6

**Matrix: Water** 

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.81	I	1.0	0.71	ug/L			01/18/23 13:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		40 - 146			-		01/18/23 13:47	1
4-Bromofluorobenzene (Surr)	98		41 - 142					01/18/23 13:47	1
Dibromofluoromethane (Surr)	98		53 - 146					01/18/23 13:47	1

Client Sample ID: RRLF-DPT0021-018.0-20230111

Date Collected: 01/11/23 12:35

Date Received: 01/13/23 13:23

Lab Sample ID: 670-12961-7

Lab Sample ID: 670-12961-8

**Matrix: Water** 

**Matrix: Water** 

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/18/23 11:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		40 - 146			-		01/18/23 11:51	1
4-Bromofluorobenzene (Surr)	101		41 - 142					01/18/23 11:51	1

Client Sample ID: RRLF-DPT0021-028.0-20230111

Date Collected: 01/11/23 12:55

Date Received: 01/13/23 13:23

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/18/23 14:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		40 - 146					01/18/23 14:07	1
4-Bromofluorobenzene (Surr)	100		41 - 142					01/18/23 14:07	1
Dibromofluoromethane (Surr)	100		53 ₋ 146					01/18/23 14:07	1

**Eurofins Orlando** 

Page 9 of 23

Job ID: 670-12961-1 SDG: Ransom Road Landfill

Client Sample ID: RRLF-DPT0021-038.0-20230111

Date Collected: 01/11/23 13:15 Date Received: 01/13/23 13:23

Client: AECOM Technical Services Inc.

Project/Site: NASA KSC Industrial Area

Lab Sample ID: 670-12961-9

Matrix: Water

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/18/23 14:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		40 - 146			-		01/18/23 14:26	1
4-Bromofluorobenzene (Surr)	98		41 - 142					01/18/23 14:26	1
Dibromofluoromethane (Surr)	101		53 - 146					01/18/23 14:26	1

Client Sample ID: RRLF-DPT0021-048.0-20230111

Date Collected: 01/11/23 14:25 Date Received: 01/13/23 13:23 Lab Sample ID: 670-12961-10

Lab Sample ID: 670-12961-11

**Matrix: Water** 

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/18/23 14:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		40 - 146			-		01/18/23 14:46	1
4-Bromofluorobenzene (Surr)	100		41 - 142					01/18/23 14:46	1
Dibromofluoromethane (Surr)	100		53 ₋ 146					01/18/23 14:46	1

Client Sample ID: RRLF-DPT0022-008.0-20230112

Date Collected: 01/12/23 09:30

**Matrix: Water** 

Date Received: 01/13/23 13:23

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	14		1.0	0.71	ug/L			01/18/23 15:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		40 - 146			-		01/18/23 15:05	1
4-Bromofluorobenzene (Surr)	99		41 - 142					01/18/23 15:05	1
Dibromofluoromethane (Surr)	100		53 ₋ 146					01/18/23 15:05	

Client Sample ID: RRLF-DPT0022-018.0-20230112

Lab Sample ID: 670-12961-12 Date Collected: 01/12/23 09:50 **Matrix: Water** 

Date Received: 01/13/23 13:23

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	13		1.0	0.71	ug/L			01/18/23 15:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		40 - 146			-		01/18/23 15:24	1
4-Bromofluorobenzene (Surr)	100		41 - 142					01/18/23 15:24	1
Dibromofluoromethane (Surr)	100		53 ₋ 146					01/18/23 15:24	1

#### **Client Sample Results**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

SDG: Ransom Road Landfill

Client Sample ID: RRLF-DPT0022-028.0-20230112

Lab Sample ID: 670-12961-13

Date Collected: 01/12/23 10:10 Date Received: 01/13/23 13:23 Matrix: Water

Job ID: 670-12961-1

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	8.6		1.0	0.71	ug/L			01/18/23 15:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		40 - 146					01/18/23 15:44	1
4-Bromofluorobenzene (Surr)	100		41 - 142					01/18/23 15:44	1
Dibromofluoromethane (Surr)	101		53 - 146					01/18/23 15:44	1

Client Sample ID: RRLF-DPT0022-038.0-20230112

Lab Sample ID: 670-12961-14

Date Collected: 01/12/23 10:35 **Matrix: Water** 

Date Received: 01/13/23 13:23

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/18/23 16:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		40 - 146			-		01/18/23 16:03	1
4-Bromofluorobenzene (Surr)	97		41 - 142					01/18/23 16:03	1
Dibromofluoromethane (Surr)	102		53 ₋ 146					01/18/23 16:03	1

Client Sample ID: RRLF-DPT0022-048.0-20230112

Lab Sample ID: 670-12961-15

Date Collected: 01/12/23 11:05 **Matrix: Water** 

Date Received: 01/13/23 13:23

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/18/23 16:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		40 - 146			-		01/18/23 16:23	1
4-Bromofluorobenzene (Surr)	100		41 - 142					01/18/23 16:23	1
	99		53 - 146					01/18/23 16:23	

Client Sample ID: RRLF-TB-20230110

Lab Sample ID: 670-12961-16

Date Collected: 01/10/23 07:00 **Matrix: Water** 

Date Received: 01/13/23 13:23

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/18/23 11:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		40 - 146					01/18/23 11:31	1
4-Bromofluorobenzene (Surr)	99		41 - 142					01/18/23 11:31	1
Dibromofluoromethane (Surr)	99		53 - 146					01/18/23 11:31	1

### **Surrogate Summary**

Client: AECOM Technical Services Inc.

Project/Site: NASA KSC Industrial Area

Job ID: 670-12961-1

SDG: Ransom Road Landfill

#### Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				-	te Recovery (Acceptance Limits)
		TOL	BFB	DBFM	
_ab Sample ID	Client Sample ID	(40-146)	(41-142)	(53-146)	
70-12961-1	RRLF-DPT0020-008.0-20230111	100	101	101	
70-12961-1 MS	RRLF-DPT0020-008.0-2023011	101	103	100	
	1				
370-12961-2	RRLF-DPT0020-018.0-2023011	98	100	99	
370-12961-3	1 RRLF-DPT0020-028.0-2023011	99	99	100	
70-12901-3	1	99	99	100	
370-12961-4	RRLF-DPT0020-038.0-2023011	99	98	100	
	2				
670-12961-5	RRLF-DPT0020-048.0-2023011	101	101	102	
	2				
670-12961-6	RRLF-DPT0021-008.0-2023011	98	98	98	
	1				
370-12961-7	RRLF-DPT0021-018.0-2023011	101	101	100	
270 40004 7 DU	1	404	100	400	
370-12961-7 DU	RRLF-DPT0021-018.0-2023011 1	101	100	100	
670-12961-8	RRLF-DPT0021-028.0-2023011	99	100	100	
	1			.00	
670-12961-9	RRLF-DPT0021-038.0-2023011	101	98	101	
	1				
370-12961-10	RRLF-DPT0021-048.0-2023011	100	100	100	
	1				
70-12961-11	RRLF-DPT0022-008.0-2023011	99	99	100	
270 40064 40	2	100	100	100	
670-12961-12	RRLF-DPT0022-018.0-2023011 2	100	100	100	
670-12961-13	2 RRLF-DPT0022-028.0-2023011	100	100	101	
	2	100	100		
670-12961-14	RRLF-DPT0022-038.0-2023011	100	97	102	
	2				
370-12961-15	RRLF-DPT0022-048.0-2023011	99	100	99	
	2				
370-12961-16	RRLF-TB-20230110	98	99	99	
.CS 670-18816/4	Lab Control Sample	102	99	102	
/IB 670-18816/6	Method Blank	99	99	100	

Surrogate Legend

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

**Eurofins Orlando** 

Job ID: 670-12961-1 SDG: Ransom Road Landfill

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

#### Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 670-18816/6 Client Sam	ple ID: Method Blank
------------------------------------------	----------------------

**Matrix: Water** 

Analysis Batch: 18816

	IVID	IVID						
Analyte	Result	Qualifier	PQL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71 ug/L			01/18/23 09:54	1

MB MB

MD MD

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		40 - 146	_		01/18/23 09:54	1
4-Bromofluorobenzene (Surr)	99		41 - 142			01/18/23 09:54	1
Dibromofluoromethane (Surr)	100		53 - 146			01/18/23 09:54	1
,							

Lab Sample ID: LCS 670-18816/4 Client Sample ID: Lab Control Sample **Prep Type: Total/NA** 

**Matrix: Water** 

Analysis Batch: 18816

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl chloride	 20.0	18.8		ug/L	_	94	20 - 167	

LCS LCS

%Recovery	Qualifier	Limits
102		40 - 146
99		41 - 142
102		53 - 146
	102 99	99

Lab Sample ID: 670-12961-1 MS Client Sample ID: RRLF-DPT0020-008.0-20230111

**Matrix: Water** 

**Analysis Batch: 18816** 

_	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl chloride	0.71	U	20.0	21.7		ug/L		109	20 - 167	

MS MS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	101		40 - 146
4-Bromofluorobenzene (Surr)	103		41 - 142
Dibromofluoromethane (Surr)	100		53 - 146

Lab Sample ID: 670-12961-7 DU Client Sample ID: RRLF-DPT0021-018.0-20230111

**Matrix: Water Prep Type: Total/NA** 

Analysis Batch: 18816

	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Vinvl chloride	0.71		0.71	U	ua/L			NC	30

DU DU

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	101		40 - 146
4-Bromofluorobenzene (Surr)	100		41 - 142
Dibromofluoromethane (Surr)	100		53 ₋ 146

**Eurofins Orlando** 

Prep Type: Total/NA

Prep Type: Total/NA

## **QC Association Summary**

Client: AECOM Technical Services Inc.

Project/Site: NASA KSC Industrial Area

Job ID: 670-12961-1

SDG: Ransom Road Landfill

#### **GC/MS VOA**

#### Analysis Batch: 18816

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-12961-1	RRLF-DPT0020-008.0-20230111	Total/NA	Water	8260D	
670-12961-2	RRLF-DPT0020-018.0-20230111	Total/NA	Water	8260D	
670-12961-3	RRLF-DPT0020-028.0-20230111	Total/NA	Water	8260D	
670-12961-4	RRLF-DPT0020-038.0-20230112	Total/NA	Water	8260D	
670-12961-5	RRLF-DPT0020-048.0-20230112	Total/NA	Water	8260D	
670-12961-6	RRLF-DPT0021-008.0-20230111	Total/NA	Water	8260D	
670-12961-7	RRLF-DPT0021-018.0-20230111	Total/NA	Water	8260D	
670-12961-8	RRLF-DPT0021-028.0-20230111	Total/NA	Water	8260D	
670-12961-9	RRLF-DPT0021-038.0-20230111	Total/NA	Water	8260D	
670-12961-10	RRLF-DPT0021-048.0-20230111	Total/NA	Water	8260D	
670-12961-11	RRLF-DPT0022-008.0-20230112	Total/NA	Water	8260D	
670-12961-12	RRLF-DPT0022-018.0-20230112	Total/NA	Water	8260D	
670-12961-13	RRLF-DPT0022-028.0-20230112	Total/NA	Water	8260D	
670-12961-14	RRLF-DPT0022-038.0-20230112	Total/NA	Water	8260D	
670-12961-15	RRLF-DPT0022-048.0-20230112	Total/NA	Water	8260D	
670-12961-16	RRLF-TB-20230110	Total/NA	Water	8260D	
MB 670-18816/6	Method Blank	Total/NA	Water	8260D	
LCS 670-18816/4	Lab Control Sample	Total/NA	Water	8260D	
670-12961-1 MS	RRLF-DPT0020-008.0-20230111	Total/NA	Water	8260D	
670-12961-7 DU	RRLF-DPT0021-018.0-20230111	Total/NA	Water	8260D	

4

5

6

8

9

11

12

14

10

Job ID: 670-12961-1

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

SDG: Ransom Road Landfill

Client Sample ID: RRLF-DPT0020-008.0-20230111

Lab Sample ID: 670-12961-1 Date Collected: 01/11/23 15:40 **Matrix: Water** 

Batch Batch Dilution Batch Prepared Prep Type Method Run Factor Number Analyst Lab or Analyzed Type 01/18/23 10:33 Total/NA Analysis 8260D 18816 P1K EET ORL

Client Sample ID: RRLF-DPT0020-018.0-20230111 Lab Sample ID: 670-12961-2

**Matrix: Water** 

Date Collected: 01/11/23 15:55 Date Received: 01/13/23 13:23

Date Received: 01/13/23 13:23

Batch Batch Dilution Batch Prepared

Prep Type Method Factor Number Analyst or Analyzed Туре Run Lab Total/NA 8260D 18816 P1K EET ORL 01/18/23 12:29 Analysis

Client Sample ID: RRLF-DPT0020-028.0-20230111

Lab Sample ID: 670-12961-3 Date Collected: 01/11/23 16:20

**Matrix: Water** 

Date Received: 01/13/23 13:23

Batch Batch Dilution Batch Prepared or Analyzed Prep Type Туре Method Run Factor Number Analyst Lab 01/18/23 12:49 Total/NA 8260D 18816 P1K EET ORL Analysis

Client Sample ID: RRLF-DPT0020-038.0-20230112 Lab Sample ID: 670-12961-4

Date Collected: 01/12/23 08:05

**Matrix: Water** 

Date Received: 01/13/23 13:23

Dilution Batch Batch Batch Prepared or Analyzed Prep Type Type Method Factor Number Analyst Lab Run 01/18/23 13:08 18816 P1K EET ORL 8260D Total/NA Analysis

Client Sample ID: RRLF-DPT0020-048.0-20230112 Lab Sample ID: 670-12961-5

Date Collected: 01/12/23 08:40 **Matrix: Water** 

Date Received: 01/13/23 13:23

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run Factor Number Analyst Lab or Analyzed Total/NA Analysis 8260D 18816 P1K EET ORL 01/18/23 13:28

Client Sample ID: RRLF-DPT0021-008.0-20230111 Lab Sample ID: 670-12961-6

Date Collected: 01/11/23 12:15 **Matrix: Water** 

Date Received: 01/13/23 13:23

Dilution Batch Batch Batch Prepared Method or Analyzed Prep Type Туре Run Factor Number Analyst Lab 01/18/23 13:47 Total/NA 8260D 18816 P1K EET ORL Analysis

Client Sample ID: RRLF-DPT0021-018.0-20230111 Lab Sample ID: 670-12961-7

Date Collected: 01/11/23 12:35 **Matrix: Water** 

Date Received: 01/13/23 13:23

Batch Batch Dilution Prepared Batch Method Factor Number Analyst or Analyzed Prep Type Type Run Lab 01/18/23 11:51 Total/NA Analysis 8260D 18816 P1K **EET ORL** 

10

Job ID: 670-12961-1

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

SDG: Ransom Road Landfill

Client Sample ID: RRLF-DPT0021-028.0-20230111

Lab Sample ID: 670-12961-8 Date Collected: 01/11/23 12:55

**Matrix: Water** 

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number Analyst Lab or Analyzed 01/18/23 14:07 Total/NA Analysis 8260D 18816 P1K EET ORL

Client Sample ID: RRLF-DPT0021-038.0-20230111

Lab Sample ID: 670-12961-9

**Matrix: Water** 

Date Collected: 01/11/23 13:15 Date Received: 01/13/23 13:23

Date Received: 01/13/23 13:23

Batch Batch Dilution Batch Prepared Prep Type Method Factor Number Analyst or Analyzed Туре Run Lab Total/NA 8260D 18816 P1K EET ORL 01/18/23 14:26 Analysis

Client Sample ID: RRLF-DPT0021-048.0-20230111

Lab Sample ID: 670-12961-10 Date Collected: 01/11/23 14:25

**Matrix: Water** 

Date Received: 01/13/23 13:23

Batch Batch Dilution Batch Prepared or Analyzed Prep Type Туре Method Run Factor Number Analyst Lab 01/18/23 14:46 Total/NA 8260D 18816 P1K EET ORL Analysis

Client Sample ID: RRLF-DPT0022-008.0-20230112 Lab Sample ID: 670-12961-11

Date Collected: 01/12/23 09:30 **Matrix: Water** 

Date Received: 01/13/23 13:23

Dilution Batch Batch Batch Prepared or Analyzed Prep Type Type Method Factor Number Analyst Lab Run 01/18/23 15:05 18816 P1K EET ORL 8260D Total/NA Analysis

Lab Sample ID: 670-12961-12 Client Sample ID: RRLF-DPT0022-018.0-20230112

Date Collected: 01/12/23 09:50 **Matrix: Water** 

Date Received: 01/13/23 13:23

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run Factor Number Analyst Lab or Analyzed Total/NA Analysis 8260D 18816 P1K EET ORL 01/18/23 15:24

Client Sample ID: RRLF-DPT0022-028.0-20230112 Lab Sample ID: 670-12961-13

Date Collected: 01/12/23 10:10 **Matrix: Water** 

Date Received: 01/13/23 13:23

Dilution Batch Batch Batch Prepared Method or Analyzed Prep Type Туре Run Factor Number Analyst Lab 01/18/23 15:44 Total/NA 8260D 18816 P1K EET ORL Analysis

Client Sample ID: RRLF-DPT0022-038.0-20230112 Lab Sample ID: 670-12961-14

Date Collected: 01/12/23 10:35 **Matrix: Water** 

Date Received: 01/13/23 13:23

Batch Batch Dilution Prepared Batch Method Factor Number Analyst or Analyzed Prep Type Type Run Lab 01/18/23 16:03 Total/NA Analysis 8260D 18816 P1K EET ORL

**Eurofins Orlando** 

#### **Lab Chronicle**

Client: AECOM Technical Services Inc. Job ID: 670-12961-1 Project/Site: NASA KSC Industrial Area SDG: Ransom Road Landfill

#### Client Sample ID: RRLF-DPT0022-048.0-20230112

Lab Sample ID: 670-12961-15 Date Collected: 01/12/23 11:05 Matrix: Water Date Received: 01/13/23 13:23

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	18816	P1K	EET ORL	01/18/23 16:23

Client Sample ID: RRLF-TB-20230110 Lab Sample ID: 670-12961-16

Date Collected: 01/10/23 07:00 Matrix: Water

Date Received: 01/13/23 13:23

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	18816	P1K	EET ORL	01/18/23 11:31

Laboratory References:

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984

**Eurofins Orlando** 

## **Accreditation/Certification Summary**

Client: AECOM Technical Services Inc.

Job ID: 670-12961-1

Project/Site: NASA KSC Industrial Area

SDG: Ransom Road Landfill

#### **Laboratory: Eurofins Orlando**

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Florida	NELAP	F83018	06-30-23

6

3

4

5

7

10

__

13

14

### **Method Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-12961-1

SDG: Ransom Road Landfill

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET ORL
5030C	Purge and Trap	SW846	EET ORL

#### **Protocol References:**

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984

### **Sample Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-12961-1 SDG: Ransom Road Landfill

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
670-12961-1	RRLF-DPT0020-008.0-20230111	Water	01/11/23 15:40	01/13/23 13:23
670-12961-2	RRLF-DPT0020-018.0-20230111	Water	01/11/23 15:55	01/13/23 13:23
670-12961-3	RRLF-DPT0020-028.0-20230111	Water	01/11/23 16:20	01/13/23 13:23
670-12961-4	RRLF-DPT0020-038.0-20230112	Water	01/12/23 08:05	01/13/23 13:23
670-12961-5	RRLF-DPT0020-048.0-20230112	Water	01/12/23 08:40	01/13/23 13:23
670-12961-6	RRLF-DPT0021-008.0-20230111	Water	01/11/23 12:15	01/13/23 13:23
670-12961-7	RRLF-DPT0021-018.0-20230111	Water	01/11/23 12:35	01/13/23 13:23
670-12961-8	RRLF-DPT0021-028.0-20230111	Water	01/11/23 12:55	01/13/23 13:23
670-12961-9	RRLF-DPT0021-038.0-20230111	Water	01/11/23 13:15	01/13/23 13:23
670-12961-10	RRLF-DPT0021-048.0-20230111	Water	01/11/23 14:25	01/13/23 13:23
670-12961-11	RRLF-DPT0022-008.0-20230112	Water	01/12/23 09:30	01/13/23 13:23
670-12961-12	RRLF-DPT0022-018.0-20230112	Water	01/12/23 09:50	01/13/23 13:23
670-12961-13	RRLF-DPT0022-028.0-20230112	Water	01/12/23 10:10	01/13/23 13:23
670-12961-14	RRLF-DPT0022-038.0-20230112	Water	01/12/23 10:35	01/13/23 13:23
670-12961-15	RRLF-DPT0022-048.0-20230112	Water	01/12/23 11:05	01/13/23 13:23
670-12961-16	RRLF-TB-20230110	Water	01/10/23 07:00	01/13/23 13:23

5 118

(2) Sample Type: AB-Ambient Bik, FB-Field Duplicate Sample, IDW-Investigative-Derived Waste, MIS-Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Frield Duplicate Sample, IDW-Investigative-Derived Waste, MIS-Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Frield Duplicate Sample, TB=Frield Samp

	CHAIN	CHAIN OF CUSTODY AND ANALYTICAL REQUEST RECORD	NALYTIC	AL REQUE	ST RECOR	۵		COC No.	No.			Page: 1	of 2		
i joano :	Project Name: NASA KSC							0	PO No. 148674			Project No. 60610905.Subs 2021-23-Subs 2021-23 Phase:	os 2021-23-Subs 2021-	23 Phase:	
surrouns .	Site Location: Ransom Road Landfill	lll.						Send	Send Invoice To:	Instruction	Instructions in MSA # 19S-24548-GV03	1548-GV03	EDD to:	Jennifer Chastain	in Cc: Teresa Amentt Jennings
	TO No.: 80KSC019F0071	AECOM Project Manager:			Chris Marshall	=		Deliv	Deliver Sample Kits To:		AECOM Depot, 52.	AECOM Depot, 523 18th Street, Orlando	Report to:	Jennifer Chastain	in Cc: Teresa Amentt Jennings
Sampler/Phone #	Greg Kusel / (772) 631-7426							Deliv	Deliver Samples To:		Eurofins Orlando		Site-Spicific	Site-Spicific WS#15 from QAPP: 15-29	P: 15-29
Lab Name:	Eurofins			Turnaround Time(specify):	e(specify):	Š	Standard 14 day		nple Anal	lysis Req	uested (Ente	Sample Analysis Requested (Enter number of containers for each test)	iners for each t	est)	
Lab ID Sample ID (sys_samp_code)	D_code)	Location ID (sys_loc_code)	Sample Depth (feet below land surface)	Date (YYYYMMDD)	Time (Military) (hhmm)	Matrix Code (1)	Sample G Type G (2) C=	G=Grab	Total No. of Containers  Sunyl chloride by SW8260B						Comments
œ	RRLF-DPT0020-008.0-202301 //	RRLF-DPT0020 H	0.800	2023011/ 1 540	ch5	WG	z	U	3						
æ	RRLF-DPT0020-018.0-202301	RRLF-DPT0020	018.0	202301/1	1555	WG	z	9	9						
8	RRLF-DPT0020-028.0-202301 ) /	RRLF-DPT0020	028.0	202301//	1620	WG	z	· ·	3 3						
<b>x</b>	RRLF-DPT0020-038.0-202301 / 2	RRLF-DPT0020	038.0	202301,2	5080	WG	z	_o	3						
α	RRLF-DPT0020-048.0-202301	RRLF-DPT0020	048.0	20230112	0480	WG	z	ŋ	3						
~	RRLF-DPT0021-008.0-202301//	RRLF-DPT0021	0.800	202301/	1215	WG	z	g	3						
84	RRLF-DPT0021-018.0-202301	RRLF-DPT0021	018.0	20230177	1235	WG	z	U	3						-
~	RRLF-DPT0021-028.0-202301 / /	RRLF-DPT0021 N	078.0	202301//	1255	WG	z	ڻ	3						
<b>x</b>	RRLF-DPT0021-038.0-202301 /	RRLF-DPT0021 A	038.0	202301 (1	1315	WG	z	g	3						
ж	RRLF-DPT0021-048.0-202301 //	RRLF-DPT0021	048.0	202301//	1425	WG	z	9	3						
α	RRLF-DPT0022-008.0-202301 12	RRLF-DPT0022	0.800	202301/2	0930	9M	z	9	3			670-12961 Chain of Custody	nain of Custo	dy dy	
8	RRLF-DPT0022-018.0-202301 1.2	RRLF-DPT0022	018.0	20230117	0950	WG	z	ڻ	3			-			
Field Comments: Report only per QAPP WS #15-29	S #15-29				Lab Comments:	nts:						Number of	Sample Ship Number of coolers in shipment:	Sample Shipment and Delivery Details in shipment:	ery Details
Relinquished by (signature)	June 1	Date 13/23	1	Time 320	Received by (signature)	Signature)			1//3	Date / 23	Time /3	Samples Iced?(che	Samples Iced?(check) Yesshipping Company:	No	
2					2 ,							Tracking No:			
	3 Date Shipped:				3							Date Shipped:	ed:		

	CHAIN	CHAIN OF CUSTODY AND ANALYTICAL	ANALYT		REQUEST RECORD	9		COC No.	No.			Page:	e: 5	of 2			
	Project Name: NASA KSC							8	PO No.138224			Proj	ect No. 60610905.S	Project No. 60610905, Subs 2021-23-Subs 2021-23 Phaces	1-23 Dhace		
** eurorins	Site Location: Ransom Road Landfill	-						Send	Send Invoice To:	Instructio	Instructions in MSA # 195-24548-GV03	195-24548	GV03	EDD to:	Jennifer Chastain		Cc: Teresa Amentt Jennings
	TO No.: 80KSC019F0071	AECOM Project Manager:			Chris Marshall	HE.		Delive	Deliver Sample Kits To:	S To:	AECOM Dep	ot, 523 18tl	AECOM Depot, 523 18th Street, Orlando	Report to:	o: Jennifer Chastain		Cc: Teresa Amentt Jennings
Sampler/Phone #	Greg Kusel / (772) 631-7426							Delive	Deliver Samples To:		Eurofins Orlando	ando		Site-Spic	3	OAPP: 15-29	
Lab Name:	Eurofins			Turnaround Time(specify):	e(specify):	St	Standard 14 day		nple Ana	lysis Ret	duested (	(Enter nu	mber of cont	Sample Analysis Requested (Enter number of containers for each test)	test)		
Lab ID Sample ID (sys_samp_code)	(apoo	Location ID (sys_loc_code)	Sample Depth (feet below land surface)	Date (YYYYMMDD)	Time (Miltary) (thmm)	Matrix S. Code (1)	Sample G-Grab (2) C-Comp	Genable Graph General Mo. of Containers	Vinyl chlonde by Swazeor								Comments
RR	RRLF-DPT0022-028.0-202301	RRLF-DPT0022	028.0	202301/2	0101	WG	z	3									
RR	RRLF-DPT0022-038.0-202301 12	RRLF-DPT0022	038.0	202301;2	202301;2 1035	9M	z	9	n								
RR	RRLF-DPT0022-048.0-202301 1,7	RRLF-DPT0022	048.0	20230112	20230112 1105	9M	z	3	8								
RR	RRLF - TB - 20230110	RRIE-TB		20230110 0 700 WA	0 700		18	R	u								
Field Comments:																	
Report only per QAPP WS #15-29	#15-29				rap comments:	encs:							Number	Sample Ship Number of coolers in shipment:	Sample Shipment and Delivery Details in Shipment:	Jelivery Det	cails
Relinquished by (signature)	Muse	Date		Time	Received by (signature)	signature)				Date / 1 8 / 1/2		Time 1999		Samples Iced?(check) YesShipping Company:	No		
2 0					2								Tracking No:	:0			
3					3								Date Shinned	-hard			

water, WQ=Water quality control, WR=Ground water effluent, WS=Surface water, WU=Storm water, WW=Waste water

#### **Login Sample Receipt Checklist**

Client: AECOM Technical Services Inc.

Job Number: 670-12961-1

SDG Number: Ransom Road Landfill

List Source: Eurofins Orlando

Login Number: 12961 List Number: 1

Creator: Ferguson, Craig

country or guodan, country		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

6

<del>ا</del>

10

12

13

A E

6

8

10

11 12

1/1

15

# ANALYTICAL REPORT

## PREPARED FOR

Attn: Teresa Amentt Jennings AECOM Technical Services Inc. 150 North Orange Avenue Suite 200 Orlando, Florida 32801

Generated 1/18/2023 2:36:53 PM

## **JOB DESCRIPTION**

NASA KSC Industrial Area SDG NUMBER Engineering Development Laboratory

## **JOB NUMBER**

670-12968-1

Eurofins Orlando 481 Newburyport Avenue Altamonte Springs FL 32701



# **Eurofins Orlando**

### **Job Notes**

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

# **Authorization**

Generated 1/18/2023 2:36:53 PM

Authorized for release by Kaitlin Dylnicki, Project Manager kaitlin.dylnicki@et.eurofinsus.com (407)339-5984

Laboratory Job ID: 670-12968-1 SDG: Engineering Development Laboratory

# **Table of Contents**

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	12
Lab Chronicle	13
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

4

5

9

11

12

1/

# **Definitions/Glossary**

Client: AECOM Technical Services Inc.

Job ID: 670-12968-1

Project/Site: NASA KSC Industrial Area

SDG: Engineering Development Laboratory

### **Qualifiers**

G			

Qualifier	Qualifier Description
Ī	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
J3	Estimated value; value may not be accurate. Spike recovery or RPD outside of criteria.
U	Indicates that the compound was analyzed for but not detected.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated

- ...-

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

#### **Case Narrative**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-12968-1

SDG: Engineering Development Laboratory

Job ID: 670-12968-1

**Laboratory: Eurofins Orlando** 

Narrative

Job Narrative 670-12968-1

#### Receipt

The samples were received on 1/13/2023 1:23 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.4°C

#### GC/MS VOA

Method 8260D: The matrix spike (MS) recoveries for analytical batch 670-18651 were outside control limits for one or more analytes, see QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8260D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 670-18651 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits. Chromatogram shows obvious matrix interference in the baseline.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

# **Detection Summary**

Client: AECOM Technical Services In	C.			Job	D: 670-12968-1
Project/Site: NASA KSC Industrial Are	ea			SDG: Engineering Develo	pment Laboratory
Client Sample ID: EDL-DPT00	12-030.0-20230112			Lab Sample II	D: 670-12968-1
No Detections.					
Client Sample ID: EDL-DPT00	12-040.0-20230112			Lab Sample II	D: 670-12968-2
No Detections.					
Client Sample ID: EDL-DPT00	12-050.0-20230112			Lab Sample II	D: 670-12968-3
No Detections.					
Client Sample ID: EDL-DPT00	13-030.0-20230112			Lab Sample II	D: 670-12968-4
No Detections.					
Client Sample ID: EDL-DPT00	13-040.0-20230112			Lab Sample II	D: 670-12968-5
No Detections.					
Client Sample ID: EDL-DPT00	13-050.0-20230112			Lab Sample II	D: 670-12968-6
No Detections.					
Client Sample ID: EDL-DPT00	14-030.0-20230113			Lab Sample II	D: 670-12968-7
Analyte	Result Qualifier	PQL	MDL Unit	Dil Fac D Method	Prep Type
Vinyl chloride	0.94 I	1.0	0.71 ug/L	1 8260D	Total/NA
Client Sample ID: EDL-DPT00	14-040.0-20230113			Lab Sample II	D: 670-12968-8
No Detections.					
Client Sample ID: EDL-DPT00	14-050.0-20230113			Lab Sample II	D: 670-12968-9
No Detections.					
Client Sample ID: EDL-TB-202	230110			Lab Sample ID:	670-12968-10

No Detections.

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-12968-1

SDG: Engineering Development Laboratory

Client Sample ID: EDL-DPT0012-030.0-20230112

Date Collected: 01/12/23 14:00 Date Received: 01/13/23 13:23 Lab Sample ID: 670-12968-1

**Matrix: Ground Water** 

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/17/23 12:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		40 - 146					01/17/23 12:44	1
4-Bromofluorobenzene (Surr)	97		41 - 142					01/17/23 12:44	1
Dibromofluoromethane (Surr)	96		53 - 146					01/17/23 12:44	1

Client Sample ID: EDL-DPT0012-040.0-20230112

Date Collected: 01/12/23 14:30 Date Received: 01/13/23 13:23 Lab Sample ID: 670-12968-2

**Matrix: Ground Water** 

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/17/23 14:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		40 - 146			-		01/17/23 14:31	1
4-Bromofluorobenzene (Surr)	95		41 - 142					01/17/23 14:31	1
Dibromofluoromethane (Surr)	101		53 ₋ 146					01/17/23 14:31	1

Client Sample ID: EDL-DPT0012-050.0-20230112

Date Collected: 01/12/23 15:05 Date Received: 01/13/23 13:23

Lab Sample ID: 670-12968-3 **Matrix: Ground Water** 

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/17/23 14:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		40 - 146			_		01/17/23 14:49	1
4-Bromofluorobenzene (Surr)	98		41 - 142					01/17/23 14:49	1
Dibromofluoromethane (Surr)	101		53 - 146					01/17/23 14:49	1
	Vinyl chloride  Surrogate  Toluene-d8 (Surr)  4-Bromofluorobenzene (Surr)	Vinyl chloride         0.71           Surrogate         %Recovery           Toluene-d8 (Surr)         101           4-Bromofluorobenzene (Surr)         98	Vinyl chloride         0.71         U           Surrogate         %Recovery         Qualifier           Toluene-d8 (Surr)         101           4-Bromofluorobenzene (Surr)         98	Vinyl chloride         0.71         U         1.0           Surrogate         %Recovery         Qualifier         Limits           Toluene-d8 (Surr)         101         40 - 146           4-Bromofluorobenzene (Surr)         98         41 - 142	Vinyl chloride         0.71         U         1.0         0.71           Surrogate         %Recovery         Qualifier         Limits           Toluene-d8 (Surr)         101         40 - 146           4-Bromofluorobenzene (Surr)         98         41 - 142	Vinyl chloride         0.71         U         1.0         0.71         ug/L           Surrogate         %Recovery         Qualifier         Limits           Toluene-d8 (Surr)         101         40 - 146           4-Bromofluorobenzene (Surr)         98         41 - 142	Vinyl chloride         0.71         U         1.0         0.71         ug/L           Surrogate         %Recovery         Qualifier         Limits           Toluene-d8 (Surr)         101         40 - 146           4-Bromofluorobenzene (Surr)         98         41 - 142	Vinyl chloride         0.71         U         1.0         0.71         ug/L           Surrogate         %Recovery         Qualifier         Limits         Prepared           Toluene-d8 (Surr)         101         40 - 146           4-Bromofluorobenzene (Surr)         98         41 - 142	Vinyl chloride         0.71         U         1.0         0.71         ug/L         01/17/23 14:49           Surrogate         %Recovery         Qualifier         Limits         Prepared         Analyzed           Toluene-d8 (Surr)         101         40 - 146         01/17/23 14:49           4-Bromofluorobenzene (Surr)         98         41 - 142         01/17/23 14:49

Client Sample ID: EDL-DPT0013-030.0-20230112

Lab Sample ID: 670-12968-4 Date Collected: 01/12/23 15:50 **Matrix: Ground Water** Date Received: 01/13/23 13:23

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/17/23 15:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		40 - 146			-		01/17/23 15:07	1
4-Bromofluorobenzene (Surr)	95		41 - 142					01/17/23 15:07	1
Dibromofluoromethane (Surr)	98		53 ₋ 146					01/17/23 15:07	1

**Eurofins Orlando** 

1/18/2023

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-12968-1

SDG: Engineering Development Laboratory

Client Sample ID: EDL-DPT0013-040.0-20230112

Date Collected: 01/12/23 16:15 Date Received: 01/13/23 13:23 Lab Sample ID: 670-12968-5

**Matrix: Ground Water** 

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/17/23 15:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		40 - 146			-		01/17/23 15:25	1
4-Bromofluorobenzene (Surr)	97		41 - 142					01/17/23 15:25	1
Dibromofluoromethane (Surr)	97		53 - 146					01/17/23 15:25	1

Client Sample ID: EDL-DPT0013-050.0-20230112

Date Collected: 01/12/23 16:40 Date Received: 01/13/23 13:23 Lab Sample ID: 670-12968-6

**Matrix: Ground Water** 

Method: SW846 8260D - Volati	le Organic Comp	ounds by 0	GC/MS						
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/17/23 15:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		40 - 146			-		01/17/23 15:43	1
4-Bromofluorobenzene (Surr)	97		41 - 142					01/17/23 15:43	1
Dibromofluoromethane (Surr)	99		53 ₋ 146					01/17/23 15:43	1

Client Sample ID: EDL-DPT0014-030.0-20230113

Date Collected: 01/13/23 07:45 Date Received: 01/13/23 13:23

Lab Sample ID: 670-12968-7

Lab Sample ID: 670-12968-8

**Matrix: Ground Water** 

**Matrix: Ground Water** 

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.94	I	1.0	0.71	ug/L			01/17/23 16:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		40 - 146			-		01/17/23 16:00	1
4-Bromofluorobenzene (Surr)	96		41 - 142					01/17/23 16:00	1
Dibromofluoromethane (Surr)	95		53 ₋ 146					01/17/23 16:00	1

Client Sample ID: EDL-DPT0014-040.0-20230113

Date Collected: 01/13/23 08:10

Date Received: 01/13/23 13:23

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/17/23 16:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		40 - 146			-		01/17/23 16:18	1
4-Bromofluorobenzene (Surr)	94		41 - 142					01/17/23 16:18	1
Dibromofluoromethane (Surr)	98		53 - 146					01/17/23 16:18	1

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-12968-1

SDG: Engineering Development Laboratory

Client Sample ID: EDL-DPT0014-050.0-20230113

Date Collected: 01/13/23 08:35 Date Received: 01/13/23 13:23 Lab Sample ID: 670-12968-9

**Matrix: Ground Water** 

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/17/23 16:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		40 - 146			-		01/17/23 16:36	1
4-Bromofluorobenzene (Surr)	91		41 - 142					01/17/23 16:36	1
Dibromofluoromethane (Surr)	95		53 - 146					01/17/23 16:36	1

Client Sample ID: EDL-TB-20230110 Lab Sample ID: 670-12968-10

Date Collected: 01/10/23 07:00 **Matrix: Water** 

Date Received: 01/13/23 13:23

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/17/23 14:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		40 - 146			-		01/17/23 14:13	1
4-Bromofluorobenzene (Surr)	97		41 - 142					01/17/23 14:13	1
Dibromofluoromethane (Surr)	93		53 ₋ 146					01/17/23 14:13	1

# **Surrogate Summary**

Client: AECOM Technical Services Inc. Job ID: 670-12968-1 SDG: Engineering Development Laboratory Project/Site: NASA KSC Industrial Area

# Method: 8260D - Volatile Organic Compounds by GC/MS

**Matrix: Ground Water** Prep Type: Total/NA

				Percent Surrogate	te Recovery (Acceptance Limits)
		TOL	BFB	DBFM	
ab Sample ID	Client Sample ID	(40-146)	(41-142)	(53-146)	
70-12968-1	EDL-DPT0012-030.0-20230112	99	97	96	
)-12968-1 DU	EDL-DPT0012-030.0-20230112	100	94	99	
70-12968-2	EDL-DPT0012-040.0-20230112	101	95	101	
70-12968-3	EDL-DPT0012-050.0-20230112	101	98	101	
70-12968-4	EDL-DPT0013-030.0-20230112	97	95	98	
0-12968-5	EDL-DPT0013-040.0-20230112	101	97	97	
0-12968-6	EDL-DPT0013-050.0-20230112	100	97	99	
0-12968-7	EDL-DPT0014-030.0-20230113	99	96	95	
0-12968-8	EDL-DPT0014-040.0-20230113	101	94	98	
0-12968-9	EDL-DPT0014-050.0-20230113	99	91	95	

#### **Surrogate Legend**

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

### Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Su
		TOL	BFB	DBFM
Lab Sample ID	Client Sample ID	(40-146)	(41-142)	(53-146)
670-12968-10	EDL-TB-20230110	100	97	93
762-571-C-2 MS	Matrix Spike	98	98	103
LCS 670-18651/4	Lab Control Sample	101	99	102
MB 670-18651/6	Method Blank	100	97	96

#### **Surrogate Legend**

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-12968-1 SDG: Engineering Development Laboratory

# Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample	ID: MB	3 670-18651/6	
------------	--------	---------------	--

**Matrix: Water** 

Analysis Batch: 18651

Client Sample ID: Method Blank	
Prep Type: Total/NA	

Analyte	Result	Qualifier	PQL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71 ug/L			01/17/23 10:38	1

MR MR

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyze	d Dil Fac
Toluene-d8 (Surr)	100		40 - 146	01/17/23 10	):38 1
4-Bromofluorobenzene (Surr)	97		41 - 142	01/17/23 10	):38 1
Dibromofluoromethane (Surr)	96		53 - 146	01/17/23 10	):38 1

Lab Sample ID: LCS 670-18651/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 18651

LCS LCS Spike %Rec Analyte Added Result Qualifier Limits Unit %Rec Vinyl chloride 20.0 20.6 103 20 - 167 ug/L

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	101		40 - 146
4-Bromofluorobenzene (Surr)	99		41 - 142
Dibromofluoromethane (Surr)	102		53 - 146

Lab Sample ID: 762-571-C-2 MS Client Sample ID: Matrix Spike Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 18651** 

	•	Sample	Sample	Spike	MS	MS				%Rec
Ar	nalyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Vii	nyl chloride	0.71	U J3	20.0	0.756	I J3	ug/L		4	20 - 167

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	98		40 - 146
4-Bromofluorobenzene (Surr)	98		41 - 142
Dibromofluoromethane (Surr)	103		53 ₋ 146

Lab Sample ID: 670-12968-1 DU Client Sample ID: EDL-DPT0012-030.0-20230112

**Matrix: Ground Water** Analysis Batch: 18651

	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Vinvl chloride	0.71	U	 0.71	U	ua/L		 	NC	30

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	100		40 - 146
4-Bromofluorobenzene (Surr)	94		41 - 142
Dibromofluoromethane (Surr)	99		53 ₋ 146

**Eurofins Orlando** 

Prep Type: Total/NA

# **QC Association Summary**

Client: AECOM Technical Services Inc.

