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Motivation
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Overall Objective: 

Model the degradation of 
carbon ablators due to 
oxidation and characterize their 
failure mechanisms. 

Current Work Objectives:

• Implement active-site 
capability in DSMC and 
capture the pitting process.

• Analyze the changes in 
reactivity due to active sites.
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Material degradation 
due to etch pit formation 

Material degradation 
due to uniform removal

Pitting in Carbon Surface Oxidation
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DSMC – SPARTA [4]

Continuum Breakdown

Image courtesy: https://prateekvjoshi.com/

Continuum breakdown DSMC

• CFD is not valid in regions of continuum breakdown
• DSMC (direct simulation Monte Carlo) is a stochastic, particle-based method to solve the Boltzmann equation
• DSMC is valid in all regimes: continuum, rarefied and transition (however computational cost increases with density)

Surface

4[4] Plimpton, S. J., et al. "Direct simulation Monte Carlo on petaflop supercomputers and beyond." Physics of Fluids 31, no. 8 (2019): 086101.



Ablation with implicit surfaces in SPARTA

• Geometry of individual elements inferred from 2D or 3D input file 
with pixel or voxel micro-CT data

• Choice of threshold determines solid-gas boundary

• Triangulation of level-set surface computed by Marching Squares 
(MS; in 2D) or Marching Cubes (MC; in 3D) algorithms

• Up to 15 triangles per cell, entirely contained within grid cell
• MC is inherently parallel
• Implementation of MC in SPARTA includes topological and robustness 

enhancements to guarantee watertightness [8]

[7] Ferguson et al., Modeling the oxidation of low-density carbon fiber material based on micro-tomography. Carbon (2016)
[8] Custodio et. al, An extended triangulation to the Marching Cubes 33 algorithm. J. Braz. Comp. Soc. (2019) 5
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Guiding Principle:

• New surface quantity called "active site fraction" (ASF) = fraction of 

surface element area with active sites

• Based on ASF, gas particles collide either with active or passive site

• Reactivity at active sites is much higher than at passive sites, and the 

reaction rate for oxidation (CO formation) is scaled accordingly

Active Site Implementation in SPARTA
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Methodology:

• Initialization 

v Defects are randomly distributed on a few surface elements based on user 

input defect density. 

v Active site fraction for these surface elements are set to a small number. 

• Change in ASF (within a grid cell) due to reactions

v This step is complex, as the increase or decrease of active sites due to a 

carbon removal depends on the actual geometry.

v Currently ASF remains unchanged due to reactions. 

v Will use kMC simulations to get realistic values for change in ASF.

Active Site Implementation in SPARTA
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Methodology:

• Propagation to neighboring elements

v When a grid cell is fully consumed (ablated), ASF of all neighboring elements are 

initialized to a small value.  

• Continuation through ablate step in DSMC

v Before ablate – ASF of surface elements within a cell is averaged.

v After ablate – ASF of new surface elements is set to this averaged value.

Active Site Implementation in SPARTA
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DSMC Results – 2D
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Simulation setup:
• Atomic Oxygen particle inflow
• O/CO particle outflow
• Periodic BC
• Initial active sites



Evolution of active surfaces vs reactions
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• Pitting causes nonlinear variation in reactivity due to active site evolution and flow-geometry interactions
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Pitting Simulation Results – Single Fiber
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Simulation setup:
• Cylindrical fiber, 10 µm diameter, 100 µm length
• 0.5 µm voxel size
• Constant oxygen pressure
• Varying number of defects and distributions



Pitting Simulation Results – Single Fiber
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• Pitting fragments fiber into chunks
• Higher number of pits cause faster ablation
• Variance with pit distribution is inversely related to number of pits

Ablation rate dependency on defect density



Pitting Simulation Results – FiberForm
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Simulation setup:
• Three 200! voxel substructures from FiberForm 

µCT scan
• 0.65 µm voxel size
• Constant oxygen pressure
• Varying number of defects and distributions

Other Substructures



Pitting Simulation Results – FiberForm
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Ablation rate dependency on defect density

• Higher the number of defects/active sites, faster the ablation.
• Variance with pit distribution generally very low.
• Variance between different substructures is also low.
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• Active-site-fraction feature was implemented in DSMC code SPARTA to simulate the formation of etch pits 
due to oxidation of carbon ablators.

Summary

• Simulations of pitting were performed for a single fiber and FiberForm.

v Reactivity is directly linked to the active surface elements.

v Pitting causes nonlinear variation in reactivity due to active site evolution and flow-geometry interactions.

v Pitting fragments fiber into chunks.

• Effect of the defect density and structure variation was also investigated.

v Total ablation time decreases with increasing number of defects. 

v Variance with pit distribution is inversely related to number of pits. 

v Larger structures has smaller variance with pit distribution.

v Different fiber substructures also have low variance in the total ablation time.



Improve active-site feature in SPARTA to be more physically accurate.
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Future Work

In-plane propagation at a cell depletion of 
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In-depth propagation at a cell depletion of 90% 

• Propagation to neighboring elements
Ø Pits grow faster in the in-plane direction than the in-depth direction. 
Ø Propagate the pits in the in-plane direction before the cell is fully depleted. 

• Change in ASF within a grid cell due to reactions
Ø Currently performing kMC simulations to get realistic values.



• Compare pitted FiberForm structures from SPARTA with experiments

• Analyze the distribution of pit sizes and growth rates of the pits. 
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Future Work

Micro-CT data from 
Francesco Panerai
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Surface chemistry framework in DSMC [5]

• Methodology to represent surface sites similar to Marschall, Maclean and Driver [6] for CFD.

• Particles adsorb (deleted) and desorb (created) on the surface, surface element stores adsorbed particle concentration. 

• Surface reactions based on concentration within surface element. 

• Multiple triangulated elements (like cells) on surfaces

• Langmuir model for surface sites.

taken from Marschall and Maclean.

[5] Swaminathan Gopalan, K., & Stephani, K. A. (2018). Development of a detailed surface chemistry framework in DSMC. In 2018 AIAA Aerospace Sciences Meeting (p. 0494).
[6] Marschall, J., & MacLean, M. (2011). Finite-rate surface chemistry model, I: Formulation and reaction system examples. AIAA Paper, 3783, 2011. 21



Total ablation time
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• Total ablation time decreases with increasing number of defects. 



DSMC Results – 3D
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Simulation setup:
• Atomic Oxygen particle inflow
• O/CO particle outflow
• Periodic BC everywhere else
• Random distribution of initial active sites



Effect of defect density
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• Total surface area initially increases with material removal. 
• Peak in reactivity occurs earlier with increasing number of defects.
• Reactivity decreases after the peak due to decreasing surface area.  



Total ablation time
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• Total ablation time decreases with increasing number of defects. 


