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The engineering process of Design for Reliability (DfR) is well established in the 
automotive and aerospace industries. DfR should be useful in the future development of space 
life support systems. DfR is a sequence of tasks that develop system requirements and plan 
reliability analysis and testing. First and fundamentally, the reliability requirement is defined. 
Next the system reliability model is developed, often using a reliability block diagram. The 
overall system reliability requirement is allocated to the subsystems and an estimate of the 
attainable reliability is made. This expected reliability can be improved by simplifying the 
design by removing components or by replacing less reliable components. Improving 
reliability can require difficult compromises, such as reducing performance requirements, 
increasing budget, or extending testing. The actual system reliability can be determined only 
by testing, which should continue long enough to provide the required confidence in the 
measured value. New systems often have unexpected design errors that cause failures in early 
testing. The usual reliability improvement process of testing, finding the failure modes, and 
redesigning to remove them reduces the failure rate and is referred to as “reliability growth.” 
After redesign has been completed, the system should be further tested to determine the actual 
achieved reliability more accurately. If the final system failure rate is too high, redundant 
systems can be used to improve overall operational reliability. Adding redundancy simply to 
increase the one- or two-fault tolerance metric may sometimes reduce reliability. Reliability 
can be improved in three ways: redesigning the system to include more reliable subsystems 
and components, reliability growth testing and failure mode removal, and by using parallel 
redundant systems. DfR should combine these approaches to achieve the required reliability 
while managing performance, cost, and schedule.  

I. Introduction 
This paper describes the Design for Reliability (DfR) process and explains how it can be used to improve the 

reliability of space life support systems. Since the problems caused by poor reliability usually occur during operations 
and often long after development, DfR can be overlooked during system design, especially if effort is predominantly 
focused on improving the real time performance demonstrated in an acceptance test. Establishing the DfR process as 
a series of required steps that are performed during the standard phased system design process should improve 
reliability.  

II. Design for Reliability (DfR) Overview 
Many books and journal articles describe the Design for Reliability (DfR) process. [1] [2] [3] [4] [5] DfR should 

be an integrated part of the system design process and follow similar sequential coordinated steps. Just as system 
design should begin by understanding the user’s system performance needs, reliability design should first identify the 
user’s system reliability requirements.  

A reliable system is one that operates as expected for a specified time under the anticipated conditions. “Reliability 
is the ability of a system to perform as intended (i.e., without failure and within specified performance limits) for a 
specified time, in its life cycle conditions.” [3] Also, reliability is “the probability that an item will perform its intended 
function for a designated period of time without failure under specified conditions.” [4] While defining reliability 
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requirements, the designers must consider the mission duration and the acceptable failure probability of the system. 
These two numbers define the system reliability requirement, which should be stated formally as, “The system shall 
have less than a 1 in 1,000 probability of failure over a 1,000-day operating life.” The reliability requirement should 
be verified by a combination of test and analysis, and the system specification should require a documented 
verification plan. [1] Surprising failures often occur and there is no way to guarantee future reliability. [2] The required 
reliability should be achievable and verifiable, but the achievable reliability is frequently overestimated and its cost 
underestimated.  

After the requirement is defined, the next step is reliability modeling, which includes reliability analysis and 
prediction. Understanding reliability is an essential early step in system design. “Reliability practices must begin early 
in the design process and must be well integrated into the overall product development cycle.” [4] The system diagram 
is used to develop a reliability block diagram that shows the subsystems and their interconnections. The reliability of 
each subsystem is assessed, based on test data from its components or similar hardware, and the overall system 
reliability is estimated. If greater reliability is needed, it can be improved by reducing system complexity and removing 
components, by redesigning the subsystems, or by providing redundant units. Working from the top-down after the 
bottom-up estimate, the system level reliability requirement can be allocated between the subsystems, defining each 
subsystem’s target reliability requirement. The feasibility of improving system reliability, and the cost of either 
improving reliability or accepting the current failure probability and adding redundancy to compensate, must be 
carefully considered. The objective of DfR is “to ensure that customer expectations for reliability are fully met 
throughout the life of the product with low overall life-cycle costs.” [4]  

After reliability requirements definition, reliability modeling, and system design, the next step is reliability growth 
testing. Often initial system testing reveals unexpected early failure modes, sometimes due to errors in requirements, 
design, manufacturing, or operational procedures. The familiar trouble shooting and redesign process, test-find-fix, is 
called reliability growth testing. Reliability growth continues as long as testing finds failures and redesigning removes 
them. It ends when the design is frozen, which can be a decided based on estimates of the achieved reliability and the 
possibility of further improvement. Reliability growth testing “should continue until the design is considered to be 
‘acceptable.’” [4] Further testing is often done to more accurately determine the system failure rate, since that 
determines if and how much redundancy is needed.  