Project/Site: NASA KSC Industrial Area

Job ID: 670-12968-1

SDG: Engineering Development Laboratory

### **GC/MS VOA**

### Analysis Batch: 18651

Lab Sample ID	Client Sample ID	t Sample ID Prep Type			Prep Batch
670-12968-1	EDL-DPT0012-030.0-20230112	Total/NA	Ground Water	8260D	
670-12968-2	EDL-DPT0012-040.0-20230112	Total/NA	Ground Water	8260D	
670-12968-3	EDL-DPT0012-050.0-20230112	Total/NA	Ground Water	8260D	
670-12968-4	EDL-DPT0013-030.0-20230112	Total/NA	Ground Water	8260D	
670-12968-5	EDL-DPT0013-040.0-20230112	Total/NA	Ground Water	8260D	
670-12968-6	EDL-DPT0013-050.0-20230112	Total/NA	Ground Water	8260D	
670-12968-7	EDL-DPT0014-030.0-20230113	Total/NA	Ground Water	8260D	
670-12968-8	EDL-DPT0014-040.0-20230113	Total/NA	Ground Water	8260D	
670-12968-9	EDL-DPT0014-050.0-20230113	Total/NA	Ground Water	8260D	
670-12968-10	EDL-TB-20230110	Total/NA	Water	8260D	
MB 670-18651/6	Method Blank	Total/NA	Water	8260D	
LCS 670-18651/4	Lab Control Sample	Total/NA	Water	8260D	
762-571-C-2 MS	Matrix Spike	Total/NA	Water	8260D	
670-12968-1 DU	EDL-DPT0012-030.0-20230112	Total/NA	Ground Water	8260D	

-

4

_____

9

4 4

12

10

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-12968-1 SDG: Engineering Development Laboratory

Client Sample ID: EDL-DPT0012-030.0-20230112

Date Collected: 01/12/23 14:00 Date Received: 01/13/23 13:23

Lab Sample ID: 670-12968-1 **Matrix: Ground Water** 

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	18651	K1P	EET ORL	01/17/23 12:44

Client Sample ID: EDL-DPT0012-040.0-20230112

Date Collected: 01/12/23 14:30 Date Received: 01/13/23 13:23

Lab Sample ID: 670-12968-2

**Matrix: Ground Water** 

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	18651	K1P	EET ORL	01/17/23 14:31

Client Sample ID: EDL-DPT0012-050.0-20230112

Date Collected: 01/12/23 15:05 Date Received: 01/13/23 13:23

Lab Sample ID: 670-12968-3

**Matrix: Ground Water** 

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	18651	K1P	EET ORL	01/17/23 14:49

Client Sample ID: EDL-DPT0013-030.0-20230112

Date Collected: 01/12/23 15:50

Date Received: 01/13/23 13:23

Lab Sample ID: 670-12968-4

**Matrix: Ground Water** 

Dilution Batch Batch Batch Prepared Method Prep Type Type Factor **Number Analyst** Lab or Analyzed Run 01/17/23 15:07 8260D 18651 K1P EET ORL Total/NA Analysis

Client Sample ID: EDL-DPT0013-040.0-20230112

Date Collected: 01/12/23 16:15 Date Received: 01/13/23 13:23

Lab Sample ID: 670-12968-5

**Matrix: Ground Water** 

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	18651	K1P	EET ORL	01/17/23 15:25

Client Sample ID: EDL-DPT0013-050.0-20230112

Date Collected: 01/12/23 16:40

Date Received: 01/13/23 13:23

Lab Sample ID: 670-12968-6

**Matrix: Ground Water** 

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D			18651	K1P	EET ORL	01/17/23 15:43

Client Sample ID: EDL-DPT0014-030.0-20230113

Date Collected: 01/13/23 07:45

Date Received: 01/13/23 13:23

Lab Sam	ple ID:	670-12968-7	,
---------	---------	-------------	---

**Matrix: Ground Water** 

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	18651	K1P	EET ORL	01/17/23 16:00

**Eurofins Orlando** 

#### Lab Chronicle

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-12968-1 SDG: Engineering Development Laboratory

Client Sample ID: EDL-DPT0014-040.0-20230113

Date Collected: 01/13/23 08:10 Date Received: 01/13/23 13:23

Lab Sample ID: 670-12968-8

**Matrix: Ground Water** 

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	18651	K1P	EET ORL	01/17/23 16:18

Client Sample ID: EDL-DPT0014-050.0-20230113

Lab Sample ID: 670-12968-9 Date Collected: 01/13/23 08:35

**Matrix: Ground Water** 

Date Received: 01/13/23 13:23

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D			18651	K1P	EET ORL	01/17/23 16:36

Client Sample ID: EDL-TB-20230110

Lab Sample ID: 670-12968-10 Date Collected: 01/10/23 07:00

**Matrix: Water** 

Date Received: 01/13/23 13:23

Batch Batch Dilution Batch Prepared Method or Analyzed **Prep Type** Type Run Factor Number Analyst Lab Total/NA 8260D 18651 K1P EET ORL 01/17/23 14:13 Analysis

Laboratory References:

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984

# **Accreditation/Certification Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-12968-1

### SDG: Engineering Development Laboratory

### **Laboratory: Eurofins Orlando**

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Florida	NELAP	E83018	06-30-23

4

5

0

12

-

4 E

## **Method Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

**Method Description** 

Purge and Trap

Volatile Organic Compounds by GC/MS

Job ID: 670-12968-1 SDG: Engineering Development Laboratory

EET ORL

Protocol	Laboratory
SW846	FET ORI

SW846

#### **Protocol References:**

Method

8260D

5030C

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984

3

4

5

7

9

10

12

10

# **Sample Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-12968-1

	SDG: Engine	eening Development Laboratory
	Received	
-	01/13/23 13:23	
	01/13/23 13:23	
	01/13/23 13:23	

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
670-12968-1	EDL-DPT0012-030.0-20230112	Ground Water	01/12/23 14:00	01/13/23 13:23
670-12968-2	EDL-DPT0012-040.0-20230112	Ground Water	01/12/23 14:30	01/13/23 13:23
670-12968-3	EDL-DPT0012-050.0-20230112	Ground Water	01/12/23 15:05	01/13/23 13:23
670-12968-4	EDL-DPT0013-030.0-20230112	Ground Water	01/12/23 15:50	01/13/23 13:23
670-12968-5	EDL-DPT0013-040.0-20230112	Ground Water	01/12/23 16:15	01/13/23 13:23
670-12968-6	EDL-DPT0013-050.0-20230112	Ground Water	01/12/23 16:40	01/13/23 13:23
670-12968-7	EDL-DPT0014-030.0-20230113	Ground Water	01/13/23 07:45	01/13/23 13:23
670-12968-8	EDL-DPT0014-040.0-20230113	Ground Water	01/13/23 08:10	01/13/23 13:23
670-12968-9	EDL-DPT0014-050.0-20230113	Ground Water	01/13/23 08:35	01/13/23 13:23
670-12968-10	EDL-TB-20230110	Water	01/10/23 07:00	01/13/23 13:23

6.0

(2) Sample Type: AB=Ambent Bik, EB=Felug Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sample, N=Incremental Sample, TB=Trip Bik

(3) Preservative added: 4 DEG C=Cool to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C H2SO4=Hydrogen sulfate, H2SO4 <2=Adjust to pH <2 with sulfuric acid, H3PO4 <2=Adjust to pH <2 with sulfuric acid, H3PO4 <2=Adjust to pH <2 with infrire acid, MeOH=Nethand preservation, Na2O3523=Sodium thiosulfate pH <2 with software to 10% sodium thiosulfate pH <2 with nitric acid, MeOH=Nethand preservation, Na2O3523=Sodium thiosulfate per last solid to pH <2 with sodium hydrogen sulfate, Na2O352 4/40z=4 drops of 10% sodium thiosulfate per last solid to pH >12 with sodium hydrogen sulfate, Na2O352 4/40z=4 drops of 10% sodium thiosulfate per last solid to pH >12 with sodium hydrogen sulfate, Na2O4 >2=Adjust to pH >9 = Zinc acetate and NaOH >9 = Zinc acetate and NaOH >9 = Zinc acetate and NaOH to pH>5; store cool at INO preservative added leave blank

	5	CHAIN OF CUSTODY AND ANALYTICAL	ANALYTIC		REQUEST RECORD			COC No.	No.			Pa	Page: 1 of	1		
🔆 eurofins	Project Name: NASA KSC - Industrial Area	ndustrial Area						PO N	PO No. 148674			Pro	Project No. 60610905.Subs 2021-23-Subs 2021-23 Phase:	1-23-Subs 2021-23	Phase:	
	Site Location:	Engineering Development Laboratory						Send	Send Invoice To:		Instructions in MSA # 19S-24548-GV03	195-2454	3-GV03	EDD to:	Jennifer Chastain	Cc: Teresa Amentt Jennings
	TO No.: 80KSC019F0071	AECOM Project Manager:			Chris Marshall			Delive	Deliver Sample Kits To:	Kits To:	AECOM De	pot, 523 18	AECOM Depot, 523 18th Street, Orlando	Report to:	Jennifer Chastain	Cc: Teresa Amentt Jennings
Sampler/Phone #	Greg Kusel / (772) 631-7426							Delive	Deliver Samples To:	To:	Eurofins Orlando	lando		Site-Spicific V	Site-Spicific WS#15 from QAPP: 15-36	15-36
Lab Name:	Eurofins			Turnaround Time(specify):	e(specify):	SS	Standard 14 day		nple An	alysis Re	quested	(Enter n	Sample Analysis Requested (Enter number of containers for each test)	s for each tea	st)	
Lab ID San	Sample ID (sys_samp_code)	Location ID (\$195_loc_code)	Sample Depth (feet below	Date (YYYYYMMDD)	Time (Military) (hhmm)	Matrix Si Code	Sample G=Grab (2) C=Comp		DH HG							
			and surface)					Total No. of Container	Vinyl chloride by SW8260B							Comments
ED	EDL-DPT0012-030.0-202301 [ 3	EDL-DPT0012	030.0	202301/2	1400	9M	z	9	3							
ED	EDL-DPT0012-040.0-202301 / 3	EDL-DPT0012	040.0	20230112	05h1	WG	z	9								
ED	EDL-DPT0012-050.0-202301 13	EDL-DPT0012	0.050	202301 12	5051	WG	z	3	3							
ED	EDL-DPT0013-030.0-202301 12	EDL-DPT0013	030.0	20230112	1550	WG	z	3	3							
ED	EDL-DPT0013-040.0-202301 (2)	EDL-DPT0013	040.0	202301 / 2	1615	WG	z	9	e .							
ED	EDL-DPT0013-050.0-202301 / 2	EDL-DPT0013	0.050	202301 13	0491	WG	z	3	°							
EĐ	EDL-DPT0014-030.0-202301 / 3	EDL-DPT0014	030.0	20230113	5460	we	z	3	3							
ED	EDL-DPT0014-040.0-202301 / 3	EDL-DPT0014	0.040	202301 (3	0810	WG	z	3	3							
ED	EDL-DPT0014-050.0-202301 13	EDL-DPT0014	0.050	20230113	5880	WG	z	3								
777	EDL - TB-20230110	0 EUL-TB		2023010	0070	S	78		a	0.1						
													670-12968	670-12968 Chain of Custody	ustody	
Field Comments:	:5				Lab Comments:	- is							-	Sample Ship	Sample Shipment and Delivery Details	v Details
Report only per QAPP WS #15-36	NPP WS #15-36												Number of cook	Number of coolers in shipment:		
Relinquished by (signature)	signature)	Date 1/13/23	1320	Time	Received by (signal)	(signature)				Date	23	Time 1.3.2	Samples Iced?(check) Yes.	check) Yesny:	N _O	
2	2 0				2								Tracking No:			
3					3								Date Shipped:			

# **Login Sample Receipt Checklist**

Client: AECOM Technical Services Inc.

Job Number: 670-12968-1

SDG Number: Engineering Development Laboratory

List Source: Eurofins Orlando

1/18/2023

List Number: 1

Creator: Ferguson, Craig

Login Number: 12968

orcator. I organom, orang	
Question	Answer Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td>	N/A
The cooler's custody seal, if present, is intact.	True
Sample custody seals, if present, are intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
s the Field Sampler's name present on COC?	True
There are no discrepancies between the containers received and the COC.	True
Samples are received within Holding Time (excluding tests with immediate HTs)	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	N/A
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
Containers requiring zero headspace have no headspace or bubble is <a href="https://www.commons.com/scales.com">6mm (1/4").</a>	True
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Residual Chlorine Checked.	N/A

**Eurofins Orlando** 

12

14

15

# PREPARED FOR

Attn: Teresa Amentt Jennings AECOM Technical Services Inc. 150 North Orange Avenue Suite 200 Orlando, Florida 32801

**ANALYTICAL REPORT** 

Generated 1/30/2023 8:51:12 AM

# **JOB DESCRIPTION**

NASA KSC Industrial Area

# **JOB NUMBER**

670-12969-1

Eurofins Orlando 481 Newburyport Avenue Altamonte Springs FL 32701



# **Eurofins Orlando**

### **Job Notes**

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

# **Authorization**

Generated 1/30/2023 8:51:12 AM

Authorized for release by Kaitlin Dylnicki, Project Manager kaitlin.dylnicki@et.eurofinsus.com (407)339-5984

13

14

# **Table of Contents**

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	10
Isotope Dilution Summary	11
QC Sample Results	12
QC Association Summary	18
Lab Chronicle	20
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	27

-6

4

C

8

46

11

12

### **Definitions/Glossary**

Client: AECOM Technical Services Inc.

Job ID: 670-12969-1

Project/Site: NASA KSC Industrial Area

Qualifiers

**GC/MS VOA** 

U Indicates that the compound was analyzed for but not detected.

HPLC/IC

Qualifier Qualifier Description

U Indicates that the compound was analyzed for but not detected.

**LCMS** 

Qualifier Qualifier Description

Isotope Dilution analyte is outside acceptance limits.

I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

J Estimated value; value may not be accurate.

J3 Estimated value; value may not be accurate. Spike recovery or RPD outside of criteria.

U Indicates that the compound was analyzed for but not detected.

**General Chemistry** 

I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U Indicates that the compound was analyzed for but not detected.

**Glossary** 

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery

CFL Contains Free Liquid

CFU Colony Forming Unit

CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MOL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

**Eurofins Orlando** 

Page 4 of 28 1/30/2023

#### **Case Narrative**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-12969-1

Job ID: 670-12969-1

**Laboratory: Eurofins Orlando** 

Narrative

Job Narrative 670-12969-1

#### Receipt

The samples were received on 1/13/2023 1:23 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.2°C

#### GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### PFAS

Method PFC_IDA: Target analyte(s): 8:2 Fluorotelomer sulfonic acid and NMeFOSAA are outside of QC acceptance limits in the LCS/LCSD associated with samples: IA-IDW01-20230113 (670-12969-1) and IA-IDW02-20230113 (670-12969-2). Since the result is high and 8:2 Fluorotelomer sulfonic acid and NMeFOSAA is not detected in the samples, the data is reported.

Method PFC_IDA: The recovery for target analyte: Perfluorotridecanoic acid is outside the QC acceptance limits in the closing continuing calibration verification standard, biased high. Since the result is high and target Perfluorotridecanoic acid is not detected in the following samples: IA-IDW01-20230113 (670-12969-1) and IA-IDW02-20230113 (670-12969-2), the data is reported.

Method PFC_IDA: The sample injection standard peak areas in the following sample: IA-IDW01-20230113 (670-12969-1) are outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.

Method PFC_IDA: The recovery for the labeled isotope(s) M2-6:2 FTS, 13C2-PFDoDA and 13C2 PFTeDA in the following sample: IA-IDW01-20230113 (670-12969-1) are outside the QC acceptance limits. Since the recovery is high and the native analyte is not detected in the sample, the data is reported.

Method PFC_IDA: Reporting limits were raised for the following sample: IA-IDW02-20230113 (670-12969-2) due to interference from the sample matrix.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### **General Chemistry**

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

5

6

7

0

10

11

13

# **Detection Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Client Sample ID: IA-IDW01-20230113

Job ID: 670-12969-1

## Lab Sample ID: 670-12969-1

_									
Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanesulfonic acid	0.00099	I	0.0018	0.00044	ug/L	1	_	537 IDA	Total/NA
Perfluorobutanoic acid	0.0068		0.0044	0.0018	ug/L	1		537 IDA	Total/NA
Perfluoroheptanoic acid	0.0012	1	0.0018	0.00044	ug/L	1		537 IDA	Total/NA
Perfluorohexanesulfonic acid	0.0015	1	0.0018	0.00044	ug/L	1		537 IDA	Total/NA
Perfluorohexanoic acid	0.0025		0.0018	0.00079	ug/L	1		537 IDA	Total/NA
Perfluorooctanesulfonic acid	0.0072	J	0.0018	0.00088	ug/L	1		537 IDA	Total/NA
Perfluorooctanoic acid	0.013		0.0018	0.00044	ug/L	1		537 IDA	Total/NA
Perfluoropentanoic acid	0.0013	1	0.0018	0.00044	ug/L	1		537 IDA	Total/NA
Total Phosphorus as P	75	1	100	40	ua/L	1		365.4	Total/NA

### Client Sample ID: IA-IDW02-20230113

## Lab Sample ID: 670-12969-2

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanesulfonic acid	0.0014	IJ	0.0022	0.00055	ug/L		537 IDA	Total/NA
Perfluorodecanesulfonic acid	0.0034	J	0.0022	0.00055	ug/L	1	537 IDA	Total/NA
Perfluorohexanesulfonic acid	0.0013	1	0.0022	0.00055	ug/L	1	537 IDA	Total/NA
Perfluorononanesulfonic acid	0.0032	J	0.0022	0.00055	ug/L	1	537 IDA	Total/NA
Perfluorooctanesulfonic acid	0.0042	J	0.0022	0.0011	ug/L	1	537 IDA	Total/NA
Perfluorooctanoic acid	0.00093	1	0.0022	0.00055	ug/L	1	537 IDA	Total/NA
Total Phosphorus as P	5700		100	40	ug/L	1	365.4	Total/NA

5

7

0

10

12

15

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-12969-1

Client Sample ID: IA-IDW01-20230113

Date Collected: 01/13/23 10:05 Date Received: 01/13/23 13:23 Lab Sample ID: 670-12969-1

Matrix: Water

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil F
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/17/23 02:40	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Toluene-d8 (Surr)	98		40 - 146					01/17/23 02:40	
Dibromofluoromethane (Surr)	97		53 - 146					01/17/23 02:40	
4-Bromofluorobenzene (Surr)	99		41 - 142					01/17/23 02:40	
Method: MCAWW 300.0 - Anion	s. Ion Chromato	graphy							
Analyte	•	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil F
Nitrate as N	200	U	400	200	ug/L		<u> </u>	01/13/23 23:15	
Method: EPA 537 IDA - EPA 537	Isotope Dilutio	n							
Analyte	•	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil F
11CI-PF3OUdS	0.00044		0.0018	0.00044	ug/L		01/26/23 07:05	01/27/23 21:21	
4:2 Fluorotelomer sulfonic acid	0.00044		0.0018	0.00044	ug/L		01/26/23 07:05	01/27/23 21:21	
6:2 Fluorotelomer sulfonic acid	0.0037		0.0044	0.0037	ug/L		01/26/23 07:05	01/27/23 21:21	
8:2 Fluorotelomer sulfonic acid	0.00088		0.0026	0.00088	ug/L		01/26/23 07:05	01/27/23 21:21	
9CI-PF3ONS	0.00044		0.0018	0.00044	ug/L		01/26/23 07:05	01/27/23 21:21	
DONA	0.00044	U	0.0018	0.00044	ug/L		01/26/23 07:05	01/27/23 21:21	
HFPODA	0.00088		0.0026	0.00088	ug/L		01/26/23 07:05	01/27/23 21:21	
NEtFOSAA	0.00044	U	0.0026	0.00044	ug/L		01/26/23 07:05	01/27/23 21:21	
NMeFOSAA	0.00053		0.0028	0.00053	ug/L		01/26/23 07:05	01/27/23 21:21	
NMeFOSA	0.00088		0.0016	0.00088	ug/L		01/26/23 07:05	01/27/23 21:21	
Perfluorobutanesulfonic acid	0.00099	I	0.0020	0.00044	ug/L		01/26/23 07:05	01/27/23 21:21	
	0.0068	•	0.0018	0.00044	ug/L		01/26/23 07:05	01/27/23 21:21	
Perfluorobutanoic acid Perfluorodecanesulfonic acid			0.0044	0.0018			01/26/23 07:05	01/27/23 21:21	
Perfluorodecanesunonic acid	0.00044		0.0018		ug/L		01/26/23 07:05	01/27/23 21:21	
				0.00044	ug/L				
Perfluorododecanoic acid	0.00044		0.0018	0.00044	ug/L		01/26/23 07:05	01/27/23 21:21	
Perfluoroheptanesulfonic acid	0.00044		0.0018	0.00044	ug/L		01/26/23 07:05	01/27/23 21:21	
Perfluoroheptanoic acid	0.0012		0.0018	0.00044	ug/L		01/26/23 07:05	01/27/23 21:21	
Perfluorohexanesulfonic acid	0.0015	. <del>.</del>	0.0018	0.00044	ug/L		01/26/23 07:05	01/27/23 21:21	
Perfluorohexanoic acid	0.0025		0.0018	0.00079	ug/L		01/26/23 07:05	01/27/23 21:21	
Perfluorononanesulfonic acid	0.00044		0.0018	0.00044	ug/L		01/26/23 07:05	01/27/23 21:21	
Perfluorononanoic acid	0.00044		0.0018	0.00044	ug/L		01/26/23 07:05	01/27/23 21:21	
Perfluorooctanesulfonamide	0.00062		0.0018	0.00062	ug/L		01/26/23 07:05	01/27/23 21:21	
Perfluorooctanesulfonic acid	0.0072	J	0.0018	0.00088	•		01/26/23 07:05	01/27/23 21:21	
Perfluorooctanoic acid	0.013		0.0018	0.00044			01/26/23 07:05	01/27/23 21:21	
Perfluoropentanesulfonic acid	0.00044	U	0.0018	0.00044			01/26/23 07:05	01/27/23 21:21	
Perfluoropentanoic acid	0.0013	I	0.0018	0.00044			01/26/23 07:05	01/27/23 21:21	
Perfluorotetradecanoic acid	0.00044		0.0018	0.00044			01/26/23 07:05	01/27/23 21:21	
Perfluorotridecanoic acid	0.00044		0.0018	0.00044	•		01/26/23 07:05	01/27/23 21:21	
Perfluoroundecanoic acid	0.00044	U	0.0018	0.00044	ug/L		01/26/23 07:05	01/27/23 21:21	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	_ Dil I
M2-4:2 FTS	164		10 - 200				01/26/23 07:05	01/27/23 21:21	
M2-6:2 FTS	217	*	17 - 200				01/26/23 07:05	01/27/23 21:21	
M2-8:2 FTS	143		33 - 200				01/26/23 07:05	01/27/23 21:21	
13C2-PFDoDA	276	*	17 - 176				01/26/23 07:05	01/27/23 21:21	
13C2 PFTeDA	476	*	10 - 179				01/26/23 07:05	01/27/23 21:21	
13C3 HFPO-DA	59		17 - 185				01/26/23 07:05	01/27/23 21:21	

Eurofins Orlando

2

1

**9** 

9

11 12

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Lab Sample ID: 670-12969-1

Lab Sample ID: 670-12969-2

**Matrix: Water** 

Matrix: Water

Job ID: 670-12969-1

Client Sample ID: IA-IDW01-20230113

Date Collected: 01/13/23 10:05 Date Received: 01/13/23 13:23

Method: EPA 537 IDA - E	EPA 537 Isotope	<b>Dilution (Continued)</b>
-------------------------	-----------------	-----------------------------

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C3 PFHxS	85	28 - 188	01/26/23 07:05	01/27/23 21:21	1
13C4 PFBA	96	42 - 165	01/26/23 07:05	01/27/23 21:21	1
13C4 PFHpA	78	31 - 182	01/26/23 07:05	01/27/23 21:21	1
13C5 PFPeA	83	38 - 187	01/26/23 07:05	01/27/23 21:21	1
13C6 PFDA	99	49 - 163	01/26/23 07:05	01/27/23 21:21	1
d5-NEtFOSAA	87	29 - 195	01/26/23 07:05	01/27/23 21:21	1
13C8 PFOA	84	48 - 162	01/26/23 07:05	01/27/23 21:21	1
13C8 PFOS	96	51 - 159	01/26/23 07:05	01/27/23 21:21	1
13C8 FOSA	20	10 - 168	01/26/23 07:05	01/27/23 21:21	1
d3-NMeFOSAA	37	31 - 174	01/26/23 07:05	01/27/23 21:21	1
d3-NMePFOSA	107	10 - 155	01/26/23 07:05	01/27/23 21:21	1
13C5 PFHxA	83	24 - 179	01/26/23 07:05	01/27/23 21:21	1
13C7 PFUnA	66	34 - 174	01/26/23 07:05	01/27/23 21:21	1
13C9 PFNA	86	51 - 167	01/26/23 07:05	01/27/23 21:21	1

**General Chemistry** 

Analyte	Result Qualifier	PQL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total Phosphorus as P (EPA 365.4)	75 I	100	40 ug/L		01/20/23 09:31	01/25/23 19:50	1

Client Sample ID: IA-IDW02-20230113

Date Collected: 01/13/23 11:15

Date Received: 01/13/23 13:23

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/17/23 02:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		40 - 146			-		01/17/23 02:59	1
Dibromofluoromethane (Surr)	98		53 - 146					01/17/23 02:59	1
4-Bromofluorobenzene (Surr)	100		41 - 142					01/17/23 02:59	1

Method: MCAWW 300.0 - Anions, Ion Chromatography	, Ion Chromatography	on	Anions,	300.0	MCAWW	Method:
--------------------------------------------------	----------------------	----	---------	-------	-------	---------

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	200	П	400	200	ua/l			01/14/23 00:04	1

Method:	E37 IF	<b>`</b>	<b>527</b>	leatona	Dilution

Metriod. LI A 337 IDA - LI A 337 I	sotope Dilutio	•							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
11CI-PF3OUdS	0.00055	U	0.0022	0.00055	ug/L		01/26/23 07:05	01/27/23 21:33	1
4:2 Fluorotelomer sulfonic acid	0.00055	U	0.0022	0.00055	ug/L		01/26/23 07:05	01/27/23 21:33	1
6:2 Fluorotelomer sulfonic acid	0.0046	U	0.0055	0.0046	ug/L		01/26/23 07:05	01/27/23 21:33	1
8:2 Fluorotelomer sulfonic acid	0.0011	U J3	0.0033	0.0011	ug/L		01/26/23 07:05	01/27/23 21:33	1
9CI-PF3ONS	0.00055	U	0.0022	0.00055	ug/L		01/26/23 07:05	01/27/23 21:33	1
DONA	0.00055	U	0.0022	0.00055	ug/L		01/26/23 07:05	01/27/23 21:33	1
HFPODA	0.0011	U	0.0033	0.0011	ug/L		01/26/23 07:05	01/27/23 21:33	1
NEtFOSAA	0.00055	U	0.0033	0.00055	ug/L		01/26/23 07:05	01/27/23 21:33	1
NMeFOSAA	0.00066	U J3	0.0022	0.00066	ug/L		01/26/23 07:05	01/27/23 21:33	1
NMeFOSA	0.0011	U	0.0033	0.0011	ug/L		01/26/23 07:05	01/27/23 21:33	1
Perfluorobutanesulfonic acid	0.0014	IJ	0.0022	0.00055	ug/L		01/26/23 07:05	01/27/23 21:33	1
Perfluorobutanoic acid	0.0022	U	0.0055	0.0022	ug/L		01/26/23 07:05	01/27/23 21:33	1
Perfluorodecanesulfonic acid	0.0034	J	0.0022	0.00055	ug/L		01/26/23 07:05	01/27/23 21:33	1

Eurofins Orlando

Page 8 of 28

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-12969-1

Lab Sample ID: 670-12969-2

**Matrix: Water** 

6

Client Sample ID: IA-IDW02-20230113

Date Collected: 01/13/23 11:15 Date Received: 01/13/23 13:23

13C5 PFHxA

13C7 PFUnA

13C9 PFNA

Method: EPA 537 IDA - EPA 537 Isotope Dilution (Continued) Result Qualifier PQL **MDL** Unit D Prepared Analyzed Dil Fac Perfluorodecanoic acid 0.00055 U 0.0022 0.00055 01/26/23 07:05 ug/L 01/27/23 21:33 Perfluorododecanoic acid 0.00055 U 0.0022 0.00055 ug/L 01/26/23 07:05 01/27/23 21:33 Perfluoroheptanesulfonic acid 0.00055 U 0.0022 0.00055 ug/L 01/26/23 07:05 01/27/23 21:33 Perfluoroheptanoic acid 0.00055 U 0.0022 0.00055 ug/L 01/26/23 07:05 01/27/23 21:33 Perfluorohexanesulfonic acid 0.0013 I 0.0022 0.00055 ug/L 01/26/23 07:05 01/27/23 21:33 Perfluorohexanoic acid 0.00099 0.00099 U 0.0022 ug/L 01/26/23 07:05 01/27/23 21:33 Perfluorononanesulfonic acid 0.0032 J 0.0022 0.00055 ug/L 01/26/23 07:05 01/27/23 21:33 0.00055 U 0.0022 0.00055 01/27/23 21:33 Perfluorononanoic acid ug/L 01/26/23 07:05 Perfluorooctanesulfonamide 0.00077 U 0.0022 0.00077 ug/L 01/26/23 07:05 01/27/23 21:33 0.0022 0.0011 01/26/23 07:05 01/27/23 21:33 Perfluorooctanesulfonic acid ug/L 0.0042 J 0.00093 I 0.0022 0.00055 ug/L 01/26/23 07:05 01/27/23 21:33 Perfluorooctanoic acid 0.0022 0.00055 ug/L 01/27/23 21:33 Perfluoropentanesulfonic acid 0.00055 U 01/26/23 07:05 Perfluoropentanoic acid 0.00055 U 0.0022 0.00055 ug/L 01/26/23 07:05 01/27/23 21:33 0.00055 U 0.0022 0.00055 ug/L Perfluorotetradecanoic acid 01/26/23 07:05 01/27/23 21:33 Perfluorotridecanoic acid 0.00055 U 0.0022 0.00055 ug/L 01/26/23 07:05 01/27/23 21:33 Perfluoroundecanoic acid 0.00055 U 0.0022 0.00055 ug/L 01/26/23 07:05 01/27/23 21:33 Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac M2-4:2 FTS 162 10 - 200 01/26/23 07:05 01/27/23 21:33 M2-6:2 FTS 183 17 - 20001/26/23 07:05 01/27/23 21:33 M2-8:2 FTS 126 33 - 200 01/26/23 07:05 01/27/23 21:33 13C2-PFDoDA 17 - 17601/27/23 21:33 44 01/26/23 07:05 13C2 PFTeDA 135 10 - 179 01/26/23 07:05 01/27/23 21:33 13C3 HFPO-DA 64 01/26/23 07:05 01/27/23 21:33 17 _ 185 13C3 PFBS 84 16 - 200 01/26/23 07:05 01/27/23 21:33 13C3 PFHxS 80 28 - 188 01/26/23 07:05 01/27/23 21:33 13C4 PFBA 91 42 - 165 01/26/23 07:05 01/27/23 21:33 79 13C4 PFHpA 31 - 182 01/26/23 07:05 01/27/23 21:33 13C5 PFPeA 80 38 - 187 01/26/23 07:05 01/27/23 21:33 13C6 PFDA 82 49 - 163 01/26/23 07:05 01/27/23 21:33 d5-NEtFOSAA 31 29 - 195 01/26/23 07:05 01/27/23 21:33 13C8 PFOA 78 48 - 162 01/26/23 07:05 01/27/23 21:33 13C8 PFOS 95 51 - 159 01/26/23 07:05 01/27/23 21:33 13C8 FOSA 23 10 - 168 01/26/23 07:05 01/27/23 21:33 d3-NMeFOSAA 43 31 - 174 01/26/23 07:05 01/27/23 21:33 d3-NMePFOSA 25 10 - 155 01/26/23 07:05 01/27/23 21:33

General Chemistry									
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dhaanharus oo D (EDA 265 4)	E700		100	40	ua/l		01/20/23 00:31	01/25/23 10:54	

24 - 179

34 - 174

51 - 167

80

38

86

**Eurofins Orlando** 

1/30/2023

01/26/23 07:05

01/26/23 07:05

01/26/23 07:05

01/27/23 21:33

01/27/23 21:33

01/27/23 21:33

# **Surrogate Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-12969-1

# Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

Lab Sample ID         Client Sample ID         TOL (40-146)         DBFM (53-146)         BFB (41-142)
660-126254-A-1 MS Matrix Spike 98 98 99
660-126254-C-2 DU Duplicate 100 98 100
670-12969-1 IA-IDW01-20230113 98 97 99
670-12969-2 IA-IDW02-20230113 98 98 100
LCS 670-18558/4 Lab Control Sample 98 99 98
MB 670-18558/6 Method Blank 97 99 100

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Eurofins Orlando

# **Isotope Dilution Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-12969-1

Method: 537 IDA - EPA 537 Isotope Dilution

Matrix: Water Prep Type: Total/NA

			P	ercent Isotop	e Dilution Re	covery (Acce	eptance Limit	ts)	
		M242FTS	M262FTS	M282FTS	PFDoDA	PFTDA	HFPODA	C3PFBS	C3PFHS
Lab Sample ID	Client Sample ID	(10-200)	(17-200)	(33-200)	(17-176)	(10-179)	(17-185)	(16-200)	(28-188)
670-12969-1	IA-IDW01-20230113	164	217 *	143	276 *	476 *	59	88	85
670-12969-2	IA-IDW02-20230113	162	183	126	44	135	64	84	80
LCS 410-338784/3-A	Lab Control Sample	80	91	69	82	84	79	98	83
LCSD 410-338784/4-A	Lab Control Sample Dup	93	98	95	86	83	79	88	87
MB 410-338784/1-A	Method Blank	77	74	87	74	72	71	82	78
			P	ercent Isotop	e Dilution Re	covery (Acce	eptance Limit	ts)	
		PFBA	C4PFHA	PFPeA	C6PFDA	d5NEFOS	C8PFOA	C8PFOS	PFOSA
Lab Sample ID	Client Sample ID	(42-165)	(31-182)	(38-187)	(49-163)	(29-195)	(48-162)	(51-159)	(10-168)
670-12969-1	IA-IDW01-20230113	96	78	83	99	87	84	96	20
670-12969-2	IA-IDW02-20230113	91	79	80	82	31	78	95	23
LCS 410-338784/3-A	Lab Control Sample	96	94	99	84	80	89	92	78
LCSD 410-338784/4-A	Lab Control Sample Dup	95	87	94	84	81	86	104	81
MB 410-338784/1-A	Method Blank	84	80	85	80	68	83	85	72
			P	ercent Isotop	e Dilution Re	covery (Acc	eptance Limit	ts)	
		d3NMFOS	d3NMFSA	13C5PHA	13C7PUA	C9PFNA			
Lab Sample ID	Client Sample ID	(31-174)	(10-155)	(24-179)	(34-174)	(51-167)			
670-12969-1	IA-IDW01-20230113	37	107	83	66	86			
670-12969-2	IA-IDW02-20230113	43	25	80	38	86			
LCS 410-338784/3-A	Lab Control Sample	77	52	85	87	96			
LCSD 410-338784/4-A	Lab Control Sample Dup	78	44	87	84	99			
MB 410-338784/1-A	Method Blank	70	41	83	74	88			

Surrogate I	_egend
-------------	--------

M242FTS = M2-4:2 FTS

M262FTS = M2-6:2 FTS

M282FTS = M2-8:2 FTS

PFDoDA = 13C2-PFDoDA

PFTDA = 13C2 PFTeDA

HFPODA = 13C3 HFPO-DA

C3PFBS = 13C3 PFBS

C3PFHS = 13C3 PFHxS

PFBA = 13C4 PFBA

C4PFHA = 13C4 PFHpA

PFPeA = 13C5 PFPeA

C6PFDA = 13C6 PFDA

d5NEFOS = d5-NEtFOSAA

C8PFOA = 13C8 PFOA C8PFOS = 13C8 PFOS

PFOSA = 13C8 FOSA

d3NMFOS = d3-NMeFOSAA

d3NMFSA = d3-NMePFOSA

13C5PHA = 13C5 PFHxA 13C7PUA = 13C7 PFUnA

C9PFNA = 13C9 PFNA

Eurofins Orlando

Job ID: 670-12969-1

Prep Type: Total/NA

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 670-18558/6 Client Sample ID: Method Blank

**Matrix: Water** 

Analysis Batch: 18558

	MB	MB							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			01/16/23 19:51	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		40 - 146		01/16/23 19:51	1
Dibromofluoromethane (Surr)	99		53 - 146		01/16/23 19:51	1
4-Bromofluorobenzene (Surr)	100		41 - 142		01/16/23 19:51	1

Lab Sample ID: LCS 670-18558/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 18558

		Spike	LCS	LCS				%Rec	
Analyte		Added	Result	Qualifier	Unit	)	%Rec	Limits	
Vinyl chloride		20.0	21.1		ug/L		106	20 - 167	

LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 98 40 - 146 53 - 146 Dibromofluoromethane (Surr) 99 4-Bromofluorobenzene (Surr) 98 41 - 142

Lab Sample ID: 660-126254-A-1 MS Client Sample ID: Matrix Spike Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 18558** 

_	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl chloride	0.71	U	20.0	26.7		ug/L		134	20 - 167	

MS MS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 98 40 - 146 Dibromofluoromethane (Surr) 98 53 - 146 4-Bromofluorobenzene (Surr) 99 41 - 142

Lab Sample ID: 660-126254-C-2 DU **Client Sample ID: Duplicate** Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 18558** 

	Sample	Sample		DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Vinyl chloride	0.71	U	0.71	U	ug/L		 NC	30

	DU DU					
Surrogate	%Recovery	Qualifier	Limits			
Toluene-d8 (Surr)	100		40 - 146			
Dibromofluoromethane (Surr)	98		53 - 146			
4-Bromofluorohenzene (Surr)	100		41 142			

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-12969-1

Prep Type: Total/NA

## Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 670-18269/37 Client Sample ID: Method Blank

**Matrix: Water** 

**Analysis Batch: 18269** 

	MB	MB							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	200	U	400	200	ua/L			01/13/23 18:52	

Lab Sample ID: MB 670-18269/6 Client Sample ID: Method Blank Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 18269** 

MB MB PQL Analyte Result Qualifier MDL Unit D

Dil Fac Prepared Analyzed Nitrate as N 200 U 400 200 ug/L 01/13/23 10:40

Lab Sample ID: LCS 670-18269/35 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 18269

LCS LCS %Rec Spike Analyte Added Result Qualifier Unit Limits Nitrate as N 4000 3940 ug/L 90 - 110

Lab Sample ID: LCSD 670-18269/36 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 18269

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier RPD Limit Unit %Rec Limits Nitrate as N 4000 3850 90 - 110 ug/L

Client Sample ID: IA-IDW01-20230113 Lab Sample ID: 670-12969-1 MS

**Matrix: Water** 

**Analysis Batch: 18269** 

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 200 U Nitrate as N 5000 5210 ug/L 104 80 - 120

Lab Sample ID: 670-12969-1 MSD Client Sample ID: IA-IDW01-20230113

**Matrix: Water** 

**Analysis Batch: 18269** 

Sample Sample Spike MSD MSD %Rec RPD Added Result Qualifier **RPD** Analyte Result Qualifier Unit D %Rec Limits Limit Nitrate as N 200 5000 4740 ug/L 80 - 120 20

### Method: 537 IDA - EPA 537 Isotope Dilution

Lab Sample ID: MB 410-338784/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 339329

	MB	MB							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
11CI-PF3OUdS	0.00050	U	0.0020	0.00050	ug/L		01/26/23 07:05	01/27/23 17:06	1
4:2 Fluorotelomer sulfonic acid	0.00050	U	0.0020	0.00050	ug/L		01/26/23 07:05	01/27/23 17:06	1
6:2 Fluorotelomer sulfonic acid	0.0042	U	0.0050	0.0042	ug/L		01/26/23 07:05	01/27/23 17:06	1
8:2 Fluorotelomer sulfonic acid	0.0010	U	0.0030	0.0010	ug/L		01/26/23 07:05	01/27/23 17:06	1
9CI-PF3ONS	0.00050	U	0.0020	0.00050	ug/L		01/26/23 07:05	01/27/23 17:06	1
DONA	0.00050	U	0.0020	0.00050	ug/L		01/26/23 07:05	01/27/23 17:06	1

**Eurofins Orlando** 

Page 13 of 28

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 338784

1/30/2023

# **QC Sample Results**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-12969-1

# Method: 537 IDA - EPA 537 Isotope Dilution (Continued)

MR MR

Lab Sample ID: MB 410-338784/1-A

**Matrix: Water** 

Analysis Batch: 339329

Client Sample ID: Method Blank

Prep Type: Total/NA

**Prep Batch: 338784** 

	MB	МВ							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPODA	0.0010	U	0.0030	0.0010	ug/L		01/26/23 07:05	01/27/23 17:06	1
NEtFOSAA	0.00050	U	0.0030	0.00050	ug/L		01/26/23 07:05	01/27/23 17:06	1
NMeFOSAA	0.00060	U	0.0020	0.00060	ug/L		01/26/23 07:05	01/27/23 17:06	1
NMeFOSA	0.0010	U	0.0030	0.0010	ug/L		01/26/23 07:05	01/27/23 17:06	1
Perfluorobutanesulfonic acid	0.00050	U	0.0020	0.00050	ug/L		01/26/23 07:05	01/27/23 17:06	1
Perfluorobutanoic acid	0.0020	U	0.0050	0.0020	ug/L		01/26/23 07:05	01/27/23 17:06	1
Perfluorodecanesulfonic acid	0.00050	U	0.0020	0.00050	ug/L		01/26/23 07:05	01/27/23 17:06	1
Perfluorodecanoic acid	0.00050	U	0.0020	0.00050	ug/L		01/26/23 07:05	01/27/23 17:06	1
Perfluorododecanoic acid	0.00050	U	0.0020	0.00050	ug/L		01/26/23 07:05	01/27/23 17:06	1
Perfluoroheptanesulfonic acid	0.00050	U	0.0020	0.00050	ug/L		01/26/23 07:05	01/27/23 17:06	1
Perfluoroheptanoic acid	0.00050	U	0.0020	0.00050	ug/L		01/26/23 07:05	01/27/23 17:06	1
Perfluorohexanesulfonic acid	0.00050	U	0.0020	0.00050	ug/L		01/26/23 07:05	01/27/23 17:06	1
Perfluorohexanoic acid	0.00090	U	0.0020	0.00090	ug/L		01/26/23 07:05	01/27/23 17:06	1
Perfluorononanesulfonic acid	0.00050	U	0.0020	0.00050	ug/L		01/26/23 07:05	01/27/23 17:06	1
Perfluorononanoic acid	0.00050	U	0.0020	0.00050	ug/L		01/26/23 07:05	01/27/23 17:06	1
Perfluorooctanesulfonamide	0.00070	U	0.0020	0.00070	ug/L		01/26/23 07:05	01/27/23 17:06	1
Perfluorooctanesulfonic acid	0.0010	U	0.0020	0.0010	ug/L		01/26/23 07:05	01/27/23 17:06	1
Perfluorooctanoic acid	0.00050	U	0.0020	0.00050	ug/L		01/26/23 07:05	01/27/23 17:06	1
Perfluoropentanesulfonic acid	0.00050	U	0.0020	0.00050	ug/L		01/26/23 07:05	01/27/23 17:06	1
Perfluoropentanoic acid	0.00050	U	0.0020	0.00050	ug/L		01/26/23 07:05	01/27/23 17:06	1
Perfluorotetradecanoic acid	0.00050	U	0.0020	0.00050	ug/L		01/26/23 07:05	01/27/23 17:06	1
Perfluorotridecanoic acid	0.00050	U	0.0020	0.00050	ug/L		01/26/23 07:05	01/27/23 17:06	1
Perfluoroundecanoic acid	0.00050	U	0.0020	0.00050	ug/L		01/26/23 07:05	01/27/23 17:06	1
	МВ	МВ							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
M2-4:2 FTS	77		10 - 200				01/26/23 07:05	01/27/23 17:06	1
M2-6:2 FTS	74		17 - 200				01/26/23 07:05	01/27/23 17:06	1
M2-8:2 FTS	87		33 - 200				01/26/23 07:05	01/27/23 17:06	1

	MB	MB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
M2-4:2 FTS	77		10 - 200	01/26/23 07:05	01/27/23 17:06	1
M2-6:2 FTS	74		17 - 200	01/26/23 07:05	01/27/23 17:06	1
M2-8:2 FTS	87		33 - 200	01/26/23 07:05	01/27/23 17:06	1
13C2-PFDoDA	74		17 - 176	01/26/23 07:05	01/27/23 17:06	1
13C2 PFTeDA	72		10 - 179	01/26/23 07:05	01/27/23 17:06	1
13C3 HFPO-DA	71		17 - 185	01/26/23 07:05	01/27/23 17:06	1
13C3 PFBS	82		16 - 200	01/26/23 07:05	01/27/23 17:06	1
13C3 PFHxS	78		28 - 188	01/26/23 07:05	01/27/23 17:06	1
13C4 PFBA	84		42 - 165	01/26/23 07:05	01/27/23 17:06	1
13C4 PFHpA	80		31 - 182	01/26/23 07:05	01/27/23 17:06	1
13C5 PFPeA	85		38 - 187	01/26/23 07:05	01/27/23 17:06	1
13C6 PFDA	80		49 - 163	01/26/23 07:05	01/27/23 17:06	1
d5-NEtFOSAA	68		29 - 195	01/26/23 07:05	01/27/23 17:06	1
13C8 PFOA	83		48 - 162	01/26/23 07:05	01/27/23 17:06	1
13C8 PFOS	85		51 - 159	01/26/23 07:05	01/27/23 17:06	1
13C8 FOSA	72		10 - 168	01/26/23 07:05	01/27/23 17:06	1
d3-NMeFOSAA	70		31 - 174	01/26/23 07:05	01/27/23 17:06	1
d3-NMePFOSA	41		10 - 155	01/26/23 07:05	01/27/23 17:06	1
13C5 PFHxA	83		24 - 179	01/26/23 07:05	01/27/23 17:06	1
13C7 PFUnA	74		34 - 174	01/26/23 07:05	01/27/23 17:06	1
13C9 PFNA	88		51 ₋ 167	01/26/23 07:05	01/27/23 17:06	1

Eurofins Orlando

1/30/2023

# **QC Sample Results**

Client: AECOM Technical Services Inc.
Project/Site: NASA KSC Industrial Area

Job ID: 670-12969-1

Method: 537 IDA - EPA 537 Isotope Dilution (Continued)

