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What is NASA?

e NASA is the National Aeronautics and Space Administration, an agency of the United States Federal
Government

— Established in 1958 by the National Aeronautics and Space Act
— Replaced its predecessor, the National Advisory Committee for Aeronautics (NACA), est. 1915.

* NASA conducts its work in five principal organizations, called mission directorates:

— Aeronautics Research: conducts research to advance the safety, capacity, and efficiency of the air
transportation system, reduce emissions, and sustain U.S. technological leadership in the aviation industry.

— Exploration Systems Development: defines and manages the systems development for programs critical to
the Artemis lunar exploration initiatives.

— Science: conducts scientific exploration enabled by observatories that view Earth from space, observe, and
visit other bodies in the solar system, and gaze out into the galaxy and beyond.

— Space Operations: focuses on launch and space operations, including launch services, space
communications and navigation, and eventually, sustaining operations on and around the Moon.

— Space Technology: invests in transformational technologies that help offset future mission risk, reduce cost,

advance capabilities that enable NASA's missions, and support space industry growth and high-quality job
creation.
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NASA Aeronautics — Vision for Aviation in the 21st Century

ARMD continues
to evolve and
execute the

Aeronautics Strategy
https://www.nasa.gov/
aeroresearch/strategy

’ i‘ Safe, Efficient Growth
in Global Operations

Innovation in Commercial
Supersonic Aircraft

Safe, Quiet, and Affordable
Vertical Lift Air Vehicles

In-Time System-Wide
Safety Assurance

Assured Autonomy for
Aviation Transformation

Ultra-Efficient Subsonic
Transports

0 Strategic Thrusts
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Background

e Human response to aircraft community noise is a complex perception
phenomenon that is a function of both acoustic and non-acoustic factors.

e The aircraft vehicle design process requires a multidisciplinary approach
to achieve a set of design goals that typically include performance,
emissions, fuel/energy consumption, and noise.

* Noise goals usually specified in terms of certification metrics, which may not

fully reflect acoustic factors related to human response, nor are intended to
reflect non-acoustic factors.

 |CAO noise certification requirements are part of a balanced approach
which strives to manage aircraft noise “in the most cost-effective
manner.”
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e Design for Noise
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Propeller-Driven Aircraft
(ICAO Chapter 10, FAR 36 Appendix G)

Takeoff Noise Limits for Single and Multi-Engine Airplanes

NOISE LEVELS vs AIRPLANE WEIGHT
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Optimized Acoustic Design "

+ Background

Predictions

Analysis Using
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Defining a Pareto Front
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Out-Of-Plane, Weighted
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Outline

Perception-Influenced Design
e Auralization
e Psychoacoustic Testing

14



How well do certification metrics reflect human
response to this system? @
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... Or to these systems?

Pressure (Pa)
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An Axiom

Given that aircraft noise design will continue to be based solely on
acoustical factors for the foreseeable future, and

given that current certification requirements are not focused on achieving
low-annoyance designs, then

it should be possible to achieve reduced community noise impact by
simultaneously meeting noise certification and other design requirements,
as well as other acoustic requirements(s), which directly address human
response.

We refer to this as Perception-Influenced acoustic Design (PID).

17



Perception-Influenced Acoustic Design

Validated Aeroacoustic
Tools & Methods for
Low Noise

Human Perception

l
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Performance

Fuel Burn
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and Metrics

&
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Auralization: Standard Flyover Use Case

@f‘ u. Update
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Rizzi, Sahai, "Auralization of air vehicle noise for community noise assessment," CEAS Aeronautical Journal,
2019, https://doi.org/10.1007/s13272-019-00373-6/
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NAF and Advanced Plugin Library

Programs

* NAFSNAP: Source Noise and Propagation
* NAFExample
e ANOPP2 Interface Examples
* Quickstart-modified
K * F1A Synthesis
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NAF (https://software.nasa.gov/software/LAR-18541-1)

NAF APL (https://software.nasa.gov/software/LAR-19278-1)
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e Receiver-based

Ground Reflection

Infinitely Hard Ground
Delany-Bazley Impedance model

/ Other

* Postprocessors
* ANOPP2 Metrics
e Psychoacoustic Analysis
* Normalization
* Preprocessor
e F1A Synth
* Trajectory
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PCBoom and Its Uses

PCBoom 7.3.0 (https://software.nasa.gov/software/LAR-19926-1)

PCBoom is a suite of sonic boom propagation programs for predicting sonic
boom waveforms distorted by propagation and atmospheric effects.