The DfR process should continue even after a system is flown. Flight operations should be monitored for anomalies 
and all failures should be analyzed. Repairs must be planned and tested and design improvements could be considered. 
The steps of the DfR process are listed in Table 1. [2] (Jamnia and Atua 2020) Similar steps are described in other 
references. [4] [6] [7] These steps will be considered further.  

 
Table 1. DfR process steps.  

1 Reliability requirements 
2 Reliability modeling 
3 Reliability allocation 
4 Reliability estimation 
5 Reliability growth testing 
6 Reliability performance testing 
7 Reliability monitoring 

 

III. Reliability Requirements 
The first and most important step in DfR is defining the reliability requirements. The user’s reliability needs depend 

on how long the system will be used and on the consequences of failure. These factors vary greatly for space life 
support systems. Substantially different system approaches have been used on multi-day shuttle flights and on the 
multi-decade International Space Station (ISS). Since these missions are in Low Earth Orbit (LEO), the crew can 
quickly be resupplied or returned to Earth if the life support system fails. A long stay Mars mission would require 
about 225 days out, a 450-day surface exploration, and a 225-day return, for a roughly 900-day total mission duration. 
Since the crew cannot be resupplied or return to Earth during a Mars mission, the life support system for Mars must 
have much greater reliability than for LEO.  

Suppose that the top level Mars mission safety requirement is for a total Probability of Loss of Crew, Pr(LOC), of 
less than 1 in 100, which is roughly the known risk of the later shuttle missions. Most of this accepted risk would be 
allocated to the unavoidably high risk mission events, including launch, Mars entry, descent, and landing, Mars ascent, 
and Earth entry, descent, and landing. The Pr(LOC) due to life support would probably be allocated less than one-
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tenth of the total, say 1 in 1,000. The Mars mission life support system reliability requirement would be for 0.999 
reliability, a 0.001 probability of failure, over the 900-day mission duration. If a 1,000-day mission duration is used 
to simplify the math, the required life support failure rate for life threatening malfunctions would be less than 1 in 1 
million, 10-6, per day.  

Achieving and demonstrating such high reliability is a daunting prospect. If the expected system reliability is too 
low, the Mars mission plan could be modified to reduce risk. Possibilities include developing advanced propulsion to 
reduce transit time, making only a short 30-day stay on Mars, or using preplaced stored life support materials instead 
of relying on complex recycling life support systems.  

The reliability requirement specifies the expected operating life, here the mission duration, and tolerable failure 
probability, here the Pr(LOC). The duration and failure probability should always be stated together to avoid 
confusion. [8] For example, the Mars mission life support system shall have 99.9 percent reliability over the 900-day 
mission. In addition to the required reliability, the confidence bounds on reliability should be specified. For instance, 
the 90% lower confidence bound on reliability should be 99.5 percent. [9]  

Significant effort should be spent on life support reliability requirements development and analysis. Reliability 
requirements should be developed using the same process and at the same time as operational performance 
requirements [1, pp. 31-5] Requirements development is considered the principal challenge in DfR. “It is worth 
repeating that the sources of most failures are incomplete, ambiguous, and poorly defined requirements.” [5, pp. 5, 
130] Fundamental requirements that are often neglected include safety, repairability, logistics, operability, diagnostics, 
and failure response. Mars life support requirements should include repairability and maintainability, logistics 
materials and spares, and failure diagnosis procedures.  