Lab Sample ID: LCS 410-338784/3-A Matrix: Water

Analysis Batch: 339329

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 338784

7 man <b>y</b> 0.0 2 man 000020	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
11CI-PF3OUdS	0.0238	0.0265		ug/L		111	53 - 139	
4:2 Fluorotelomer sulfonic acid	0.0239	0.0308		ug/L		129	55 - 139	
6:2 Fluorotelomer sulfonic acid	0.0243	0.0296		ug/L		122	28 - 173	
8:2 Fluorotelomer sulfonic acid	0.0245	0.0374	J3	ug/L		152	55 - 138	
9CI-PF3ONS	0.0238	0.0316		ug/L		133	59 - 135	
DONA	0.0242	0.0242		ug/L		100	55 - 143	
HFPODA	0.0256	0.0257		ug/L		100	50 - 135	
NEtFOSAA	0.0256	0.0325		ug/L		127	55 _ 134	
NMeFOSAA	0.0256	0.0360	J3	ug/L		141	59 - 140	
NMeFOSA	0.0256	0.0288		ug/L		113	64 - 143	
Perfluorobutanesulfonic acid	0.0227	0.0242		ug/L		107	53 - 138	
Perfluorobutanoic acid	0.0256	0.0270		ug/L		105	59 _ 136	
Perfluorodecanesulfonic acid	0.0247	0.0264		ug/L		107	55 - 137	
Perfluorodecanoic acid	0.0256	0.0298		ug/L		116	56 - 138	
Perfluorododecanoic acid	0.0256	0.0292		ug/L		114	59 - 143	
Perfluoroheptanesulfonic acid	0.0244	0.0279		ug/L		114	56 - 140	
Perfluoroheptanoic acid	0.0256	0.0272		ug/L		106	59 - 145	
Perfluorohexanesulfonic acid	0.0233	0.0285		ug/L		122	58 - 134	
Perfluorohexanoic acid	0.0256	0.0288		ug/L		113	58 - 139	
Perfluorononanesulfonic acid	0.0246	0.0262		ug/L		107	59 - 136	
Perfluorononanoic acid	0.0256	0.0272		ug/L		106	61 - 139	
Perfluorooctanesulfonamide	0.0256	0.0278		ug/L		108	43 - 167	
Perfluorooctanesulfonic acid	0.0237	0.0290		ug/L		122	45 - 150	
Perfluorooctanoic acid	0.0256	0.0343		ug/L		134	51 - 145	
Perfluoropentanesulfonic acid	0.0240	0.0275		ug/L		115	55 - 140	
Perfluoropentanoic acid	0.0256	0.0283		ug/L		110	57 - 141	
Perfluorotetradecanoic acid	0.0256	0.0311		ug/L		122	62 - 139	
Perfluorotridecanoic acid	0.0256	0.0306		ug/L		119	58 - 146	
Perfluoroundecanoic acid	0.0256	0.0290		ug/L		113	60 - 141	

LCS LCS
---------

Isotope Dilution	%Recovery	Qualifier	Limits
M2-4:2 FTS	80		10 - 200
M2-6:2 FTS	91		17 - 200
M2-8:2 FTS	69		33 - 200
13C2-PFDoDA	82		17 - 176
13C2 PFTeDA	84		10 - 179
13C3 HFPO-DA	79		17 _ 185
13C3 PFBS	98		16 - 200
13C3 PFHxS	83		28 - 188
13C4 PFBA	96		42 - 165
13C4 PFHpA	94		31 - 182
13C5 PFPeA	99		38 - 187
13C6 PFDA	84		49 - 163
d5-NEtFOSAA	80		29 - 195
13C8 PFOA	89		48 - 162
13C8 PFOS	92		51 - 159
13C8 FOSA	78		10 - 168
d3-NMeFOSAA	77		31 - 174

Eurofins Orlando

3

6

8

10

12

13

15

# **QC Sample Results**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-12969-1

Method: 537 IDA - EPA 537 Isotope Dilution (Continued)

Lab Sample ID: LCS 410-338784/3-A

**Matrix: Water** 

Analysis Batch: 339329

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 338784

LCS LCS

Isotope Dilution	%Recovery	Qualifier	Limits
d3-NMePFOSA	52		10 - 155
13C5 PFHxA	85		24 - 179
13C7 PFUnA	87		34 - 174
13C9 PFNA	96		51 - 167

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 338784

Lab Sample ID: LCSD 410-338784/4-A Matrix: Water

Analysis Batch: 339329

- -	Spike	LCSD LCSD				%Rec		RPD
Analyte	Added	Result Qualifi	er Unit	D	%Rec	Limits	RPD	Limit
11CI-PF3OUdS	0.0238	0.0240	ug/L		101	53 - 139	10	30
4:2 Fluorotelomer sulfonic acid	0.0239	0.0244	ug/L		102	55 - 139	23	30
6:2 Fluorotelomer sulfonic acid	0.0243	0.0280	ug/L		115	28 - 173	6	30
8:2 Fluorotelomer sulfonic acid	0.0245	0.0276	ug/L		112	55 - 138	30	30
9CI-PF3ONS	0.0238	0.0257	ug/L		108	59 - 135	20	30
DONA	0.0242	0.0289	ug/L		120	55 - 143	18	30
HFPODA	0.0256	0.0277	ug/L		108	50 - 135	8	30
NEtFOSAA	0.0256	0.0302	ug/L		118	55 - 134	7	30
NMeFOSAA	0.0256	0.0307	ug/L		120	59 - 140	16	30
NMeFOSA	0.0256	0.0273	ug/L		107	64 - 143	5	30
Perfluorobutanesulfonic acid	0.0227	0.0276	ug/L		122	53 - 138	13	30
Perfluorobutanoic acid	0.0256	0.0263	ug/L		103	59 - 136	3	30
Perfluorodecanesulfonic acid	0.0247	0.0240	ug/L		97	55 - 137	9	30
Perfluorodecanoic acid	0.0256	0.0293	ug/L		114	56 - 138	2	30
Perfluorododecanoic acid	0.0256	0.0269	ug/L		105	59 - 143	8	30
Perfluoroheptanesulfonic acid	0.0244	0.0280	ug/L		115	56 - 140	1	30
Perfluoroheptanoic acid	0.0256	0.0295	ug/L		115	59 - 145	8	30
Perfluorohexanesulfonic acid	0.0233	0.0270	ug/L		116	58 - 134	6	30
Perfluorohexanoic acid	0.0256	0.0271	ug/L		106	58 - 139	6	30
Perfluorononanesulfonic acid	0.0246	0.0233	ug/L		95	59 - 136	12	30
Perfluorononanoic acid	0.0256	0.0306	ug/L		119	61 - 139	12	30
Perfluorooctanesulfonamide	0.0256	0.0278	ug/L		108	43 - 167	0	30
Perfluorooctanesulfonic acid	0.0237	0.0260	ug/L		110	45 - 150	11	30
Perfluorooctanoic acid	0.0256	0.0330	ug/L		129	51 - 145	4	30
Perfluoropentanesulfonic acid	0.0240	0.0277	ug/L		115	55 - 140	1	30
Perfluoropentanoic acid	0.0256	0.0255	ug/L		100	57 - 141	10	30
Perfluorotetradecanoic acid	0.0256	0.0281	ug/L		110	62 - 139	10	30
Perfluorotridecanoic acid	0.0256	0.0305	ug/L		119	58 - 146	0	30
Perfluoroundecanoic acid	0.0256	0.0276	ug/L		108	60 - 141	5	30

	LCSD	LCSD	
Isotope Dilution	%Recovery	Qualifier	Limits
M2-4:2 FTS	93		10 - 200
M2-6:2 FTS	98		17 - 200
M2-8:2 FTS	95		33 - 200
13C2-PFDoDA	86		17 - 176
13C2 PFTeDA	83		10 - 179
13C3 HFPO-DA	79		17 - 185
13C3 PFBS	88		16 - 200
13C3 PFHxS	87		28 - 188

Eurofins Orlando

А

5

0

a

10

12

14

Job ID: 670-12969-1

Prep Batch: 19244

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

# Method: 537 IDA - EPA 537 Isotope Dilution (Continued)

Lab Sample ID: LCSD 410-3 Matrix: Water	338784/4-A			Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA
Analysis Batch: 339329				Prep Batch: 338784
	LCSD	LCSD		
Isotope Dilution	%Recovery	Qualifier	Limits	
13C4 PFBA	95		42 - 165	
13C4 PFHpA	87		31 - 182	
13C5 PFPeA	94		38 - 187	
13C6 PFDA	84		49 - 163	
d5-NEtFOSAA	81		29 - 195	
13C8 PFOA	86		48 - 162	
13C8 PFOS	104		51 - 159	
13C8 FOSA	81		10 - 168	
d3-NMeFOSAA	78		31 - 174	
d3-NMePFOSA	44		10 - 155	
13C5 PFHxA	87		24 - 179	
13C7 PFUnA	84		34 - 174	

### Method: 365.4 - Phosphorus, Total

13C9 PFNA

Total Phosphorus as P

Lab Sample ID: MB 670-19244/2-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

51 - 167

**Analysis Batch: 20145** 

мв мв PQL Analyte Result Qualifier MDL Unit D Prepared Analyzed Dil Fac Total Phosphorus as P 40 U 100 40 ug/L 01/20/23 09:31 01/25/23 19:46

Lab Sample ID: LCS 670-19244/1-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 20145** Prep Batch: 19244

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit Total Phosphorus as P 1500 1620 ug/L 108 90 - 110

Lab Sample ID: 670-12969-1 MS Client Sample ID: IA-IDW01-20230113 Prep Type: Total/NA

**Matrix: Water** Analysis Batch: 20145

75

Prep Batch: 19244 Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Total Phosphorus as P 75 1500 1520 96 85 - 115 ug/L

Lab Sample ID: 670-12969-1 MSD Client Sample ID: IA-IDW01-20230113

**Matrix: Water** Prep Type: Total/NA

1500

**Analysis Batch: 20145** Prep Batch: 19244 Sample Sample Spike MSD MSD %Rec RPD Result Qualifier Added Result Qualifier Limit Analyte Unit Limits RPD %Rec

1510

ug/L

**Eurofins Orlando** 

96

85 - 115

# **QC Association Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-12969-1

### **GC/MS VOA**

### Analysis Batch: 18558

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-12969-1	IA-IDW01-20230113	Total/NA	Water	8260D	
670-12969-2	IA-IDW02-20230113	Total/NA	Water	8260D	
MB 670-18558/6	Method Blank	Total/NA	Water	8260D	
LCS 670-18558/4	Lab Control Sample	Total/NA	Water	8260D	
660-126254-A-1 MS	Matrix Spike	Total/NA	Water	8260D	
660-126254-C-2 DU	Duplicate	Total/NA	Water	8260D	

### HPLC/IC

### Analysis Batch: 18269

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-12969-1	IA-IDW01-20230113	Total/NA	Water	300.0	<u> </u>
670-12969-2	IA-IDW02-20230113	Total/NA	Water	300.0	
MB 670-18269/37	Method Blank	Total/NA	Water	300.0	
MB 670-18269/6	Method Blank	Total/NA	Water	300.0	
LCS 670-18269/35	Lab Control Sample	Total/NA	Water	300.0	
LCSD 670-18269/36	Lab Control Sample Dup	Total/NA	Water	300.0	
670-12969-1 MS	IA-IDW01-20230113	Total/NA	Water	300.0	
670-12969-1 MSD	IA-IDW01-20230113	Total/NA	Water	300.0	

### **LCMS**

### Prep Batch: 338784

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-12969-1	IA-IDW01-20230113	Total/NA	Water	537 IDA	
670-12969-1 - RA	IA-IDW01-20230113	Total/NA	Water	537 IDA	
670-12969-2	IA-IDW02-20230113	Total/NA	Water	537 IDA	
MB 410-338784/1-A	Method Blank	Total/NA	Water	537 IDA	
LCS 410-338784/3-A	Lab Control Sample	Total/NA	Water	537 IDA	
LCSD 410-338784/4-A	Lab Control Sample Dup	Total/NA	Water	537 IDA	

### Analysis Batch: 339329

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-12969-1	IA-IDW01-20230113	Total/NA	Water	537 IDA	338784
670-12969-2	IA-IDW02-20230113	Total/NA	Water	537 IDA	338784
MB 410-338784/1-A	Method Blank	Total/NA	Water	537 IDA	338784
LCS 410-338784/3-A	Lab Control Sample	Total/NA	Water	537 IDA	338784
LCSD 410-338784/4-A	Lab Control Sample Dup	Total/NA	Water	537 IDA	338784

### Analysis Batch: 339530

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-12969-1 - RA	IA-IDW01-20230113	Total/NA	Water	537 IDA	338784

### **General Chemistry**

### Prep Batch: 19244

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-12969-1	IA-IDW01-20230113	Total/NA	Water	365.2/365.3/365	
670-12969-2	IA-IDW02-20230113	Total/NA	Water	365.2/365.3/365	
MB 670-19244/2-A	Method Blank	Total/NA	Water	365.2/365.3/365	
LCS 670-19244/1-A	Lab Control Sample	Total/NA	Water	365.2/365.3/365	
670-12969-1 MS	IA-IDW01-20230113	Total/NA	Water	365.2/365.3/365	

Eurofins Orlando

1/30/2023

Page 18 of 28

5

_

10

1 1

# **QC Association Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-12969-1

### **General Chemistry (Continued)**

### Prep Batch: 19244 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-12969-1 MSD	IA-IDW01-20230113	Total/NA	Water	365.2/365.3/365	

### Analysis Batch: 20145

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-12969-1	IA-IDW01-20230113	Total/NA	Water	365.4	19244
670-12969-2	IA-IDW02-20230113	Total/NA	Water	365.4	19244
MB 670-19244/2-A	Method Blank	Total/NA	Water	365.4	19244
LCS 670-19244/1-A	Lab Control Sample	Total/NA	Water	365.4	19244
670-12969-1 MS	IA-IDW01-20230113	Total/NA	Water	365.4	19244
670-12969-1 MSD	IA-IDW01-20230113	Total/NA	Water	365.4	19244

12

4 4

15

### **Lab Chronicle**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Lab Sample ID: 670-12969-1

Lab Sample ID: 670-12969-2

Matrix: Water

Matrix: Water

Job ID: 670-12969-1

Client Sample ID: IA-IDW01-20230113

Date Collected: 01/13/23 10:05 Date Received: 01/13/23 13:23

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D			18558	K1P	EET ORL	01/17/23 02:40
Total/NA	Analysis	300.0		1	18269	YS	EET ORL	01/13/23 23:15
Total/NA	Prep	537 IDA			338784	M4QQ	ELLE	01/26/23 07:05
Total/NA	Analysis	537 IDA		1	339329	PY4D	ELLE	01/27/23 21:21
Total/NA	Prep	537 IDA	RA		338784	M4QQ	ELLE	01/26/23 07:05
Total/NA	Analysis	537 IDA	RA	1	339530	PY4D	ELLE	01/29/23 14:30
Total/NA	Prep	365.2/365.3/365			19244	AT	EET ORL	01/20/23 09:31
Total/NA	Analysis	365.4		1	20145	AT	EET ORL	01/25/23 19:50

Client Sample ID: IA-IDW02-20230113

Date Collected: 01/13/23 11:15

Date Received: 01/13/23 13:23

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D			18558	K1P	EET ORL	01/17/23 02:59
Total/NA	Analysis	300.0		1	18269	YS	EET ORL	01/14/23 00:04
Total/NA	Prep	537 IDA			338784	M4QQ	ELLE	01/26/23 07:05
Total/NA	Analysis	537 IDA		1	339329	PY4D	ELLE	01/27/23 21:33
Total/NA	Prep	365.2/365.3/365			19244	AT	EET ORL	01/20/23 09:31
Total/NA	Analysis	365.4		1	20145	AT	EET ORL	01/25/23 19:54

### Laboratory References:

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

# **Accreditation/Certification Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-12969-1

### **Laboratory: Eurofins Orlando**

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Florida	NELAP	E83018	06-30-23

### Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Florida	NELAP	E87997	07-02-23

4

**5** 

7

8

10

12

14

15

### **Method Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area Job ID: 670-12969-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET ORL
300.0	Anions, Ion Chromatography	MCAWW	EET ORL
537 IDA	EPA 537 Isotope Dilution	EPA	ELLE
365.4	Phosphorus, Total	EPA	EET ORL
365.2/365.3/365	Phosphorus, Total	MCAWW	EET ORL
5030C	Purge and Trap	SW846	EET ORL
537 IDA	EPA 537 Isotope Dilution	EPA	ELLE

### Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

### Laboratory References:

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984 ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

### **Sample Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area

Job ID: 670-12969-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
670-12969-1	IA-IDW01-20230113	Water	01/13/23 10:05	01/13/23 13:23
670-12969-2	IA-IDW02-20230113	Water	01/13/23 11:15	01/13/23 13:23

4

5

7

a

10

12

15

2.5/2

13 14

343

15

10

(3) Preservative added: 4 DEC C=Cool to 4 degrees, Dark=Store in Darkness, store cool at 4 degrees C H2SO4=Hydrogen sulfate, H2SO4 < 2=Adjust to pH < 2 with nitric acid, H3PO4=Phosphoric acid, H3PO4 < 2=Adjust to pH < 2 with nitric acid, HOO 4 = 4 drops of 10% sodium this solicient by sodium this solicient by Sodium this solicient by Sodium hydrogen sulfate, NaCO3S2 4/40z=4 drops of 10% sodium this solicient by Sodium this solicient by Sodium hydrogen sulfate, NaCO3S2 4/40z=4 drops of 10% sodium this solicient by Sodium hydrogen sulfate, NaCO4 > 12 and sodium hydroxide, NaCOH > 9 = Adjust to pH < 9 with sodium hydroxide, VitC 0.6/500=0.6 g of ascorbic acid to 500mLs, ZnAct 2/500=Add 2 mL of zinc acetate to 500mLs, ZnAct + NaCOH > 9 = 2 and NaCOH D = 4 and

(2) Sample Type: AB=Ambient Bik, EB=Equipment Bik, FB=Field Bik, FD=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Trip Bik

<del>ا</del>

# WORKSHEET# 15 TABLE 15-2 FOR PFAS SITES REFERENCE LIMITS AND EVALUATION TABLE FOR GROUNDWATER MATRIX TO# 80KSC019F0072 ENVIRONMENTAL COMPLIANCE AND RESTORATION PRIME CONTRACT # 80KSC019D0010 KENNEDY SPACE CENTER, FLORIDA NOVEMBER 2022

			SERVICE SERVICE	Data Quality Objectives	SAN CONTRACTOR		
						Laboratory Specific Limits	/ Specific
		CAS				The sections	The state of the s
Analyte	Abbreviation	Number	PAL	PAL Reference	PQL Goal	Pal	MDL
Analytical Group: PFAS by EPA Method 537M in µg/L	M in µg/L				20612602300		
Hexafluoropropylene oxide dimer acid	HFPO-DA (GenX)	13252-13-6	900.0	RSL/DoD1			
N-ethyl perfluorooctanesulfonamidoacetic acid	NEtFOSAA	2991-50-6					
N-methyl perfluorooctanesulfonamidoacetic acid	NMeFOSAA	2355-31-9					
Perfluorobutanesulfonic acid	PFBS	375-73-5	0.601	RSL/DoD1			
Perfluorodecanoic acid	PFDA	335-76-2					
Perfluorododecanoic acid	PFDoA	307-55-1					
Perfluoroheptanoic acid	PFHpA	375-85-9	0.01	UCMR3 ²			
Perfluorohexanesulfonic acid	PFHxS	355-46-4	0.039	RSL/DoD1			
Perfluorohexanoic acid	PFHxA	307-24-4					
Perfluorononanoic acid	PFNA	375-95-1	0.0059	RSL/DoD1			
Perfluorooctane sulfonate	PFOS	1763-23-1	0.004	RSL/DoD1			
Perfluorooctanoic acid	PFOA	335-67-1	900.0	RSL/DoD1			
Perfluorotetradecanoic acid	PFTeA	376-06-7					
Perfluorotndecanoic Acid	PFTrA	72629-94-8					
Perfluoroundecanoic acid	PFUnA	2058-94-8					
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid	11CI-PF3OUdS	763051-92-9					
9-Chlorohexadecafluoro-3-oxanone-1-sulfonic acid	9CI-PF3ONS	756426-58-1					
4,8-dioxa-3H-perfluorononanoic acid	ADONA	919005-14-4					
Fluorotelomer sulphonic acid 4.2	4:2 FTS	757124-72-4					
Fluorotelomer sulphonic acid 6:2	6:2 FTSA	27619-97-2					
Fluorotelomer sulphonic acid 8:2	8:2 FTS	39108-34-4					
N-methyl perfluorooctanesulfonamide	MeFOSA	31506-32-8					
Perfluorobutanoic acid	PFBA	375-22-4					
Perfluorodecanesulfonic acid	PFDS	335-77-3					
Perfluoroheptanesulfonic acid	PFHpS	375-92-8					
Perfluorononanesulfonic acid	PFNS	68259-12-1					
Perfluorooctanesulfonamide	PFOSA	754-91-6					
Perfluoropentanesulfonic acid	PFPeS	2706-91-4					
Perfluoropentanoic acid	PFPeA	2706-90-3					

### **Eurofins Orlando**

481 Newburyport Avenue

Altamonte Springs, FL 32701 Phone: 407-339-5984 Fax: 407-260-6110

# **Chain of Custody Record**





Engineers of Justin

011 116 107-333-3304	Sampler:				b PM:		1411-					С	arrier Tr	acking	No(s):			COC No:	
Client Information (Sub Contract Lab)	Phone:				yinick -Mail:	nicki, Kaitlin sii: State					State of Origin:			_	670-3746.1 Page:				
Shipping/Receiving						lin.dylnicki@et.eurofinsus.com Florida  Accreditations Required (See note):					orida Page 1 of				Page 1 of 1				
Company: Eurofins Lancaster Laboratories Environm				-						note):								Job #:	
Address:	Due Date Requests	d:			-1	NELAP - Florida 670-12969-1 Preservation Codes:								18:					
2425 New Holland Pike, ,	2/1/2023									Analy	sis l	Requ	este	<u> </u>				M - Hexane	
City: Lancaster	TAT Requested (da	ys):				8								A - HCL B - NaOH	N - None O - AsNaO2				
State, Zip:					Field Filtered Sample (Yes or No.) Perform MS/MSD (Yes or No.) PFC_IDA/3535_PFC (MOD) NASA KCS WS#15-2 DOD PRE_SCREEN_PFAS:PFAS_PreScn_W_P							C - Zn Acetate D - Nitric Acid	P - Na2O4S Q - Na2SO3						
PA, 17601							21.85				1 1							E - NaHSO4 F - MeOH	R - Na2S2O3
Phone: 717-656-2300(Tel)	PO #:						S W.S	₹										G - Amchlor	S - H2SO4 T - TSP Dodecahydrate
Email:	WO #:				<b>⊣</b> ⊋		Ķ	c,			H							H - Ascorbic Acid	U - Acetone
						No.	ASA	PreS			Ш						22	J - Dł Water K - EDTA	V - MCAA W - pH 4-5
Project Name: NASA KSC Industrial Area	Project #: 67001282				څ	0	Q	AS			1 1					-	containers	L - EDA	Y - Trizma Z - other (specify)
NASA RSC Industrial Area	SSOW#:				ᅴᇶ	Zes (	9	SP									out	Other:	2 - Other (specify)
					Sample (Yes or No	ISD	PFC	PFA									6		
			Sample Type (C=comp, G=grab)	Matrix	_ E	MS/MSD	535	PRE_SCREEN_PFAS/PFAS_PreScn_W_P			1 1			1			Total Number		
			Type	(W=water		E	DAS	SCRE				- 1					Ž		
Develo Identification (Oliver ID (I et ID)	Commis Data	Sample	(C=comp,	O=waste/o	┖	Perform	5	끭									otal		
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G≅grab) Preserva	tion Code	·// X	₩	Δ.	<u>a</u>		+-	$\vdash$	-	_			+	+	Special Ins	structions/Note:
IA IDMO4 20220442 (670 42060 4)	4449499	10:05	11000110		ř	*	-			_	$\vdash$	+	+	1	-	-	+		
IA-IDW01-20230113 (670-12969-1)	1/13/23	Eastern		Water		$oxed{\bot}$	Х	×		_	Ш	_		$\perp$	$\sqcup$		2		
IA-IDW02-20230113 (670-12969-2)	1/13/23	11:15 Eastern		Water			Х	x									2		
					$\neg$						$\Box$	$\neg$							
					+	╁				-	$\vdash$	+	_	+	$\vdash$	+	+		
					_	╙		Ш			$\Box$	_	_	-	$\sqcup$	$\perp$			
					$\neg$	П				$\neg \neg$	П				П	$\neg$	$\top$		
					$\dashv$	╁		$\vdash$	_	_	$\vdash$	-	-	+	$\vdash$	+	+-		
					$\perp$	╄		Ш			Ш	$\perp$	_	-	$\vdash$	$\perp$	_		
					$\top$														
							1												
Note: Since laboratory accreditations are subject to change, Eurofins Environmen does not currently maintain accreditation in the State of Origin listed above for an																			
status should be brought to Eurofins Environment Testing Southeast, LLC attention	n immediately. If all	requested accr	reditations are	current to d	ate, ret	um the	e signe	ed Cha	ain of Cu	stody at	testing	to said	complia	nce to E	Eurofins	Enviror	nment	Testing Southeast, LLC	2.
Possible Hazard Identification						Sai	mple	Disp	oosal (	A fee	may	be as:	esse	i if sa	mples	are r	etain	ed longer than 1	month)
Unconfirmed						L	$\square_R$	eturn	To Cli	ent		U Dis	posal	By La	ь		Arci	hive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	able Rank: 2	2			Spe	ecial	Instr	uctions	/QC R	equire	ments	s:						
Empty Kit Relinquished by:		Date:			Т	ime:							Met	hod of	Shipme	nt:	_		
Relinquished by:	Date/Time:			Company	_		Rece	ived b	у:						Date/T	ime:			Company
	1/16		1130																
Relinquished by:	Date/Time:			Company			Rece	ived b	у:						Date/T	lme:			Company
Relinquished by:	Date/Time:			Company		_	Rece	ived b	у:			/		_	Date/T	me _{in}	,		Company
								-		-					11/	78/	27	09:50	Company LLE T
Custody Seals Intact: Custody Seal No.:							Cools	er Tem	perature	(s) °C a	nd Oth	er Remi	irks:		-	).3	-	0.1	
Δ Yes Δ No					_									_			+	7:1	Ver: 06/08/2021

### **Login Sample Receipt Checklist**

Client: AECOM Technical Services Inc. Job Number: 670-12969-1

Login Number: 12969 List Source: Eurofins Orlando

List Number: 1

Creator: Clerisier, Meline

oreator. Orensier, menne		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

4

_

Q

1 N

15

. .

### **Login Sample Receipt Checklist**

Client: AECOM Technical Services Inc. Job Number: 670-12969-1

Login Number: 12969

List Source: Eurofins Lancaster Laboratories Environment Testing, LLC

List Number: 2 List Creation: 01/18/23 01:30 PM

Creator: McBeth, Jessica

Question	Answer	Comment
The cooler's custody seal is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable ( =6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV: Container Temperature is acceptable ( =6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
Sample custody seals are intact.	N/A	
VOA sample vials do not have headspace >6mm in diameter (none, if from	N/A	

J

4

6

Q

4.6

11

13

16

WV)?

# **ANALYTICAL REPORT**

# PREPARED FOR

Generated 4/7/2023 9:01:28 AM

Attn: Teresa Amentt Jennings AECOM Technical Services Inc. 150 North Orange Avenue Suite 200 Orlando, Florida 32801

# **JOB DESCRIPTION**

NASA KSC Industrial Area EHF

# **JOB NUMBER**

670-17020-1

Eurofins Orlando 481 Newburyport Avenue Altamonte Springs FL 32701



# **Eurofins Orlando**

### **Job Notes**

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

### **Authorization**

Generated 4/7/2023 9:01:28 AM

Authorized for release by Kaitlin Dylnicki, Project Manager kaitlin.dylnicki@et.eurofinsus.com (407)339-5984

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area EHF Laboratory Job ID: 670-17020-1

# **Table of Contents**

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	8
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	14
Lab Chronicle	15
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receint Checklists	25

4

8

10

12

### **Definitions/Glossary**

Client: AECOM Technical Services Inc.
Project/Site: NASA KSC Industrial Area EHF

Job ID: 670-17020-1

### **Qualifiers**

### **GC/MS VOA**

U Indicates that the compound was analyzed for but not detected.

### **Glossary**

DL, RA, RE, IN

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)
MCL EPA recommended "Maximum Coi

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

**Eurofins Orlando** 

### **Case Narrative**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area EHF Job ID: 670-17020-1

Job ID: 670-17020-1

**Laboratory: Eurofins Orlando** 

Narrative

Job Narrative 670-17020-1

### Receipt

The samples were received on 3/28/2023 5:35 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was  $0.6^{\circ}$ C

### GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

5

6

1

8

46

11

40

14

Client: AECOM Technical Services Inc. Job ID: 670-17020-1 Project/Site: NASA KSC Industrial Area EHF

Lab Sample ID: 670-17020-1

No Detections.

Client Sample ID: EHF-DPT0004-010.0-20230327

Client Sample ID: EHF-DPT0004-015.0-20230327 Lab Sample ID: 670-17020-2

Analyte	Result Qualifier	PQL	MDL Unit	Dil Fac	D Method	Prep Type
Vinyl chloride	1.7	1.0	0.71 ug/L	1	8260D	Total/NA

Client Sample ID: EHF-DPT0004-020.0-20230327 Lab Sample ID: 670-17020-3

Analyte	Result Qualifier	PQL	MDL Unit	Dil Fac D Method	Prep Type
Vinyl chloride	3.9	1.0	0.71 ug/L	1 8260D	Total/NA

Client Sample ID: EHF-DPT0004-030.0-20230327 Lab Sample ID: 670-17020-4

No Detections.

Client Sample ID: EHF-DPT0004-040.0-20230327 Lab Sample ID: 670-17020-5

No Detections.

Client Sample ID: EHF-DPT0005-010.0-20230327 Lab Sample ID: 670-17020-6

No Detections.

Client Sample ID: EHF-DPT0005-015.0-20230327 Lab Sample ID: 670-17020-7

Analyte	Result Qualifier	PQL	MDL Unit	Dil Fac D	Method	Prep Type
Vinyl chloride	8.9	1.0	0.71 ug/L		8260D	Total/NA

Client Sample ID: EHF-DPT0005-020.0-20230327 Lab Sample ID: 670-17020-8

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	Method	Prep Type
Vinyl chloride	2.9		1.0	0.71	ug/L	1	8260D	Total/NA

Client Sample ID: EHF-DPT0005-030.0-20230327 Lab Sample ID: 670-17020-9

No Detections.

Client Sample ID: EHF-DPT0005-040.0-20230327 Lab Sample ID: 670-17020-10

No Detections.

Client Sample ID: EHF-DPT0006-010.0-20230327 Lab Sample ID: 670-17020-11

Analyte	Result	Qualifier	PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	1.1		1.0	0.71	ug/L	1		8260D	Total/NA

Client Sample ID: EHF-DPT0006-015.0-20230327 Lab Sample ID: 670-17020-12

Analyte	Result Qu	ualifier PQL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	3.0	1.0	0.71	ug/L	1	_	8260D	Total/NA

Client Sample ID: EHF-DPT0006-020.0-20230327 Lab Sample ID: 670-17020-13

Analyte	Result Qualifier	PQL	MDL Unit	Dil Fac D Method	Prep Type
Vinyl chloride	2.1	1.0	0.71 ug/L	1 8260D	Total/NA

Client Sample ID: EHF-DPT0006-030.0-20230327 Lab Sample ID: 670-17020-14

No Detections.

This Detection Summary does not include radiochemical test results.

**Eurofins Orlando** 

### **Detection Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area EHF Job ID: 670-17020-1

 Client Sample ID: EHF-DPT0006-040.0-20230327
 Lab Sample ID: 670-17020-15

 No Detections.
 Client Sample ID: EHF-TB01-20230327

 Lab Sample ID: 670-17020-16

4

No Detections.

4

5

7

8

10

111

13

14

### **Client Sample Results**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area EHF

Client Sample ID: EHF-DPT0004-010.0-20230327

Lab Sample ID: 670-17020-1

Matrix: Water

Job ID: 670-17020-1

Date Collected: 03/27/23 09:00 Date Received: 03/28/23 17:35

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			04/06/23 13:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		40 - 146			-		04/06/23 13:41	1
4-Bromofluorobenzene (Surr)	106		41 - 142					04/06/23 13:41	1
Dibromofluoromethane (Surr)	102		53 - 146					04/06/23 13:41	1

Lab Sample ID: 670-17020-2 Client Sample ID: EHF-DPT0004-015.0-20230327

Date Collected: 03/27/23 09:20 **Matrix: Water** 

Date Received: 03/28/23 17:35

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	1.7		1.0	0.71	ug/L			04/06/23 13:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		40 - 146			_		04/06/23 13:57	1
4-Bromofluorobenzene (Surr)	101		41 - 142					04/06/23 13:57	1
Dibromofluoromethane (Surr)	102		53 ₋ 146					04/06/23 13:57	1

Client Sample ID: EHF-DPT0004-020.0-20230327 Lab Sample ID: 670-17020-3

Date Collected: 03/27/23 09:45 **Matrix: Water** 

Date Received: 03/28/23 17:35

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	3.9		1.0	0.71	ug/L			04/06/23 14:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		40 - 146			-		04/06/23 14:13	1
4-Bromofluorobenzene (Surr)	100		41 - 142					04/06/23 14:13	1
Dibromofluoromethane (Surr)	100		53 - 146					04/06/23 14:13	1

Client Sample ID: EHF-DPT0004-030.0-20230327 Lab Sample ID: 670-17020-4

Date Collected: 03/27/23 10:10 **Matrix: Water** Date Received: 03/28/23 17:35

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			04/06/23 14:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		40 - 146					04/06/23 14:29	1
4-Bromofluorobenzene (Surr)	102		41 - 142					04/06/23 14:29	1
Dibromofluoromethane (Surr)	102		53 - 146					04/06/23 14:29	1

### **Client Sample Results**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area EHF

Client Sample ID: EHF-DPT0004-040.0-20230327

Lab Sample ID: 670-17020-5

Date Collected: 03/27/23 10:35 Date Received: 03/28/23 17:35 Matrix: Water

Job ID: 670-17020-1

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			04/06/23 14:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		40 - 146			-		04/06/23 14:45	1
4-Bromofluorobenzene (Surr)	100		41 - 142					04/06/23 14:45	1
Dibromofluoromethane (Surr)	99		53 - 146					04/06/23 14:45	1

Lab Sample ID: 670-17020-6 Client Sample ID: EHF-DPT0005-010.0-20230327

Date Collected: 03/27/23 11:20 **Matrix: Water** 

Date Received: 03/28/23 17:35

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			04/06/23 15:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		40 - 146			-		04/06/23 15:01	1
4-Bromofluorobenzene (Surr)	104		41 - 142					04/06/23 15:01	1
Dibromofluoromethane (Surr)	100		53 ₋ 146					04/06/23 15:01	1

Client Sample ID: EHF-DPT0005-015.0-20230327 Lab Sample ID: 670-17020-7

Date Collected: 03/27/23 11:40 **Matrix: Water** 

Date Received: 03/28/23 17:35

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	8.9		1.0	0.71	ug/L			04/06/23 15:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		40 - 146			-		04/06/23 15:17	1
4-Bromofluorobenzene (Surr)	99		41 - 142					04/06/23 15:17	1
Dibromofluoromethane (Surr)	99		53 - 146					04/06/23 15:17	1

Client Sample ID: EHF-DPT0005-020.0-20230327 Lab Sample ID: 670-17020-8

Date Collected: 03/27/23 12:00 **Matrix: Water** 

Date Received: 03/28/23 17:35

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	2.9		1.0	0.71	ug/L			04/06/23 15:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		40 - 146			•		04/06/23 15:33	1
4-Bromofluorobenzene (Surr)	105		41 - 142					04/06/23 15:33	1
Dibromofluoromethane (Surr)	100		53 - 146					04/06/23 15:33	1

Job ID: 670-17020-1

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area EHF

Client Sample ID: EHF-DPT0005-030.0-20230327

Date Collected: 03/27/23 13:05

Lab Sample ID: 670-17020-9

**Matrix: Water** 

Date Received: 03/28/23 17:35

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			04/06/23 15:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		40 - 146					04/06/23 15:48	1
4-Bromofluorobenzene (Surr)	105		41 - 142					04/06/23 15:48	1
Dibromofluoromethane (Surr)	102		53 - 146					04/06/23 15:48	1

Client Sample ID: EHF-DPT0005-040.0-20230327

Lab Sample ID: 670-17020-10 Date Collected: 03/27/23 13:30 **Matrix: Water** 

Date Received: 03/28/23 17:35

Method: SW846 8260D - Volatile Organic Compounds by GC/MS Analyte Result Qualifier PQL MDL Unit D Analyzed Dil Fac Prepared Vinyl chloride 0.71 U 1.0 04/06/23 16:04 0.71 ug/L Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 97 40 - 146 04/06/23 16:04 41 - 142 04/06/23 16:04 4-Bromofluorobenzene (Surr) 104 Dibromofluoromethane (Surr) 95 53 - 146 04/06/23 16:04

Client Sample ID: EHF-DPT0006-010.0-20230327

Lab Sample ID: 670-17020-11 Date Collected: 03/27/23 14:00 Matrix: Water

Date Received: 03/28/23 17:35

Method: SW846 8260D - Volatile Organic Compounds by GC/MS Dil Fac Analyte Result Qualifier **PQL** MDL Unit Prepared Analyzed 1.0 0.71 ug/L 04/06/23 16:20 Vinyl chloride 1.1 Surrogate Dil Fac Qualifier Limits Prepared Analyzed %Recovery Toluene-d8 (Surr) 98 40 - 146 04/06/23 16:20 4-Bromofluorobenzene (Surr) 105 41 - 142 04/06/23 16:20 Dibromofluoromethane (Surr) 102 53 - 146 04/06/23 16:20

Client Sample ID: EHF-DPT0006-015.0-20230327

Lab Sample ID: 670-17020-12 Date Collected: 03/27/23 14:20 **Matrix: Water** 

Date Received: 03/28/23 17:35

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	3.0		1.0	0.71	ug/L		· .	04/06/23 16:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		40 - 146			_		04/06/23 16:36	1
4-Bromofluorobenzene (Surr)	105		41 - 142					04/06/23 16:36	1
Dibromofluoromethane (Surr)	102		53 ₋ 146					04/06/23 16:36	

**Eurofins Orlando** 

Job ID: 670-17020-1

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area EHF

Client Sample ID: EHF-DPT0006-020.0-20230327

Lab Sample ID: 670-17020-13 Date Collected: 03/27/23 14:40

**Matrix: Water** 

04/06/23 16:52

Date Received: 03/28/23 17:35

Method: SW846 8260D - Volati	ile Organic Comp	ounds by C	GC/MS						
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	2.1		1.0	0.71	ug/L			04/06/23 16:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		40 - 146					04/06/23 16:52	1
4-Bromofluorobenzene (Surr)	103		41 - 142					04/06/23 16:52	1

53 - 146

Client Sample ID: EHF-DPT0006-030.0-20230327

101

Lab Sample ID: 670-17020-14 Date Collected: 03/27/23 15:00 **Matrix: Water** 

Date Received: 03/28/23 17:35

Dibromofluoromethane (Surr)

Method: SW846 8260D - Volatile Organic Compounds by GC/MS Analyte Result Qualifier PQL MDL Unit D Analyzed Dil Fac Prepared Vinyl chloride 0.71 U 1.0 04/06/23 17:08 0.71 ug/L Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 99 40 - 146 04/06/23 17:08 04/06/23 17:08 101 41 - 142 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) 101 53 - 146 04/06/23 17:08

Client Sample ID: EHF-DPT0006-040.0-20230327 Lab Sample ID: 670-17020-15

Date Collected: 03/27/23 15:25 **Matrix: Water** 

Date Received: 03/28/23 17:35

Method: SW846 8260D - Volatile Organic Compounds by GC/MS Analyte Result Qualifier **PQL** MDL Unit Prepared Analyzed Dil Fac 0.71 U Vinyl chloride 1.0 0.71 ug/L 04/06/23 17:24 %Recovery Surrogate Qualifier Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 97 40 - 146 04/06/23 17:24 4-Bromofluorobenzene (Surr) 107 41 - 142 04/06/23 17:24 Dibromofluoromethane (Surr) 53 - 146 04/06/23 17:24 99

Client Sample ID: EHF-TB01-20230327 Lab Sample ID: 670-17020-16

Date Collected: 03/27/23 07:00 **Matrix: Water** 

Date Received: 03/28/23 17:35

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			04/06/23 13:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		40 - 146			_		04/06/23 13:25	1
4-Bromofluorobenzene (Surr)	103		41 - 142					04/06/23 13:25	1
Dibromofluoromethane (Surr)	102		53 ₋ 146					04/06/23 13:25	

**Eurofins Orlando** 

### **Surrogate Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area EHF Job ID: 670-17020-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Surr	ogate Rec
		TOL	BFB	DBFM	
Lab Sample ID	Client Sample ID	(40-146)	(41-142)	(53-146)	
670-17020-1	EHF-DPT0004-010.0-20230327	99	106	102	
670-17020-2	EHF-DPT0004-015.0-20230327	98	101	102	
670-17020-3	EHF-DPT0004-020.0-20230327	99	100	100	
670-17020-4	EHF-DPT0004-030.0-20230327	97	102	102	
670-17020-5	EHF-DPT0004-040.0-20230327	98	100	99	
670-17020-6	EHF-DPT0005-010.0-20230327	98	104	100	
670-17020-7	EHF-DPT0005-015.0-20230327	98	99	99	
670-17020-8	EHF-DPT0005-020.0-20230327	97	105	100	
670-17020-9	EHF-DPT0005-030.0-20230327	97	105	102	
670-17020-10	EHF-DPT0005-040.0-20230327	97	104	95	
670-17020-11	EHF-DPT0006-010.0-20230327	98	105	102	
670-17020-12	EHF-DPT0006-015.0-20230327	97	105	102	
670-17020-13	EHF-DPT0006-020.0-20230327	100	103	101	
670-17020-14	EHF-DPT0006-030.0-20230327	99	101	101	
670-17020-15	EHF-DPT0006-040.0-20230327	97	107	99	
670-17020-16	EHF-TB01-20230327	99	103	102	
670-17111-F-5 MS	Matrix Spike	97	99	101	
670-17111-F-8 DU	Duplicate	98	106	99	
LCS 670-29203/4	Lab Control Sample	101	98	100	
MB 670-29203/7	Method Blank	100	104	101	

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Client Sample ID: Matrix Spike

Prep Type: Total/NA

### Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 670-29203/7 Client Sample ID: Method Blank Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 29203

	IVID	IVID							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			04/06/23 11:23	1

MB MB

MD MD

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	100		40 - 146	04/06/23 11:23	1
4-Bromofluorobenzene (Surr)	104		41 - 142	04/06/23 11:23	1
Dibromofluoromethane (Surr)	101		53 - 146	04/06/23 11:23	1

Lab Sample ID: LCS 670-29203/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 29203

		Spike	LCS	LCS				%Rec	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl chloride		20.0	17.9		ug/L	_	90	20 - 167	

Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 101 40 - 146

41 - 142 4-Bromofluorobenzene (Surr) 98 Dibromofluoromethane (Surr) 100 53 - 146

Lab Sample ID: 670-17111-F-5 MS

Matrix: Water

**Analysis Batch: 29203** 

-	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl chloride	3.6	U	100	113		ug/L		113	20 - 167	

MS MS

LCS LCS

Surrogate	%Recovery Qu	alifier Limits
Toluene-d8 (Surr)	97	40 - 146
4-Bromofluorobenzene (Surr)	99	41 - 142
Dibromofluoromethane (Surr)	101	53 - 146

Lab Sample ID: 670-17111-F-8 DU **Client Sample ID: Duplicate** Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 29203

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Vinyl chloride	0.71	U	0.71	U	ug/L		 NC	30

DU DU

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	98		40 - 146
4-Bromofluorobenzene (Surr)	106		41 - 142
Dibromofluoromethane (Surr)	99		53 - 146

**Eurofins Orlando** 

# **QC Association Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area EHF Job ID: 670-17020-1

### **GC/MS VOA**

### Analysis Batch: 29203

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-17020-1	EHF-DPT0004-010.0-20230327	Total/NA	Water	8260D	_
670-17020-2	EHF-DPT0004-015.0-20230327	Total/NA	Water	8260D	
670-17020-3	EHF-DPT0004-020.0-20230327	Total/NA	Water	8260D	
670-17020-4	EHF-DPT0004-030.0-20230327	Total/NA	Water	8260D	
670-17020-5	EHF-DPT0004-040.0-20230327	Total/NA	Water	8260D	
670-17020-6	EHF-DPT0005-010.0-20230327	Total/NA	Water	8260D	
670-17020-7	EHF-DPT0005-015.0-20230327	Total/NA	Water	8260D	
670-17020-8	EHF-DPT0005-020.0-20230327	Total/NA	Water	8260D	
670-17020-9	EHF-DPT0005-030.0-20230327	Total/NA	Water	8260D	
670-17020-10	EHF-DPT0005-040.0-20230327	Total/NA	Water	8260D	
670-17020-11	EHF-DPT0006-010.0-20230327	Total/NA	Water	8260D	
670-17020-12	EHF-DPT0006-015.0-20230327	Total/NA	Water	8260D	
670-17020-13	EHF-DPT0006-020.0-20230327	Total/NA	Water	8260D	
670-17020-14	EHF-DPT0006-030.0-20230327	Total/NA	Water	8260D	
670-17020-15	EHF-DPT0006-040.0-20230327	Total/NA	Water	8260D	
670-17020-16	EHF-TB01-20230327	Total/NA	Water	8260D	
MB 670-29203/7	Method Blank	Total/NA	Water	8260D	
LCS 670-29203/4	Lab Control Sample	Total/NA	Water	8260D	
670-17111-F-5 MS	Matrix Spike	Total/NA	Water	8260D	
670-17111-F-8 DU	Duplicate	Total/NA	Water	8260D	

_ _

5

7

9

10

12

13

Client Sample ID: EHF-DPT0004-010.0-20230327

Date Collected: 03/27/23 09:00

Lab Sample ID: 670-17020-1

**Matrix: Water** 

		Batch	Batch		Dilution	Batch			Prepared
	Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
l	Total/NA	Analysis	8260D		1	29203	KG	EET ORL	04/06/23 13:41