1. Aircraft trajectories for supersonic

waypoint flight planning

v N

— Aircraft fight patin

Contact:
Joel Lonzaga joel.b.lonzaga@nasa.gov

2. Post-flight sonic boom data analyses
(aircraft acoustic and tool validation)
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Remote Psychoacoustic Testing Platform

NASA Approved Cloud Service

Test Application

Test Subject
Responses

Test Subject
Computers
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Outline

Applications
 Supersonic Transports

23






X-59 Contributions from Langley IER

Downselection of noise metrics
for aircraft noise certification
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Quesst Mission Overview

Phase 1: X-59 Aircraft Development

e Detailed design

e Fabrication, integration, ground test
e Checkout flights

e Subsonic envelope expansion

e Supersonic envelope expansion

Contacts:
Alexandra Loubeau a.loubeau@nasa.gov
Jonathan Rathsam jonathan.rathsam@nasa.gov

Phase 2: Acoustic Validation

e |In-flight and ground measurements

e Validation of X-59 signature and
prediction tools

 Development of acoustic prediction
tools for Phase 3

Phase 3: Community Response

¢ Ground measurements in communities
e Community response surveys
e  Multiple campaigns across U.S.

e Data analysis and database delivery

NASA LaRC Acoustics has a technical role supporting planning and measurements for phase 2
and a lead role in planning and execution of data collection for phase 3.
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Supersonics — Takeoff Noise

Standard takeoff

reference procedure

Altitude, 1000ft AFE
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Rizzi, Berton, Tuttle, “Auralization of a Supersonic Business Jet Using Advanced
Takeoff Procedures,” AIAA-2020-0266, 2020 AIAA SciTech Forum, Orlando, 2020,

https://doi.org/10.2514/6.2020-0266.
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Advanced takeoff
procedure uses:

e Higher-speed
climbout

e Programmed
thrust lapse
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Standard vs Advanced Takeoff Procedures @
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Outline

Applications

e Contrarotating Open Rotor Propulsors

29



Contrarotating Open Rotor Propulsors | et

Isolated open rotor (RDG 470)

PNLT (PNdB)
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Contrarotating Open Rotor — Effect of Blade Set

Historical Blade Set
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Outline

Applications

e Advanced Subsonic Commercial Transports
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Selected N+2 and Reference Aircraft

e Single-Aisle Class
(160 PAX, 2875 nm)

* N+2 T&W Configuration
» UHBRGTF

e Ref T&W Configuration
* 737-800, CFM56-like

Rizzi, Burley, Thomas, "Auralization of NASA N+2 Aircraft Concepts
from System Noise Predictions," 22nd AIAA/CEAS Aeroacoustics Conf.,
AIAA 2016-2906, Lyon, 2016, https://doi.org/10.2514/6.2016-2906.

e Large Twin-Aisle Class
(301 PAX, 7500 nm)

* T&W Configuration
e UHBR direct drive
e UHBR GTF

 HWAB Configuration
e UHBRGTF

* MFN Configuration
e UHBRGTF

* Ref T&W Configuration
e 777-200LR, GE90-110B- like

33



Example — LTA reference & HWB301-GTF-ITD (Sideline) @/




Psychoacoustic Test Results

Rizzi, Christian, "A psychoacoustic evaluation of noise signatures from
advanced civil transport aircraft," 22nd AIAA/CEAS Aeroacoustics Conf.,
AIAA 2016-2907, Lyon, 2016, https://doi.org/10.2514/6.2016-2907.
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Comparison of EPNL reduction Psychoacoustics Test Results
| - e Calculated EPNL significantly
[ | System Noise Prediction . . ]
= With Adjustment [] overestimates perceived differences

— Large twin aisle HWB: 1.2 dB (approach)
and 2 dB (sideline).