IV. Reliability Modeling 
The two commonly used reliability models are Reliability Block Diagrams (RBDs) and predictive fault trees. They 

are graphs of the logic that shows how a lower-level subsystem failure can cause an overall system failure. An RBD 
shows the line connections between a system’s subsystems, which are shown as blocks. Two blocks in series must 
both operate for the system to operate, so the system’s probability of reliability is the product of the blocks’ 
probabilities of reliability. R series system = R block 1 * R block 2. If two blocks are in parallel, the system operates 
as long as either one operates, and the system fails only if both fail. The system failure probability is the product of 
the blocks’ probabilities of failure. F parallel system = F block 1 * F block 2. Since the probability of reliability is one 
minus the probability of failure, R = 1 – F, the reliability of a system with two blocks in parallel is, R parallel system 
= 1 - F block 1 * F block 2. Using parallel subsystems for redundancy adds failure tolerance and improves system 
reliability. For any connected configuration of subsystems, the RBD shows how to combine the reliabilities of the 
subsystems to compute the system reliability. [5, pp. 20-3]  

The RBD shows the system processing paths that can produce correct operations, while a failure fault tree shows 
how any specific block’s failure mode can produce a system level failure. A fault tree is a Boolean logic diagram with 
AND and OR gates. An OR gate result is TRUE if any input condition is TRUE. Two series blocks are shown as 
connected with an OR gate, so if either block fails the system fails. An AND gate result is TRUE only if all input 
conditions are TRUE. Two parallel blocks are shown as connected with an AND gate, so the system fails only if both 
input blocks fail. [5, pp. 20-3] Both these basic reliability models use the subsystem or block reliability to determine 
the integrated system reliability.  

V. Reliability Allocation 
The overall system reliability requirement is usually allocated between the different subsystems and then down to 

lower-level assemblies and components. This provides target reliability specifications for the design engineers at 
different levels and guides the design toward the needed reliability. [2] [5, p. 23] [4]   

Suppose a system has several necessary subsystems. If the subsystems’ reliability is initially unknown, they can 
all be allocated the same reliability requirement. If the overall system has a required reliability of R, and there are four 
subsystems, each can be assigned a reliability of R1/4. Since all the subsystems must operate for the integrated system 
to operate, the subsystems can be modeled as a series RBD, and the total system reliability is the product of the four 
subsystem reliabilities. (R1/4)4 = R.  

Suppose a Mars life support system has the required failure rate of less than 1 in 1 million, 10-6, per day. The Mars 
life support has many different functions, including maintaining atmosphere pressure, temperature, and humidity, 
carbon dioxide removal, trace contaminant removal, oxygen provision, water provision, food storage, human waste 
management, and fire suppression. Since this list has ten functional subsystems, each could be allocated the required 
failure rate of less than 1 in 10 million, 10-7, per day. This is clearly unrealistic because the hardware implementations 
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of the different functions have very different intrinsic reliability. Food storage, if compartmentalized and backed up 
by sufficient spares, should be very highly reliable. The spacecraft should reliably maintain pressure if provision is 
made to repair micrometeor punctures and replace lost atmosphere. Carbon dioxide removal, trace contaminant 
removal, oxygen generation, and water recycling as implemented on the ISS have had unexpected high failure rates, 
although without harm or danger to the crew. In designing Mars life support, the acceptable failure rate should be 
allocated to the intrinsically less reliable subsystems. The failure rates for highly reliable functions should be made 
negligible. Given the numerous life support failures in the International Space Station (ISS), the reliability of current 
space life support appears inadequate for a Mars mission. [10] [11]  

There is often a gap between an optimistic initial reliability allocation and a realistic data-based estimate. [2] The 
reliability allocation process can be used to plan reliability improvement. A basic reliability allocation process 
considers only the provision of redundant components in parallel. These may be built-in or hot spares, but space life 
support usually relies on cold stand-by redundancy. The more general reliability allocation method combines 
redundancy with improvement of component reliability. [12] Improving component reliability requires redesign and 
retesting, probably with a significant increase in cost and schedule. Optimizing the planned reliability improvement 
using both redundancy and component reliability improvement requires estimating their cost and benefit.  