Client Sample ID: EHF-DPT0004-015.0-20230327

Lab Sample ID: 670-17020-2

Matrix: Water

Date Collected: 03/27/23 09:20 Date Received: 03/28/23 17:35

Date Received: 03/28/23 17:35

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D			29203	KG	EET ORL	04/06/23 13:57

Client Sample ID: EHF-DPT0004-020.0-20230327

Lab Sample ID: 670-17020-3

**Matrix: Water** 

Date Collected: 03/27/23 09:45 Date Received: 03/28/23 17:35

	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Analysis	8260D			20203	KG	FET ORI	04/06/23 14:13	

Client Sample ID: EHF-DPT0004-030.0-20230327

Lab Sample ID: 670-17020-4

**Matrix: Water** 

Date Collected: 03/27/23 10:10 Date Received: 03/28/23 17:35

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	29203	KG	EET ORL	04/06/23 14:29

Client Sample ID: EHF-DPT0004-040.0-20230327

Lab Sample ID: 670-17020-5

**Matrix: Water** 

Date Collected: 03/27/23 10:35 Date Received: 03/28/23 17:35

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	29203	KG	EET ORL	04/06/23 14:45

Client Sample ID: EHF-DPT0005-010.0-20230327

Lab Sample ID: 670-17020-6

**Matrix: Water** 

Date Collected: 03/27/23 11:20 Date Received: 03/28/23 17:35

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	29203	KG	EET ORL	04/06/23 15:01

Client Sample ID: EHF-DPT0005-015.0-20230327

Lab Sample ID: 670-17020-7

**Matrix: Water** 

Date Collected: 03/27/23 11:40 Date Received: 03/28/23 17:35

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number A	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	29203 H	KG	EET ORL	04/06/23 15:17

10

Date Received: 03/28/23 17:35

**Matrix: Water** 

Lab Sample ID: 670-17020-8

Batch Batch Dilution Batch Prepared Prep Type Method Run Factor Number Analyst or Analyzed Type Lab 04/06/23 15:33 Total/NA Analysis 8260D 29203 KG EET ORL

Client Sample ID: EHF-DPT0005-030.0-20230327

Lab Sample ID: 670-17020-9 Date Collected: 03/27/23 13:05 **Matrix: Water** 

Date Received: 03/28/23 17:35

Batch Batch Dilution Batch Prepared Prep Type Method Factor Number Analyst or Analyzed Туре Run Lab Total/NA 8260D 29203 KG EET ORL 04/06/23 15:48 Analysis

Client Sample ID: EHF-DPT0005-040.0-20230327 Lab Sample ID: 670-17020-10

Date Collected: 03/27/23 13:30 **Matrix: Water** 

Date Received: 03/28/23 17:35

Batch Batch Dilution Batch Prepared or Analyzed Prep Type Туре Method Run Factor Number Analyst Lab 04/06/23 16:04 8260D 29203 KG EET ORL Total/NA Analysis

Client Sample ID: EHF-DPT0006-010.0-20230327 Lab Sample ID: 670-17020-11

Date Collected: 03/27/23 14:00 **Matrix: Water** 

Date Received: 03/28/23 17:35

Dilution Batch Batch Batch Prepared Prep Type Type Method Run Factor Number Analyst Lab or Analyzed EET ORL 04/06/23 16:20 8260D 29203 KG Total/NA Analysis

Client Sample ID: EHF-DPT0006-015.0-20230327 Lab Sample ID: 670-17020-12

Date Collected: 03/27/23 14:20 **Matrix: Water** 

Date Received: 03/28/23 17:35

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run Factor Number Analyst Lab or Analyzed Total/NA Analysis 8260D 29203 KG EET ORL 04/06/23 16:36

Client Sample ID: EHF-DPT0006-020.0-20230327 Lab Sample ID: 670-17020-13

Date Collected: 03/27/23 14:40 **Matrix: Water** 

Date Received: 03/28/23 17:35

Dilution Batch Batch Batch Prepared Method Prep Type Туре Run Factor Number Analyst Lab or Analyzed 04/06/23 16:52 Total/NA 8260D 29203 KG EET ORL Analysis

Client Sample ID: EHF-DPT0006-030.0-20230327 Lab Sample ID: 670-17020-14

Date Collected: 03/27/23 15:00 **Matrix: Water** 

Date Received: 03/28/23 17:35

Batch Batch Dilution Prepared Batch Method Factor Number Analyst or Analyzed Prep Type Type Run Lab Total/NA Analysis 8260D 29203 KG **EET ORL** 04/06/23 17:08

**Eurofins Orlando** 

### **Lab Chronicle**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area EHF Job ID: 670-17020-1

Client Sample ID: EHF-DPT0006-040.0-20230327

Lab Sample ID: 670-17020-15

Matrix: Water

Date Collected: 03/27/23 15:25 Date Received: 03/28/23 17:35

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	29203	KG	EET ORL	04/06/23 17:24

Client Sample ID: EHF-TB01-20230327 Lab S

Lab Sample ID: 670-17020-16

Matrix: Water

Date Collected: 03/27/23 07:00 Date Received: 03/28/23 17:35

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	29203	KG	EET ORL	04/06/23 13:25

Laboratory References:

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984

Eurofins Orlando

3

_

_____

10

13

14

# **Accreditation/Certification Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area EHF Job ID: 670-17020-1

### **Laboratory: Eurofins Orlando**

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	<b>Expiration Date</b>
Florida	NELAP	E83018	06-30-23

### **Method Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area EHF Job ID: 670-17020-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET ORL
5030C	Purge and Trap	SW846	EET ORL

### Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

### Laboratory References:

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984

### **Sample Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC Industrial Area EHF Job ID: 670-17020-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
670-17020-1	EHF-DPT0004-010.0-20230327	Water	03/27/23 09:00	03/28/23 17:35
670-17020-2	EHF-DPT0004-015.0-20230327	Water	03/27/23 09:20	03/28/23 17:35
670-17020-3	EHF-DPT0004-020.0-20230327	Water	03/27/23 09:45	03/28/23 17:35
670-17020-4	EHF-DPT0004-030.0-20230327	Water	03/27/23 10:10	03/28/23 17:35
670-17020-5	EHF-DPT0004-040.0-20230327	Water	03/27/23 10:35	03/28/23 17:35
670-17020-6	EHF-DPT0005-010.0-20230327	Water	03/27/23 11:20	03/28/23 17:35
670-17020-7	EHF-DPT0005-015.0-20230327	Water	03/27/23 11:40	03/28/23 17:35
670-17020-8	EHF-DPT0005-020.0-20230327	Water	03/27/23 12:00	03/28/23 17:35
670-17020-9	EHF-DPT0005-030.0-20230327	Water	03/27/23 13:05	03/28/23 17:35
670-17020-10	EHF-DPT0005-040.0-20230327	Water	03/27/23 13:30	03/28/23 17:35
670-17020-11	EHF-DPT0006-010.0-20230327	Water	03/27/23 14:00	03/28/23 17:35
670-17020-12	EHF-DPT0006-015.0-20230327	Water	03/27/23 14:20	03/28/23 17:35
670-17020-13	EHF-DPT0006-020.0-20230327	Water	03/27/23 14:40	03/28/23 17:35
670-17020-14	EHF-DPT0006-030.0-20230327	Water	03/27/23 15:00	03/28/23 17:35
670-17020-15	EHF-DPT0006-040.0-20230327	Water	03/27/23 15:25	03/28/23 17:35
670-17020-16	EHF-TB01-20230327	Water	03/27/23 07:00	03/28/23 17:35

-

4

5

7

8

9

10

12

13

14

# Chain of Custody Record

Phone: 407-339-5984 Fax: 407-260-6110

Altamonte Springs, FL 32701

**Eurofins Orlando** 181 Newburyport Avenue

: eurofins

Carrier Tracking No(s):

M - Hexane
N - None
O - Ashao2
P - Na204S
Q - Na2SO3
R - Na2SO3
S - N2SO4
T - TSP Dodecahydrate U - Acetone V - MCAA W - pH 4-5 Y - Trizma Z - other (specify) Special Instructions/Note: Ver: 06/08/2021 Months Company Company Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon Preservation Codes: 670-6215-2731.1 A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
F - NaHSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid Page 1 of 2 Job #: I - Ice J - DI Water K - EDTA L - EDA Total Number of containers M W W 3 M Aethod of Shipment Disposal By Lab State of Origin: 670-17020 Chain of Custody **Analysis Requested** Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements: Lab PM: Dylnicki, Kaitlin E-Mait: kaitlin.dylnicki@et.eurofinsus.com eceived by: Received by: Received by: 3 3 1.1 3 50 3 3 3 8500D - (WOD) AC N N <u>ک</u> <u>8</u> <u>N</u> \$ <u>></u> <u> 2</u> 2 Perform MS/MSD (Yes or No) Company AFCOM Field Filtered Sample (Yes or No) BT¤Tissue, A=Air Preservation Code: Water Water Water Matrix (W=water, S=solid, O=waste/oil, Water Water Water Water Water Water Water Water Company Company Radiological Type (C=comp, G=grab) Sample 7426 5 733 Kuse 1305 1010 1035 1330 0420 1120 071 200 0060 5460 1200 none: - 631-Date: Unknown TAT Requested (days) Due Date Requested: 3/24/23 Date/Time: Sample Date 121/23 (2 Ce 2 Project #: 67001282 wo #: 60610905 PO#: 148674 Date/Time: SOW#: Poison B П Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No.: 150 North Orange Avenue Suite 200 eresa.amentt.jennings@aecom.com Possible Hazard Identification EHF-DPT0006-010.0-202303 EHF-DPT0004-010.0-2023032 7 EHF-DPT0004-015.0-202303 2 7 EHF-DPT0004-020.0-202303 27 EHF-DPT0004-030.0-202303 27 CL EHF-DPT0005-015.0-202303 2つ EHF-DPT0005-020.0-202303 27 EHF-DPT0005-040.0-202303 EHF-DPT0004-040.0-202303 27 CHF-DPT0005-010.0-202303ププ EHF-DPT0005-030.0-202303 Jompany: AECOM Technical Services Inc. Project Name: NASA KSC Industrial Area Empty Kit Relinquished by: Custody Seals Intact: △ Yes △ No Slient Contact: Feresa Amentt Jennings Client Information Sample Identification 919-461-1282(Tel) # FF Inquished by: linquished by: nquished by: State, Zip: FL, 32801 Orlando

Ver: 06/08/2021

Eurofins Orlando 481 Newburyport Avenue Altamonte Springs, FL 32701 Phone: 407-339-5984 Fax: 407-260-6110	Chain of Cu	Chain of Custody Record	ıd		🛟 eurofins	
	Sampler: Cres Kuse/	Lab PM: Dylnicki, K	Lab PM: Dylnicki, Kaitlin	Carrier Tracking No(s):	COC No: 670-6215-2731.2	
9	1- 74	E-Mail: kaitlin.dylni		State of Origin:	Page: Page 2 of 2	
oes Inc.	- bwsid:		Analysis Reguested	nested	) dob #:	
Address: 150 North Orange Avenue Suite 200	Due Date Requested:				Preservation Codes	es:
City: Orlando	TAT Requested (days):				A - HCL B - NaOH C - 7n Acetate	N - None O - AsNaO2
State, Zip: FL, 32801	Compliance Project: A Yes A No					P - Na204S Q - Na2SO3 R - Na2S2O3
Phone: 919-461-1282(Tel)	Po#: 148674	(4				S - H2SO4 T - TSP Dodecahydrate
ecom.com	WO#: 60610905				I - Ice J - DI Water	U - Acetone V - MCAA
	Project #: 67001282				tainer L - EDA	Y - Trizma Z - other (specify)
	SSOW#:				oo to Offici	
	Sample Type Sample (C=comp.	Matrix (W=water, S=solid, S=solid, o=wastaloil, o=form MS/M	v (dom) - do		sal Mumber	
Sample Identification	Sample Date Time G=grab)	ation Code:	_ `			Special Instructions/Note:
EHF-DPT0006-015.0-202303.2.7	3/27/23 1430 62	Water	4 -		~	
EHF-DPT0006-020.0-202303 27	Chhl		`		1 10	
EHF-DPT0006-030.0-202303 27	1500		W		K	
EHF-DPT0006-040.0-202303 27	1525	Water NA	W		W	
EHF-TB01-202303 27	V 0000 V	Water	ď		18	
Identification			Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)	sessed if samples are ret	tained longer than 1	month)
Non-Hazard Flammable Skin Irritant Poison B	son B Unknown Radiological		Return To Client Di	posal By Lab	Archive For	Months
Deliverable Requested: 1, 11, 111, Uther (specify)		Sp	Special Instructions/QC Requirements			
linquished by:	Date:	Time:		Method of Shipment:		
Corea Kusel Breef Wild	3/24/23 1735	Company	Received by:	Date/Time:		Company
	Date/Time:	Company	Received by:	Date/Time:		Company
Relinquished by:	Date/Time:	Company	Received by:	Date/Time:		Company
Custody Seals Intact: Custody Seal No.:  Δ Yes Δ No			Cooler Temperature(s) °C and Other Remarks	arks:		
						11 00,000,000

# Chain of Custody Record

eurofins.

Altamonte Springs, FL 32701 Phone: 407-339-5984 Fax: 407-260-6110

**Eurofins Orlando** 181 Newburyport Avenue

N - None
O - AsNaO2
P - Na2O45
Q - Na2SO3
R - Na2SO3
S - H2SO4 Special Instructions/Note: Ver: 06/08/2021 U - Acetone V - MCAA W - pH 4-5 Y - Trizma Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month) reservation Codes: 670-6215-2731.1 G - Amchlor H - Ascorbic Acid A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH Page 1 of 2 Job #: I - Ice J - DI Water K - EDTA L - EDA Archive For Total Number of containers M W W W 3 3 Jate/Time: **Nethod of Shipment** Sarrier Tracking No(s): Disposal By Lab State of Origin: 670-17020 Chain of Custody **Analysis Requested** Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements Lab PM.
Dylnicki, Kaitlin
E-Mail:
kaitlin.dylnicki@et.eurofinsus.com Return To Client Received by: 3 3 3 3 3 M 3 8500D - (WOD) AC <u>8</u> <u>N</u> <u>×</u> \$ 2 5 Perform MS/MSD (Yes or No) Company
AFCOM
Company ield Filtered Sample (Yes or No) BT=Tissue, A=Air Preservation Code: Water Water (W=water, S=solid, O=waste/oil, Water Water Water Water Water Water Water Matrix Water Water Company Radiological (C=comp, G=grab) Sample Type hone: - 631-7426 733 compliance Project: A Yes A No Kuse 0420 1305 035 1120 071 200 1200 0945 1010 1330 0060 Date: Unknown FAT Requested (days): Due Date Requested: Sample Date 127/23 (1) Cen Project #: 67001282 SSOW#: wo #: 60610905 PO#: 148674 Jate/Time: Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No.: 150 North Orange Avenue Suite 200 eresa.amentt.jennings@aecom.com Possible Hazard Identification EHF-DPT0004-010.0-2023032 7 EHF-DPT0004-015.0-202303 2 7 EHF-DPT0004-020.0-202303 🗷 **7** EHF-DPT0004-030.0-202303 27 EHF-DPT0005-015.0-202303 EHF-DPT0005-020.0-202303 27 EHF-DPT0005-040.0-202303 2 7 EHF-DPT0006-010.0-202303 27 EHF-DPT0004-040.0-202303 37 CLEHF-DPT0005-010.0-202303ププ EHF-DPT0005-030.0-202303 27 Sompany: AECOM Technical Services Inc. Empty Kit Relinquished by: Project Name: NASA KSC Industrial Area Nient Contact: Feresa Amentt Jennings Custody Seals Intact: △ Yes △ No Client Information Sample Identification 919-461-1282(Tel) サナナ nquished by: nquished by 1000 State, Zip: FL, 32801 Orlando

🛟 eurofins

Carrier Tracking No(s)

Chain of Custody Record

Phone: 407-339-5984 Fax: 407-260-6110

Altamonte Springs, FL 32701

**Eurofins Orlando** 481 Newburyport Avenue

M - Hexane
N - None
O - AsNaO2
P - Na204S
Q - Na2503
R - Na2503
S - H2504
T - TSP Dodecahydrate
U - Acetone
W - pH +45
W - Tirna
Z - other (specify) Special Instructions/Note: Months Company Company Preservation Codes: 670-6215-2731.2 A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NanSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid Page 2 of 2 Job #: I - Ice J - DI Water K - EDTA L - EDA mmm W 18 Total Number of containers Date/Time: Date/Time: Jate/Time: Method of Shipment: State of Origin: **Analysis Requested** Cooler Temperature(s) °C and Other Remarks Special Instructions/QC Requirements: kaitlin.dylnicki@et.eurofinsus.com Received by: Received by: Received by: Lab PM: Dylnicki, Kaitlin ď 3 8560D - (MOD) VC 3 2 Perform MS/MSD (Yes or No) Time: Company
AECOM
Company Field Filtered Sample (Yes or No) E-Mail: (C=comp, 0=sonu, O=waste/oll, G=grab) BT=Tissue, A=Air) (W=water, S=solid, O=waste/oil, Preservation Code: Water Matrix Water Water Water Water Company Radiological Sample Type 735 Kusel 7426 ompliance Project: A Yes A No 1525 1500 0020 1430 Ohhl Sample Phone: 772-631-Date Unknown TAT Requested (days): bres 24/23 Due Date Requested: Sample Date 127/23 WO#: 60610905 Project #: 67001282 SSOW#: PO#: 148674 Date/Time: Poison B K 14 Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No.: 150 North Orange Avenue Suite 200 teresa.amentt.jennings@aecom.com EHF-DPT0006-030.0-202303 27 27 EHF-DPT0006-020.0-202303 277 Possible Hazard Identification EHF-DPT0006-015.0-202303.2.7 AECOM Technical Services Inc. EHF-DPT0006-040.0-202303 Project Name: NASA KSC Industrial Area Empty Kit Relinquished by: Jusel Custody Seals Intact:

Δ Yes Δ No Teresa Amentt Jennings EHF-TB01-202303 27 Client Information Sample Identification 919-461-1282(Tel) Non-Hazard ガェア (2 rc 4 inquished by: nquished by: State, Zip: FL, 32801 Orlando

Ver: 06/08/2021

### **Login Sample Receipt Checklist**

Client: AECOM Technical Services Inc. Job Number: 670-17020-1

Login Number: 17020 List Source: Eurofins Orlando

List Number: 1

Creator: Bittle, David W

Creator: Bittle, David W		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

-

А

5

6

8

4.0

11

13

14

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Teresa Amentt Jennings AECOM Technical Services Inc. 150 North Orange Avenue Suite 200 Orlando, Florida 32801

Generated 4/7/2023 4:25:07 PM

**JOB DESCRIPTION** 

NASA KSC IA RRLF

**JOB NUMBER** 

670-17019-1

Eurofins Orlando 481 Newburyport Avenue Altamonte Springs FL 32701

# **Eurofins Orlando**

# **Job Notes**

The test results in this report meet NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted. Results pertain only to samples listed in this report. This report may not be reproduced, except in full, without the written approval of the laboratory. Questions should be directed to the person who signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

# **Authorization**

Generated 4/7/2023 4:25:07 PM

Authorized for release by Kaitlin Dylnicki, Project Manager kaitlin.dylnicki@et.eurofinsus.com (407)339-5984

Client: AECOM Technical Services Inc. Project/Site: NASA KSC IA RRLF

Laboratory Job ID: 670-17019-1

# **Table of Contents**

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	12
Lab Chronicle	13
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

4

8

9

11

12

14

# **Definitions/Glossary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC IA RRLF

Job ID: 670-17019-1

# **Qualifiers**

# **GC/MS VOA**

Qualifier Qualifier Description

U Indicates that the compound was analyzed for but not detected.

# **Glossary**

Appreviation	These commonly used appreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFI	Contains Free Liquid

CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

**Eurofins Orlando** 

Page 4 of 19

Δ

Ę

6

7

10

12

# **Case Narrative**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC IA RRLF

Job ID: 670-17019-1

Job ID: 670-17019-1

**Laboratory: Eurofins Orlando** 

Narrative

Job Narrative 670-17019-1

### Receipt

The samples were received on 3/28/2023 5:35 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was  $0.5^{\circ}$ C

# GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

_

8

9

12

13

# **Detection Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC IA RRLF

Job ID: 670-17019-1

Client Sample ID: RRLF-DPT0023	3-008.0-20230328				Lak	Sam	ple ID:	670-17019-1
Analyte	Result Qualifier	PQL	MDL	Unit	Dil Fac [	) Metho	od	Prep Type
Vinyl chloride	8.2	1.0	0.71	ug/L	1	8260[	)	Total/NA
Client Sample ID: RRLF-DPT0023	3-018.0-20230328				Lat	Sam	ple ID:	670-17019-2
Analyte	Result Qualifier	PQL	MDL	Unit	Dil Fac [	) Metho	od	Prep Type
Vinyl chloride	5.8	1.0	0.71	ug/L	1	8260[	)	Total/NA
Client Sample ID: RRLF-DPT002	3-028.0-20230328				Lak	Sam	ple ID:	670-17019-3
Analyte	Result Qualifier	PQL	MDL	Unit	Dil Fac [	) Metho	od	Prep Type
Vinyl chloride	6.7	1.0	0.71	ug/L	1	82600	)	Total/NA
Client Sample ID: RRLF-DPT0023	3-038.0-20230328				Lat	Sam	ple ID:	670-17019-4
No Detections.								
Client Sample ID: RRLF-DPT002	3-048.0-20230328				Lak	Sam	ple ID:	670-17019-
No Detections.								
Client Sample ID: RRLF-DPT0024	4-008.0-20230328				Lak	Sam	ple ID:	670-17019-6
No Detections.								
Client Sample ID: RRLF-DPT0024	4-018.0-20230328				Lat	Sam	ple ID:	670-17019-7
Analyte	Result Qualifier	PQL	MDL	Unit	Dil Fac [	) Metho	od	Prep Type
Vinyl chloride	2.3	1.0	0.71	ug/L	1	82600	)	Total/NA
Client Sample ID: RRLF-DPT0024	4-028.0-20230328				Lak	Sam	ple ID:	670-17019-8
No Detections.								
Client Sample ID: RRLF-DPT0024	4-038.0-20230328				Lak	Sam	ple ID:	670-17019-9
No Detections.								
Client Sample ID: RRLF-DPT0024	4-048.0-20230328				Lab	Samp	le ID: 6	670-17019-10
No Detections.								
Client Sample ID: RRLF-TB01-20	230327				Lab	Samp	ole ID: 6	670-17019-1 ²

This Detection Summary does not include radiochemical test results.

No Detections.

Eurofins Orlando

# **Client Sample Results**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC IA RRLF

Lab Sample ID: 670-17019-1

Client Sample ID: RRLF-DPT0023-008.0-20230328 Date Collected: 03/28/23 09:20

Date Received: 03/28/23 17:35

**Matrix: Water** 

Job ID: 670-17019-1

**Matrix: Water** 

**Matrix: Water** 

**Matrix: Water** 

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	8.2		1.0	0.71	ug/L			04/06/23 15:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		40 - 146			_		04/06/23 15:51	1
4-Bromofluorobenzene (Surr)	100		41 - 142					04/06/23 15:51	1
Dibromofluoromethane (Surr)	104		53 - 146					04/06/23 15:51	1

Client Sample ID: RRLF-DPT0023-018.0-20230328 Lab Sample ID: 670-17019-2

Date Collected: 03/28/23 09:40 Date Received: 03/28/23 17:35

Method: SW846 8260D - Volatile Organic Compounds by GC/MS Analyte Result Qualifier PQL MDL Unit D Dil Fac Prepared Analyzed 1.0 04/06/23 16:10 Vinyl chloride 5.8 0.71 ug/L Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 101 40 - 146 04/06/23 16:10 04/06/23 16:10 100 41 - 142 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) 92 53 - 146 04/06/23 16:10

Client Sample ID: RRLF-DPT0023-028.0-20230328 Lab Sample ID: 670-17019-3

Date Collected: 03/28/23 10:10

Date Received: 03/28/23 17:35

Method: SW846 8260D - Volati	le Organic Comp	ounds by G	C/MS						
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	6.7		1.0	0.71	ug/L			04/06/23 16:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105		40 - 146					04/06/23 16:28	1
4-Bromofluorobenzene (Surr)	105		41 - 142					04/06/23 16:28	1
Dibromofluoromethane (Surr)	104		53 ₋ 146					04/06/23 16:28	1

Client Sample ID: RRLF-DPT0023-038.0-20230328 Lab Sample ID: 670-17019-4

Date Collected: 03/28/23 10:35 Date Received: 03/28/23 17:35

Method: SW846 8260D - Volatile Organic Compounds by GC/MS Analyte Result Qualifier PQL MDL Unit D Prepared Analyzed Dil Fac Vinyl chloride 0.71 U 1.0 0.71 ug/L 04/06/23 18:16 Surrogate Limits Dil Fac %Recovery Qualifier Prepared Analyzed Toluene-d8 (Surr) 101 40 - 146 04/06/23 18:16 4-Bromofluorobenzene (Surr) 99 41 - 142 04/06/23 18:16 Dibromofluoromethane (Surr) 97 53 - 146 04/06/23 18:16

**Eurofins Orlando** 

4/7/2023

# **Client Sample Results**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC IA RRLF

Lab Sample ID: 670-17019-5

Client Sample ID: RRLF-DPT0023-048.0-20230328 Date Collected: 03/28/23 11:20

Job ID: 670-17019-1

Date Received: 03/28/23 17:35

Lab	Sali	ibie	ID.	01	U-1	<i>1</i> U	19-0	
				8/	lotui:	. M	latar	

Method: SW846 8260D - Volati	le Organic Comp	ounds by G	C/MS						
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			04/06/23 14:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		40 - 146			_		04/06/23 14:02	1
4-Bromofluorobenzene (Surr)	97		41 - 142					04/06/23 14:02	1
Dibromofluoromethane (Surr)	84		53 - 146					04/06/23 14:02	1

Lab Sample ID: 670-17019-6

Client Sample ID: RRLF-DPT0024-008.0-20230328 Date Collected: 03/28/23 12:00

**Matrix: Water** 

Date Received: 03/28/23 17:35

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			04/06/23 15:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		40 - 146			_		04/06/23 15:33	

04/06/23 15:33 4-Bromofluorobenzene (Surr) 97 41 - 142 Dibromofluoromethane (Surr) 105 53 - 146 04/06/23 15:33

Client Sample ID: RRLF-DPT0024-018.0-20230328 Lab Sample ID: 670-17019-7

Date Collected: 03/28/23 12:45 **Matrix: Water** 

Date Received: 03/28/23 17:35

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	2.3		1.0	0.71	ug/L			04/06/23 16:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103		40 - 146			-		04/06/23 16:46	1
4-Bromofluorobenzene (Surr)	103		41 - 142					04/06/23 16:46	1
Dibromofluoromethane (Surr)	104		53 ₋ 146					04/06/23 16:46	1

Client Sample ID: RRLF-DPT0024-028.0-20230328 Lab Sample ID: 670-17019-8

Date Collected: 03/28/23 13:05 **Matrix: Water** 

Date Received: 03/28/23 17:35

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			04/06/23 17:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		40 - 146			-		04/06/23 17:58	1
4-Bromofluorobenzene (Surr)	99		41 - 142					04/06/23 17:58	1
Dibromofluoromethane (Surr)	101		53 - 146					04/06/23 17:58	1

# **Client Sample Results**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC IA RRLF

Client Sample ID: RRLF-DPT0024-038.0-20230328

Lab Sample ID: 670-17019-9

Date Collected: 03/28/23 13:30 Date Received: 03/28/23 17:35 Matrix: Water

Job ID: 670-17019-1

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			04/06/23 17:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	104		40 - 146			-		04/06/23 17:04	1
4-Bromofluorobenzene (Surr)	106		41 - 142					04/06/23 17:04	1
Dibromofluoromethane (Surr)	103		53 - 146					04/06/23 17:04	1

Client Sample ID: RRLF-DPT0024-048.0-20230328 Lab Sample ID: 670-17019-10

Date Collected: 03/28/23 13:55 **Matrix: Water** 

Date Received: 03/28/23 17:35

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			04/06/23 17:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		40 - 146			-		04/06/23 17:22	1
4-Bromofluorobenzene (Surr)	100		41 - 142					04/06/23 17:22	1
Dibromofluoromethane (Surr)	103		53 ₋ 146					04/06/23 17:22	1

Client Sample ID: RRLF-TB01-20230327 Lab Sample ID: 670-17019-11

Date Collected: 03/27/23 07:00 **Matrix: Water** 

Date Received: 03/28/23 17:35

Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			04/06/23 17:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103		40 - 146			-		04/06/23 17:40	1
4-Bromofluorobenzene (Surr)	101		41 - 142					04/06/23 17:40	1

# **Surrogate Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC IA RRLF

Job ID: 670-17019-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

		TOL	BFB	Percent Surrogate Recovery (Acceptance Limits) DBFM
Lab Sample ID	Client Sample ID	(40-146)	(41-142)	(53-146)
670-16969-C-1 DU	Duplicate	100	101	104
670-17019-1	RRLF-DPT0023-008.0-2023032 8	101	100	104
670-17019-2	RRLF-DPT0023-018.0-2023032 8	101	100	92
670-17019-3	RRLF-DPT0023-028.0-2023032 8	105	105	104
670-17019-4	RRLF-DPT0023-038.0-2023032 8	101	99	97
670-17019-5	RRLF-DPT0023-048.0-2023032 8	102	97	84
670-17019-6	RRLF-DPT0024-008.0-2023032 8	102	97	105
670-17019-7	RRLF-DPT0024-018.0-2023032 8	103	103	104
670-17019-8	RRLF-DPT0024-028.0-2023032 8	102	99	101
670-17019-9	RRLF-DPT0024-038.0-2023032 8	104	106	103
670-17019-10	RRLF-DPT0024-048.0-2023032 8	101	100	103
670-17019-11	RRLF-TB01-20230327	103	101	105
670-17047-A-1 MS	Matrix Spike	100	96	101
LCS 670-29188/4	Lab Control Sample	102	99	103
MB 670-29188/7	Method Blank	102	98	104

Surrogate Legend

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Eurofins Orlando

Job ID: 670-17019-1

Client: AECOM Technical Services Inc.

Project/Site: NASA KSC IA RRLF

# Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 670-29188/7 Client Sample ID: Method Blank Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 29188

	MB	MB							
Analyte	Result	Qualifier	PQL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.71	U	1.0	0.71	ug/L			04/06/23 11:14	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		40 - 146		04/06/23 11:14	1
4-Bromofluorobenzene (Surr)	98		41 - 142		04/06/23 11:14	1
Dibromofluoromethane (Surr)	104		53 - 146		04/06/23 11:14	1

Lab Sample ID: LCS 670-29188/4 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA** 

Analysis Batch: 29188

		Spike	LCS	LCS				%Rec	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl chloride		20.0	20.7		ug/L		103	20 - 167	

LCS LCS

alifier Limits
40 - 146
41 - 142
53 - 146

Lab Sample ID: 670-17047-A-1 MS Client Sample ID: Matrix Spike Prep Type: Total/NA

**Matrix: Water** 

**Analysis Batch: 29188** 

_	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl chloride	0.71	U	20.0	12.4		ug/L		62	20 - 167	 

MS MS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	100		40 - 146
4-Bromofluorobenzene (Surr)	96		41 - 142
Dibromofluoromethane (Surr)	101		53 ₋ 146

Lab Sample ID: 670-16969-C-1 DU **Client Sample ID: Duplicate Prep Type: Total/NA** 

**Matrix: Water** 

Analysis Batch: 29188

	Sample	Sample	DU	DU					RPD	
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit	
Vinyl chloride	0.71	U	 0.71	U	ug/L			NC	30	

DU DU

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	100		40 - 146
4-Bromofluorobenzene (Surr)	101		41 - 142
Dibromofluoromethane (Surr)	104		53 - 146

**Eurofins Orlando** 

# **QC Association Summary**

Client: AECOM Technical Services Inc.
Project/Site: NASA KSC IA RRLF

GC/MS VOA

Analysis Batch: 29188

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
670-17019-1	RRLF-DPT0023-008.0-20230328	Total/NA	Water	8260D	
670-17019-2	RRLF-DPT0023-018.0-20230328	Total/NA	Water	8260D	
670-17019-3	RRLF-DPT0023-028.0-20230328	Total/NA	Water	8260D	
670-17019-4	RRLF-DPT0023-038.0-20230328	Total/NA	Water	8260D	
670-17019-5	RRLF-DPT0023-048.0-20230328	Total/NA	Water	8260D	
670-17019-6	RRLF-DPT0024-008.0-20230328	Total/NA	Water	8260D	
670-17019-7	RRLF-DPT0024-018.0-20230328	Total/NA	Water	8260D	
670-17019-8	RRLF-DPT0024-028.0-20230328	Total/NA	Water	8260D	
670-17019-9	RRLF-DPT0024-038.0-20230328	Total/NA	Water	8260D	
670-17019-10	RRLF-DPT0024-048.0-20230328	Total/NA	Water	8260D	
670-17019-11	RRLF-TB01-20230327	Total/NA	Water	8260D	
MB 670-29188/7	Method Blank	Total/NA	Water	8260D	
LCS 670-29188/4	Lab Control Sample	Total/NA	Water	8260D	
670-17047-A-1 MS	Matrix Spike	Total/NA	Water	8260D	
670-16969-C-1 DU	Duplicate	Total/NA	Water	8260D	

Job ID: 670-17019-1

3

4

5

_

8

9

10

13

14

Client Sample ID: RRLF-DPT0023-008.0-20230328

Date Collected: 03/28/23 09:20 Date Received: 03/28/23 17:35 Lab Sample ID: 670-17019-1

**Matrix: Water** 

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	29188	P1K	EET ORL	04/06/23 15:51

Client Sample ID: RRLF-DPT0023-018.0-20230328

Date Collected: 03/28/23 09:40

Date Received: 03/28/23 17:35

Lab Sample ID: 670-17019-2

**Matrix: Water** 

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	29188	P1K	EET ORL	04/06/23 16:10

Client Sample ID: RRLF-DPT0023-028.0-20230328

Date Collected: 03/28/23 10:10

Date Received: 03/28/23 17:35

Lab Sample ID: 670-17019-3

**Matrix: Water** 

ſ		Batch	Batch		Dilution	Batch			Prepared
	Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
l	Total/NA	Analysis	8260D		1	29188	P1K	EET ORL	04/06/23 16:28

Client Sample ID: RRLF-DPT0023-038.0-20230328

Date Collected: 03/28/23 10:35

Date Received: 03/28/23 17:35

Lab Sample ID: 670-17019-4

Lab Sample ID: 670-17019-5

**Matrix: Water** 

**Matrix: Water** 

Dilution Batch Batch Batch Prepared Method or Analyzed Prep Type Type Factor Number Analyst Lab Run 8260D 29188 P1K EET ORL 04/06/23 18:16 Total/NA Analysis

Client Sample ID: RRLF-DPT0023-048.0-20230328

Date Collected: 03/28/23 11:20

Date Received: 03/28/23 17:35

	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Analysis	8260D			29188	P1K	EET ORL	04/06/23 14:02	

Client Sample ID: RRLF-DPT0024-008.0-20230328

Date Collected: 03/28/23 12:00

Date Received: 03/28/23 17:35

Lab Sample ID: 670-17019-6

**Matrix: Water** 

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	29188	P1K	EET ORL	04/06/23 15:33

Client Sample ID: RRLF-DPT0024-018.0-20230328

Date Collected: 03/28/23 12:45

Date Received: 03/28/23 17:35

_ab	or Analyzed
ET ORL	04/06/23 15:33

Lab Sample ID: 670-17019-7 **Matrix: Water** 

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	29188	P1K	EET ORL	04/06/23 16:46

**Eurofins Orlando** 

### Lab Chronicle

Client: AECOM Technical Services Inc. Project/Site: NASA KSC IA RRLF

Job ID: 670-17019-1

Client Sample ID: RRLF-DPT0024-028.0-20230328

Date Collected: 03/28/23 13:05

Lab Sample ID: 670-17019-8 Matrix: Water

Date Received: 03/28/23 17:35

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	29188	P1K	EET ORL	04/06/23 17:58

Client Sample ID: RRLF-DPT0024-038.0-20230328

Lab Sample ID: 670-17019-9

Matrix: Water

Date Collected: 03/28/23 13:30 Date Received: 03/28/23 17:35

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D			29188	P1K	EET ORL	04/06/23 17:04

Client Sample ID: RRLF-DPT0024-048.0-20230328

Lab Sample ID: 670-17019-10

**Matrix: Water** 

Date Collected: 03/28/23 13:55 Date Received: 03/28/23 17:35

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	29188	P1K	EET ORL	04/06/23 17:22

Client Sample ID: RRLF-TB01-20230327

Lab Sample ID: 670-17019-11

Date Collected: 03/27/23 07:00 **Matrix: Water** 

Date Received: 03/28/23 17:35

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	29188	P1K	EET ORL	04/06/23 17:40

**Laboratory References:** 

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984

# **Accreditation/Certification Summary**

Client: AECOM Technical Services Inc.
Project/Site: NASA KSC IA RRLF

Job ID: 670-17019-1

# **Laboratory: Eurofins Orlando**

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Florida	NFI AP	F83018	06-30-23

3

4

5

0

8

10

11

13

14

# **Method Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC IA RRLF

Job ID: 670-17019-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET ORL
5030C	Purge and Trap	SW846	EET ORL

### Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

### Laboratory References:

EET ORL = Eurofins Orlando, 481 Newburyport Avenue, Altamonte Springs, FL 32701, TEL (407)339-5984

4

5

6

R

9

11

12

14

# **Sample Summary**

Client: AECOM Technical Services Inc. Project/Site: NASA KSC IA RRLF

Job ID: 670-17019-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
670-17019-1	RRLF-DPT0023-008.0-20230328	Water	03/28/23 09:20	03/28/23 17:35
670-17019-2	RRLF-DPT0023-018.0-20230328	Water	03/28/23 09:40	03/28/23 17:35
670-17019-3	RRLF-DPT0023-028.0-20230328	Water	03/28/23 10:10	03/28/23 17:35
670-17019-4	RRLF-DPT0023-038.0-20230328	Water	03/28/23 10:35	03/28/23 17:35
670-17019-5	RRLF-DPT0023-048.0-20230328	Water	03/28/23 11:20	03/28/23 17:35
670-17019-6	RRLF-DPT0024-008.0-20230328	Water	03/28/23 12:00	03/28/23 17:35
670-17019-7	RRLF-DPT0024-018.0-20230328	Water	03/28/23 12:45	03/28/23 17:35
670-17019-8	RRLF-DPT0024-028.0-20230328	Water	03/28/23 13:05	03/28/23 17:35
670-17019-9	RRLF-DPT0024-038.0-20230328	Water	03/28/23 13:30	03/28/23 17:35
670-17019-10	RRLF-DPT0024-048.0-20230328	Water	03/28/23 13:55	03/28/23 17:35
670-17019-11	RRLF-TB01-20230327	Water	03/27/23 07:00	03/28/23 17:35

3

4

E

6

40

11

4.0

1/

# Chain of Custody Record

.. eurofins

Phone: 407-339-5984 Fax: 407-260-6110

Altamonte Springs, FL 32701

**Eurofins Orlando** 481 Newburyport Avenue

None
O - AsNaO2
P - Na2O4S
O - Na2SO3
R - Na2S2O3
R - Na2S2O3
T - TSP Dodecahydrate
U - Acetone Special Instructions/Note: Z - other (specify) Months Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon Preservation Codes 670-6221-2735.1 G - Amchlor H - Ascorbic Acid C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH I - Ice J - DI Water K - EDTA L - EDA Page 1 of 1 Archive For 2 M Total Number of containers MW (/^ 3 ate/Time: Carrier Tracking No(s) Disposal By Lab State of Origin **Analysis Requested** 670-17019 Chain of Custody Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements kaitlin.dylnicki@et.eurofinsus.com Received by: Lab PM: Dylnicki, Kaitlin E-Mail: 1/1 N N 3 10 M M W M 8560D - (MOD) VC 3 3 5 5 5 5 > (oN 10 seY) GSM/SM m1011e me A Eco.m ield Filtered Sample (Yes or No) BT=Tissue, A=Air (W=water, S=solid, O=waste/oil, Preservation Code: Water Matrix Company ompany Radiological Type (C=comp, G=grab) Sample 0 5 772-631-7426 M Kusci 1355 0010 1200 0/01 035 130 1330 0880 0460 1245 1305 Sample Unknown Date: (days): Due Date Requested: 123 128/23 128/23 Sample Date Orea Project #: 67001282 SSOW#: wo #: 60610905 3/27/ Date/Time: 148674 Jate/Time: Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No.: 150 North Orange Avenue Suite 200 teresa.amentt.jennings@aecom.com RRLF-DPT0023-038.0-202303 2% RRLF-DPT0023-008.0-202303 25 RRLF-DPT0023-048.0-202303 2% RRLF-DPT0024-008.0-202303 2% RRLF-DPT0024-018.0-202303 2% RRLF-DPT0024-028.0-202303 28 RRLF-DPT0024-048.0-202303 23 RRLF-DPT0023-018.0-202303 28 RRLF-DPT0023-028.0-202303 ⊋ 🕏 RRLF-DPT0024-038.0-202303 24 Possible Hazard Identification **VECOM Technical Services Inc.** RRLF-TB01-202303 27 mpty Kit Relinquished by: Custody Seals Intact: △ Yes △ No Lusel Client Contact: Teresa Amentt Jennings Client Information Sample Identification 919-461-1282(Tel) Project Name: NASA KSC RRLF RRLE quished by: nquished by: iquished by: State, Zip: FL, 32801 Orlando

Ver: 06/08/2021

4/7/2023

# **Login Sample Receipt Checklist**

Client: AECOM Technical Services Inc.