— Single aisle T&W: 1.8 dB (approach) and 4.8
[ dB (sideline).

g 2 g 2
é g E é § )  Differences at each cert. point are on the
g e = = order of cumulative differences of 1-2
: : (L'-; LgL EPNdB noise reduction associated with
3 2 3 2 soft vane, partial main gear fairing, and
E ,% % % MDOF liners.

SA LTA

Even for N+2 aircraft that sound similar to today’s reference aircraft, there is a significant
component of annoyance that is not captured by PNLT & EPNL.
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Outline

e Applications

e Urban Air Mobility

36



Urban Air Mobility

e Auralization Developments
e F1A Synthesis
 Modulated Broadband Synthesis

e Psychoacoustic Studies

37



Additive Synthesis of Loading and Thickness Noise

Formulation 1A (F1A) used to
predict one blade passage
worth of sound pressures at
discrete set of points on

hemisphere
Ai=alip+ (1 - )4, AN \\\
~
N
i = ahip + (1= )i TSeL N
\\ N
N N \\\ AN
p(t) = ) Ajcos@ufity+9)  plt) = ) Ajcos(2ufity + ) RGN

i=1 i=1 =

Interpolation of magnitude and phase over discrete set of source noise predictions
may introduce audible artifacts for additive synthesis.

38




Krishnamurthy, Tuttle, Rizzi, "A Synthesis Plug-in for Steady and Unsteady Loading and

° Thickness Noise Auralization," 26th AIAA/CEAS Aeroacoustics Conference, AIAA-2020-
y n e S I S 2597, Virtual Meeting, 2020, https://arc.aiaa.org/doi/10.2514/6.2020-2597.

plty)

e Acoustic pressure time history generated ~. \

sample by sample using ANOPP2 F1A (AFFIFM). N
* No harmonic magnitude or phase interpolation.

Can be applied to steady and unsteady periodic and
unsteady aperiodic sound synthesis.

Single Rotor

Harmonic
Noise
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NAF F1A Synthesis Plugin

Rotor Trajectory
W and Flight Path

/ Blade /
Motion

Y

4
Blade
Geometry

| |
/ Blade Loadings, \

Motion, and Geometry
Data

FRAME

ANOPP-PAS

CAMRADII
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Krishnamurthy, Tuttle, Rizzi, "A Synthesis Plug-in for Steady and Unsteady Loading and
Thickness Noise Auralization," 26th AIAA/CEAS Aeroacoustics Conference, AIAA-2020-
2597, Virtual Meeting, 2020, https://arc.aiaa.org/doi/10.2514/6.2020-2597.
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Modulated Broadband Noise

Rizzi, Zawodny, Pettingill, “On the use of Acoustic Wind Tunnel Data for the Simulation
of sUAS Flyover Noise”, 25th AIAA/CEAS Aeroacoustics Conference, AIAA-2019-2630,
Delft, 2019, https://doi.org/10.2514/6.2019-2630.
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Synthesis

10°
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10*

Modulations (at BPF) in tunnel data not
captured in time-averaged SPL data.

41



ANOPP2 and AARON D

evelopment & Lab Validation

Turbulent boundary layer trailing Laminar boundary
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NAF Modulated Broadband Plugin
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Psychoacoustic Studies Utilizing Auralizations

Test of UAM Sound Quality (completed July 2022)

— Objective: Investigate how annoyance varies with sound quality.

— Generated test stimuli spanning a range of loudness, sharpness, tonality,
fluctuation strength, and impulsiveness.

Test of Noise and Numbers (completed January 2023)

— Objective: Investigate how annoyance varies with number of operations,
spacing between operations, and makeup of the fleet.

— To be presented at NASA Acoustics Technical Working Group mtg., Fall 2023

Test of Detection, Noticeability, and Annoyance (Sept 2023)

— Objective: Investigate how annoyance varies in presence of masking
noise.