A. The Cost-benefit of Improving Component Reliability 
The effort to improve reliability has steeply increasing costs and diminishing returns and the required cost increase 

is difficult to estimate. Several different mathematical models have been suggested. One rule of thumb is that cutting 
the failure probability in half requires an investment equal to the original development cost. The mathematical relation 
is Cost = original cost [1 + log2 (original failure probability/reduced failure probability)]. [13] Other authors suggest 
a much faster cost increase, exponential rather than logarithmic. Cost = original cost EXP [(original failure probability 
- reduced failure probability)/reduced failure probability]. [14] [15] (A more flexible cost model has the cost increase 
proportional to the power, a, of the failure rate improvement ratio. Cost = original cost [original failure 
probability/reduced failure probability]a. [16] The log2 (original failure probability/reduced failure probability) and 
exp (original failure probability/reduced failure probability) can be approximated by (original failure 
probability/reduced failure probability)a for different specific exponents, a. The proportional function cost of reliability 
seems able to model all the expected cases. [17]  

Assessing the opportunity and cost of improving component reliability is crucial in reliability planning. The 
recycling and regenerative life support systems now on the ISS are unique designs. They were very briefly tested 
before launch and have no identical copies, no prototypes or test models on Earth. Failures have been unexpectedly 
frequent and troubleshooting and redesign have been difficult. A strong effort focusing on better reliability could make 
significant gains. When improving an existing system’s reliability is difficult, using a different technology or 
simplifying the system architecture can improve reliability and even save cost. One example is replacing a complex 
redundant halon-using fire suppression system proposed for ISS with standard fire extinguishers. [18] A possibility in 
life support is using stored tanks of water instead of, or as backup to water recycling systems. [19]  

B. The Cost-benefit of Adding Redundancy  
The cost of adding redundancy is simply that of producing and flying the additional units. The cost of producing 

each additional unit decreases due to the learning curve, with one well known formula giving cost ~ quantity 0.59. [20]  
It has been suggested that a recycling life support system for a Mars mission be provided with three or four spares 

of each major subsystem, such as the water processor or oxygen generator [21] (Connelly 1999) This approach is not 
cost efficient since repairing a single failure uses a full subsystem. In contrast, ISS life support uses multiple Orbital 
Replacement Units (ORU’s) for each subsystem, so that failure replacement units are much smaller and less costly. 
Most important, a full spare subsystem can repair only a single failure while its set of component ORUs can repair 
many failures. This produces very much higher reliability using the same mass of spare parts.  

General calculations show how system reliability increases when system and component spares are provided. 
Suppose that each system has a failure probability F over the mission duration. If two parallel redundant components 
are provided, the probability that both will fail is F2, which is less than F assuming F < 1. If M parallel redundant 
system are provided, the probability that all M will fail is FM. Suppose that the system is divided into N components, 
each with the failure rate F/N. The probability that the system with one single string of components will fail is still F 
= N (F/N). The probability that a pair of redundant components will both fail is (F/N)2 and the probability that a system 
with a string of pairs of redundant components will fail is N (F/N)2 = F2/N. Providing two complete systems reduces 
the failure probability to F2, but dividing the system into N components each with 1/N of the total failure probability, 
and then providing two full sets of N components reduces the failure probability to F2/N. Similarly, providing M 
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instead of two redundant full systems reduces the failure probability to FM, and dividing the system into N components 
as before, and then providing full sets of N components reduces the failure probability to FM/N.  

This calculation is straightforward because it assumes that the redundant systems are all online and operating, so 
that they all have an online system’s probability of failure. The ISS life support ORU’s are in storage and are unlikely 
to fail before being used. A combinatorial calculation assuming stored spares do not fail gives an even further reduced 
failure probability. Taking a system, dividing it into N components with equal mass and failure rates, and then 
providing M copies of each component reduces an initial failure probability of F to [FM]/[M! NM-1]. For M = 2, this is 
half the failure rate of the simplified calculation, reflecting that only half of the components are operating at any one 
time. [11] [22] [23]  

In life support systems design for the space station, the potential points of failure were contained in replaceable 
ORU’s, which can replace filters, motors, sensors, and valves, not but not piping, framing, structure, or panels. This 
makes improving reliability using spares easier and more effective.  

C. Common Cause Failures 
Not all failures can be repaired using spares. Sometimes rework or redesign are needed. Common Cause Failures 

(CCF’s) defeat redundancy since they damage both the original parts and the spares. CCF’s can be due to deficient 
parts, but many are caused by design errors, unexpected environmental challenges, or operator errors.  