Job Number: 670-17019-1

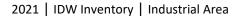
Login Number: 17019 List Source: Eurofins Orlando

List Number: 1 Creator: Wehr, Alex C

Creator: Wenr, Alex C		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

4


0

11

13

14

# APPENDIX F IDW INVENTORY LOGS





Site	Generation Date	Media	Source	% Full	Pallet ID	Drum/Tank ID Number	Contact	Location of Drums/Tanks	IDW Origination	рН	Concentrations (μg/L)	Tie Down Strap Yes/No							
KP1	09/16/21	Liquid	MW0003, MW0022, and MW0035																
ORSY	09/16/21	Liquid	EXC-MW0001I and EXC-MW0003I		-								Previous Lab Report: AE07201						
HMF South	09/22/21	Liquid	NLP-IW0004I and MW-0006IR		Pallet 222842	Drum	Greg Kusel (772) 631- 7426	CCF	Groundwater sampling (purge and decon water)	7.09	Lab Report: AE09082 PCE = 0.76 U TCE = 0.89 U cDCE = 0.53 U tDCE = 0.73 U								
GSSP	11/22/21	Liquid	MW0013, MW0019, MW0020, MW0024R, MW0034, MW0035, MW0036, MW0044R, MW0053, MW0059, MW0060, MW0061, MW0062, and MW0063	80%		222843					VC = 0.80 I Naph = 0.05 U TPH = 110 PFHxA = 0.00555 PFHxS = 0.00866 PFHpA = 0.00498 PFOA = 0.00950	Yes							
LETF	11/23/21	Liquid	MW0001, MW0002, MW0005, MW0007, PSB-MW0001I, and PSB-MW0002I															PFBS = 0.00148 I PFOS = 0.0284	
FSA1	11/30/21	Liquid	MW0001, MW0002, MW0012R, MW0014, MW0021, MW0022R, MW0023, MW0027, and MW0028																

#### **IA LTM IDW Notes:**

KP1 = Kennedy Athletic, Recreation, and Social Park 1

ORSY = Orsino Storage Yard

HMF South = Hypergol Maintenance Facility Hazardous Waste South Staging Area

GSSP = General Services Administration Seized Property

LETF = Launch Equipment Test Facility

FSA1 = Fuel Storage Area #1 Underground Storage Tank

μg/L = micrograms per liter

U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit

I = The analyte was detected between method detection limit and practical quantitation level

PCE = tetrachloroethylene

TCE = trichloroethene

cDCE = cis-1,2-dichloroethylene

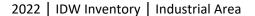
tDCE = trans-1,2-dichloroethylene

VC = vinyl choride

Naph = Naphthalene

TPH = Total Petroleum Hydrocarbons

PFHxA = Perfluorohexanoic acid


PFHxS = Perfluorohexane sulfonic acid

PFHpA = Perfluoroheptanoic acid

PFOA = Perfluorooctanoic acid

PFBS = Perfluorobutane sulfonic acid

PFOS = Perfluorooctane sulfonic acid





Site	Generation Date	Media	Source	Contact	IDW Origination	Location of Drums/Tanks	Tie Down Strap Yes/No	Pallet ID	Drum/Tank ID Number	рН	Concentrations (µg/L)		
RRLF	05/10/22	Liquid	MW0033, MW0038I, MW0039I, and MW0040I										
M505	05/11/22	Liquid	MW0013, MW0032, MW0033, MW0039, MW0049, MW0051, MW0055, and MW0059								Lab Report: AF03378		
O&C	05/09/22	Liquid	MW0005I and MW0007I								Benzene = 0.71 U TCE = 0.89 U		
VPF	05/12/22	Liquid	IW0008I, IW0018I, MW0021, MW0022, MW0025, and MW0027	Greg Kusel (772) 631-7426	Groundwater sampling			Pallet	Drum 222332 80% Full	7.08	cDCE = 1.4 VC = 0.71 U Naph = 0.050 U 1-Methyl = 0.050 U 2-Methyl = 0.050 U		
KP1 LOC9	05/12/22	Liquid	MW0022		631-7426	631-7426	(purge and decon water)	CCF	Yes 22093	220930	Drum 222333	and 7.16	TPH = 100 U Lead = 2.50 U
SSPF	05/10/22	Liquid	MW0004, MW0006, MW0013, MW0014, and MW0016						25% Full		PFHxA = 0.00725 PFHxS = 0.0128 PFHpA = 0.00462 PFOA = 0.0154 PFBS = 0.00232		
CGO	05/11/22	Liquid	MW0006, MW0018, and MW0019								PFOS = 0.0208		
FSA1	05/09/22	Liquid	MW0001, MW0002, MW0012R, MW0014, MW0017A, MW0021, MW0022R, MW0023, MW0027, and MW0028										

### IA LTM IDW Notes:

RRLF = Ransom Road Landfill

M505 = Building M7-0505 Treatment Tank Area

O&C = Operation and Checkout Building

VPF = Vertical Processing Facility

KP1 = Kennedy Athletic, Recreation, and Social Park 1

SSPF = Space Station Processing Facility

CGO = Citgo Service Station

FSA1 = Fuel Storage Area #1 Underground Storage Tank

μg/L = micrograms per liter

U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit

I = The analyte was detected between method detection limit and practical quantitation level

TCE = trichloroethene

cDCE = cis-1,2-dichloroethylene

VC = vinyl choride

Naph = naphthalene

1-Methyl = 1-methylnaphthalene

2-Methyl = 2-methylnapthalene

TPH = Total Petroleum Hydrocarbons

PFHxA =perfluorohexanoic acid

PFHxS = perfluorohexane sulfonic acid

PFHpA = perfluoroheptanoic acid

PFOA = perfluorooctanoic acid

PFBS = perfluorobutane sulfonic acid

PFOS = perfluorooctane sulfonic acid



Site	Generation Date	Media	Source	Contact	IDW Origination	Location of Drums/Tanks	Tie Down Strap Yes/No	Pallet ID	Drum/Tank ID Number	рН	Concentrations (μg/L)
EHF	11/15/22	Liquid	MW0001, MW0004, MW0005	Greg Kusel	(772) sampling (nurge and	CCF		Pallet 220341			Lab Report: J9608  PCE = 0.50 U  TCE = 0.50 U  tDCE = 0.50 U  cDCE = 0.50 U
EDL	11/15/22	Liquid	MW0004, MW0006R				Yes		Drum 228463 40% Full	7.67	VC = 0.91 I Naph = 0.050 U J3 N = 420 I P = 180
GSSP	11/08/22	Liquid	MW0013, MW0019, MW0020, MW0024R, MW0034, MW0035, MW0036, MW0044R, MW0053, MW0059, MW0060, MW0061, MW0062, MW0063	631-7426							PFBS = 0.00067 I PFBA = 0.0056 PFHpA = 0.0019 PFHxS = 0.0018 PFHxA = 0.0019 PFNA = 0.00048 I J PFOS = 0.0035 PFOA = 0.0046 PFPEA = 0.00092 I

### **IA LTM IDW Notes:**

EHF = Ransom Road Landfill

EDL = Building M7-0505 Treatment Tank Area

GSSP = Operation and Checkout Building

μg/L = micrograms per liter

U = The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit

I = The analyte was detected between the laboratory method detection limit and the laboratory practical quantitation limit.

J = Estimated value; value may not be accurate.

J3 = Estimated value; value may not be accurate. Spike recovery of RPD outside of criteria.

PCE = tetrachloroethene

TCE = trichloroethene

tDCE = trans-1,2-dichloroethylene

cDCE = cis-1,2-dichloroethylene

VC = vinyl choride

Naph = naphthalene

N = nitrate

P = total phosphorus

PFBS = perfluorobutane sulfonic acid

PFBA = perfluorobutanoic acid

PFHpA = perfluoroheptanoic acid

PFHxS = perfluorohexane sulfonic acid

PFHxA = perfluorohexanoic acid

PFNA = perfluorononanoic acid

PFOS = perfluorooctane sulfonic acid

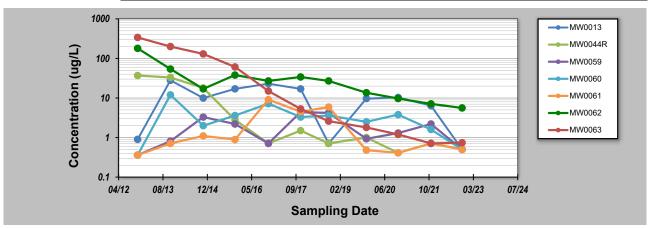
PFOA = perfluorooctanoic acid

PFPeA = perfluoropentanoic acid

# **APPENDIX G**

MANN-KENDALL ANALYSES

# GSI MANN-KENDALL TOOLKIT


for Constituent Trend Analysis

Evaluation Date: 14-Dec-22 Job ID: GSSP Source Area

Facility Name: NASA KSC IA LTM Constituent: Vinyl Chloride

Conducted By: Greg Kusel Concentration Units: ug/L

Sam	pling Point ID:	MW0013	MW0044R	MW0059	MW0060	MW0061	MW0062	MW0063				
Sampling Event	Sampling Date		VINYL CHLORIDE CONCENTRATION (ug/L)									
1	1-Nov-12	0.9	37	0.36	0.36	0.36	180	340				
2	6-Nov-13	28	33	0.81	12	0.71	54	200				
3	11-Nov-14	10	18	3.3	2	1.1	17	130				
4	4-Nov-15	17	2.8	2.2	3.6	0.89	38	61				
5	15-Nov-16	23	0.71	0.71	7.2	9.1	27	15				
6	13-Nov-17	17	1.5	4.4	3.3	4.5	34	5.3				
7	25-Sep-18	0.71	0.71	4.2	3.6	5.9	27	2.6				
8	25-Nov-19	9.7	1	0.93	2.5	0.48	13.6	1.8				
9	17-Nov-20	10.3	0.41	1.3	3.8	0.41	9.7	1.2				
10	22-Nov-21	6.4	0.71	2.2	1.6	0.71	7.1	0.71				
11	8-Nov-22	0.5	0.5	0.5	0.5	0.5	5.6	0.74				
12												
13												
14												
15												
16												
17												
18												
19												
20												
Coefficie	nt of Variation:	0.82	1.59	0.78	0.91	1.31	1.32	1.62				
Mann-Kenda	II Statistic (S):	-20	-42	4	-10	-2	-44	-53				
Conf	idence Factor:	92.9%	>99.9%	59.0%	75.3%	53.0%	>99.9%	>99.9%				
Concer	ntration Trend	Prob Decreasing	Decreasing	No Trend	Stable	No Trend	Decreasing	Decreasing				

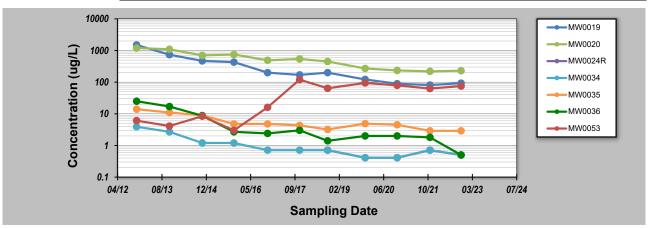


### Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
   ≥ 90% = Probably Increasing or Probably Decreasing;
   < 90% and S>0 = No Trend;
   < 90%, S≤0, and COV ≥ 1 = No Trend;</li>
   < 90% and COV < 1 = Stable.</li>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

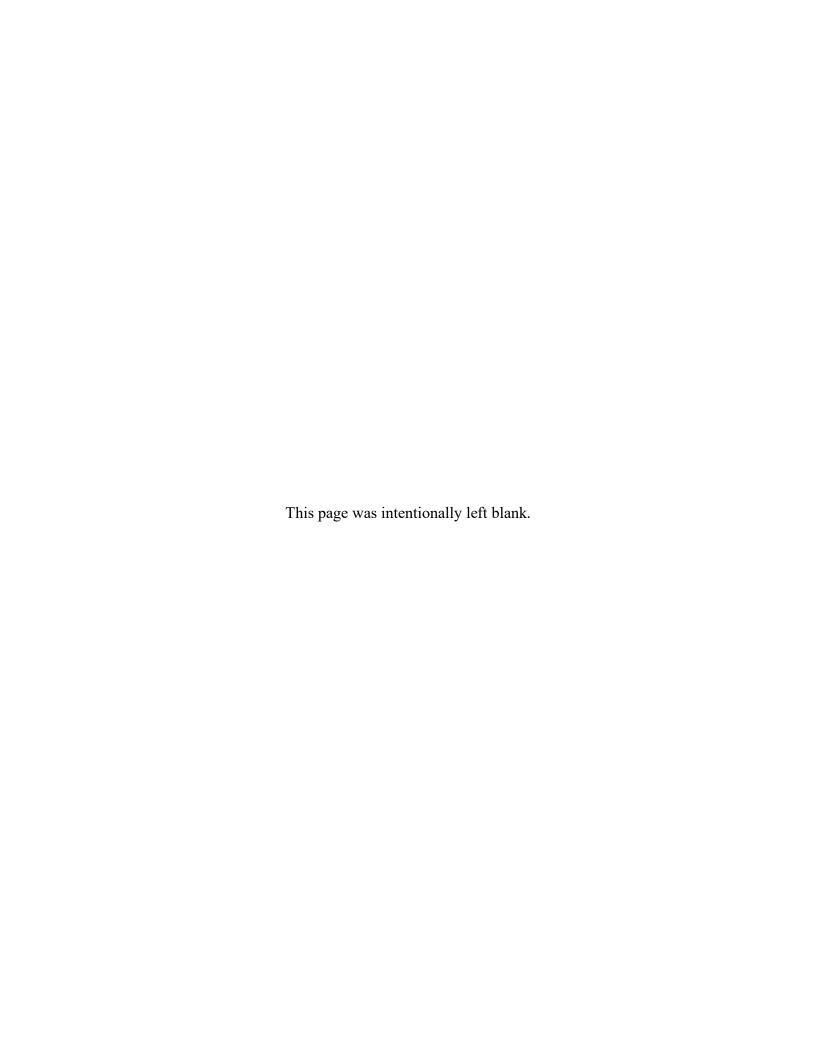

# GSI MANN-KENDALL TOOLKIT

for Constituent Trend Analysis

Evaluation Date: 14-Dec-22 Job ID: GSSP Downgradient

Facility Name: NASA KSC IA LTM Conducted By: Greg Kusel Concentration Units: ug/L

Sam	pling Point ID:	MW0019	MW0020	MW0024R	MW0034	MW0035	MW0036	MW0053			
Sampling Event	Sampling Date		VINYL CHLORIDE CONCENTRATION (ug/L)								
1	1-Nov-12	1500	1200		3.9	14	25	6.1			
2	6-Nov-13	740	1100		2.7	11	17	4.1			
3	11-Nov-14	470	700		1.2	8.9	8.7	8.4			
4	3-Nov-15	430	750		1.2	4.8	2.7	3			
5	17-Nov-16	200	490		0.71	4.8	2.4	16			
6	13-Nov-17	170	540		0.71	4.3	3	120			
7	25-Sep-18	200	450	0.71	0.71	3.2	1.4	64			
8	22-Nov-19	122	271	0.41	0.41	4.9	2	94.7			
9	17-Nov-20	89.4	235	0.41	0.41	4.5	2	79.1			
10	22-Nov-21	81	220	0.71	0.71	2.9	1.8	63			
11	8-Nov-22	93	230	0.5	0.5	2.9	0.5	75			
12											
13											
14											
15											
16											
17											
18											
19											
20											
Coefficier	nt of Variation:	1.15	0.61	0.28	0.92	0.61	1.31	0.87			
Mann-Kenda	II Statistic (S):	-48	-49	0	-39	-41	-44	25			
	idence Factor:	>99.9%	>99.9%	40.8%	99.9%	100.0%	>99.9%	97.0%			
Concer	Concentration Trend:		Decreasing	Stable	Decreasing	Decreasing	Decreasing	Increasing			




### Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
   ≥ 90% = Probably Increasing or Probably Decreasing;
   < 90% and S>0 = No Trend;
   < 90%, S≤0, and COV ≥ 1 = No Trend;</li>
   < 90% and COV < 1 = Stable.</li>
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com



# **APPENDIX H**

**ORSY LETTER REPORT - 2023** 



June 2023

AECOM 150 North Orange Avenue, Suite 200 Orlando, Florida 32801 www.aecom.com

Mr. Ryan O'Meara Remediation Project Manager National Aeronautics and Space Administration Mail Code SI-E2 Building K6-1547 (Logistics Facility) John F. Kennedy Space Center Kennedy Space Center, FL 32899-0001

**Subject:** Request for Discontinuation of Long-Term Monitoring

**Orsino Storage Yard** 

Solid Waste Management Unit 004 Kennedy Space Center, Florida

Reference: Indefinite Delivery Indefinite Quantity (IDIQ) Contract 80KSC019D0010

Dear Mr. O'Meara:

AECOM Technical Services, Inc. (AECOM) is pleased to provide Kennedy Space Center (KSC), National Aeronautics and Space Administration (NASA), with this letter report for the Orsino Storage Yard (ORSY). The purpose of this letter report is to present the site history, groundwater data, and recommendations resulting from assessments and long-term monitoring (LTM) activities at ORSY. This letter report was prepared for NASA under Contract 80KSC019D0010, Task Order 80KSC019F0071.

# **EXECUTIVE SUMMARY**

This report presents the site history, groundwater sampling results, and recommendations from the 2021 Industrial Area (IA) LTM activities at ORSY. ORSY has been used as a staging facility for electrical equipment since 1966 (EG&G 1991). Initial investigations conducted between 1986 and 1992 focused on polychlorinated biphenyls (PCBs) in soil. A series of soil excavation interim measures (IMs) were conducted to remove soils containing total PCB concentrations of greater than 25 milligrams per kilogram (mg/kg).

A Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) was completed in several phases at ORSY from 1998 through 2005, with PCBs in soil and volatile organic compounds (VOCs) in groundwater identified as contaminants of concern. Between 2000 and 2004, additional soil IMs were completed to remove soil with PCB concentrations greater than the State of Florida Industrial Soil Cleanup Target Level (SCTL) of 2.1 mg/kg given in Chapter 62-777, Florida Administrative Code (F.A.C.). A land use control (LUC) is in place at ORSY due to the presence of PCBs in soils at concentrations exceeding the Residential SCTL. In 2005, a statement of basis was issued to prevent residential exposure to site surface soils, prohibit the use of groundwater as a potable water supply, and initiate monitored natural attenuation (MNA). ORSY entered the IA LTM program at an annual sampling frequency with the goal of reducing groundwater concentrations to below the State of Florida Groundwater Cleanup Target Levels (GCTLs) given in Chapter 62-777, F.A.C.

In November 2020, concentrations of VOCs declined to below GCTLs. Therefore, the next sampling event was accelerated to September 2021 and a downgradient monitoring well was added into the sampling

AECOM 150 North Orange Avenue, Suite 200 Orlando, Florida 32801 www.aecom.com



program. The September 2021 ORSY sampling data indicated VOC concentrations remained below GCTLs, marking the second consecutive sampling event with results below GCTLs.

The September 2021 groundwater sampling activities at ORSY were conducted in accordance with the KSC Sampling and Analysis Plan (SAP) (Geosyntec 2017), Florida Department of Environmental Protection (FDEP) April 2022 regulatory comments on the 2019-2020 IA LTM report, and the KSC Remediation Team (KSCRT) decisions from the February 2021 meeting. The April 2022 regulatory comments are included in **Appendix A**. The KSCRT meeting minutes are included in **Appendix B**.

Based on the 2020 and 2021 groundwater sampling results, discontinuation of MNA at ORSY is recommended. The existing LUC at ORSY will remain for PCB soil exceedances.

### SITE DESCRIPTION AND HISTORY

ORSY is located to the southeast of the C Avenue and 5th Street Southeast intersection. A power substation borders ORSY to the west. The storage yard has been utilized since 1966 as a staging area for electrical equipment, consisting of wooden electric poles, transformers containing PCBs, electrical cables, control panels, and oil-based switches. The site is predominantly gravel-paved with several sheds situated on concrete pads along the western side of the site (NASA 2005). Refer to **Figure 1** for a site map.

# **PREVIOUS SITE INVESTIGATIONS**

Based on evidence of apparent spills, ORSY was identified as a potential spill site in 1991. Initial site investigations focused on PCBs, which led to IM activities being conducted from 1986 through 1992 to remove soils with PCB concentrations exceeding 25 mg/kg as specified in the Toxic Substances Control Act (TSCA). A total of 921 tons of soil were excavated, transported, and properly disposed of during this time.

An RFI and RFI Addendum were completed between 1998 and 2005 that identified VOCs, including vinyl chloride (VC), chlorobenzene, 1,3-dichlorobenzene (DCB), 1,4-DCB, 1,2,3-trichlorobenzene (TCB), and 1,2,4-TCB, at concentrations in groundwater above their respective GCTLs (Geosyntec 2003, 2005). A risk evaluation determined these VOCs may cause an unacceptable human health risk if groundwater was to be used as a source of drinking water. MNA of groundwater was selected as the remediation strategy and ORSY was incorporated into the LTM program in 2005 at an annual sampling frequency. Concurrent with the RFI, soil with PCB concentrations greater than the Industrial SCTL of 2.1 mg/kg were delineated and several soil IMs were conducted, resulting in the excavation and disposal of approximately 2,340 tons of soil with PCB concentrations between 2.1 mg/kg and 25 mg/kg. Approximately 375 tons were excavated and disposed of with PCB concentrations greater than the TSCA level of 25 mg/kg. A LUC was recommended to prevent residential exposure to site soils.

VC concentrations have remained below the GCTL since 2006. Chlorobenzene, 1,3-DCB, and 1,4-DCB concentrations have remained below their respective GCTLs since 2007; however, 1,2,3-TCB and 1,2,4-TCB remained at concentrations exceeding their FDEP GCTLs. In 2012, the ORSY LTM groundwater sampling interval was changed to biennial frequency.

November 2020 sampling results from monitoring well ORSY-EXC-MW0001I revealed that both the 1,2,3-TCB and 1,2,4-TCB concentrations were below the Chapter 62-777, F.A.C. GCTL (70  $\mu$ g/L) for the



first time. Rather than wait until the next scheduled biennial event in 2022, the sampling was accelerated in 2021 to obtain a second consecutive sample below the GCTL within 12 months.

# FIELD SAMPLING ACTIVITIES

The ORSY site was sampled using low-flow sampling techniques, where each monitoring well was purged and sampled with a peristaltic pump and high-density polyethylene tubing. The sample tubing was placed at the mid-point of the well screen at each intermediate monitoring well to obtain a representative groundwater sample of aquifer conditions. Purge water, generated during sampling activities, was containerized in 55-gallon steel drums staged on spill containment pallets at the Components Cleaning Facility. The storage drums of purge water were sampled at the end of the sampling event and characterized for disposal. Upon receipt, analytical data were provided to the NASA Remediation Project Manager along with an inventory of the storage tank for disposal.

During purging of monitoring wells, geochemical parameters consisting of pH, specific conductivity, turbidity, dissolved oxygen, temperature, oxidation reduction potential, and salinity were monitored and recorded. Samples were collected once the geochemical parameters reached stabilization in accordance with FDEP Standard Operating Procedures (FDEP 2017) and the SAP. Daily Field Activity Logs are included in **Appendix C**. Groundwater Sampling Logs, which include the geochemical data, are included in **Appendix D**.

On September 16, 2021, Groundwater elevations were measured at five monitoring wells, and samples from two monitoring wells were collected. ORSY-EXC-MW0003I was added to the sampling event as a background well, as requested by FDEP. The following table shows the wells used for the groundwater level measurements and sampling at ORSY.

Well Name	Screen Interval (ft bls)	Analysis
ORSY-DRM-MW0001I	20-25	WL Only
ORSY-EXC-MW0001I	20-25	WL + select VOCs
ORSY-EXC-MW0002I	20-25	WL Only
ORSY-EXC-MW0003I	20-25	WL + select VOCs
ORSY-EXC-MW0004I	20-30	WL Only

WL = water level measurement

Select VOCs = monitoring well sampled for 1,2,3-TCB and 1,2,4-TCB by Method 8260B

The groundwater samples collected from ORSY-EXC-MW0001I and ORSY-EXC-MW0003I during the September 2021 sampling event were analyzed for select VOCs by Method 8260B. Analytes detected in the groundwater at each site were compared to GCTLs and State of Florida Natural Attenuation Default Concentration (NADC) levels established in Chapter 62-777, F.A.C., which are listed below.

COC	GCTL (µg/L)	NADC (μg/L)
1,2,3-TCB	70	700
1,2,4-TCB	70	700

 $\mu g/L = micrograms per liter$ 

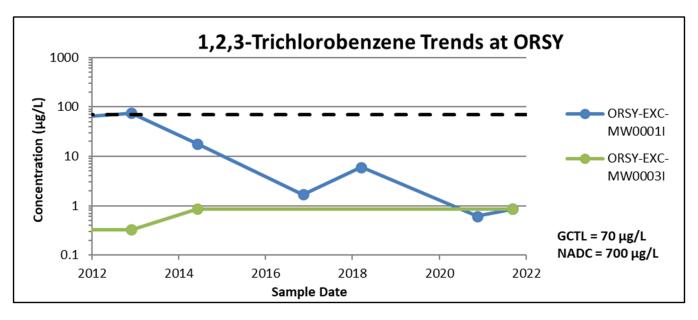
### WATER LEVEL COLLECTION AND GROUNDWATER FLOW DIRECTION

At the onset of each scheduled LTM sampling event and prior to collection of samples, predetermined monitoring wells were vented to allow for atmospheric equilibration. Once stabilized, groundwater

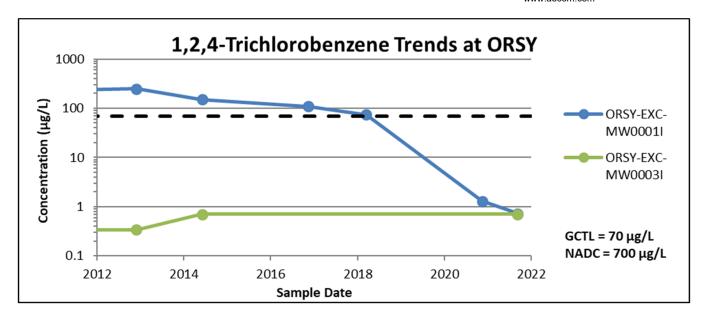


elevations were measured in site monitoring wells to determine the groundwater gradient and flow direction. Water levels in each well were measured to the nearest 0.01 foot using an electronic water level meter. Measurements were recorded from a permanent point identified on the top of each monitoring well casing (TOC), typically the northernmost point, for consistency. Groundwater elevations are calculated by subtracting the measured depth to water from the surveyed TOC elevation relative to the North American Vertical Datum of 1988 (NAVD88). Additionally, observations of the condition of the monitoring wells, surrounding vegetation, and biological hazards were noted.

The groundwater elevation data collected during the September 2021 sampling event, as well as historical data from 2014 through 2020, are presented in **Table 1**. Groundwater levels collected during the September 2021 event were used to determine the contours and flow direction for the intermediate aquifer zone (20 ft bls to 30 ft bls) at ORSY, presented on **Figure 2**. The flow direction during the September 2021 sampling event was toward the southeast, which is consistent with the observed historical groundwater flow at ORSY.


# **ANALYTICAL RESULTS**

During the September 2021 sampling event, groundwater from monitoring wells ORSY-EXC-MW0001I and ORSY-EXC-MW0003I was sampled for select VOCs. The analytical results determined the concentration of 1,2,4-TCB was below the GCTL for the second consecutive event at ORSY-EXC-MW0001I (0.73 I µg/L) and 1,2,3-TCB has remained below its GCTL for five consecutive sampling events. Site contaminants of concern (COCs) remain non-detect in downgradient monitoring well ORSY-EXC-MW0003I.


Currently, no COC concentrations exceed GCTLs in the sampled wells at ORSY. A summary of recent and historical analytical results is presented in **Table 2**. Analytical results are depicted on **Figure 3**. Data upload confirmation to the KSC Remediation Information System (RIS) database is provided in **Appendix E**. Laboratory analytical data are provided in **Appendix F**.

### TREND ANALYSIS

Concentrations of 1,2,3-TCB and 1,2,4-TCB have declined below GCTLs, as shown in the following trend analyses.







### CONCLUSIONS AND RECOMMENDATIONS

Groundwater COC concentrations remained below GCTLs for two consecutive sampling events in November 2020 and September 2021. Groundwater MNA sampling at ORSY is recommended to discontinue. The LUC will remain in place for soil at the site.

Should you need additional information, please contact Chris Marshall at chris.marshall@aecom.com or via phone at 407.513.8230.

Sincerely,

# **AECOM Technical Services, Inc.**

In accordance with the provisions of Florida Statutes, Chapter 471, this Request for Discontinuation of LTM at the Kennedy Space Center Orsino Storage Yard, located in Merritt Island, Florida, has been prepared under the direct supervision of a Professional Engineer registered in the State of Florida. This work was performed in accordance with generally accepted professional engineering practices under Chapter 471 of the Florida Statutes. The data, findings, recommendations, specifications, or professional opinions were prepared solely for the use of the National Aeronautics and Space Administration and the Florida Department of Environmental Protection. AECOM makes no other warranty, either expressed or implied, and is not responsible for the interpretation by others of these data.

This item has been digitally signed and sealed by:

Jennifer Gootee, P.E. Date
Program Manager
Florida License No. 57964
Engineering Business No. 8115
Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.



AECOM 150 North Orange Avenue, Suite 200 Orlando, Florida 32801 www.aecom.com

# **TABLES**

Table 1 ORSY Monitoring Well Groundwater Elevations

Table 2 ORSY Summary of Groundwater Analytical Results

### **FIGURES**

Figure 1 ORSY Site Map

Figure 2 ORSY Groundwater Elevation Map – September 2021

Figure 3 ORSY Groundwater Sampling Analytical Results

### **APPENDICES**

Appendix A FDEP April 2022 Regulatory Comments

Appendix B KSC Remediation Team Meeting Minutes – February 2021

Appendix C Daily Field Activity Logs

Appendix D Groundwater Sampling Logs

Appendix E RIS Completion Tickets

Appendix F Laboratory Analytical Data

### REFERENCES

EG&G Florida, Inc. 1991. Kennedy Space Center (KSC) Orsino Storage Yard PCB Contaminated Soil Remediation, SWMU 004, Kennedy Space Center, Florida.

Florida Department of Environmental Protection (FDEP). 2017. DEP-SOP-001/01, FS 2200 Groundwater Sampling.

Geosyntec Consultants. 2003. RCRA Facility Investigation Report, Orsino Storage Yard Storage Facility, SWMU 004, Kennedy Space Center, Florida.

Geosyntec Consultants. 2005. RCRA Facility Investigation Report Addendum, Orsino Storage Yard Facility, SWMU 004, Kennedy Space Center, Florida.

Geosyntec Consultants. 2017. Sampling and Analysis Plan for the RCRA Corrective Action Program at the Kennedy Space Center, Florida. Boca Raton, Florida.

NASA. 2005. Statement of Basis, Orsino Storage Yard, SWMU 004. Kennedy Space Center, Florida.



Table 1
Orsino Storage Yard - Long Term Monitoring (LTM)
Monitoring Well Groundwater Elevations

INTERMEDIATE WELL ID:	ORSY-DRN	M-MW0001I	ORSY-EXC	C-MW0001I	ORSY-EXC-MW0002I		
Screen Interval (ft bls):	20 - 25		20 -	- 25	20 - 25		
<b>TOC Elevation (ft NAVD88):</b>	7.54		6.	35	10.11		
	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation	
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)	
May 2014	5.95	1.59	4.43	1.92	8.29	1.82	
November 2016	5.11	2.43	3.65	2.70	7.44	2.67	
March 2018	5.53	2.01	4.01	2.34	7.78	2.33	
November 2020	4.31 3.23		3.43 2.92		7.22	2.89	
September 2021	4.33	3.21	3.38	2.97	7.21	2.90	

INTERMEDIATE WELL ID:	ORSY-EXC	C-MW0003I	ORSY-EXC-MW0004I			
Screen Interval (ft bls):	20 -	- 25	20 - 30			
TOC Elevation (ft NAVD88):	9.	45	7.20			
	Depth to Water	Water Elevation	Depth to Water	Water Elevation		
Date	(ft BTOC)	(ft NAVD88)	(ft BTOC)	(ft NAVD88)		
May 2014	7.7	1.75	5.13	2.07		
November 2016	6.89	2.56	4.18	3.02		
March 2018	7.21	2.24	4.64	2.56		
November 2020	6.76	2.69	3.87	3.33		
September 2021	6.72	2.73	3.98	3.22		

# **Notes:**

ORSY = Orsino Storage Yard

ft. = feet

bls = Below Land Surface

NAVD88 = North American Vertical Datum of 1988

TOC = Top of Casing

BTOC = Below Top of Casing

Table 2
Orsino Storage Yard - Long Term Monitoring (LTM)
Summary of Groundwater Analytical Results

			Summu	y of Groundwater Analyu				
					Volatile Organic Compo	ounds (VOC)		
		Category			by Method 82	60		
			1,2,3-	1,2,4-	1,3-	1,4-		
		Analyte	TRICHLOROBENZENE		DICHLOROBENZENE	The state of the s	CHLOROBENZENE	VINYL CHLORIDE
	F	FDEP GCTLs (µg/L)	70	70	210	75	100	1
		DEP NADCs (µg/L)	700	700	2100	7500	1000	100
		Screened Interval						
Location ID	Sample Date	(ft bls)						
ORSY-DRM-MW0001I	7/28/1999	20 - 25	NA	NA	3.8	2.2	0.18 U	0.18 U
	7/28/1999	20 - 25	NA	NA	4.3	2.5	0.18 U	0.18 U
	9/20/2002	20 - 25	NA	NA	20	67	0.63 U	0.5 U
	9/20/2002	20 - 25	NA	NA	25	96	0.63 U	0.5 U
	11/9/2005	20 - 25	0.5 U	16.6	18.8	59.4	0.5 U	0.5 U
	5/23/2006	20 - 25	0.66 I	5.5 I	13	43	0.55 I	0.12 U
	11/7/2006	20 - 25	0.2 U	20	19	45	0.45 I	0.12 U
ORSY-EXC-MW0001I	10/14/1998	20 - 25	NA	NA	NA	NA	0.18 U	0.18 U
	7/28/1999	20 - 25	NA	NA	22	57	0.72 U	0.72 U
	9/19/2002	20 - 25	NA	NA	22	53	6.3 U	5.0 U
	11/9/2005	20 - 25	163	367	47.2	71.3	0.50 U	0.5 U
	5/23/2006	20 - 25	0.20 UJ	0.20 UJ	5.5	15	5.9	0.12 U
	11/7/2006	20 - 25	210	440	62	84	0.10 U	0.12 U
	5/9/2007	20 - 25	160	280	46	69	0.10 U	0.12 U
	11/6/2007	20 - 25	170	310	35	59	0.10 U	0.12 U
	5/6/2008	20 - 25	150	300	26	46	0.19 U	0.23 U
	11/4/2008	20 - 25	170	390	23	51	0.15 U	0.25 U
	5/12/2009	20 - 25	120	290	24	45	0.15 U	0.25 U
	11/10/2009	20 - 25	170	310	31	44	0.15 U	0.25 U
	5/18/2010	20 - 25	170	420	25	38	0.42 U	0.16 U
	5/9/2011	20 - 25	59.3	237	19.3	32.9	0.16 U	0.36 U
	11/28/2012	20 - 25	75	250	31	46	0.18 I	0.36 U
	6/5/2014	20 - 25	18	150	22	54	0.72 U	0.71 U
	11/16/2016	20 - 25	1.7 U	110	29	50	1.4 U	1.4 U
	3/20/2018	20 - 25	6.0	74	19	47	0.72 U	0.71 U
	11/20/2020	20 - 25	0.61 U	1.3 I	NA	NA	NA	NA
	9/16/2021	20 - 25	0.86 U	0.73 I	NA	NA	NA	NA
ORSY-MNT-MW0001I	10/14/1998	20 - 25	NA	NA	NA	NA	0.18 U	1.3
	7/28/1999	20 - 25	NA	NA	1.6 U	1.9 U	1.8 U	1.8 U
	9/20/2002	20 - 25	NA	NA	0.64 U	0.52 U	0.63 U	2.2
	2/14/2005	20 - 25	NA	0.32 U	0.18 U	0.19 U	0.15 U	3.6
	11/9/2005	20 - 25	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.5
	5/23/2006	20 - 25	0.2 UJ	0.2 UJ	0.14 U	0.085 U	0.1 U	0.12 U
	11/7/2006	20 - 25	0.2 UJ	0.2 U	0.14 U	0.085 U	0.60 I	0.88 I
ORSY-MW0001S	10/14/1998	10 - 15	NA	NA	NA	NA	0.18 U	0.18 U
	7/28/1999	10 - 15	NA	NA	0.8 U	0.95 U	0.9 U	0.9 U
	9/20/2002	10 - 15	NA	NA	0.64 U	0.52 U	0.63 U	0.5 U
ORSY-DRM-MW0001S	9/19/2002	5 - 15	NA	NA	9.8	31	0.63 U	0.5 U
ORSY-EXC-MW0001S	10/14/1998	10 - 15	NA	NA	NA	NA	20	1.3
	7/28/1999	10 - 15	NA	NA	120	160	1.8 U	1.8 U
	9/19/2002	10 - 15	NA	NA	71	170	110	2.5 U
	11/24/2004	10 - 15	NA	0.35 J	8.8	32	4.6	0.43 U

Table 2
Orsino Storage Yard - Long Term Monitoring (LTM)
Summary of Groundwater Analytical Results

					Volatile Organic Compo	ounds (VOC)		
		Category			by Method 82			
			1 2 3-	124-	1 3-	1,4-		
		Analyte			DICHLOROBENZENE		CHLOROBENZENE	VINYL CHLORIDE
	I		70	70	210	75	100	1
			700	700	2100	7500	1000	100
		Screened Interval						
Location ID	Sample Date							
ORSY-SW-MW0001S	9/20/2002	5 - 15	NA	NA	0.64 U	0.52 U	0.63 U	0.5 U
ORSY-WEP-MW0001S	10/14/1998	10 - 15	NA	NA	NA	NA	0.18 U	0.18 U
	10/14/1998	10 - 15	NA	NA	NA	NA	0.18 U	0.18 U
7/28/1999 9/20/2002  ORSY-MW0002I 7/28/1999 9/20/2002  ORSY-EXC-MW0002I 8/5/2005 11/9/2005 5/23/2006 11/7/2006  ORSY-EXC-MW0003I 8/5/2005	10 - 15	NA	NA	NA 0.16 U		0.18 U	0.18 U	
	9/20/2002	10 - 15	NA	NA	0.64 U	0.52 U	0.63 U	0.5 U
ORSY-MW0002I	7/28/1999	20 - 25	NA	NA	0.16 U	0.19 U	0.18 U	0.18 U
	9/20/2002	FDEP GCTLs (μg/L)         70         70         210           FDEP NADCs (μg/L)         700         700         2100           Screened Interval (ft bls)           5 - 15         NA         0.64 U         NA         0.64 U         NA         0.64 U         NA         NA         NA         0.64 U         NA         NA         0.64 U         NA         0.64 U <th>0.64 U</th> <th>0.52 U</th> <th>0.63 U</th> <th>0.5 U</th>		0.64 U	0.52 U	0.63 U	0.5 U	
9/20/2002  ORSY-EXC-MW0002I 8/5/2005 11/9/2005		20 - 25	NA	0.32 U	0.18 U	0.19 U	0.15 U	0.43 U
	11/9/2005	20 - 25	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	5/23/2006		0.2 UJ	0.2 UJ	0.14 U	0.085 U	0.1 U	0.12 U
	11/7/2006			1.1 I	0.14 U	0.085 U	0.1 U	0.12 U
ORSY-EXC-MW0003I	8/5/2005		NA		0.18 U	0.19 U	0.15 U	0.43 U
	11/9/2005				0.5 U	0.5 U	0.5 U	0.5 U
	5/23/2006	20 - 25	0.2 U	0.60 I	0.14 U	0.37 I	0.1 U	0.12 U
	11/7/2006			0.2 U		0.085 U	0.1 U	0.12 U
	5/9/2007			38	0.14 U	0.085 U	0.1 U	0.12 U
	11/6/2007					0.085 U	0.1 U	0.12 U
	5/6/2008					0.21 U	0.19 U	0.23 U
	11/4/2008					0.14 U	0.15 U	0.25 U
	5/12/2009					0.14 U	0.15 U	0.25 U
ORSY-WEP-MW0001S  ORSY-WEP-MW0001S  10/1  10/1  7/23  9/20  ORSY-MW0002I  7/23  9/20  ORSY-EXC-MW0002I  8/5  11/2  5/22  11/2  5/6  11/4  5/13  5/9  11/2  ORSY-EXC-MW0004I  5/6  11/2  5/13  5/13  5/13  5/14  5/15  5/15  11/1  5/15  5/15  11/1  5/15  5/15  11/1  5/15  5/15  11/1  5/15  5/15  11/1  5/15  5/15  11/1  5/15  5/15  11/1  5/15  5/15  11/1  5/15  5/15  11/1  5/15  5/15  11/1  5/15  5/15  5/15  11/1  5/15  5/15  5/15  11/1  5/15  5/15  5/15  5/15  11/1  5/15  5/15  5/15  5/15  11/1  5/15  5/15	11/10/2009					0.14 U	0.15 U	0.25 U
	5/18/2010					0.46 U	0.42 U	0.16 U
	5/9/2011					0.16 U	0.16 U	0.36 U
	11/28/2012					0.16 U	0.16 U	0.36 U
	6/5/2014					0.76 U	0.72 U	0.71 U
	9/16/2021					NA	NA	NA
ORSY-EXC-MW0004I	5/6/2008					0.21 U	0.19 U	0.23 U
	11/4/2008	20 - 30	2.6 I	3.2 I	0.14 U	0.14 U	0.15 U	0.25 U
	5/12/2009	20 - 30	0.35 UJ	0.3 UJ	0.14 U	0.14 U	0.15 U	0.25 U
	11/10/2009	20 - 30	0.35 U	0.3 U	0.14 U	0.14 U	0.15 U	0.25 U
	5/18/2010	20 - 30	0.31 U	0.91 U	0.38 U	0.46 U	0.42 U	0.16 U
	5/9/2011	20 - 30	0.33 U	0.34 U	0.22 U	0.16 U	0.16 U	0.36 U
	11/28/2012	20 - 30	0.33 U	0.34 U	0.22 U	0.16 U	0.16 U	0.36 U
	6/5/2014	20 - 30	0.86 U	0.7 U	0.77 U	0.76 U	0.72 U	0.71 U

Notes:

Results and screening criteria presented in  $\mu g/L$  (micrograms per liter) **Bolded** results indicate the presence of an analyte at the specified concentration

**Red** font indicates an exceedance of FDEP GCTLs

U = Analyte not detected

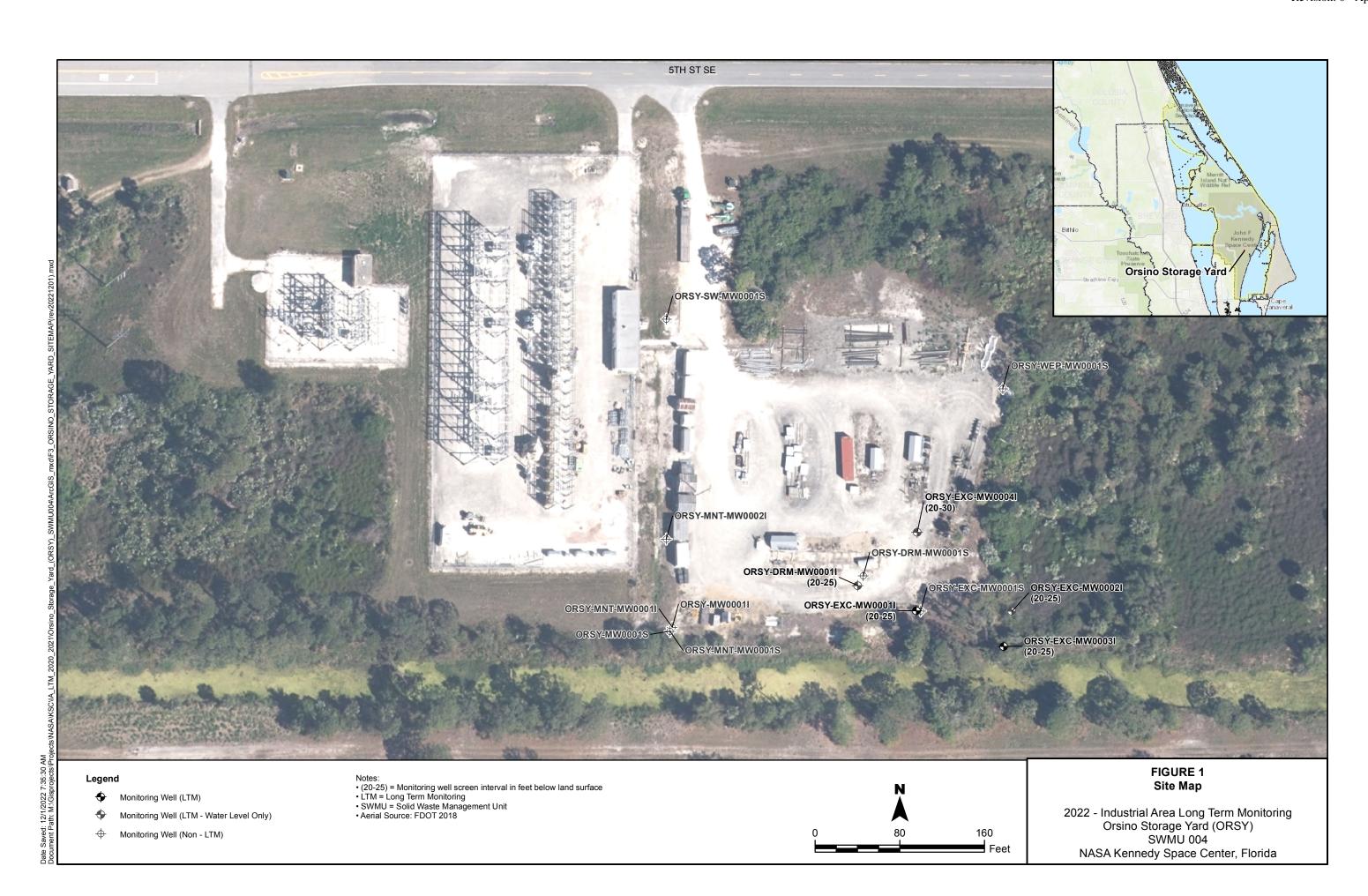
 $I = Analyte \ greater \ than \ or \ equal \ to \ the \ method \ detection \ limit,$  but less than the practical quantitation limit