Cooperative Human Response Study

— Objectives: Verify consistency of remote test platform with prior lab results,
determine effects of contextual cues, determine response differences by
geographic region (Oct 2022).

— Objectives: : Focus on UAM sounds using anonymized recordings and
auralizations to determine differences in annoyance between aircratft,
operations, and situational factors. (2024).

Exterior Effects Room (EER)

Remote Psychoacoustic Testing Platform

NASA Approved Cloud Service

Test Application

Responses

== . 4
i i | <Test Subject

Test Subject
Computers
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Psychoacoustic Studies
Test of UAM Sound Quality (TuSQ)

Low sharpness
High tonality
High impulsiveness

High sharpness
High tonality
High impulsiveness

 Baseline auralizations of level
cruise and descent manipulated to
provide range of SQ attributes.

8
9 A
< “

High sharpness 0.8
Low tonality
Low impulsiveness

)}

o o
Sharpness e ~

Impulsiveness

Low sharpness
Low tonality

Low impulsiveness >
=06

robabilit

« Difference in loudness 3 sones (~6 dB) g,
at equal annoyance point + X

« UAM sounds more annoying than ref. ~ °*
sound when presented at same level x

2 Oi O(; ? 1I0 o‘12 14 "16
Loudness (sone)
6.5 6.5 6.5
6 6 B - - -
i § « Tonality, impulsiveness and roughness:
BRIA. O ATE positive correlation with annoyance.
[=] \\ J” r . . .
£ st 51y’ » Sharpness: negative correlation with
is is is annoyance (at low levels)
4
Low High Low  High Low  High
=1 T I

Cooperative Human Response Study (Feasibility)

Total R? = 0.89
Gro'-und Vehicles Offs‘et = -G.Gq dB, Cl: [-8.1, -5.3]_‘ dB
. . . Extremel
* Replicated previous in-person test e - |
but found larger annoyance diff. 2 ey} [= = -Remoto Fassibiy Test Groumd Vetices i
between sUAS and ground vehicles. 3
gmoderaiely
g
E Slightly ;
g Extremely | @ Median SUAS Noise Response Not At Al -
& . A Median Ground Vehicle Noise Response | 5'5 80 6I5 ?ID 75 BID
§ Very | Sign Test Results Sound Exposure Level, A-Weighted [dB]
g [ P— Responses
g Moderately f—sinifieanty » Contextual cue affected annoyance to
< i D il . .
c  sighty| A A pesponsesnor | SUAS but not ground vehicle noise.
- Significantly
g Not At All | Different*
ol ol £ Extremely |[ @ Median sUAS Noise Response|
(] e ©
= « % Very Sign Test Results
5]
c
% Moderately & —} gesp;:unse:I
. = ignifican
 Detected annoyance response differs & Sight o Different*
. .. ightly
between two geographically distinct &
subject groups. 2 NotAtAl
> S
<& N

Boucher, Rafaelof, Begault, Christian, Krishnamurthy, Rizzi, “A Psychoacoustic Test for Urban Air
Mobility Vehicle Sound Quality,” SAE TP 2023-01-1107, 2023, https://doi.org/10.4271/2023-01-1107.

Krishnamurthy, Rizzi, Biziorek, Czech, Berg, Tannler, Bean, Ayrapetyan, Nguyen, Wivagg,
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UAM Noise Study," SAE TP 2023-01-1106, 2023, https://doi.org/10.4271/2023-01-1106.
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Outline

e Concluding Remarks
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Concluding Remarks

e Design of novel aircraft to simultaneously meet noise certification
requirements and achieve desired noise attributes made possible through a
perception-influenced design approach.

* Application of PID to development of low-noise operations has great future
potential, especially when operations are not concentrated around an
airport.

e PID is still in its infancy. It will take further development of tools and
methods and successful demonstration of the approach in real-world
applications before PID is widely adopted by industry.
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Danke

Selected media files are available for download at:

https://stabserv.larc.nasa.gov/flyover/

The work presented herein was primarily supported by the NASA Advanced Air
Vehicles Program and Transformative Aeronautics Concepts Program.
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