Rutledge and Mosleh investigated all the space shuttle flight anomalies in the first forty flights after the Challenger 
accident. Of 473 anomalies, 54 (11%) were judged to be CCF’s, and 11 more were due to functional or spatial 
interaction, for a total of 64 (14%) non-independent failures. [24] The ISS Oxygen Generation Assembly (OGA) had 
50 component and ORU replacements and as many other maintenance events from 2009 through 2014. About half of 
these OGA problems were due to design errors and other CCF’s. The very high level of CCF’s in the ISS OGA 
probably reflects the great difficulty in testing, trouble shooting, and redesigning a system that has only one operating 
unit, with that unit located in space. CCF’s can be reduced to a few percent of all failures if systems are well designed 
and thoroughly tested.  

CCF’s reduce the reliability improvement that would be expected from redundancy. A CCF can be defined as a 
failure mode that defeats redundancy. If there are two redundant operating units, a common cause that makes one fail 
will cause both to fail. If a single operating unit fails due to a continuing or repeated common cause, its replacement 
will fail for the same reason. A random failure, even one with unexpected high probability, is not a CCF since 
operational reliability can be improved by adding redundant spares. Suppose a component and its spare both have a 
failure probability of 0.01 per year. If the failures are independent, the probability that both fail is 0.01 * 0.01 = 0.0001 
per year, a reduction by two orders of magnitude. But suppose the failure probability of 0.01 per year includes ten 
percent of CCF’s, so the CCF probability is 0.001 per year. If the original part fails due to a CCF, the replacement 
parts can also be expected to fail. The redundant system failure probability is no less than the CCF probability, no 
matter how many spares are provided. The probability that two units both fail is 0.01 * 0.01 + 0.001 = 0.0001 + 0.001 
= 0.0011 per year, adding the redundant pair and common cause failure probabilities. Redundancy cannot reduce the 
overall failure probability below the common cause failure probability. Reducing the probability of CCFs should be a 
major objective of space life support design and testing.  

D. Problems with Fault Tolerance Redundancy Requirements 
NASA uses fault tolerance requirements to improve the safety and reliability of human missions. A two-fault 

tolerant system is one that can operate satisfactorily after two failures. This requires triple redundancy, one operating 
system and two spares. Achieving fault tolerance requires redundancy, which is often needed to improve reliability, 
but redundancy design can create problems. Automated redundancy can add sensors, controllers, logistics, and 
programmed operations, which add new failure modes including CCF’s that may not be sufficiently understood. 
NASA’s fault tolerance requirements can increase risk while mistakenly leading to overoptimistic assessments of 
reliability. [25]  

E. Summary of Reliability Allocation 
After reliability requirements and modelling, the next DfR step is reliability allocation. A rough initial reliability 

allocation can be done theoretically from the top-down, but a bottom-up data-based approach seems preferrable. If 
reliability data is available for similar past systems or an engineering prototype, it should be used to make the reliability 
allocation. After reliability allocation, the next step is reliability estimation, which should uncover any forseeable 
difficulty in achieving the requirements. There may be a significant gap between the requirements and realistic 
estimates. [2]  
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VI. Reliability Estimation 
“It is highly important to estimate the product’s reliability, even with a rough first cut estimate, early in the design 

phase.” [4] Correctly estimating the future reliability of a projected system is very difficult and overestimates are 
common. There is no certain method for accurate prediction of future reliability. [2] Nevertheless, reliability prediction 
is useful and necessary. [5] Comparing the expected reliability to the requirement quantifies the anticipated difficulty 
of DfR.  

A. Initial Bottom-Up Component Based Estimate 
The usual way to do an initial reliability estimate is bottom up, simply adding the component failure rates. The 

system design is graphed in a block diagram and the component level RBD is developed. The component failure rates 
are obtained from vendor data, preliminary tests, physics of failure analysis, and if this is insufficient also using 
engineering judgment and expert opinion. [4]  

Typically, all the components must perform for successful operation, so the estimated overall failure rate is the 
sum of the component failure rates. This provides an optimistic lower bound on the failure rate. The lowest possible 
failure rate can be achieved only if the system design does not introduce other failure modes in addition to the 
component failure sources.  