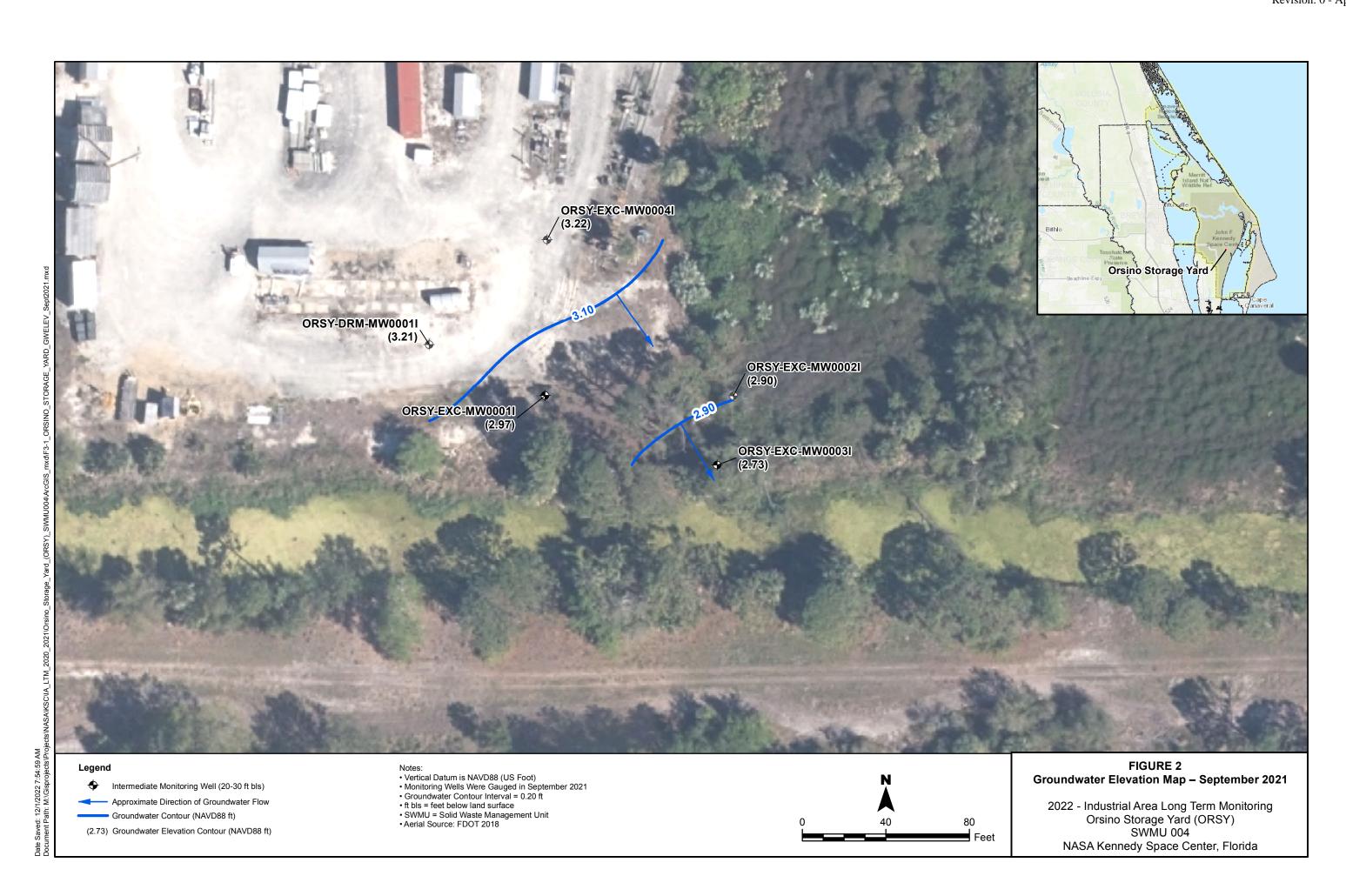
J = Estimated value

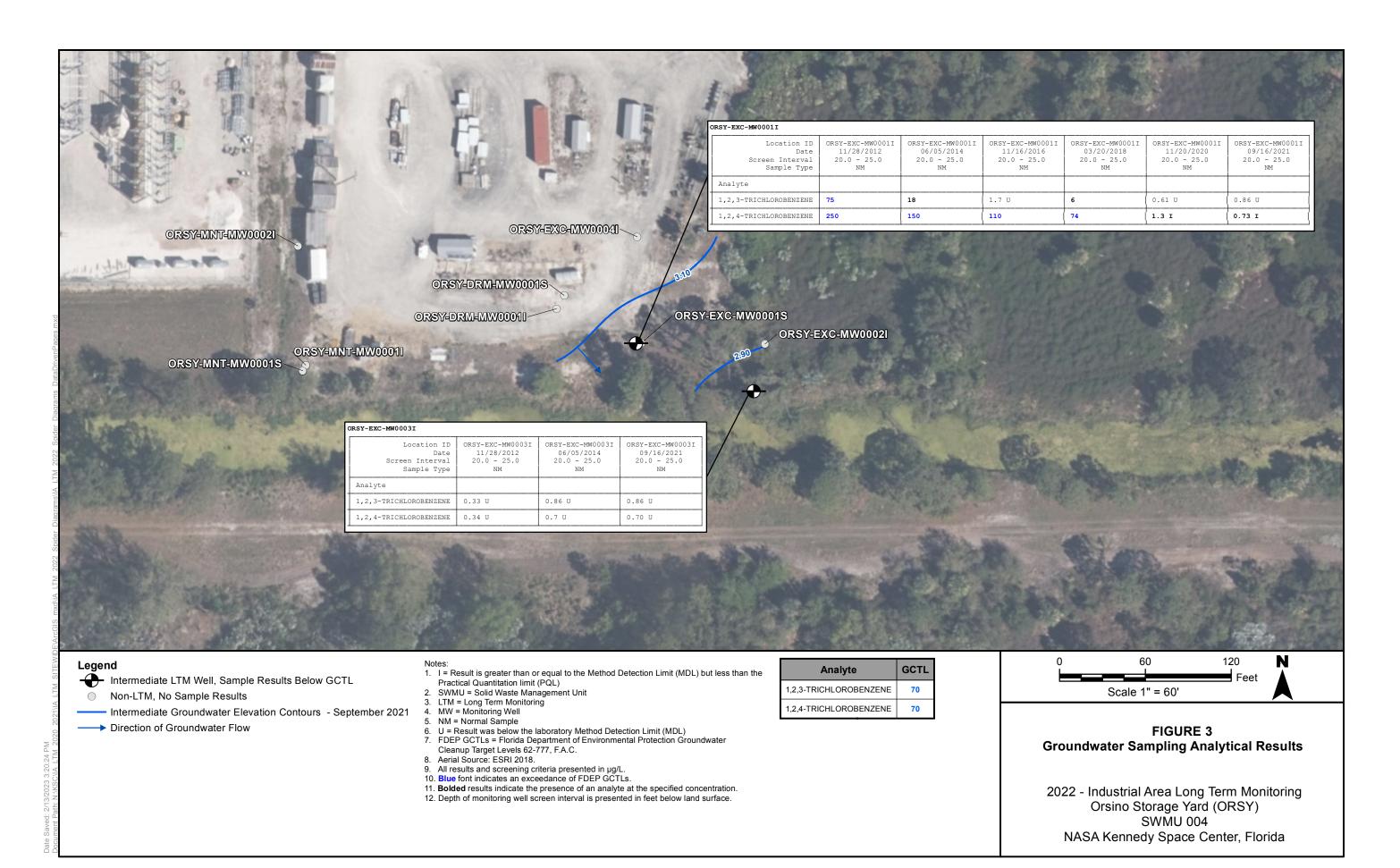
The numeric value presented for non-detects is the sample-specific reporting detection limit

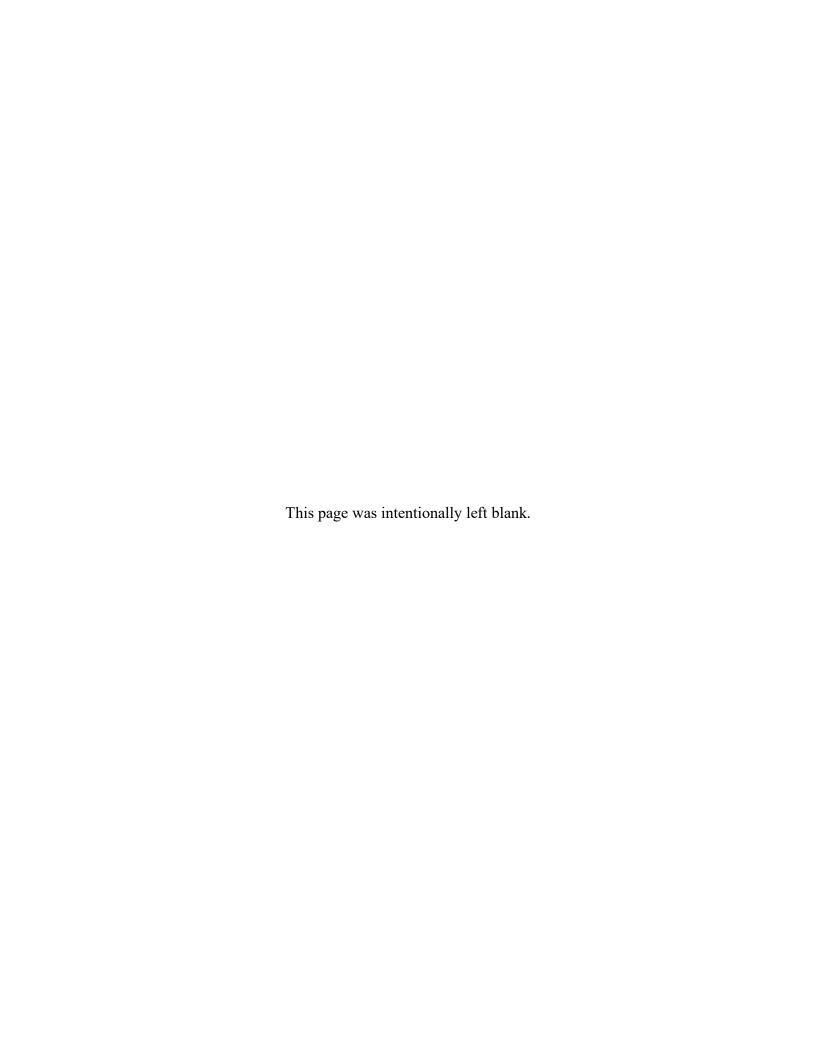
FDEP GCTLs = Florida Department of Environmental Protection Groundwater Cleanup Target Levels,

Chapter 62-777 Florida Administrative Code, Table 1 (2005)


FDEP NADCs = Natural Attenuation Default Concentration, Chapter 62-777 Florida Administrative Code,

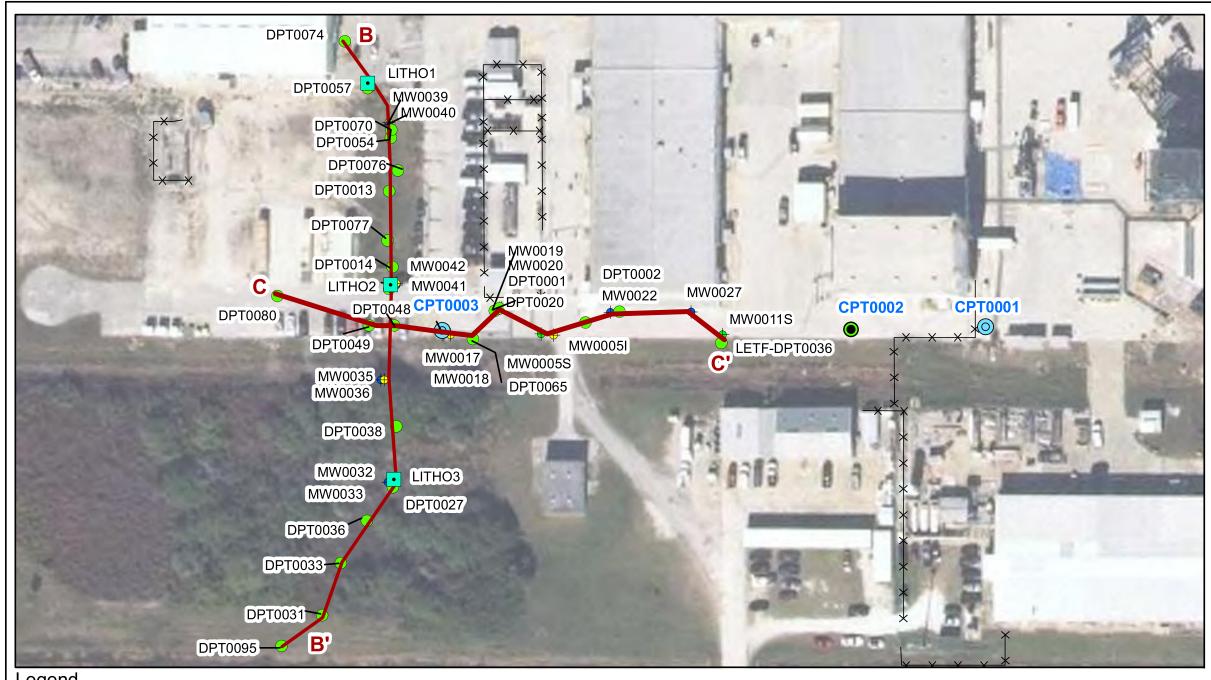

Table V (2005)


NA = Not Analyzed


ft bls = feet below land surface









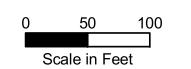



## **APPENDIX I**

M505 ANALYTICAL CROSS SECTION DOCUMENTS



#### Legend


- × × Fence
- Monitoring Well Screened 5 to 15 ft bls
- Monitoring Well Screened 23 to 28 ft bls
- Monitoring Well Screened 33 to 38 ft bls
- **DPT Groundwater Sample**
- **CPT Location**
- **CPT and Soil Core Location**
- Lithologic Sample Location

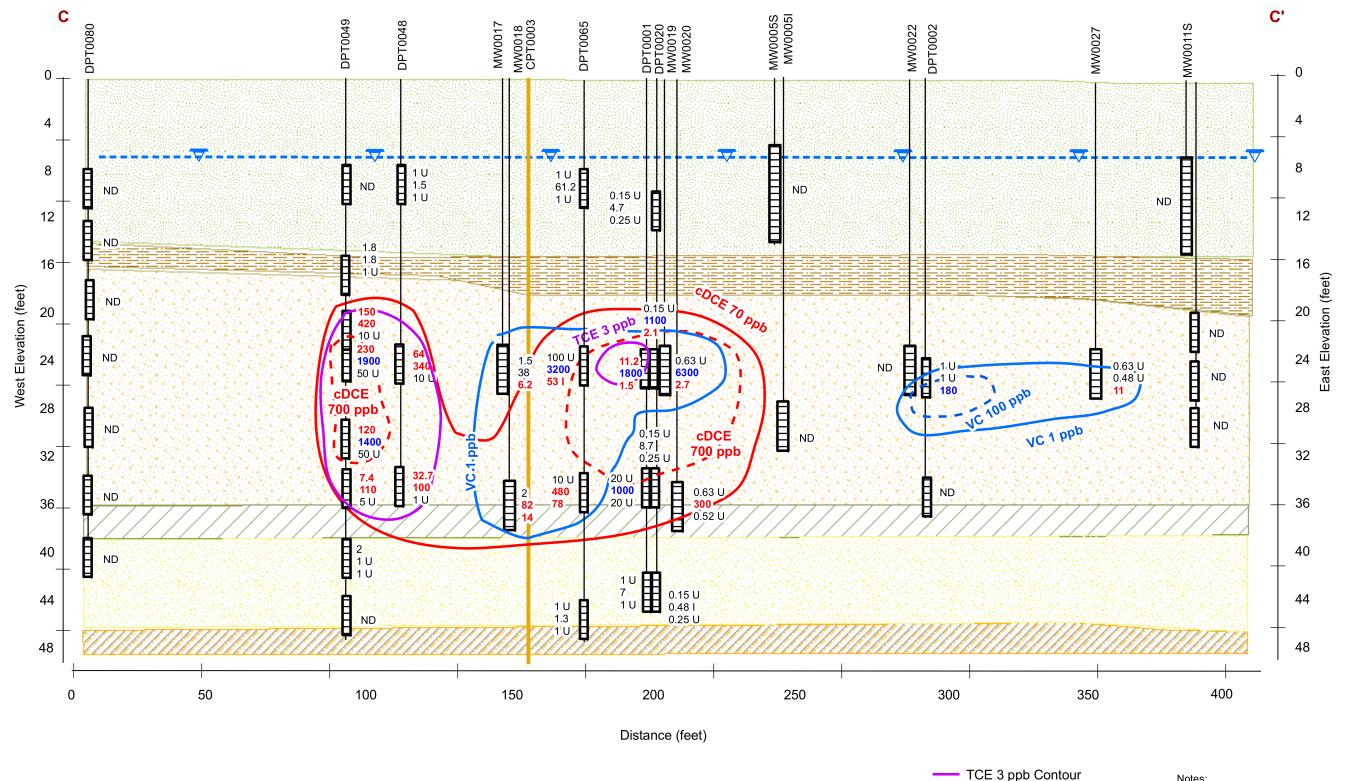
### Notes

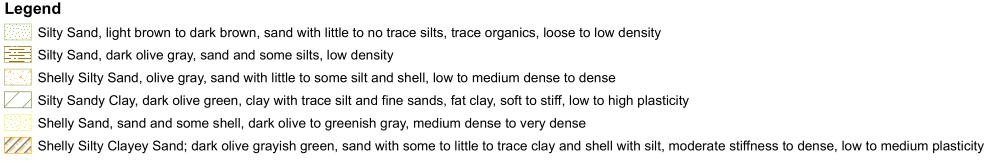
CPT - cone penetration test location DPT - direct push technology

ft bls - feet below land surface LETF - launch equipment test facility LITHO - lithologic sample location

MW - monitoring well




## **Cross Section Location Map**


Building M7-505 Treatment Tank NASA Kennedy Space Center, Florida

Project Number: 004-11302-19

**Figure** 

## **Lithologic Cross-Section West-East** with COC Contours





cDCE 70 ppb Contour cDCE 700 ppb Contour

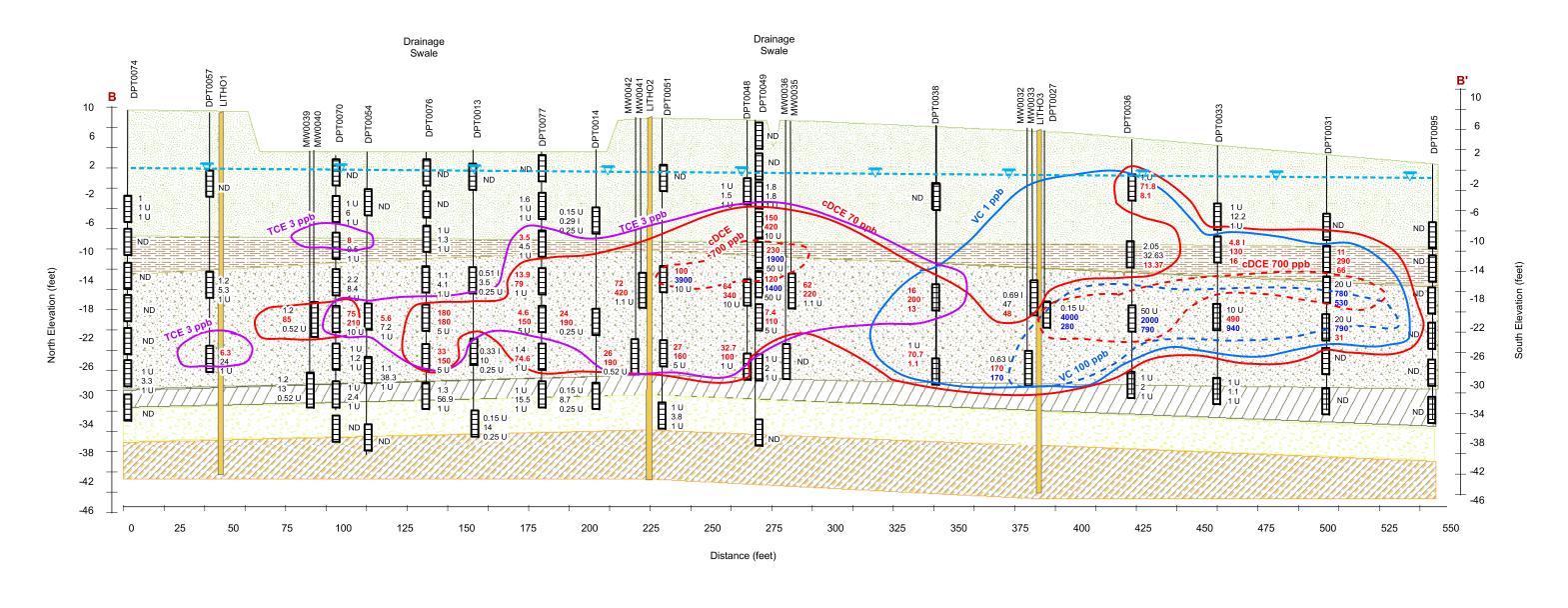
Vinyl Chloride 1 ppb Contour

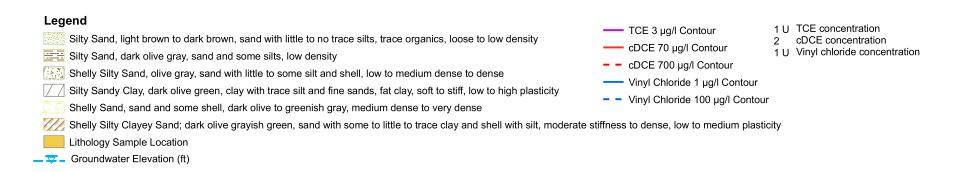
Vinyl Chloride 100 ppb Contour

TCE concentration cDCE concentration

Vinyl chloride concentration

Vertical exagerration is 9x cDCE - cis-1,2-dichloroethene CPT - cone penetrometer test


M505 - Building M7-505 Treatment Tank MDL - method detection limit


NASA - National Aeronautics and Space Administration

PQL - practical quantitation limit TCE - trichloroethene

U - detected between MDL and PQL, estimated μg/l - micrograms per liter

## **Lithologic Cross-Section North-South** with COC Contours





Vertical exagerration is 10x cDCE - cis-1,2-dichloroethene CPT - cone penetrometer test

ft - feet M505 - Building M7-505 Treatment Tank

MDL - method detection limit

NASA - National Aeronautics and Space Administration

PQL - practical quantitation limit

U - detected between MDL and PQL, estimated

μg/l - micrograms per liter

## **APPENDIX J**

HMF SOUTH HISTORICAL TCFM GROUNDWATER DATA TABLE

Table 2-2. Groundwater Data Summary by Monitoring Well

WELL         SAMPLE ID         SAMPLE DATE           NLP-IW1S         HMF-NLP-IW0001S-013.5-20050908         09-08-2005           HMF-NLP-IW0001S-013.0-20051026         10-26-2005	(μg/L)
HMF-NLP-IW0001S-013 0-20051026   10-26-2005	0.5 U
	721
HMF-NLP-IW0001S-013.0-20051201 12-01-2005	57
HMF-NLP-IW0001-013.5-122805 12-28-2005	9.3
HMF-NLP-MW0001-013-20060125 01-25-2006	15.8
HMF-NLP-MW0001-013.0-20060227 02-27-2006	37
HMF-NLP-MW0001-013.0-20060328 03-28-2006	36.2
HMF-NLP-MW0001-013.0-20060424 04-25-2006	25.2
HMF-NLP-MW0001-013.0-20060525 05-25-2006	8.8
HMF-NLP-MW0001-013.0-20060621 06-21-2006	3.4
HMF-NLP-MW0001-013.0-20060726 07-26-2006	14
HMF-NLP-MW0001-013.0-20060901 09-01-2006	384
HMF-NLP-MW0001-013.0-20060928 09-28-2006	701
HMF-NLP-MW0001-013.0-20061025 10-25-2006	2,280
HMF-NLP-MW0001-013.0-20061129 11-29-2006	4,000
HMF-NLP-MW0001-013.0-20061228 12-28-2006	2,010
HMF-NLP-MW0001-013.0-20070131 01-31-2007	8,780
HMF-NLP-MW0001-013.0-20070227 02-27-2007	15,300
HMF-NLP-MW0001-013.0-20070329 03-29-2007	7,430
HMF-NLP-MW0001-013.0-20070430 04-30-2007	7,540
HMF-NLP-MW0001-013.0-20070531 05-31-2007	3,890
HMF-NLP-MW0001-013.0-20070628 06-28-2007	3,830
HMF-NLP-MW0001-013.0-20070731 07-31-2007	9,640
HMF-NLP-MW0001-013.0-20070828 08-28-2007	4,320
HMF-NLP-MW0001-013.0-20070926 09-26-2007	2,870
HMF-NLP-MW0001-013.0-20071128 11-28-2007	463
HMF-NLP-MW0001-013.0-20080131 01-31-2008	217
HMF-NLP-MW0001-013.0-20080327 03-27-2008	197
HMF-NLP-MW0001-013.0-20080528 05-28-2008	146
HMF-NLP-MW0001-013.0-20080729 07-29-2008	178
HMF-NLP-MW0001-013.0-20080925 09-25-2008	127
HMF-NLP-MW0001-013.0-20081124 11-24-2008	1,770
HMF-NLP-MW0001-013.0-20090130 01-30-2009	289
HMF-NLP-MW0001-013.0-20090401 04-01-2009	2,280
HMF-NLP-MW0001-013.0-20090526 05-26-2009	150
HMF-NLP-MW0001-013.0-20090701 07-01-2009	594
HMF-NLP-MW0001-013.0-20090729 07-29-2009	1,750
HMF-NLP-MW0001-013.0-20090925 09-25-2009	4,020
HMF-NLP-MW0001-013.0-20091027 10-27-2009	8,280
HMF-NLP-MW0001-008.5-20091124 11-24-2009	511
HMF-NLP-MW0001-008.5-20091229 12-29-2009	695
HMF-NLP-MW0001-008.5-20100128 01-28-2010	122
HMF-NLP-MW0001-008.5-20100224 02-24-2010	90.2
HMF-NLP-MW0001-008.5-20100331 03-31-2010	41.1
HMF-NLP-MW0001-008.5-20100527 05-27-2010	54.1
HMF-NLP-MW0001-008.5-20100727 07-27-2010	43.6
HMF-NLP-MW0001-008.5-20100831 08-31-2010	57.4
HMF-NLP-MW0001-008.5-20100922 09-23-2010	94.3
HMF-NLP-MW0001-008.5-20101229 12-29-2010	296

Table 2-2. Groundwater Data Summary by Monitoring Well (continued)

MONITORING WELL	SAMPLE ID	SAMPLE DATE	TCFM RESULT (µg/L)
NLP-IW1S	HMF-NLP-MW0001-008.5-20110324	03-24-2011	1,010 E
(continued)	HMF-NLP-MW0001-008.5-20110622	06-22-2011	1,480
	HMF-NLP-MW0001-008.5-20110915	09-15-2011	753
	HMF-NLP-MW0001-008.5-20111216	SAMPLE ID   SAMPLE DATE	502
	HMF-NLP-MW0001-008.5-20120329	03-29-2012	1,200
	HMF-NLP-MW0001-008.5-20120621	06-21-2012	10.7
	HMF-NLP-MW0001-008.5-2012	12-27-2012	12.1
	HMF-NLP-MW0001-008.5-20130327	03-27-2013	95.2
	HMF-NLP-MW0001-008.5-20130627	06-27-2013	123
	HMF-NLP-MW0001-008.5-20130926	09-26-2013	51.4
	HMF-NLP-MW0001-008.5-20131219	12-19-2013	83.9
	HMF-NLP-MW0001-008.5-20140327	03-27-2014	192
	HMF-NLP-MW0001-008.5-20140710	07-10-2014	117
	HMF-NLP-MW0001-008.5-20140923	09-23-2014	132
	HMF-NLP-MW0001-008.5-20141223	12-23-2014	54.9
	HMF-NLP-MW0001-008.5-20150331	03-31-2015	81.4
	HMF-NLP-MW0001-008.5-20150625	06-25-2015	117
	HMF-NLP-MW0001-008.5-20150923		52
NLP-IW1I	HMF-NLP-IW0001I-040.0-20050908	09-08-2005	400,000
	HMF-NLP-IW0001I-042.0-20051026	10-26-2005	48,400
	HMF-NLP-IW0001I-040.0-20051201	12-01-2005	3,660
	HMF-NLP-IW0001-040.0-122805	12-28-2005	9,190
	HMF-NLP-MW0001-040-20060126	01-26-2006	184,000
	HMF-NLP-MW0001-042.0-20060227	02-27-2006	34,600
	HMF-NLP-MW0001-042.0-20060328	03-28-2006	1520
	HMF-NLP-MW0001-042.0-20060424	04-24-2006	3,950
	HMF-NLP-MW0001-042.0-20060525	05-25-2006	2,320
	HMF-NLP-MW0001-042.0-20060621	06-21-2006	4,180
	HMF-NLP-MW0001-042.0-20060726	07-26-2006	15,700
	HMF-NLP-MW0001-042.0-20060901	09-01-2006	9,380
	HMF-NLP-MW0001-042.0-20060928	09-28-2006	8,790
	HMF-NLP-MW0001-042.0-20061025	10-25-2006	3,930
	HMF-NLP-MW0001-042.0-20061129	11-29-2006	14,900
	HMF-NLP-MW0001-042.0-20061228	12-28-2006	4,260
	HMF-NLP-MW0001-042.0-20070131	01-31-2007	14,800
	HMF-NLP-MW0001-042.0-20070227	02-27-2007	12,400
	HMF-NLP-MW0001-042.0-20070329	03-29-2007	11,200 L
	HMF-NLP-MW0001-042.0-20070430	04-30-2007	7,590
	HMF-NLP-MW0001-042.0-20070531	05-31-2007	447
	HMF-NLP-MW0001-042.0-20070628	06-28-2007	8,090
	HMF-NLP-MW0001-042.0-20070731	07-31-2007	7
	HMF-NLP-MW0001-042.0-20070828	08-28-2007	5,330
	HMF-NLP-MW0001-042.0-20070926	09-26-2007	2,970
	HMF-NLP-MW0001-042.0-20071128	11-28-2007	4,550
	HMF-NLP-MW0001-042.0-20080131	01-31-2008	1,140
	HMF-NLP-MW0001-042.0-20080327	03-27-2008	3,950
	HMF-NLP-MW0001-042.0-20080528	05-28-2008	6,590
	HMF-NLP-MW0001-042.0-20080729	07-29-2008	312

Table 2-2. Groundwater Data Summary by Monitoring Well (continued)

MONITORING WELL	SAMPLE ID	SAMPLE DATE	TCFM RESULT (μg/L)
NLP-IW1I	HMF-NLP-MW0001-042.0-20080925	09-25-2008	25.1
(continued)	HMF-NLP-MW0001-042.0-20081124	11-24-2008	1.5
	HMF-NLP-MW0001-042.0-20090130	01-30-2009	68.4
	HMF-NLP-MW0001-042.0-20090401	SAMPLE DATE   (μg/L)	2.5
	HMF-NLP-MW0001-042.0-20090526		1.6 I
	HMF-NLP-MW0001-042.0-20090701	07-01-2009	88.6
	HMF-NLP-MW0001-042.0-20090729	07-29-2009	464
	HMF-NLP-MW0001-042.0-20090925	09-25-2009	2.7
	HMF-NLP-MW0001-042.0-20091027	10-27-2009	59
	HMF-NLP-MW0001-037.5-20091124	11-24-2009	17,000
	HMF-NLP-MW0001-037.5-20091229	12-29-2009	755
	HMF-NLP-MW0001-037.5-20100128	01-28-2010	38.3
	HMF-NLP-MW0001-037.5-20100224	02-24-2010	
	HMF-NLP-MW0001-037.5-20100331	03-31-2010	5.8
	HMF-NLP-MW0001-037.5-20100527		
	HMF-NLP-MW0001-037.5-20100727		
	HMF-NLP-MW0001-037.5-20100831		
	HMF-NLP-MW0001-037.5-20100922		
	HMF-NLP-MW0001-037.5-20101229		
	HMF-NLP-MW0001-037.5-20110324		
	HMF-NLP-MW0001-037.5-20110622		
	HMF-NLP-MW0001-037.5-20110915		
	HMF-NLP-MW0001-037.5-20111216		
	HMF-NLP-MW0001-037.5-20120329		
	HMF-NLP-MW0001-037.5-20120621		
	HMF-NLP-MW0001-037.5-2012		
	HMF-NLP-MW0001-037.5-20130327	<u> </u>	
	HMF-NLP-MW0001-037.5-20130627		
	HMF-NLP-MW0001-037.5-20130926	<u> </u>	
	HMF-NLP-MW0001-037.5-20131219	Co.20080925   09-25-2008   25.1	
	HMF-NLP-MW0001-037.5-20140327		
	HMF-NLP-MW0001-037.5-20140710		
	HMF-NLP-MW0001-037.5-20140923		
	HMF-NLP-MW0001-037.5-20140223		
	HMF-NLP-MW0001-037.5-20141223		
	HMF-NLP-MW0001-037.5-20150625		
	HMF-NLP-MW0001-037.5-20150923		
	111VII -1VLI -1VI W 0001-037.3-20130723	0)-23-2013	0.5 0
NLP-IW1D	HMF-NLP-MW0001-053-20050908	09-08-2005	
	HMF-NLP-MW0001-053-20060328	03-28-2006	0.5 U
	HMF-NLP-MW0001-053-20060928	09-28-2006	
	HMF-NLP-MW0001-053-20070329	03-29-2007	82.5
	HMF-NLP-MW0001-053-20070926	09-26-2007	6.8
	HMF-NLP-MW0001-053-20080327	03-27-2008	29.8
	HMF-NLP-MW0001-053-20080925	09-25-2008	167
	HMF-NLP-MW0001-053-20090401	04-01-2009	0.5 U
	HMF-NLP-MW0001-053-20090925	09-25-2009	0.5 U
	HMF-NLP-MW0001-053-20100331	03-31-2010	0.4 U

Table 3-2. Groundwater Data Summary by Monitoring Well (continued)

MONITORING WELL	SAMPLE ID	SAMPLE DATE	TCFM RESULT (µg/L)
NLP-IW1D	HMF-NLP-MW0001-053-20100922	09-23-2010	0.4 U
(continued)	HMF-NLP-MW0001-050.5-20110915	09-15-2011	0.5 U
	HMF-NLP-MW0001-050.5-20130926	09-26-2013	0.5 U
	HMF-NLP-MW0001-050.5-20140922	09-22-2014	10.3
	HMF-NLP-MW0001-050.5-20150923	09-23-2015	3.1
NLP-IW2I	HMF-NLP-IW0002I-042.0-20050909	09-09-2005	3,080
	HMF-NLP-IW0002I-042.0-20051026	10-26-2005	3,710
	HMF-NLP-IW0002I-042.5-20070227	02-27-2007	0.5 U
	HMF-NLP-IW0002I-042.5-20070329	03-29-2007	16 U
	HMF-NLP-IW0002I-042.5-20070430	04-30-2007	4.2
	HMF-NLP-IW0002I-042.5-20070531	05-31-2007	14.1
	HMF-NLP-IW0002I-042.5-20070628		0.8 I
	HMF-NLP-IW0002I-042.5-20070731		0.43 U
	HMF-NLP-IW0002I-042.5-20070828		21.5
	HMF-NLP-IW0002I-042.5-20070926	+	22.4
	HMF-NLP-IW0002I-042.5-20071128		0.43 U
	HMF-NLP-IW0002I-042.5-20080131		23.6
	HMF-NLP-IW0002I-042.5-20080327		35.6
	HMF-NLP-IW0002I-042.5-20080925		73.7
	HMF-NLP-IW0002I-042.5-20090401		10
	HMF-NLP-IW0002I-042.5-20090925		32.2
	HMF-NLP-IW0002I-042.5-20100331		0.4 U
	HMF-NLP-IW0002I-042.5-20100922		67.3
	1111 1121 111 00021 0 1210 20100922	0, 20 2010	0,10
NLP-IW3I	HMF-NLP-IW0003I-040.5-20050909	09-09-2005	200 U
NLP-IW3I	HMF-NLP-IW0003I-040.0-20051027	10-27-2005	0.5 U
	HMF-NLP-IW0003I-040.0-20051201	12-01-2005	24.5
	HMF-NLP-IW0003-040.0-122805	03-29-2007 04-30-2007 05-31-2007 06-28-2007 07-31-2007 08-28-2007 09-26-2007 11-28-2007 01-31-2008 03-27-2008 09-25-2008 04-01-2009 09-25-2009 03-31-2010 09-09-2005 10-27-2005	10.6
	HMF-NLP-MW0003-045-20060126	01-26-2006	0.54 I
	HMF-NLP-MW0003-030.0-20060228	02-28-2006	0.5 U
	HMF-NLP-MW0003-040.0-20060328	03-28-2006	2 U
	HMF-NLP-MW0003-040.0-20060424	04-24-2006	1.8
	HMF-NLP-MW0003-040.0-20060525	05-25-2006	1
	HMF-NLP-MW0003-040.0-20060424	04-24-2006	1.8
	HMF-NLP-MW0003-040.0-20060621	06-21-2006	0.5
	HMF-NLP-MW0003-040.0-20060726	07-26-2006	14.9
	HMF-NLP-MW0003-040.0-20060901	09-01-2006	0.5
	HMF-NLP-MW0003-040.0-20060928	09-28-2006	0.87 I
	HMF-NLP-MW0003-040.0-20061025	10-25-2006	11.2
	HMF-NLP-MW0003-040.0-20061129	11-29-2006	19.8
	HMF-NLP-MW0003-040.0-20061228	12-28-2006	0.5 U
	HMF-NLP-MW0003-040.0-20070131	01-31-2007	0.5 U
	HMF-NLP-MW0003-040.0-20070227	02-27-2007	0.5 U
	HMF-NLP-MW0003-040.0-20070329	03-29-2007	0.5 U
	HMF-NLP-MW0003-040.0-20070430	04-30-2007	14.7
	HMF-NLP-MW0003-040.0-20070531	05-31-2007	0.5 U
	HMF-NLP-MW0003-040.0-20070628	06-28-2007	0.5 U
	HMF-NLP-MW0003-040.0-20070731	07-31-2007	13,600
	HMF-NLP-MW0003-040.0-20070828	08-28-2007	0.43 U

Table 2-2. Groundwater Data Summary by Monitoring Well (continued)

MONITORING	SAMPLE ID	SAMPLE DATE	TCFM RESULT
WELL			(μg/L)
NLP-IW3I	HMF-NLP-MW0003-040.0-20070926	09-26-2007	57.1
(continued)	HMF-NLP-MW0003-040.0-20071128	11-28-2007	0.43 U
	HMF-NLP-MW0003-040.0-20080131	01-31-2008	0.43 U
	HMF-NLP-MW0003-040.0-20080327	03-27-2008	0.43 U
	HMF-NLP-MW0003-040.0-20080925	09-25-2008	0.5 U
	HMF-NLP-MW0003-040.0-20090401	04-01-2009	3.2
	HMF-NLP-MW0003-040.0-20090925	09-25-2009	15.9
	HMF-NLP-MW0003-040.0-20100331	03-31-2010	0.4 U
	HMF-NLP-MW0003-040.0-20100922	09-23-2010	35.7
NLP-IW4I	HMF-NLP-IW0004I-040.0-20050908	09-08-2005	396,000
	HMF-NLP-IW0004I-040.0-20051026	10-26-2005	23,500
	HMF-NLP-IW0004I-040.0-20051201	12-01-2005	21,200
	HMF-NLP-IW0004-040.0-122805	12-28-2005	54,700
	HMF-NLP-MW0004-040-20060126	01-26-2006	49,700
	HMF-NLP-MW0004-040.0-20060228	02-28-2006	9,230
	HMF-NLP-MW0004-040.0-20060328	03-28-2006	27,200
	HMF-NLP-MW0004-040.0-20060424	04-24-2006	34,800
	HMF-NLP-MW0004-040.0-20060525	05-25-2006	2,380
	HMF-NLP-MW0004-040.0-20060621	06-21-2006	17,000
	HMF-NLP-MW0004-040.0-20060726	07-26-2006	40,600
	HMF-NLP-MW0004-040.0-20060901	09-01-2006	6,370
	HMF-NLP-MW0004-040.0-20060928	09-28-2006	48,900
	HMF-NLP-MW0004-040.0-20061025	10-25-2006	25,700
	HMF-NLP-MW0004-040.0-20061129	11-29-2006	21,400
	HMF-NLP-MW0004-040.0-20061228	12-28-2006	12,500
	HMF-NLP-MW0004-040.0-20070131	01-31-2007	45,800
	HMF-NLP-MW0004-040.0-20070227	02-27-2007	65,300
	HMF-NLP-MW0004-040.0-20070329	03-29-2007	36,200
	HMF-NLP-MW0004-040.0-20070430	04-30-2007	8,180
	HMF-NLP-MW0004-040.0-20070531	05-31-2007	583
	HMF-NLP-MW0004-040.0-20070628	06-28-2007	19,500
	HMF-NLP-MW0004-040.0-20070731	07-31-2007	67,000
	HMF-NLP-IW0004I-040.0-20050908   09-08-2005   396.0   HMF-NLP-IW0004I-040.0-20051026   10-26-2005   23.5   HMF-NLP-IW0004I-040.0-20051201   12-01-2005   21.2   HMF-NLP-IW0004-040.0-122805   12-28-2005   54.7   HMF-NLP-IW0004-040.0-20060126   01-26-2006   49.7   HMF-NLP-MW0004-040.0-20060228   02-28-2006   9.2   HMF-NLP-MW0004-040.0-20060228   03-28-2006   9.2   HMF-NLP-MW0004-040.0-20060328   03-28-2006   27.2   HMF-NLP-MW0004-040.0-20060328   03-28-2006   27.2   HMF-NLP-MW0004-040.0-20060328   05-25-2006   23.3   HMF-NLP-MW0004-040.0-20060424   04-24-2006   34.6   HMF-NLP-MW0004-040.0-20060525   05-25-2006   23.3   HMF-NLP-MW0004-040.0-20060621   06-21-2006   17.0   HMF-NLP-MW0004-040.0-20060621   06-21-2006   17.0   HMF-NLP-MW0004-040.0-20060928   09-28-2006   40.6   HMF-NLP-MW0004-040.0-20060928   09-28-2006   48.9   HMF-NLP-MW0004-040.0-20060928   09-28-2006   25.7   HMF-NLP-MW0004-040.0-20061025   10-25-2006   25.7   HMF-NLP-MW0004-040.0-20061228   12-28-2006   12.5   HMF-NLP-MW0004-040.0-20061228   12-28-2006   12.5   HMF-NLP-MW0004-040.0-20070131   01-31-2007   45.8   HMF-NLP-MW0004-040.0-20070227   02-27-2007   65.3   HMF-NLP-MW0004-040.0-20070329   03-29-2007   36.2   HMF-NLP-MW0004-040.0-20070430   04-30-2007   5.3   HMF-NLP-MW0004-040.0-20070430   04-30-2007   5.4   HMF-NLP-MW0004-040.0-20070828   06-28-2007   19.5   HMF-NLP-MW0004-040.0-20070828   08-28-2007   19.5   HMF-NLP-MW0004-040.0-20070828   08-28-2007   19.5   HMF-NLP-MW0004-040.0-20070828   08-28-2007   13.0   HMF-NLP-MW0004-040.0-20070828   08-28-2007   24.0   HMF-NLP-MW0004-040.0-20080327   03-27-2008   5.2   HMF-NLP-MW0004-040.0-20080327   03-27-2008   5.2   HMF-NLP-MW0004-040.0-20080327   03-27-2008   5.2   HMF-NLP-MW0004-040.0-20080327   03-27-2008   9.3   HMF-NLP-MW0004-040.0-20080327   03-29-2008   9.3   HMF-NLP-MW0004-040.0-20	13,000	
	HMF-NLP-MW0004-040.0-20070926	09-26-2007	24,000
	HMF-NLP-MW0004-040.0-20071128	11-28-2007	4,590
	HMF-NLP-MW0004-040.0-20080131	01-31-2008	2,580
	HMF-NLP-MW0004-040.0-20080327	03-27-2008	5,220
	HMF-NLP-MW0004-040.0-20080528	05-28-2008	9,330
	HMF-NLP-MW0004-040.0-20080729	07-29-2008	953
	HMF-NLP-MW0004-040.0-20080925	09-25-2008	437
	HMF-NLP-MW0004-040.2-20081124	11-24-2008	183
	HMF-NLP-MW0004-040.0-20080130	01-30-2009	90.5
	HMF-NLP-MW0004-040.0-20090401	04-01-2009	4,470
	HMF-NLP-MW0004-040.0-20090526	05-26-2009	5,610
	HMF-NLP-MW0004-040.0-20090701	07-01-2009	352
	HMF-NLP-MW0004-040.0-20090729	07-29-2009	918
	HMF-NLP-MW0004-040.0-20090924	09-25-2009	22,800
	HMF-NLP-MW0004-037.5-20091124	11-24-2009	7,240
	HMF-NLP-MW0004-040.0-20091027	10-27-2009	21,900

Table 2-2. Groundwater Data Summary by Monitoring Well (continued)