“Not all system failures are caused by parts. Other causes include unexpected interactions between components, 
tolerance build-up, and software faults. But because of the difficulty of associating these with numerical failure rates 
the practice has been to use part failure rates as a proxy.” [26] Component-based system failure assessments 
underestimate the true failure rate because they ignore integration and system level failures. Life support reliability 
has been greatly overestimated using the sum of components failure rate approach. [27]  

B. Similar Systems Reliability Estimate 
A better and more realistic failure rate estimation should be made based on the actual failure rates of similar 

systems. Estimation using similar systems’ data is called “reference class forecasting,” and is based on Nobel prize 
winning decision analysis described in Daniel Kahneman’s book, Thinking, Fast and Slow. [28] Planning is often 
overconfident and uninformed by relevant experience. Costs, schedules, failure rates, and risks can all easily be 
underestimated. Reference class forecasting requires: 1) identifying the reference class of similar systems, 2), 
establishing the class distribution of the estimated parameter, e.g., the reliability, and 3), comparing the target system 
to the reference class.  

The project planning expert Flyvbjerg found that cost under-estimation errors can be caused by technical errors, 
over-optimism, and deliberate self-serving deception, but he also found widespread ignorance of actual past project 
costs. He considered reference class forecasting to be “the single most important piece of advice regarding how to 
increase accuracy in forecasting.” [28] Reference class forecasting deliberately avoids the distracting details of system 
design and project planning and considers only the actual costs of similar projects. Using reference class forecasting 
is easier and more accurate than component-based bottom-up estimation. [29] [30]  

C. Poor Past Life Support Reliability 
The ISS life support system has had poor reliability. The actual life support failure rates have been significantly 

greater than predicted. Almost always, the specific subsystem failure rates were higher than predicted and they were 
usually a full order of magnitude higher. Water and oxygen storage and resupply were found to be significantly more 
reliable than physical-chemical recycling processors. [27] [11] Russell and Klaus state the “total ECLSS maintenance 
for 865 days was found to exceed the design estimate by a factor of 22.” A contributing factor was the oxygen 
generation system’s greater than expected failure rate. [10] [11]  

D. Reliability Feasibility Analysis 
A reliability feasibility analysis should compare the estimated reliability of each subsystem to the allocated 

reliability requirement. [2] The feasibility analysis is needed to identify gaps, define strategy, and develop the 
reliability plan. The reliability estimates should be updated based on test results on engineering models and prototypes. 
[2]  

VII. Reliability Growth Testing 
“(T)raditional Design-for-Reliability (DFR) principles alone are simply not sufficient when designing highly 

complex systems,” and they should be augmented by a reliability growth program.[31] The purpose of reliability 
growth testing is to induce failures, identify their causes, and redesign the system to remove them. Initial testing of a 
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newly developed system often finds an unexpectedly high failure rate, sometimes referred to as “infant mortality.” 
The unanticipated failure causes include poor design, defective materials, an inadequate manufacturing process, and 
poor operating instructions. [2] As these initial failure modes are identified and removed, the failure rate usually 
declines exponentially with time. Reliability growth is commonly modeled as continuing indefinitely as long as testing 
continues, with less probable failure modes continually occurring and being removed, and the failure rate constantly 
declining toward zero. However, this is frequently a mathematical modeling artefact, due to an early high number of 
failures being averaged over ever-longer time periods. In actual system operations, it is more typical for the failure 
rate to fall only to a constant low level. Reliability growth testing should be planned and monitored using a two-phase 
model, one having a period of exponential decline in failure rate followed by a period of constant failure rate. This 
corresponds to the first two segments of the traditional ‘bathtub curve” of reliability over time. [32] [33]  

In the usually assumed exponential model of reliability growth, the cumulative failure rate n(t)/t = k t-a, where 
n(t) is the number of failures until time t and k and a are constants. Suppose k failures occur before t = 1 and no further 
failures occur. Then the cumulative failure rate is n(t)/t = k/t = k t-1 and cumulative failure rate declines at the fastest 
possible speed. As t increases, the original failure count is averaged over an increasingly longer period and the 
cumulative failure rate n(t)/t = k/t approaches 0. It is usually assumed that testing and reliability growth can continue 
indefinitely. However, mathematically averaging a high initial failure count over an increasingly longer time will 
produce a declining cumulative failure rate that incorrectly suggests that the actual reliability is improving. Data often 
show that the initial exponential decline in failures during reliability growth is followed by a constant failure rate. If 
this is the case, long extended testing will cause the cumulative failure rate to approach the final constant failure rate. 
This final rate is the operational failure rate that should be used in reliability planning, and it should be more accurately 
determined by reliability measurement testing discussed in the next section. [32] [33]  

One key concern is identifying or determining the expected transition during testing between reliability growth 
and a constant failure rate. Reliability growth testing is an active process of finding and fixing failure modes. It will 
encounter diminishing returns and will probably be terminated when its assessed cost begins to exceed its benefit in 
failure rate reduction. The final failure rate may be due to many random, independent, and low probability failure 
modes that are considered unnecessary to remove. Reliability growth testing “should continue until the design is 
considered to be ‘acceptable.’” [4] The expected failure rate must be deemed satisfactory.  

VIII. Reliability Measurement Testing 
After reliability growth testing is completed and the final system design established, further testing should be 

conducted to establish the expected failure rate of the final design. [2] Sometimes the achieved failure rate is too high 
to provide the required reliability and confidence over the mission duration and redundant systems are required. Since 
the measured failure rate has some uncertainty, the reliability of the redundant systems will be overestimated about 
half the time. Adding more redundant units increases the confidence that the targeted reliability will be achieved. For 
any chosen number of redundant units, a lower reliability goal will be achieved with higher confidence. [32] [34] [35]  

The needed number of redundant units for any required reliability and confidence can be estimated based on the 
failure history. The record of the failure times determines the failure rate and its distribution so that reliability 
confidence intervals can be estimated. The needed redundancy can be computed using the cumulative Poisson 
distribution. The confidence that the expected reliability will be achieved can be computed using the cumulative 
Poisson distribution or the chi-square distribution. Extended testing should be conducted to more accurately determine 
the failure distribution and so reduce the variance of the failure rate and the width of the reliability confidence intervals. 
Narrowing the confidence interval reduces the number of redundant units needed to provide the required reliability 
and confidence and therefore reduces the total system implementation cost. However, the extended test time increases 
the cost, so testing cannot continue indefinitely.  

As the test time is increased, the test cost increases linearly but the number and cost of the needed spares drops 
rapidly, at first exponentially. The total cost is the sum of the cost of the redundant units and of the extended test 
program. There is often an optimum test time that produces the minimum total cost for the system failure rate, mission 
length, required reliability, and confidence level. If the projected total cost must be cut, either the reliability or 
confidence level or both must be reduced. The required reliability and confidence directly determine the minimum 
total cost for the redundant units and extended testing. This cost-based justification should encourage sufficient testing. 
[32] [34] [35]  

The major ISS life support systems, carbon dioxide removal, water recycling, and oxygen recovery, were 
protoflight systems with little testing before launch and operations. The water recycling system had only thirty hours 
of integrated testing before starting an operational life that may extend from 2008 to beyond 2025. One of the major 
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lessons learned from the ISS development experience is the need for extensive ground testing before launching space 
systems. [36]   

IX. Reliability Monitoring in the Field  
Most system operations and most failures occur not in testing but when systems are used in the field. And despite 

all admonitions to “test as you fly,” field operations often provide unanticipated causes to fail. Field failures should 
be analyzed to obtain the information needed to improve operational system use and to prioritize possible future 
redesigns.  

Another important lesson learned from the ISS experience, beyond the requirement for preflight ground testing, is 
the need to test space systems on orbit. [36] The initial operation of a system in space frequently reveals unexpected 
failure modes, often caused by launch vibration damage or by operation in microgravity. Fluid flow and heat 
convection are reduced. Space induced failures of ISS life support include flow clogging and particle migration due 
to microgravity. The ISS implements operational redundancy by providing onboard spares of ORUs (Orbital 
Replacement Units). The numbers of spares provided are based on the anticipated failure rates, which were initially 
estimated and then updated based on failure experience.  

X. Conclusion  
The established aerospace Design for Reliability process includes reliability requirements, modeling, allocation, 

estimation, growth testing, performance testing, and monitoring. This approach can obtain verified high reliability at 
the least cost. Space life support system development should use the DfR process to produce the reliable life support 
needed to build a sustainable human presence on the Moon and continue human exploration on towards Mars. The 
challenge of providing sufficient reliability for long missions in deep space is great, especially since reliability must 
be convincingly demonstrated before the mission. The high reliability requirement will drive the design toward using 
very reliable components and extensive redundancy. The time before a deep space mission is initiated can be well 
used in long duration life support reliability testing.  
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