MONITORING WELL	SAMPLE ID	SAMPLE DATE	TCFM RESULT
NLP-IW4I	HMF-NLP-MW0004-037.5-20091229	12-29-2009	
(continued)	HMF-NLP-MW0004-037.5-20100128	01-28-2010	90.7
	HMF-NLP-MW0004-037.5-20100224	02-24-2010	529
	HMF-NLP-MW0004-037.5-20100331	03-31-2010	107
	HMF-NLP-MW0004-037.5-20100527	05-27-2010	507
	HMF-NLP-MW0004-037.5-20100727	SAMPLE DATE	3,350
	HMF-NLP-MW0004-037.5-20100831		3,100
	HMF-NLP-MW0004-037.5-20100922		3,670
	HMF-NLP-MW0004-037.5-20101229	12-29-2010	2,750
	HMF-NLP-MW0004-037.5-20110324	0831         08-31-2010         3,100           0922         09-23-2010         3,670           1229         12-29-2010         2,750           0324         03-24-2011         1,190           0622         06-22-2011         2,940           0915         09-15-2011         7,210           1216         12-16-2011         9,660           0329         03-29-2012         723           0621         06-21-2012         9,250           1120         11-20-2012         166           12-27-2012         76.4           0327         03-27-2013         272           0627         06-27-2013         1,480           0926         09-26-2013         6,730           1219         12-19-2013         10,300           1219         12-19-2013         10,300           1219         02-13-2014         26           0710         07-10-2014         123           0923         09-23-2014         75.1           0331         03-31-2015         3,910           0626         06-25-2015         4,670           0923         09-23-2015         5,410	
	HMF-NLP-MW0004-037.5-20110622	06-22-2011	2,940
	HMF-NLP-MW0004-037.5-20110915	09-15-2011	7,210
	HMF-NLP-MW0004-037.5-20111216	12-16-2011	9,660
	HMF-NLP-MW0004-037.5-20120329	03-29-2012	723
	HMF-NLP-MW0004-037.5-20120621	06-21-2012	9,250
	HMF-NLP-MW0004-037.5-20121120	037.5-20100331         03-31-2010         107           037.5-20100527         05-27-2010         507           037.5-20100727         07-27-2010         3,350           037.5-20100831         08-31-2010         3,100           037.5-20100922         09-23-2010         3,670           037.5-20101229         12-29-2010         2,750           037.5-20110324         03-24-2011         1,190           037.5-20110622         06-22-2011         2,940           037.5-20110915         09-15-2011         7,210           037.5-20110915         09-15-2011         9,660           037.5-20120329         03-29-2012         723           037.5-20120329         03-29-2012         723           037.5-20120621         06-21-2012         9,250           037.5-2012100         11-20-2012         166           037.5-2012012         12-27-2012         76.4           037.5-20130327         03-27-2013         272           037.5-20130627         06-27-2013         1,480           037.5-20130926         09-26-2013         6,730           037.5-20140327         03-27-2014         26           037.5-20140327         03-27-2014         12           037.	166
	HMF-NLP-MW0004-037.5-2012		
	HMF-NLP-MW0004-037.5-20130327		
	HMF-NLP-MW0004-037.5-20130627		1,480
	HMF-NLP-MW0004-037.5-20130926		
	HMF-NLP-MW0004-037.5-20131219		10,300
	HMF-NLP-MW0004-037.5-20131219	02-13-2014	14,600
	HMF-NLP-MW0004-037.5-20140327	03-27-2014	26
	HMF-NLP-MW0004-037.5-20140710	07-10-2014	123
	HMF-NLP-MW0004-037.5-20140923	09-23-2014	3,370
	HMF-NLP-MW0004-037.5-20141223	12-23-2014	75.1
	HMF-NLP-MW0004-037.5-20150331	03-31-2015	3,910
	HMF-NLP-MW0004-037.5-20150626	06-25-2015	4,670
	HMF-NLP-MW0004-037.5-20150923	09-23-2015	5,410
HMF-MW5I	HMF-MW0005I-040.0-20050908	09-08-2005	49,200
	HMF-MW0005I-040.0-20051026	10-26-2005	36,200
	HMF-MW0005I-040.0-20051201	12-01-2005	2,660
	HMF-MW0005-040.0-122805	12-28-2005	60,600
	HMF-MW0005-040-20060125	01-25-2006	71,700
	HMF-MW0005-040.0-20060227	02-27-2006	51,000
	HMF-MW0005-040.0-20060328	03-28-2006	51,900
	HMF-MW0005-040.0-20060424	04-25-2006	8,240
	HMF-MW0005-040.0-20060525	05-25-2006	25,800
	HMF-MW0005-040.0-20060621	06-21-2006	87,900
	HMF-MW0005-040.0-20060726	07-26-2006	75,700
	HMF-MW0005-040.0-20060901	09-01-2006	42,800
	HMF-MW0005-040.0-20060928	09-28-2006	34,800
	HMF-MW0005-040.0-20061025	10-25-2006	18,600
	HMF-MW0005-040.0-20061129	11-29-2006	89,500
	HMF-MW0005-040.0-20061228	12-28-2006	51,500
	HMF-MW0005-040.0-20070131	01-31-2007	81,200
	HMF-MW0005-040.0-20070227	02-27-2007	78,100
	HMF-MW0005-040.0-20070329	03-29-2007	40,900

Table 2-2. Groundwater Data Summary by Monitoring Well (continued)

MONITORING	SAMPLE ID	SAMPLE DATE	TCFM RESULT
WELL	SAMI LE ID	SAMI LE DATE	(µg/L)
HMF-MW5I	HMF-MW0005-040.0-20070430	04-30-2007	15,000
(continued)	HMF-MW0005-040.0-20070531	05-31-2007	6,310
	HMF-MW0005-040.0-20070628	06-28-2007	4,290
	HMF-MW0005-040.0-20070731	07-31-2007	2,420
	HMF-MW0005-040.0-20070828	08-28-2007	826
	HMF-MW0005-040.0-20070926	09-26-2007	2,900
	HMF-MW0005-040.0-20071128	11-28-2007	698
	HMF-MW0005-040.0-20080131	01-31-2008	547
	HMF-MW0005-040.0-20080327	03-27-2008	469
	HMF-MW0005-040.0-20080528	05-28-2008	519
	HMF-MW0005-040.0-20080729	07-29-2008	69.6
	HMF-MW0005-040.0-20080925	09-25-2008	35.1
	HMF-MW0005-040.0-20081124	11-24-2008	328
	HMF-MW0005-040.0-20080130	01-30-2009	178
	HMF-MW0005-040.0-20090401	04-01-2009	290
	HMF-MW0005-040.0-20090526	05-26-2009	309
	HMF-MW0005-040.0-20090701	07-01-2009	82.2
	HMF-MW0005-040.0-20090729	07-29-2009	194
	HMF-MW0005-040.0-20090924	09-25-2009	315
	HMF-MW0005-040.0-20091027	10-27-2009	155
	HMF-MW0005-037.5-20091124	11-24-2009	142
	HMF-MW0005-037.5-20091229	12-29-2009	46.2
	HMF-MW0005-037.5-20100128	01-28-2010	71.6
	HMF-MW0005-037.5-20100224	02-24-2010	101
	HMF-MW0005-037.5-20100331	03-31-2010	51.1
	HMF-MW0005-037.5-20100527	05-27-2010	61.4
	HMF-MW0005-037.5-20100727	07-27-2010	3.8
	HMF-MW0005-037.5-20100831	08-31-2010	334
	HMF-MW0005-037.5-20100922	09-23-2010	89.4
	HMF-MW0005-037.5-20101229	12-29-2010	104
	HMF-MW0005-037.5-20110324	03-24-2011	197
	HMF-MW0005-037.5-20110622	06-22-2011	125
	HMF-MW0005-037.5-20110915	09-15-2011	118
	HMF-MW0005-037.5-20111216	12-16-2011	4.9
	HMF-MW0005-037.5-20120329	03-29-2012	4.5
	HMF-MW0005-037.5-20120621	06-21-2012	0.5 U
	HMF-MW0005-037.5-20121227	12-27-2012	3.4
	HMF-MW0005-037.5-20130327	03-27-2013	16.5
	HMF-MW0005-037.5-20130627	06-27-2013	58.6
	HMF-MW0005-037.5-20130926	09-26-2013	49.7
	HMF-MW0005-037.5-20131219	12-19-2013	30.3
	HMF-MW0005-037.5-20140327	03-27-2014	286
	HMF-MW0005-037.5-20140710	07-10-2014	2,650
	HMF-MW0005-037.5-20140923	09-23-2014	2,130
	HMF-MW0005-037.5-20141223	12-23-2014	506
	HMF-MW0005-037.5-20150331	03-31-2015	489
	HMF-MW0005-037.5-20150625	06-25-2015	337
	HMF-MW0005-037.5-20150923	09-23-2015	568
HMF-MW6I	HMF-MW0006I-040.0-20050907	09-07-2005	2 U

Table 2-2. Groundwater Data Summary by Monitoring Well (continued)

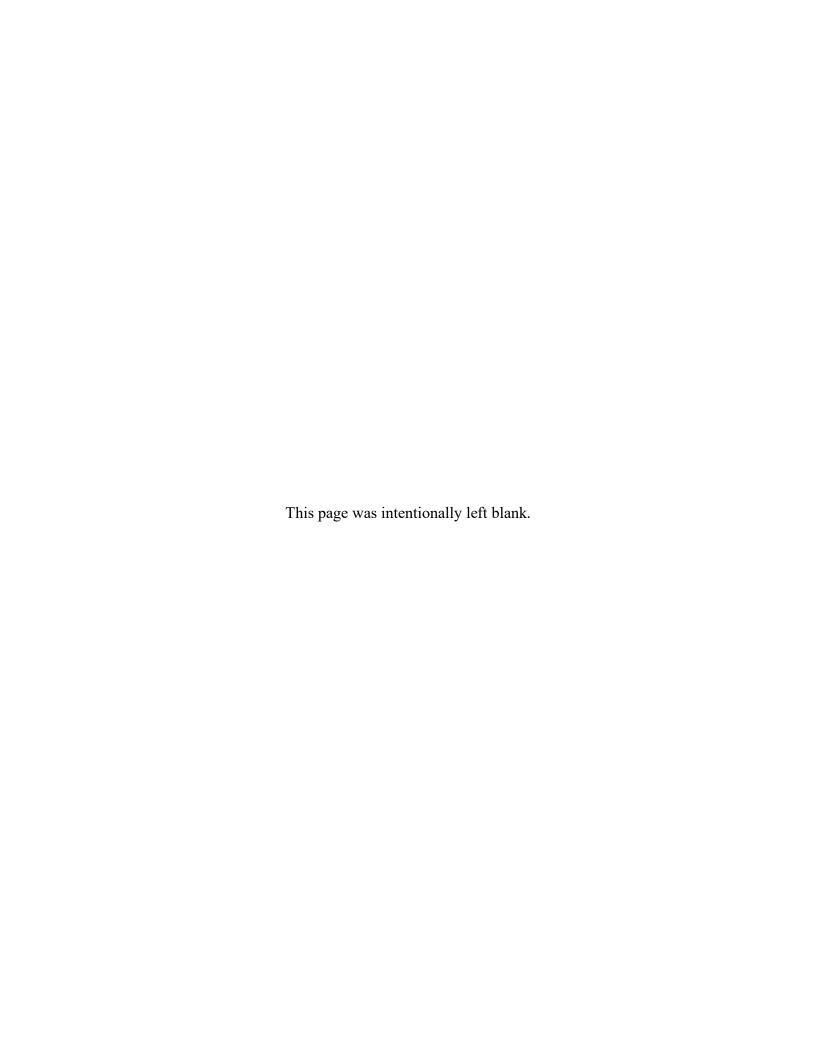
MONITORING WELL	SAMPLE ID	SAMPLE DATE	TCFM RESULT (µg/L)
HMF-MW6I	HMF-MW0006I-040.0-20051026	10-26-2005	41.7
(conti nued)	HMF-MW0006I-040.0-20051201	12-01-2005	3.4
	HMF-MW0006-040.0-122805	12-28-2005	15.1
	HMF-MW0006-040-20060125	01-25-2006	17.5
	HMF-MW0006-040.0-20060227	02-27-2006	9.8
	HMF-MW0006-040.0-20060328	03-28-2006	5
	HMF-MW0006-040.0-20060424	04-24-2006	2.3
	HMF-MW0006-040.0-20060525	05-25-2006	0.7
	HMF-MW0006-040.0-20060621	06-21-2006	0.5 U
	HMF-MW0006-040.0-20060726	07-26-2006	0.5 U
	HMF-MW0006-040.0-20060901	09-01-2006	0.5 U
	HMF-MW0006-040.0-20060928	09-28-2006	2.7
	HMF-MW0006-040.0-20061025	10-25-2006	2.7 U
	HMF-MW0006-040.0-20061129	11-29-2006	2.7 U
	HMF-MW0006-040.0-20061228	12-28-2006	1.6 I
	HMF-MW0006-040.0-20070131	01-31-2007	0.5 U
	HMF-MW0006-040.0-20070226	02-27-2007	0.5 U
	HMF-MW0006-040.0-20070329	03-29-2007	0.5 U
	HMF-MW0006-040.0-20070430	04-30-2007	4
	HMF-MW0006-040.0-20070531	05-31-2007	5.8
	HMF-MW0006-040.0-20070628	06-28-2007	0.5 U
	HMF-MW0006-040.0-20070731	07-31-2007	69.7
	HMF-MW0006-040.0-20070828	08-28-2007	2.1
	HMF-MW0006-040.0-20070926	09-26-2007	2.6
	HMF-MW0006-040.0-20071128	11-28-2007	2.2
	HMF-MW0006-040.0-20080131	01-31-2008	2.1
	HMF-MW0006-040.0-20080327	03-27-2008	5.2
	HMF-MW0006-040.0-20080925	09-25-2008	4.5
	HMF-MW0006-040.0-20090401	04-01-2009	1.4 I
	HMF-MW0006-040.0-20090924	09-25-2009	1.0 I
	HMF-MW0006-040.0-20100331	03-31-2010	0.4 U
	HMF-MW0006-040.0-20100922	09-23-2010	2.6
	HMF-MW0006-037.5-20110915	09-15-2011	0.5 U
	HMF-MW0006-037.5-20130926	09-26-2013	0.5 U
	HMF-MW0006-037.5-20140923	09-23-2014	14.1
	HMF-MW0006-037.5-20150923	09-23-2015	0.5 U
IME MANUT	HIME MIWOO71 040 0 20050000		0.5.11
HMF-MW7I	HMF-MW00071-040.0-20050909	09-09-2005	0.5 U
	HMF-MW00071-040.0-20051026	10-26-2005	6.3
	HMF-MW00071-040.0-20051201	12-01-2005	37.1
	HMF-MW0007-040.0-122805	12-28-2005	10.7
	HMF-MW0007-040-20060125	01-25-2006	11.4
	HMF-MW0007-040.0-20060227	02-27-2006	20.5
	HMF-MW0007-040.0-20060328	03-28-2006	17.3
	HMF-MW0007-040.0-20060424	04-24-2006	28
	HMF-MW0007-040.0-20060525	05-25-2006	2.3
	HMF-MW0007-040.0-20060621	06-21-2006	2
	HMF-MW0007-040.0-20060726	07-26-2006	51.2
	HMF-MW0007-040.0-20060901	09-01-2006	0.5

Table 2-2. Groundwater Data Summary by Monitoring Well (continued)

MONITORING	SAMPLE ID	SAMPLE DATE	TCFM RESULT
WELL	~~~~~~		(μg/L)
HMF-MW7I	HMF-MW0007-040.0-20060928	09-28-2006	2.3
(continued)	HMF-MW0007-040.0-20061025	10-25-2006	2.3 U
	HMF-MW0007-040.0-20061129	11-29-2006	2.3 U
	HMF-MW0007-040.0-20061228	12-28-2006	0.5 U
	HMF-MW0007-040.0-20070131	01-31-2007	0.5 U
	HMF-MW0007-040.0-20070226	02-27-2007	0.5 U
	HMF-MW0007-040.0-20070329	03-29-2007	40.3
	HMF-MW0007-040.0-20070430	04-30-2007	2.6
	HMF-MW0007-040.0-20070531	05-31-2007	2.9
	HMF-MW0007-040.0-20070628	06-28-2007	0.5 U
	HMF-MW0007-040.0-20070731	07-31-2007	13,100
	HMF-MW0007-040.0-20070828	08-28-2007	4.2
	HMF-MW0007-040.0-20070926	09-26-2007	6.1
	HMF-MW0007-040.0-20071128	11-28-2007	4.8
	HMF-MW0007-040.0-20080131	01-31-2008	4.3
	HMF-MW0007-040.0-20080327	03-27-2008	7.5
	HMF-MW0007-040.0-20080327	03-27-2008	7.5
	HMF-MW0007-040.0-20080925	09-25-2008	11.4
	HMF-MW0007-040.0-20090401	04-01-2009	12.8
	HMF-MW0007-040.0-20090924	09-25-2009	10.5
	HMF-MW0007-040.0-20100331	03-31-2010	1.1 I
	HMF-MW0007-040.0-20100922	09-23-2010	7.1
	HMF-MW0007-037.5-20110915	09-15-2011	6.5
	HMF-MW0007-037.5-20130926	09-26-2013	0.5 U
	HMF-MW0007-037.5-20140923	09-23-2014	0.5 U
	HMF-MW0007-037.5-20150923	09-23-2015	0.5 U
HMF-MW8I	HMF-MW0008-039-20060126	01-26-2006	0.56 I
	HMF-MW0008-040.0-20060227	02-27-2006	9.2
	HMF-MW0008-040.0-20060326	03-26-2006	5 U
	HMF-MW0008-040.0-20060424	04-24-2006	4.7
	HMF-MW0008-040.0-20060525	05-25-2006	4.7
	HMF-MW0008-040.0-20060621	06-21-2006	0.5 U
	HMF-MW0008-040.0-20060726	07-26-2006	0.5 U
	HMF-MW0008-040.0-20060901	09-01-2006	0.5 U
	HMF-MW0008-040.0-20060928	09-28-2006	0.5 U
	HMF-MW0008-040.0-20061025	10-25-2006	0.5 U
	HMF-MW0008-040.0-20061129	11-29-2006	0.73 I
	HMF-MW0008-040.0-20061228	12-28-2006	0.84 I
	HMF-MW0008-040.0-20070131	01-31-2007	4.4
	HMF-MW0008-040.0-20070226	02-27-2007	0.5 U
	HMF-MW0008-040.0-20070329	03-29-2007	5.3
	HMF-MW0008-040.0-20070430	04-30-2007	2.5
	HMF-MW0008-040.0-20070531	05-31-2007	5.5
	HMF-MW0008-040.0-20070628	06-28-2007	0.68
	HMF-MW0008-040.0-20070731	07-31-2007	68.5
	HMF-MW0008-040.0-20070828	08-28-2007	0.51 U
	HMF-MW0008-040.0-20070926	09-26-2007	0.43 U
	HMF-MW0008-040.0-20071128	11-28-2007	0.43 U
	HMF-MW0008-040.0-20080131	01-31-2008	0.81 I

Table 2-2. Groundwater Data Summary by Monitoring Well (continued)

MONITORING WELL	SAMPLE ID	SAMPLE DATE	TCFM RESULT (µg/L)
HMF-MW8I	HMF-MW0008-040.0-20080327	03-27-2008	1.3 I
(continued)	HMF-MW0008-040.0-20080925	09-25-2008	5.1
	HMF-MW0008-040.0-20090401	04-01-2009	6
	HMF-MW0008-040.0-20090924	09-25-2009	0.5 U
	HMF-MW0008-040.0-20100331	SAMPLE DATE  (µg/L  00327  03-27-2008  1  0925  09-25-2008  5  0401  04-01-2009  0  0924  09-25-2009  0  00331  03-31-2010  0  09922  09-23-2011  0  09926  09-26-2013  0  09923  09-23-2014  0  09923  09-23-2015  0  00126  01-26-2006  4  00227  02-27-2006  0  0328  03-28-2006  03  00424  04-24-2006  5  00621  06-21-2006  10  0726  07-26-2006  40  09928  09-28-2006  0  01025  10-25-2006  0  01025  10-25-2006  0  01025  10-25-2006  0  01025  10-25-2006  0  01027  02-27-2006  03  04040  04-01-2009  0  0531  01-31-2007  0  05329  03-29-2007  0  0531  05-31-2007  0  0628  06-28-2007  0  0731  07-31-2007  0  0731  07-31-2007  0  0731  07-31-2007  1  07026  09-26-2007  1  07031  07-31-2007  1  07029  0731  07-31-2007  1  07029  0731  07-31-2007  1  07020  0731  07-31-2007  1  07020  0731  07-31-2007  1  07020  0731  07-31-2007  1  07020  0731  07-31-2007  1  07020  0731  07-31-2007  1  07020  0731  07-31-2007  1  07020  0731  07-31-2007  1  07020  0731  07-31-2007  1  07020  0731  07-31-2007  1  07020  0731  07-31-2007  1  07020  0731  07-31-2007  1  07020  0731  07-31-2007  1  07020  07031  07-31-2007  1  07020  07031  07-31-2007  1  07020  07031  07-31-2007  1  07020  07031  07-31-2007  1  07020  07031  07-31-2007  1  07020  07031  07-31-2007  1  07020  07031  07-31-2008  1  07020  07031  07-31-2008  1  07020  07031  07-31-2008  1  07020  07031  07-31-2008  1  07020  07031  07-31-2007  070926  070-26-2007  0  07031  07-31-2007  07  07020  07031  07-31-2007  07  07020  07  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020  07020	0.4 U
	HMF-MW0008-040.0-20100922		0.4 U
	HMF-MW0008-037.5-20110915	09-15-2011	0.5 U
	HMF-MW0008-037.5-20130926	09-26-2013	0.5 U
	HMF-MW0008-037.5-20140923	09-23-2014	0.93 I
	HMF-MW0008-037.5-20150923	09-23-2015	0.5 U
HMF-MW9I	HMF-MW0009-040.0-20060126	01-26-2006	03-27-2008         1.3 I           09-25-2008         5.1           04-01-2009         6           09-25-2009         0.5 U           03-31-2010         0.4 U           09-23-2011         0.5 U           09-25-2013         0.5 U           09-26-2013         0.5 U           09-23-2014         0.93 I           09-23-2015         0.5 U           01-26-2006         4.7           02-27-2006         0.69 I           03-28-2006         3.2           04-24-2006         5.3           05-25-2006         10.5           06-21-2006         31.5           07-26-2006         40.6           09-01-2006         1.6 I           09-28-2006         0.5 U           10-25-2006         94.3           11-29-2006         3.8           01-31-2007         0.51 I           02-27-2007         0.5 U           03-29-2007         3.8           04-30-2007         2           05-31-2007         5           06-28-2007         1.7 I           09-26-2007         1.9 I           11-28-2007         3.2           01-31-2008
	HMF-MW0009-040.0-20060227	02-27-2006	0.69 I
	HMF-MW0009-040.0-20060328	03-28-2006	3.2
	HMF-MW0009-040.0-20060424	04-24-2006	5.3
	HMF-MW0009-040.0-20060525	05-25-2006	10.5
	HMF-MW0009-040.0-20060621	06-21-2006	31.5
	HMF-MW0009-040.0-20060726	07-26-2006	40.6
	HMF-MW0009-040.0-20060901	09-01-2006	1.6 I
	HMF-MW0009-040.0-20060928	09-28-2006	0.5 U
	HMF-MW0009-040.0-20061025	10-25-2006	94.3
	HMF-MW0009-040.0-20061129	11-29-2006	0.78
	HMF-MW0009-040.0-20061228	12-28-2006	3.8
	HMF-MW0009-040.0-20070131	01-31-2007	0.51 I
	HMF-MW0009-040.0-20070227	02-27-2007	0.5 U
	HMF-MW0009-040.0-20070329	03-29-2007	3.8
	HMF-MW0009-040.0-20070430	04-30-2007	
	HMF-MW0009-040.0-20070531	05-31-2007	5
	HMF-MW0009-040.0-20070628	06-28-2007	0.92
	HMF-MW0009-040.0-20070731	07-31-2007	117
	HMF-MW0009-040.0-20070828	08-28-2007	1.7 I
	HMF-MW0009-040.0-20070926	09-26-2007	
	HMF-MW0009-040.0-20070927	11-28-2007	3.2
	HMF-MW0009-040.0-20070928	01-31-2008	1.2 I
	HMF-MW0009-040.0-20080327	03-27-2008	3.1
	HMF-MW0009-040.0-20080925	09-25-2008	5.2
	HMF-MW0009-040.0-20090401	04-01-2009	
	HMF-MW0009-040.0-20090924		
	HMF-MW0009-040.0-20100331		
	HMF-MW0009-040.0-20100922		7.2
	HMF-MW0009-037.5-20110915		0.5 U
	HMF-MW0009-037.5-20130926		0.5 U
	HMF-MW0009-037.5-20140923		45.4
	HMF-MW0009-037.5-20150923	09-23-2015	0.5 U


Bolded values indicate TCFM results greater than the GCTL (2,100 µg/L).

Shaded cells indicate TCFM results greater than the MNA-DV (21,000 µg/L). I - Reported value is between method detection limit and practical quantitation limit.

U - Not detected at associated detection limit.

E - Above calibration range.

L - Exceeds calibration limit.



## APPENDIX K

HMF SOUTH 95% UCL ANALYSIS

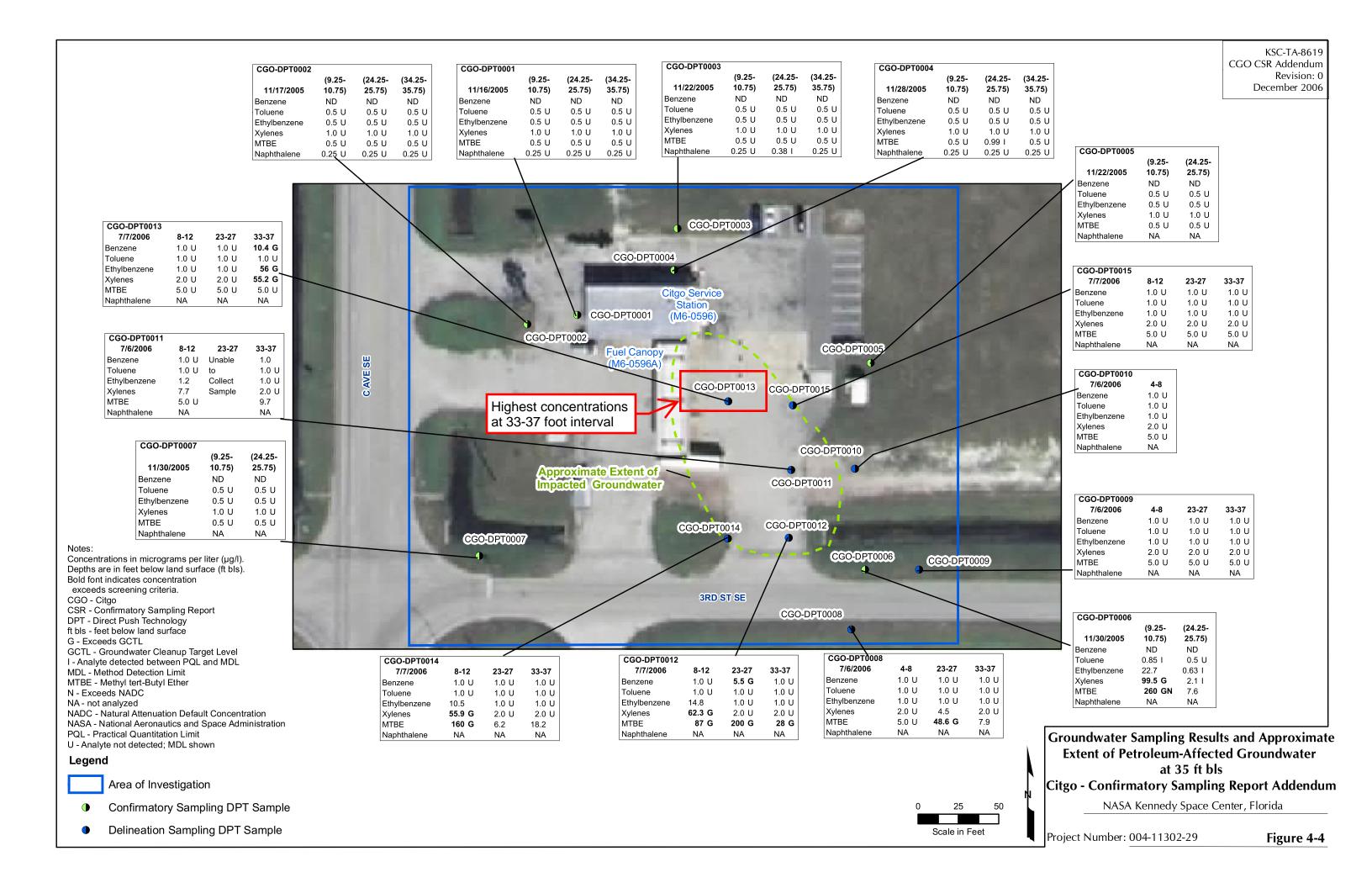
ation Panel	26	A	В	С	D	E	F	G	Н	1	J	K	L	M	1
ation Panel	1		1			mma UCL S	tatistics for			ets			_		
	2														
SOURCE STATE OF THE STATE OF TH	3		User Se	lected Option	ons										
	4		Date/Time of Computation ProUCL 5.2 3/30/2023 4:45:44 PM												
W.5EU	5	From File WorkSheet.xls													
	6		F	ull Precisio	n OFF										
	7		Confidence	e Coefficier	nt 95%										
	8	Numbe	r of Bootstra	Operation	s 2000										
	9														
	10														
	11	PCBs													
	12														
	13						General S	tatistics							
	14	Total Number of Observations 20 Number of Distinct Observations 19													
	15									Number o	of Missing	Observations	13		
	16					Minimum	0.0036					Mean	0.182		
	17					Maximum	1					Median	0.049		
	18					SD	0.271				SD	of logged Data	1.599		- 8
19 20 21 22					Coefficien	t of Variation	1.488					Skewness	1.983		
	1000	28 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40 (200) (40) (40 (200) (40 (200) (40) (40 (200) (40 (200) (40 (200) (40 (20													
		Gamma GOF Test													
							Anderson-Darling Gamma GOF Test								
					5% A-D 0	5% A-D Critical Value 0.79			Data appear Gamma Distributed at 5% Significance Level						
	24				K-S	K-S Test Statistic 0.24 Kolmogorov-Smirnov Gamma GOF Test									
	25	5% K-S Critical Value 0.204 Data Not Gamma Distributed at 5% Significance Level													
	26	Data appear to Follow Approximate Gamma Distribution at 5% Significance Level													
	27														
	28	Gamma Statistics													
	29					k hat (MLE)	0.574	k star (bias corrected MLE			0.522				
	30				The	eta hat (MLE)	0.317	Theta star (bias correcte			orrected MLE)	0.349			
	23 5% A-D Critical Value 0.796 Data appear Gamma Distributed at 5% Significance 24 K-S Test Statistic 0.24 Kolmogorov-Smirnov Gamma GOF Tes 25 5% K-S Critical Value 0.204 Data Not Gamma Distributed at 5% Significance 26 Data appear to Follow Approximate Gamma Distribution at 5% Significance Level 27 28 Gamma Statistics 29 k hat (MLE) 0.574 k star (bias corrected MI	ias corrected)	20.87												
	32				MLE Mean (bia	as corrected)	0.182			1	MLE Sd (b	ias corrected)	0.252		
	33								Approximate Chi Square Value (0.05) 11.49						
	34	Adjusted Level of Significance 0.038 Adjusted Chi Square Value 10.94													
	35														
	36					Ass	uming Gam	ma Distributi	on						
23 24 25 26 27 28 29 30 31 32 33 34 35			95%	Approximate	Gamma UCL	0.331			95%	6 Adjusted	Gamma UCL	0.347			
	38														
	39						Suggested (	JCL to Use							
	40				95% Adjusted	Gamma UCL	0.347								
	41														
	42			Whe	en a data set fo	ollows an appr	oximate distr	bution passi	ng only one	of the GOF	tests,				
	43			it is s	suggested to us	se a UCL base	ed upon a dist	ribution pass	sing both GC	F tests in	ProUCL				
	44														
	45		Note: Sugge	stions rega	rding the selec	tion of a 95%	UCL are prov	ided to help	the user to s	select the r	nost appro	opriate 95% UC	CL.		
	46		Recor	nmendation	s are based up	on data size,	data distributi	on, and skew	vness using	results fro	m simulati	ion studies.			
	47	Н	owever, simu	lations resu	ults will not cov	rer all Real W	orld data sets	; for addition	al insight the	e user may	want to co	onsult a statist	ician.		
	48														
	49														E/C-27
eet.xls w.o.SED w.SED	T-														
	JII) - 1														

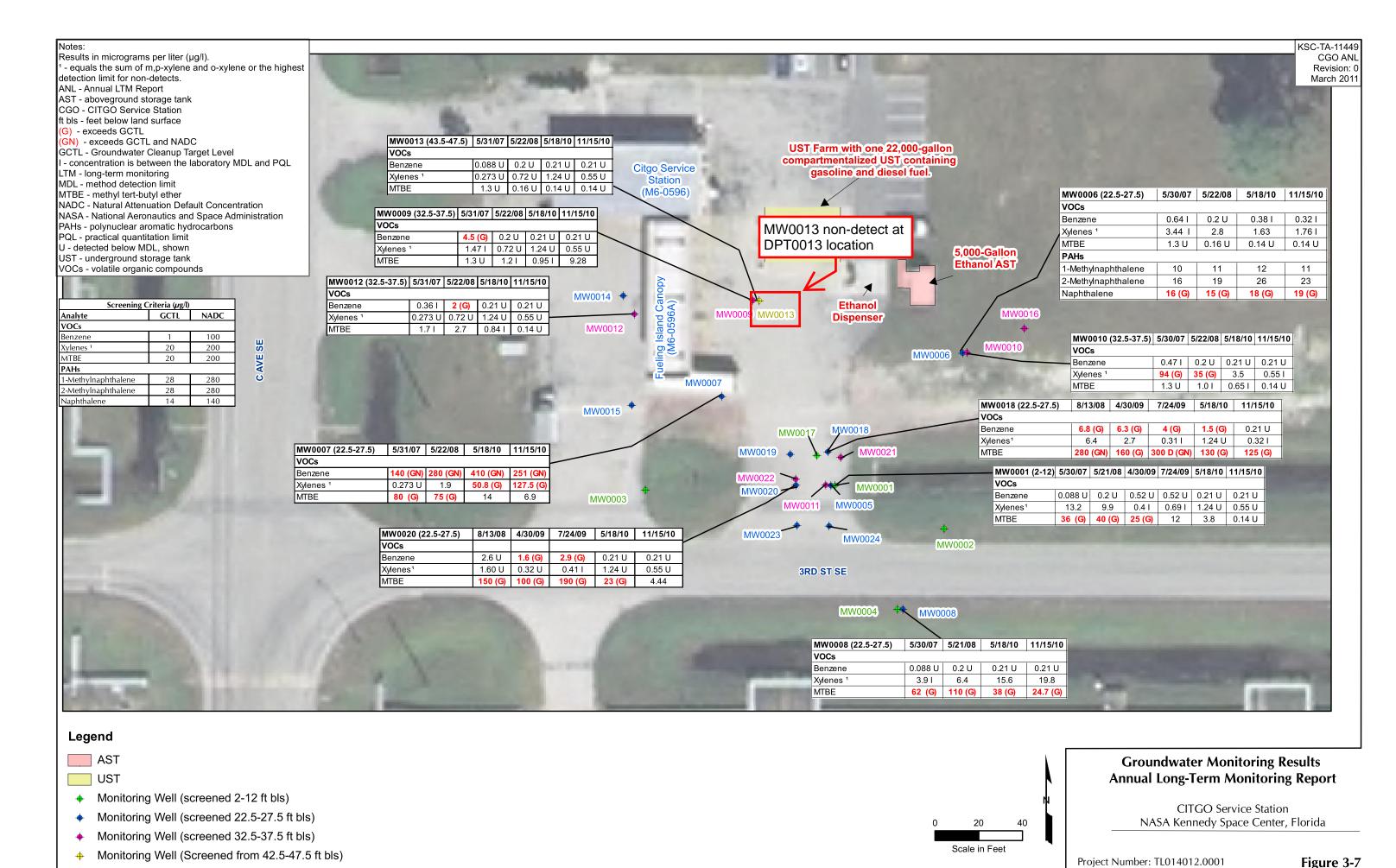
# APPENDIX L HMF SOUTH PROFESSIONAL SURVEY DATA

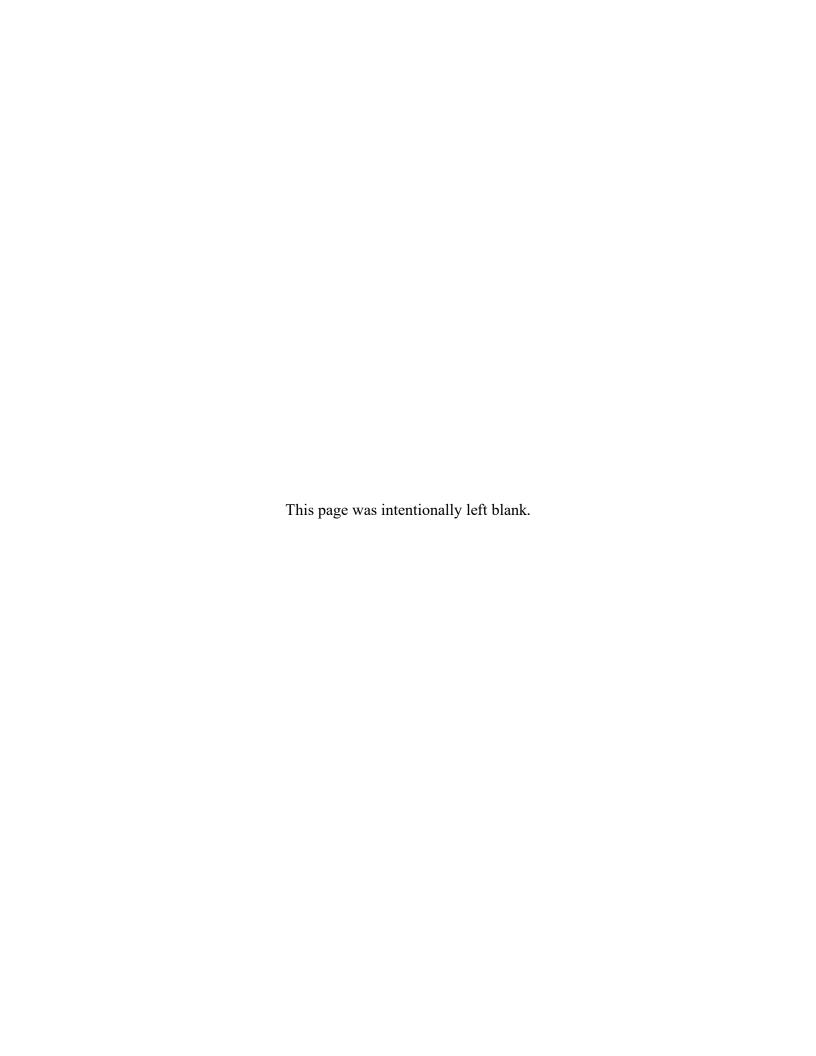
KUGELMANN LAND SU	JRVEYING, INC.	1/10/2022				
30 N. TROPICAL TRL.,	STE B, MERRITT ISLAND, FL 32953	LB 6575				
klsinc@cfl.rr.com	KLS#2022005					

HGL, INC.

HYPERGOL MAINTENANCE FACILITY (HMF), KENNEDY SPACE CENTER


POINT#	NORTHING (FT)	EASTING (FT)	NORTHING (M)	EASTING (M)	TOC EL (FT)	GND EL (FT)	DESC	ID
13	1518029.23	771257.15	462696.238	235079.652	5.58	1.9	MW	HMF-MW0006IR


#### **SURVEYOR'S NOTES:**


- 1. THE PURPOSE OF THIS SURVEY IS TO DETERMINE THE HORIZONTAL AND VERTICAL POSITION OF MONITORING WELL.
- 2. THE PHYSICAL COORDINATES IN THE EXCEL FILE ARE REFERENCED TO THE FLORIDA STATE PLANE COORDINATE SYSTEM, EAST ZONE, NORTH AMERICAN DATUM OF 1983 (NAD83), 1990 ADJUSTMENT AND ARE BASED ON UNITED STATES COAST AND GEODETIC MONUMENT "WRIGHT", HAVING COORDINATES OF NORTHING 1544816.33 AND EASTING 768783.06 IN FEET AND NORTHING 470860.964 AND 234325.548 IN METERS.
- 3. THE ELEVATIONS DEPICTED HEREON ARE REFERENCED TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88) AND ARE BASED ON UNITED STATES COAST AND GEODETIC MONUMENT "WRIGHT", HAVING AN ELEVATION OF 7.45 FEET.
- 4. DATA TABLES AND/OR TEXT FILES SHOWN HEREON ARE IN THE NASA (GIS) GEOGRAPHIC INFORMATION SYSTEMS PREFERRED CONFIGURATION, THE HORIZONTAL LOCATIONS WILL BE DISPLAYED IN NAD83 (METERS) AND THE VERTICAL LOCATIONS WILL BE DISPLAYED IN NAVD88 (FEET).

ABBREVIATIONS:								
(FT)=	FEET	EL=	ELEVATION					
(M)=	METER	DESC=	DESCRIPTION					
TOC=	TOP OF CASING	ID=	IDENTIFICATION					
GND=	GROUND	MW=	MONITORING WELL					

# APPENDIX M MOBIL VERTICAL DELINEATION DOCUMENTS





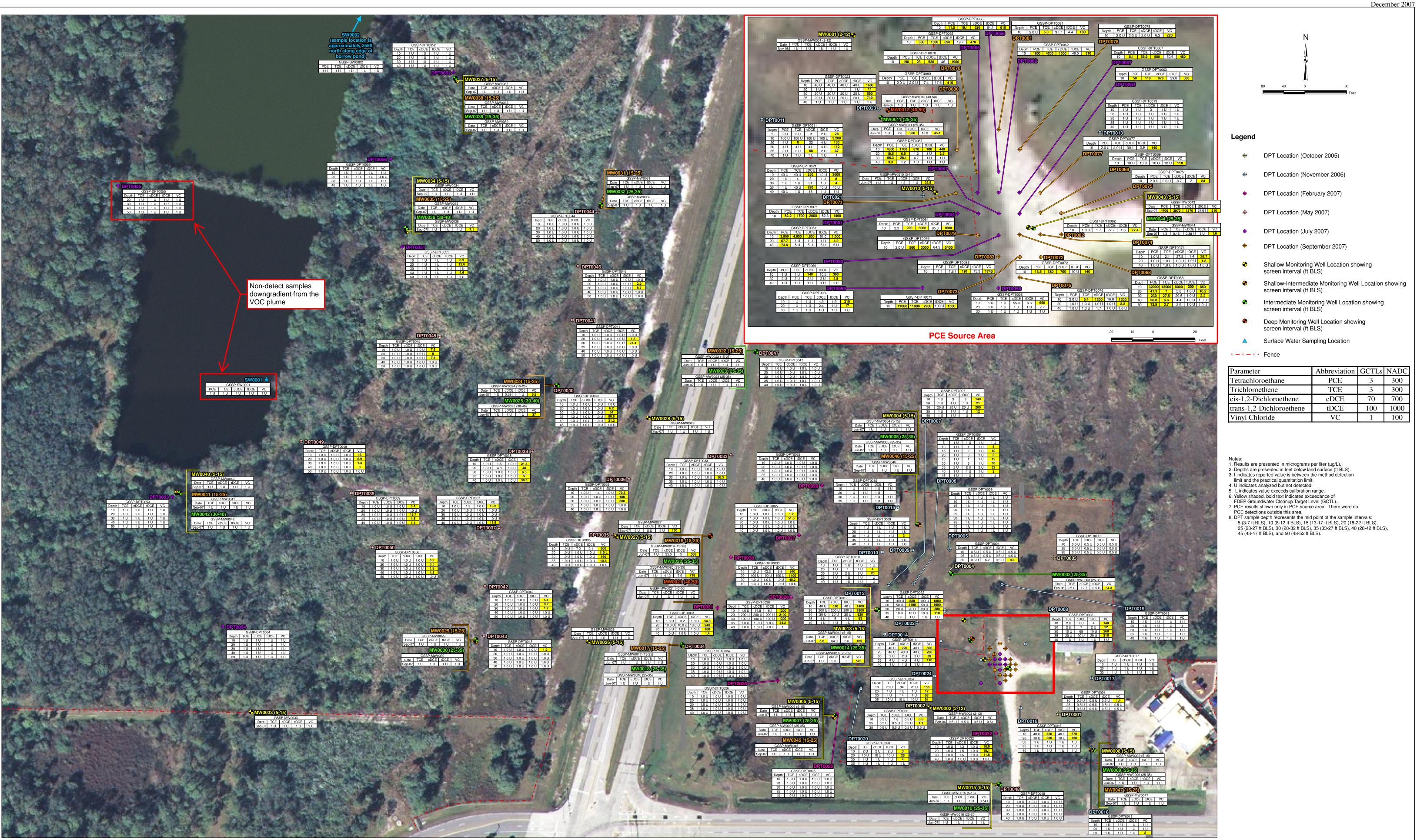


# APPENDIX N GSSP DOWNGRADIENT DELINEATION DOCUMENTS

Downgradient DPT location

#### Appendix L - Analytical Results Groundwater GSA Seized Property RFI

									FDEP GCTL	Exceeds GCTL
Phase	Sample ID	Location	Sample Date	Screened	Amaluta	Concentration	Ouglifian	I I mita	(Screening Value) (1)	Screening Criteria
			Sample Date	Interval	Analyte					
RFI3	GSSP-DPT0054-040.0	GSSP-DPT0054	7/10/2007	38 to 42	cis-1,2-Dichloroethene	1.0	U	μg/L	70	No
RFI3	GSSP-DPT0054-040.0	GSSP-DPT0054	7/10/2007	38 to 42	trans -1,2-Dichloroethene	1.0	U	μg/L	100	No
RFI3	GSSP-DPT0054-040.0	GSSP-DPT0054	7/10/2007	38 to 42	Vinyl chloride	0.1	U	μg/L	1	No
RFI3	GSSP-DPT0054-050.0	GSSP-DPT0054	7/10/2007	48 to 52	Tetrachloroethene	1.0	U	μg/L	3	No
RFI3	GSSP-DPT0054-050.0	GSSP-DPT0054	7/10/2007	48 to 52	Trichloroethene	1.0	U	μg/L	3	No
RFI3	GSSP-DPT0054-050.0	GSSP-DPT0054	7/10/2007	48 to 52	cis -1,2-Dichloroethene	1.0	U	μg/L	70	No
RFI3	GSSP-DPT0054-050.0	GSSP-DPT0054	7/10/2007	48 to 52	trans -1,2-Dichloroethene	1.0	U	μg/L	100	No
RFI3	GSSP-DPT0054-050.0	GSSP-DPT0054	7/10/2007	48 to 52	Vinyl chloride	1.0	U	μg/L	1	No_
RFI3	GSSP-DPT0055-020.0	GSSP-DPT0055	7/10/2007	18 to 22	Tetrachloroethene	1.0	U	μg/L	3	No
RFI3	GSSP-DPT0055-020.0	GSSP-DPT0055	7/10/2007	18 to 22	Trichloroethene	1.0	U	μg/L	3	No
RFI3	GSSP-DPT0055-020.0	GSSP-DPT0055	7/10/2007	18 to 22	cis -1,2-Dichloroethene	1.0	U	μg/L	70	No
RFI3	GSSP-DPT0055-020.0	GSSP-DPT0055	7/10/2007	18 to 22	trans -1,2-Dichloroethene	1.0	U	μg/L	100	No
RFI3	GSSP-DPT0055-020.0	GSSP-DPT0055	7/10/2007	18 to 22	Vinyl chloride	1.0	U	μg/L	1	No
RFI3	GSSP-DPT0055-030.0	GSSP-DPT0055	7/10/2007	28 to 32	Tetrachloroethene	1.0	U	μg/L	3	No
RFI3	GSSP-DPT0055-030.0	GSSP-DPT0055	7/10/2007	28 to 32	Trichloroethene	1.0	U	μg/L	3	No
RFI3	GSSP-DPT0055-030.0	GSSP-DPT0055	7/10/2007	28 to 32	cis -1,2-Dichloroethene	1.0	U	μg/L	70	No
RFI3	GSSP-DPT0055-030.0	GSSP-DPT0055	7/10/2007	28 to 32	trans -1,2-Dichloroethene	1.0	U	μg/L	100	No
RFI3	GSSP-DPT0055-030.0	GSSP-DPT0055	7/10/2007	28 to 32	Vinyl chloride	1.0	U	μg/L	1	No
RFI3	GSSP-DPT0055-040.0	GSSP-DPT0055	7/10/2007	38 to 42	Tetrachloroethene	1.0	U	μg/L	3	No
RFI3	GSSP-DPT0055-040.0	GSSP-DPT0055	7/10/2007	38 to 42	Trichloroethene	1.0	U	μg/L	3	No
RFI3	GSSP-DPT0055-040.0	GSSP-DPT0055	7/10/2007	38 to 42	cis -1,2-Dichloroethene	1.0	U	μg/L	70	No
RFI3	GSSP-DPT0055-040.0	GSSP-DPT0055	7/10/2007	38 to 42	trans -1,2-Dichloroethene	1.0	U	μg/L	100	No
RFI3	GSSP-DPT0055-040.0	GSSP-DPT0055	7/10/2007	38 to 42	Vinyl chloride	1.0	U	μg/L	1	No
RFI3	GSSP-DPT0055-050.0	GSSP-DPT0055	7/10/2007	48 to 52	Tetrachloroethene	1.0	U	μg/L	3	No
RFI3	GSSP-DPT0055-050.0	GSSP-DPT0055	7/10/2007	48 to 52	Trichloroethene	1.0	U	μg/L	3	No
RFI3	GSSP-DPT0055-050.0	GSSP-DPT0055	7/10/2007	48 to 52	cis -1,2-Dichloroethene	1.0	U	μg/L	70	No
RFI3	GSSP-DPT0055-050.0	GSSP-DPT0055	7/10/2007	48 to 52	trans -1,2-Dichloroethene	1.0	U	μg/L	100	No
RFI3	GSSP-DPT0055-050.0	GSSP-DPT0055	7/10/2007	48 to 52	Vinyl chloride	1.0	U	μg/L	1	No
RFI3	GSSP-DPT0056-010.0	GSSP-DPT0056	7/11/2007	8 to 12	Tetrachloroethene	1.0	U	μg/L	3	No
RFI3	GSSP-DPT0056-010.0	GSSP-DPT0056	7/11/2007	8 to 12	Trichloroethene	1.0	U	μg/L	3	No
RFI3	GSSP-DPT0056-010.0	GSSP-DPT0056	7/11/2007	8 to 12	cis -1,2-Dichloroethene	1.0	U	μg/L	70	No
RFI3	GSSP-DPT0056-010.0	GSSP-DPT0056	7/11/2007	8 to 12	trans -1,2-Dichloroethene	1.0	U	μg/L	100	No
RFI3	GSSP-DPT0056-010.0	GSSP-DPT0056	7/11/2007	8 to 12	Vinyl chloride	1.0	U	μg/L	1	No
RFI3	GSSP-DPT0056-020.0	GSSP-DPT0056	7/11/2007	18 to 22	Tetrachloroethene	1.0	U	μg/L	3	No
RFI3	GSSP-DPT0056-020.0	GSSP-DPT0056	7/11/2007	18 to 22	Trichloroethene	1.0	Ū	μg/L	3	No
RFI3	GSSP-DPT0056-020.0	GSSP-DPT0056	7/11/2007	18 to 22	cis -1,2-Dichloroethene	1.0	U	μg/L	70	No
RFI3	GSSP-DPT0056-020.0	GSSP-DPT0056	7/11/2007	18 to 22	trans -1,2-Dichloroethene	1.0	U	μg/L	100	No




## **KB LABS, INC.**

Final Data Report
Project Number: 07-142
NASA GSA III
KSC, FL

Prepared for: Geosyntec Consultants

Downgra surface v sample l	water	Samplel ID	Analysis Date	Matrix	Dilution Factor	Vinyl chloride	1,1-Dichloroethene	trans-1,2-Dichloroethene	cis-1,2-Dichloroethene	Trichloroethene	Tetrachloroethene
	(	GSSP-DPT0052-020.0-20070709	7/9/07	Water	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	(	GSSP-DPT0052-030.0-20070709	7/9/07	Water	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	C	GSSP-DPT0052-040.0-20070709	7/9/07	Water	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	C	GSSP-DPT0053-010.0-20070709	7/9/07	Water	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
(		GSSP-DPT0053-020.0-20070709	7/9/07	Water	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
		GSSP-DPT0053-030.0-20070709	7/9/07	Water	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
		GSSP-DPT0053-040.0-20070709	7/9/07	Water	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
		GSSP-DPT0053-050.0-20070709	7/9/07	Water	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	C	GSSP-SW0001-000.1-20070709	7/9/07	Water	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	(	GSSP-DPT0054-010.0-20070710	7/10/07	Water	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	(	GSSP-DPT0054-020.0-20070710	7/10/07	Water	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	(	GSSP-DPT0054-030.0-20070710	7/10/07	Water	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	(	GSSP-DPT0054-040.0-20070710	7/10/07	Water	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	C	GSSP-DPT0054-050.0-20070710	7/10/07	Water	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	(	GSSP-DPT0055-020.0-20070710	7/10/07	Water	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	C	GSSP-DPT0055-030.0-20070710	7/10/07	Water	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	(	GSSP-SW0002-000.1-20070710	7/10/07	Water	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0



## APPENDIX O

FSA1 VERTICAL DELINEATION DOCUMENTS

# Fuel Storage Area #1 Underground Storage Tank - Long Term Monitoring (LTM) Summary of DPT Groundwater Analytical Results

		Category	· ·	r Aromatic Hydrocarb y Method SW8270 SIN	· · · · · · · · · · · · · · · · · · ·			Compounds (VOC) hod 8260		FLO PRO	
			1-METHYL	2-METHYL					ISOPROPYL	ТРН	
		Analyte		NAPHTHALENE	NAPHTHALENE	NAPHTHALENE	BENZENE	ETHYLBENZENE	BENZENE	(C08-C40)	
	FDEP GCTLs (µg/			28	14	14	1	30	0.8	5000	
		DEP NADCs (µg/L)		280	140	140	100	300	8		
		Screened Interval									
Location ID	Sample Date	(ft bls)									
FSA1-DPT0006	5/23/2007	5 - 9	20.1	19.0	39.2	NA	0.50 U	1.1	NA	3770	
	5/23/2007	18 - 22	6.4	7.5	5.0	NA	0.50 U	0.52 I	NA	10100	
	1/16/2008	18 - 22	2.3	2.7	2.1	NA	0.26 I	0.59 I	NA	1210	
FSA1-DPT0007	5/23/2007	5 - 9	12.6	6.7	22.0	NA	0.50 U	0.50 U	NA	3240	
	5/23/2007	18 - 22	0.59 I	0.56 I	0.43 I	NA	0.50 U	0.50 U	NA	488	
FSA1-DPT0008	5/23/2007	5 - 9	0.24 U	0.24 U	0.24 U	NA	0.50 U	0.50 U	NA	170 U	
	5/23/2007	18 - 22	0.25 U	0.25 U	0.25 U	NA	0.50 U	0.50 U	NA	170 U	
FSA1-DPT0009	5/23/2007	5 - 9	8.4	3.9 I	23.6	NA	0.50 U	0.50 U	NA	12100	
	5/23/2007	18 - 22	0.24 U	0.24 U	0.24 U	NA	0.50 U	0.50 U	NA	237 I	
FSA1-DPT0014	5/23/2007	5 - 9	0.24 U	0.24 U	0.24 U	NA	0.50 U	0.50 U	NA	170 U	
	5/23/2007	18 - 22	0.25 U	0.25 U	0.25 U	NA	0.50 U	0.50 U	NA	170 U	
FSA1-DPT0021	5/23/2007	5 - 9	0.25 U	0.25 U	0.25 U	NA	0.50 U	0.50 U	NA	999	
	5/23/2007	18 - 22	0.29 I	0.32 I	0.24 U	NA	0.50 U	0.50 U	NA	189 I	
FSA1-DPT0022	1/16/2008	5 - 9	0.24 U	0.24 U	0.41 I	NA	0.63 I	0.97 I	NA	21300	
FSA1-DPT1001	10/16/2014	2 - 6	0.047 U	0.044 U	0.035 U	0.82 U	0.71 U	0.69 U	0.67 U	7700	
	10/16/2014	6 - 10	48.0	61.0	150	100	1.8 U	1.7 U	10.0	18000	
	10/16/2014	10 - 14	1.5	1.1	2.3	2.0	0.71 U	0.69 U	1.6	5600	
	10/16/2014	14 - 18	2.6	2.0	2.6	2.6	0.71 U	0.69 U	0.93 I	1600	
	10/16/2014	18 - 22	1.6	2.1	1.7	3.0	0.71 U	0.69 U	0.67 U	1300	
FSA1-DPT1002	10/16/2014	2 - 6	120	130	530	420	7.1 U	28.0	24.0	61000	
	10/16/2014	6 - 10	120	130	340	200	3.6 U	3.4 U	16.0	30000	
	10/16/2014	10 - 14	27.0	32.0	46.0	29.0	0.71 U	0.69 U	6.2	6300	
	10/16/2014	14 - 18	26.0	28.0	24.0	26.0	0.71 U	0.69 U	3.2	6600	
	10/16/2014	18 - 22	34.0	38.0	35.0	24.0	0.71 U	0.69 U	2.0	7700	
	1/19/2016	10 - 14	22.0	18.0	34.0	NA	0.71 U	0.69 U	NA	31000	
	1/19/2016	14 - 18	1.2	1.4	1.6	NA	0.71 U	0.69 U	NA	2100	
	1/19/2016	22 - 26	0.086 I	0.086 I	0.091 I	NA	0.71 U	0.69 U	NA	140 U	
FSA1-DPT1003	10/16/2014	2 - 6	0.047 U	0.044 U	0.035 U	0.82 U	0.71 U	0.69 U	0.67 U	100 U	
	10/16/2014	6 - 10	0.047 U	0.044 U	0.04 I	0.82 U	0.71 U	0.69 U	0.67 U	100 U	
	10/16/2014	10 - 14	0.047 U	0.044 U	0.035 U	0.82 U	0.71 U	0.69 U	0.67 U	280	
	10/16/2014	14 - 18	0.13	0.11	0.14	0.82 U	0.71 U	0.69 U	0.67 U	280	
	10/16/2014	18 - 22	0.047 U	0.044 U	0.035 U	0.82 U	0.71 U	0.69 U	0.67 U	100 U	

# Fuel Storage Area #1 Underground Storage Tank - Long Term Monitoring (LTM) Summary of DPT Groundwater Analytical Results

		Catagory	•	r Aromatic Hydrocarb	· · · · · · · · · · · · · · · · · · ·	·	U	Compounds (VOC)		ELO DDO
		Category	1-METHYL	y <b>Method SW8270 SIM</b> 2-METHYL	1		by Mei	thod 8260	ISOPROPYL	TPH
			NAPHTHALENE	NAPHTHALENE	NAPHTHALENE	NAPHTHALENE	BENZENE	ETHYLBENZENE	BENZENE	(C08-C40)
	FI	DEP GCTLs (μg/L)	28	28	14	14	1	30	0.8	5000
	FD	DEP NADCs (μg/L)	280	280	140	140	100	300	8	
		Screened Interval								
<b>Location ID</b>	Sample Date	(ft bls)								
FSA1-DPT1004	10/17/2014	2 - 6	18.0	10.0	62.0	51.0	3.6 U	3.4 U	3.4 U	51000
	10/17/2014	6 - 10	2.0	1.9	6.1	6.0	0.71 U	0.69 U	2.6	5900
	10/17/2014	10 - 14	2.1	0.97	1.7	1.1	0.71 U	0.69 U	2.1	100 U
	10/17/2014	14 - 18	6.2	1.1	7.8	6.2	0.71 U	0.69 U	9.2	1600
	10/17/2014	18 - 22	0.99	1.1	1.6	2.0	0.71 U	0.69 U	2.6	2200
FSA1-DPT1006	10/17/2014	2 - 6	0.047 U	0.044 U	0.063 I	0.82 U	0.71 U	0.69 U	0.67 U	100 U
	10/17/2014	6 - 10	0.047 U	0.044 U	0.035 U	0.82 U	0.71 U	0.69 U	0.67 U	350
	10/17/2014	10 - 14	0.047 U	0.044 U	0.035 U	0.82 U	0.71 U	0.69 U	0.67 U	100 U
	10/17/2014	14 - 18	0.21	0.044 U	0.26	0.82 U	0.71 U	0.69 U	0.67 U	100 U
	10/17/2014	18 - 22	5.4	0.52	1.9	0.83 I	0.71 U	0.69 U	5.6	3000
FSA1-DPT1007	10/17/2014	2 - 6	0.047 U	0.044 U	0.035 U	0.82 U	0.71 U	0.69 U	0.67 U	100 U
	10/17/2014	6 - 10	0.047 U	0.044 U	0.035 U	0.82 U	0.71 U	0.69 U	0.67 U	100 U
	10/17/2014	10 - 14	2.0	0.23	2.3	2.2	0.71 U	0.69 U	0.67 U	230
=	10/17/2014	14 - 18	1.9	0.25	2.4	2.2	0.71 U	0.69 U	0.67 U	230
	10/17/2014	18 - 22	12.0	3.1	26.0	28.0	0.71 U	0.69 U	7.4	7100
FSA1-DPT1008	10/17/2014	2 - 6	0.047 U	0.044 U	0.051 I	0.82 U	0.71 U	0.69 U	0.67 U	120 I
	10/17/2014	6 - 10	20.0	23.0	18.0	14.0	0.71 U	0.69 U	3.9	2500
	10/17/2014	10 - 14	1.2	0.89	0.93	1.2	0.71 U	0.69 U	7.4	520
	10/17/2014	14 - 18	0.069 I	0.046 I	0.15	0.98 I	0.71 U	0.69 U	0.67 U	100 U
	10/17/2014	18 - 22	0.047 U	0.044 U	0.035 U	0.82 U	0.71 U	0.69 U	0.67 U	100 U
FSA1-DPT1008A	1/19/2016	2 - 6	0.047 U	0.044 U	0.086 I	NA	0.71 U	0.69 U	NA	3300
	1/19/2016	6 - 10	5.2	5.8	13.0	NA	0.71 U	0.69 U	NA	7900
	1/19/2016	10 - 14	0.64	0.56	2.1	NA	0.71 U	0.69 U	NA	9500
	1/19/2016	14 - 18	0.047 U	0.044 U	0.051 I	NA	0.71 U	0.69 U	NA	4100
FSA1-DPT1009	1/19/2016	2 - 6	6.9	0.044 U	49.0	NA	0.71 U	0.69 U	NA	26000
	1/19/2016	6 - 10	69.0	90.0	180	NA	0.71 U	0.69 U	NA	13000
	1/19/2016	10 - 14	1.0	1.6	1.2	NA	0.71 U	0.69 U	NA	3200
	1/19/2016	14 - 18	3.5	2.1	2.3	NA	0.71 U	0.69 U	NA	4100
FSA1-DPT1010	1/19/2016	6 - 10	0.19	0.19	0.15	NA	0.71 U	0.69 U	NA	140 U
	1/19/2016	10 - 14	0.047 U	0.044 U	0.31	NA	0.71 U	0.69 U	NA	140 U
	1/19/2016	14 - 18	0.73	0.24	0.35	NA	0.71 U	0.69 U	NA	250
FSA1-DPT1011	1/19/2016	2 - 6	0.047 U	0.044 U	0.035 U	NA	0.71 U	0.69 U	NA	140 U
	1/21/2016	6 - 10	0.22	0.26	0.15	NA	0.71 U	0.69 U	NA	140 U
	1/21/2016	10 - 14	0.047 U	0.044 U	0.035 U	NA	0.71 U	0.69 U	NA	480
FSA1-DPT1012	1/21/2016	4 - 8	100	120	120	NA	0.71 U	0.69 U	NA	16000
	1/21/2016	8 - 12	0.61	0.70	0.69	NA	0.71 U	0.69 U	NA	140 U

# Fuel Storage Area #1 Underground Storage Tank - Long Term Monitoring (LTM) Summary of DPT Groundwater Analytical Results

		Category	*	r Aromatic Hydrocarb y Method SW8270 SIN	1		_	Compounds (VOC) thod 8260		FLO PRO
			1-METHYL NAPHTHALENE	2-METHYL NAPHTHALENE	NAPHTHALENE	NAPHTHALENE	BENZENE	ETHYLBENZENE	ISOPROPYL BENZENE	TPH (C08-C40)
		DEP GCTLs (μg/L)		28	14	14	1	30	0.8	5000
	FD	EP NADCs (μg/L)	280	280	140	140	100	300	8	
		Screened Interval								
<b>Location ID</b>	Sample Date	(ft bls)								
FSA1-DPT3001	2/2/2017	2 - 6	0.20 U	0.20 U	0.19 U	0.27 U	0.16 U	0.24 U	0.14 U	600 U
-	2/2/2017	6 - 10	0.20 U	0.20 U	0.19 U	0.27 U	0.16 U	0.24 U	0.14 U	1100
_	2/2/2017	18 - 22	1.6	1.7	1.3	2.6	0.16 U	0.24 U	2.5	6700
	2/2/2017	26 - 30	0.20 U	0.20 U	0.19 U	0.54 U	0.32 U	0.48 U,J4	0.28 U	600 U
FSA1-DPT3002	2/2/2017	2 - 6	0.62	0.68	0.61	0.27 U	0.16 U	0.24 U	0.14 U	600 U
	2/2/2017	6 - 10	0.43	0.47	0.38	0.27 U	0.16 U	0.24 U	0.14 U	1100
	2/2/2017	18 - 22	0.20 U	0.20 U	0.25	0.27 U	0.16 U	0.24 U	2.3	3600
	2/2/2017	26 - 30	0.20 U	0.20 U	0.19 U	0.54 U	0.32 U	0.48 U	0.28 U	600 U
FSA1-DPT3003	2/1/2017	2 - 6	0.44	0.46	0.44	0.27 U	0.16 U	0.24 U	0.14 U	600 U
	2/1/2017	6 - 10	0.20 U	0.20 U	0.19 U	0.27 U	0.16 U	0.24 U	0.14 U	600 U
	2/1/2017	18 - 22	0.20 U	0.20 U	0.19 U	0.27 U	0.16 U	0.24 U	3.2	2600
	2/1/2017	26 - 30	0.20 U	0.20 U	0.19 U	0.54 U	0.32 U	0.48 U	0.28 U	910
FSA1-DPT3004	2/1/2017	2 - 6	0.91	0.20 U	0.19 U	0.27 U	0.16 U	0.24 U	0.14 U	1400
	2/1/2017	6 - 10	0.99	0.20 U	0.19 U	0.27 U	0.16 U	0.24 U	0.14 U	2200
	2/1/2017	18 - 22	0.39	0.32	0.19 U	0.27 U	0.16 U	0.24 U	0.14 U	710
	2/1/2017	26 - 30	0.41	0.34	0.42	0.27 U	0.16 U	0.24 U	0.14 U	780
FSA1-DPT3005	2/1/2017	2 - 6	0.20 U	0.20 U	0.19 U	0.27 U	0.16 U	0.24 U	0.14 U	600 U
	2/1/2017	6 - 10	0.20 U	0.20 U	0.19 U	0.27 U	0.16 U	0.24 U	0.14 U	830
-	2/1/2017	18 - 22	0.20 U	0.20 U	0.22	0.27 U	0.16 U	0.24 U	0.14 U	600 U
-	2/1/2017	26 - 30	0.20 U	0.20 U	0.29	0.27 U	0.16 U	0.24 U	0.14 U	600 U
FSA1-DPT3006	2/2/2017	2 - 6	0.28	0.26	0.19 U	0.27 U	0.16 U	0.24 U	0.14 U	600 U
-	2/2/2017	6 - 10	0.27	0.20 U	0.20	0.27 U	0.16 U	0.24 U	2.3	600 U
-	2/2/2017	18 - 22	0.20 U	0.20 U	0.19 U	0.27 U	0.16 U	0.24 U	0.14 U	600 U
	2/2/2017	26 - 30	0.20 U	0.20 U	0.19 U	0.27 U	0.16 U	0.24 U	0.14 U	600 U
FSA1-DPT3007	2/2/2017	2 - 6	0.20 U	0.20 U	0.19 U	0.54 U	0.32 U	0.48 U	0.28 U	800
-	2/2/2017	6 - 10	0.20 U	0.20 U	0.19 U	0.27 U	0.16 U	0.24 U	68.0	1100
-	2/2/2017	18 - 22	0.20 U	0.20 U	0.19 U	0.27 U	0.16 U	0.24 U	0.14 U	830
	2/2/2017	26 - 30	0.20 U	0.20 U	0.19 U	0.54 U	0.32 U	0.48 U	0.28 U	600 U
FSA1-DPT3008	2/1/2017	2 - 6	82.0	90.0	200	250	0.16 U	0.24 U	0.14 U	16000
	2/1/2017	6 - 10	66.0	68.0	120	120	0.32 U	0.48 U	5.3	27000
	2/1/2017	18 - 22	1.9	2.1	2.0	5.4	0.16 U	0.24 U	0.14 U	1000
	2/1/2017	26 - 30	1.5	1.5	1.9	4.2 I	0.16 U	0.24 U	0.14 U	650 I
	2/2/2017	2 - 6	0.20 U	0.20 U	0.19 U	1.1 I	0.16 U	0.24 U	0.14 U	600 I
EGA1 DEEGAAA	2/2/2017	6 - 10	0.20 U	0.20 U	0.19 U	5.6 I	0.32 U	0.48 U	0.28 U	600 U
FSA1-DPT3009	2/2/2017	18 - 22	0.20 U	0.20 U	0.19 U	0.27 U	0.16 U	0.24 U	0.14 U	600 U
	2/2/2017	26 - 30	0.20 U	0.20 U	0.19 U	0.27 U	0.16 U	0.24 U	0.14 U	600 U

## Fuel Storage Area #1 Underground Storage Tank - Long Term Monitoring (LTM) Summary of DPT Groundwater Analytical Results

		Category	Polynuclear Aromatic Hydrocarbons (PAH) by Method SW8270 SIM				FLO PRO			
		Analyte	1-METHYL NAPHTHALENE	2-METHYL NAPHTHALENE	NAPHTHALENE	NAPHTHALENE	BENZENE	ETHYLBENZENE	ISOPROPYL BENZENE	TPH (C08-C40)
	FDEP GCTLs (µg/L)			28	14	14	1	30	0.8	5000
FDEP NADCs (μg/L			280	280	140	140	100	300	8	
Location ID	Sample Date	Screened Interval (ft bls)								
FSA1-DPT3010	8/19/2020	5 - 9	29.4	17.3	116	NA	0.31 U	0.36 U	10.2	4520 VQ
FSA1-DPT3011	8/19/2020	5 - 9	2.3	1.3	1.2	NA	0.31 U	0.36 U	0.22 U	795 VQ
FSA1-DPT3012	8/19/2020	5 - 9	19.1	19.2	56.2	NA	0.31 U	0.36 U	11.9	5400 VQ
FSA1-DPT3013	8/19/2020	5 - 9	0.77 I	2.2	4.7	NA	0.35 I	0.81 I	3.0	4920 V
FSA1-DPT3014	8/19/2020	5 - 9	18.4	27.3	12.5	NA	0.31 U	0.36 U	7.2	1680 V
FSA1-DPT3015	8/19/2020	5 - 9	1.4	0.32 U	0.47 I	NA	0.31 U	0.36 U	17.9	2390 V
FSA1-DPT3016	8/19/2020	5 - 9	13.9	15.4	36.5	NA	0.31 U	0.36 U	18.7	13500 V

#### Notes:

Results and screening criteria presented in µg/L (micrograms per liter)

**Bolded** results indicate the presence of an analyte at the specified concentration

**Red** font indicates an exceedance of FDEP GCTLs

Highlighted cell indicates an exceedance of FDEP NADCs

U = Analyte not detected

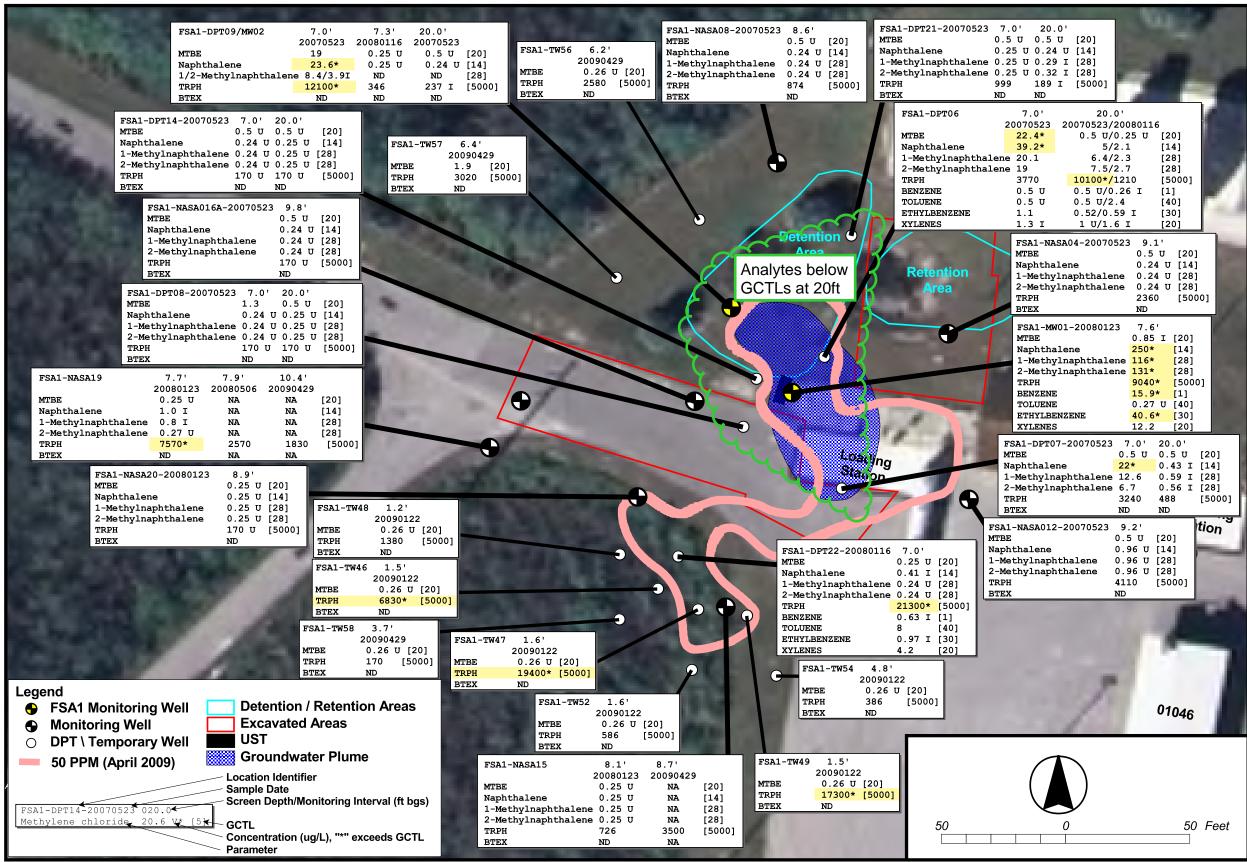
I = Analyte greater than or equal to the method detection limit, but less than the practical quantitation limit

J4 = Surrogates and MS/MSD outside of criteria

Q = Sample was analyzed beyond hold time

V = Analyte found in associated method blank

The numeric value presented for non-detects is the sample-specific reporting detection limit


FDEP GCTLs = Florida Department of Environmental Protection Groundwater Cleanup Target Levels, Chapter 62-777 Florida Administrative Code, Table 1 (2005)

FDEP NADCs = Natural Attenuation Default Concentration, Chapter 62-777 Florida Administrative Code, Table V (2005)

NA = Not Analyzed

ft bls = feet below land surface

# FIGURE 4-7 GROUNDWATER RESULTS FUEL STORAGE AREA #1, KENNEDY SPACE CENTER, FLORIDA



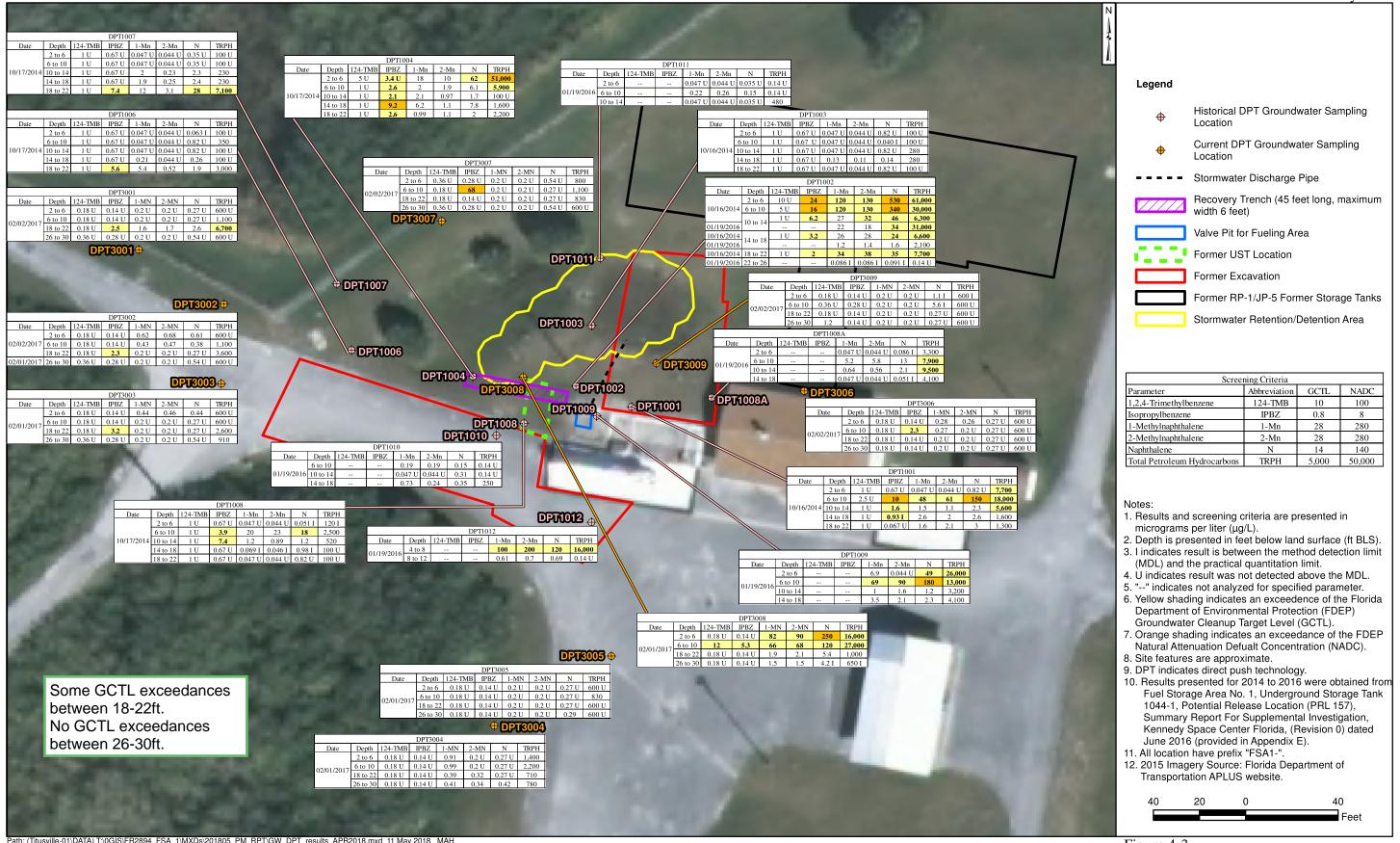



Figure 4-3

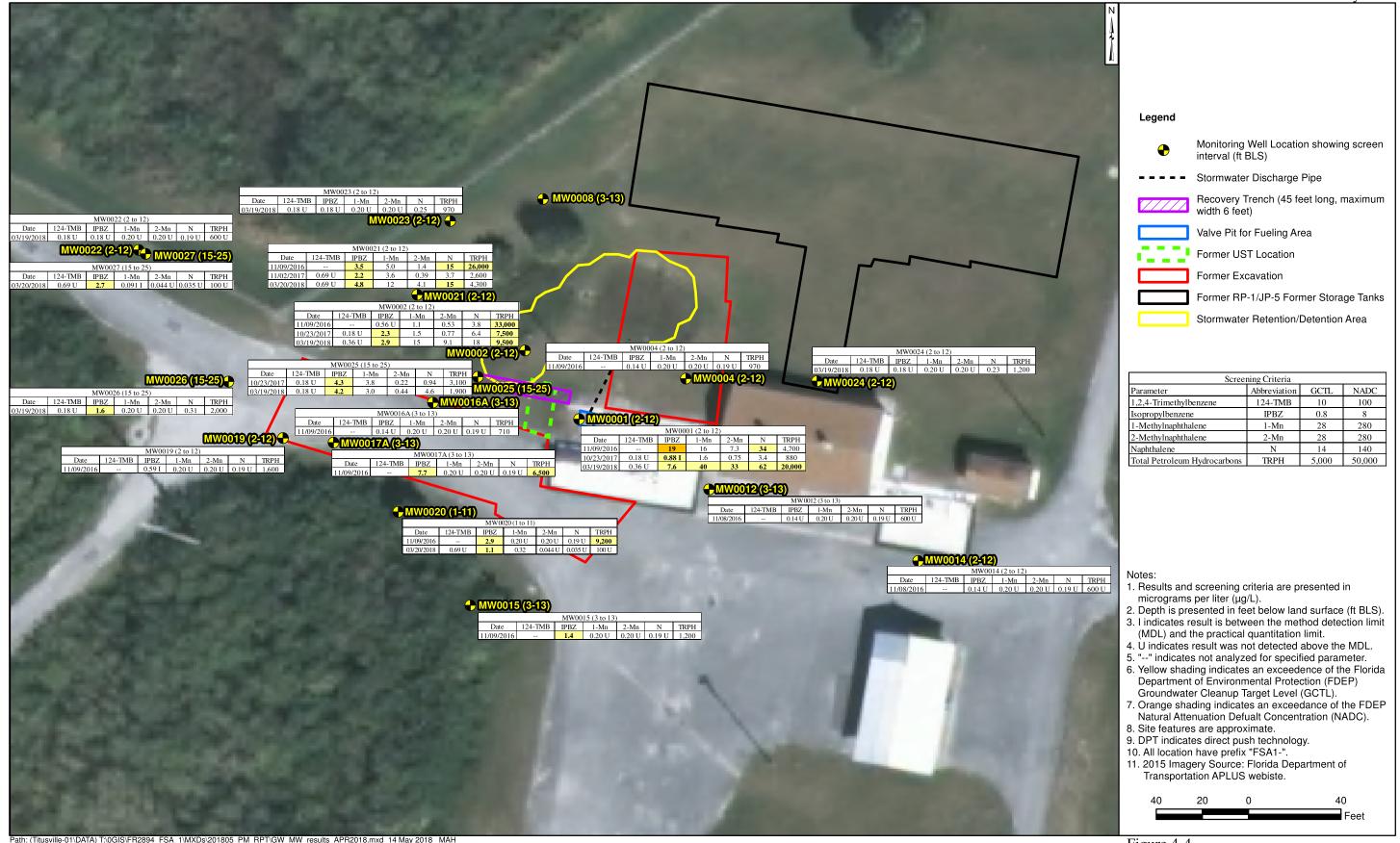



Figure 4-4

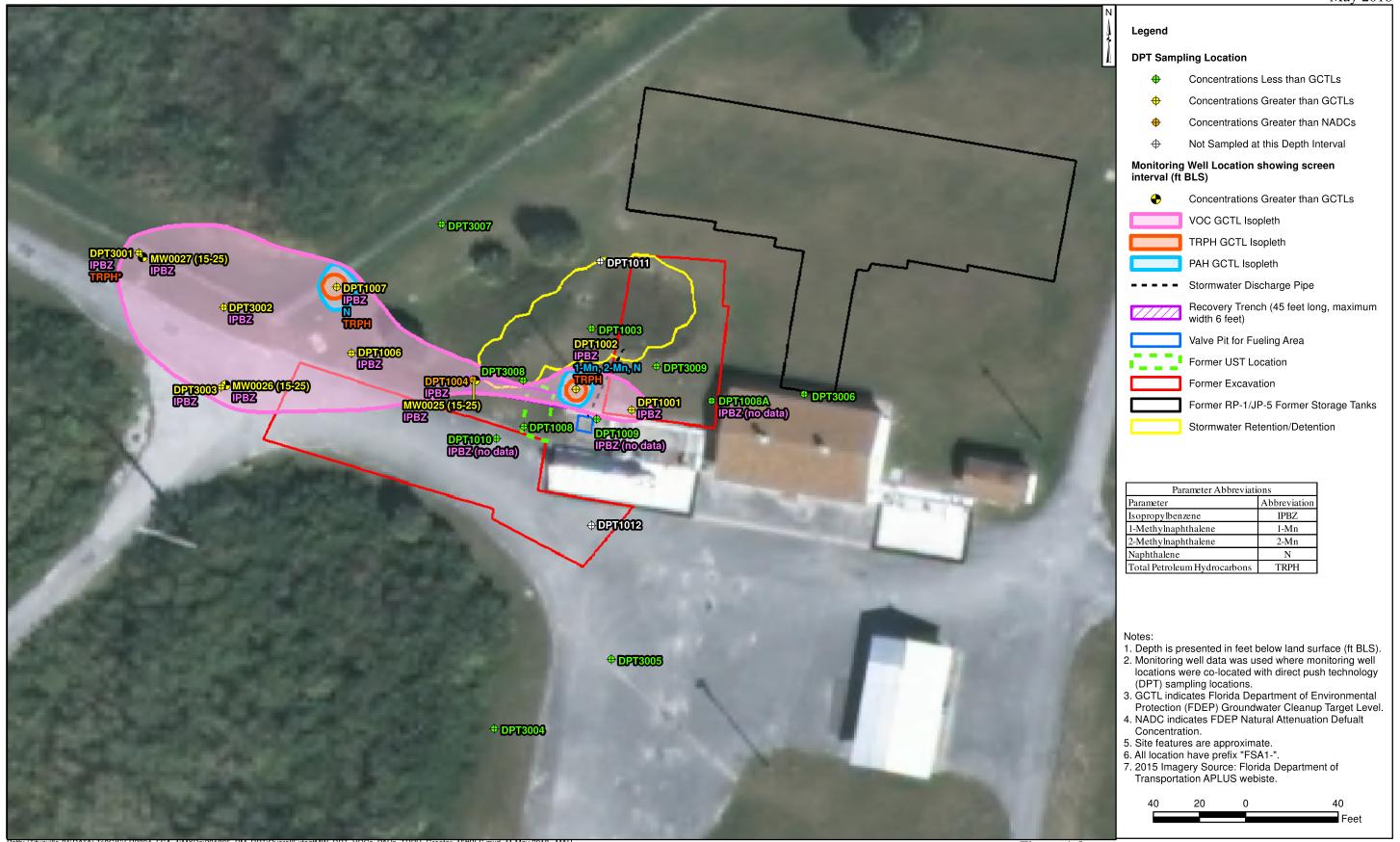



Figure 4-8

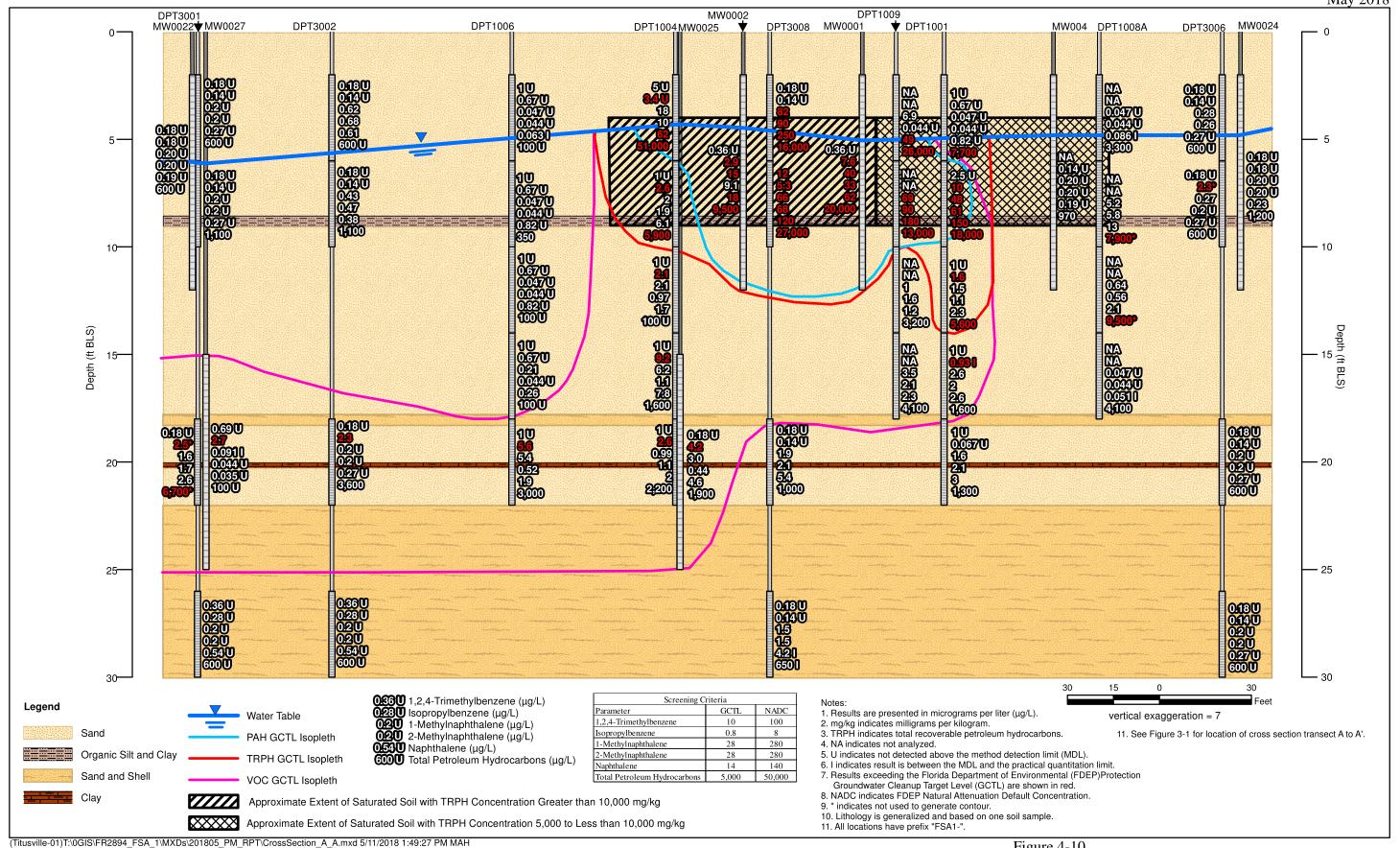



Figure 4-10