North American wintering mallards infected with highly pathogenic avian influenza show few signs of altered local or migratory movements

Claire S. Teitelbaum^{1,2*}, Nicholas M. Masto³, Jeffery D. Sullivan⁴, Allison C. Keever³, Rebecca L. Poulson⁵, Deborah L. Carter⁵, Abigail G. Blake-Bradshaw³, Cory J. Highway³, Jamie C. Feddersen⁶, Heath M. Hagy⁷, Richard W. Gerhold⁸, Bradley S. Cohen³, Diann J. Prosser⁴

- 1. Akima Systems Engineering, Herndon, VA, USA
- 2. Contractor to U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD, USA
- 3. College of Arts and Sciences, Tennessee Technological University, Cookeville, TN, USA
- 4. U.S. Geological Survey, Eastern Ecological Science Center, Laurel, MD, USA
- 5. Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- 6. Tennessee Wildlife Resources Agency, Nashville, TN, USA
- 7. U.S. Fish and Wildlife Service, National Wildlife Refuge System, Stanton, TN, USA
- 8. University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA

* Corresponding author: Claire Teitelbaum (<u>claire.teitelbaum@gmail.com</u>)

* Current address: Bay Area Environmental Research Institute and NASA Ames Research Center, Moffett Field, CA, USA

1 Abstract

2 Avian influenza viruses pose a threat to wildlife and livestock health. The emergence of 3 highly pathogenic avian influenza (HPAI) in wild birds and poultry in North America in late 4 2021 was the first such outbreak since 2015 and the largest outbreak in North America to date. 5 Despite its prominence and economic impacts, we know relatively little about how HPAI spreads 6 in wild bird populations. In January 2022, we captured 43 mallards (Anas platyrhynchos) in 7 Tennessee, USA, 11 of which were actively infected with HPAI. These were the first confirmed 8 detections of HPAI H5N1 clade 2.3.4.4b in the Mississippi Flyway. We compared movement 9 patterns of infected and uninfected birds and found no clear differences; infected birds moved 10 just as much during winter, migrated slightly earlier, and migrated similar distances as 11 uninfected birds. Infected mallards also contacted and shared space with uninfected birds while 12 on their wintering grounds, suggesting ongoing transmission of the virus. We found no differences in body condition or survival rates between infected and uninfected birds. Together, 13 14 these results show that HPAI H5N1 clade 2.3.4.4b infection was unrelated to body condition or 15 movement behavior in mallards infected at this location during winter; if these results are 16 confirmed in other seasons and as HPAI H5N1 continues to evolve, they suggest that these birds 17 could contribute to the maintenance and dispersal of HPAI in North America. Further research 18 on more species across larger geographic areas and multiple seasons would help clarify potential 19 impacts of HPAI on waterfowl and how this emerging disease spreads at continental scales, across species, and potentially between wildlife and domestic animals. 20

21

22 Introduction

23 Infectious diseases associated with wildlife have emerged at increasing rates in the last 50 years, a trend that is linked to declines in biodiversity and changes in climate and land use 1-4. 24 25 Avian influenza viruses (AIVs) are one such emerging threat to wildlife, domestic animals, and 26 potentially human health. Low pathogenic avian influenza viruses (LPAI) circulate endemically 27 in wild waterfowl populations (ducks, geese, and swans; order Anseriformes) and generally 28 cause little or no clinical disease ⁵. However, since the 2.3.4.4 clade of the A/goose/Guangdong/1/1996 H5N1 lineage of highly pathogenic influenza (HPAI) emerged in 29 30 2010, it has caused substantial mortality in many sensitive wild bird populations and significant economic impacts to commercial poultry operations ^{6,7}. Outbreaks of HPAI have been 31 32 concentrated in Eurasia, where these viruses are beginning to be independently maintained in wild birds and cause detrimental effects to many species ^{8,9}. In November 2021, the 2.3.4.4 clade 33 was detected in North America for the first time since 2015¹⁰. It has since spread across the 34 35 contiguous U.S. and Alaska, across 12 Canadian provinces and territories, and into Central and South America¹¹. Given its pandemic potential in wild birds and poultry^{9,12}, it is crucial to 36 37 further understand how HPAI impacts wild bird health and how it spreads within and among 38 wild bird populations.

Movement behavior of infected hosts drives the spread of infectious diseases and serves as an important indicator of an infection's pathogenicity. For example, a pathogen that imposes an energetic cost can reduce infected hosts' movement ability, thus reducing contact rates and limiting transmission. Infection with LPAI is sometimes associated with reduced movement in wild waterfowl at both local and migratory scales ¹³, but just as often LPAI infection has no effect on waterfowl behavior ¹⁴. However, HPAI viruses likely have stronger negative effects

45	than LPAI viruses on waterfowl movement behavior. For example, a lesser scaup (Aythya
46	affinis) infected with HPAI H5N1 in Maryland, USA in January 2022 exhibited reduced local
47	movements and subsequent mortality (cause unknown); despite these reduced movements, this
48	individual still could have contacted multiple uninfected birds while infected with HPAI H5N1
49	¹⁵ . Conversely, a white-faced whistling duck (<i>Dendrocygna viduata</i>) infected with a highly
50	pathogenic strain of avian influenza (HPAI H5N2) in West Africa displayed similar movement
51	patterns as uninfected conspecifics ¹⁶ . Laboratory studies also show wide variation in responses
52	to HPAI infection across waterfowl species and individuals, including in viral pathogenicity and
53	shedding rates ^{17–20} , which can be modulated by individuals' previous exposure to HPAI and/or
54	LPAI ^{21,22} . Each species' unique relationship between HPAI infection and movement behavior
55	likely influences its role in the dispersal of HPAI at local, continental, and global scales.
56	Among waterfowl, mallards (Anas platyrhynchos) and other dabbling ducks are the best-
57	known reservoir species for AIVs ²³ . Although mortalities have been reported in wild mallards
58	infected with HPAI, including in the 2021–2022 North American outbreak ²⁴ , most mallards
59	experimentally infected with HPAI H5N1 in laboratory settings show few or no clinical signs
60	despite shedding large quantities of virus ^{25–27} . Mallards are also the most abundant waterfowl
61	species globally, are distributed across the Northern Hemisphere, and exhibit complex migratory
62	patterns including within-population variation in migration propensity and distance, making
63	them an important species for both dispersal and local maintenance of AIVs ^{28,29} . Finally,
64	mallards are relatively adaptable to human activities and often occupy urban and agricultural
65	areas ^{30,31} . Their abundance in anthropogenic landscapes makes mallards a potential source of
66	spillover or spillback of AIVs between wild and domestic birds. However, despite their
67	potentially important role for HPAI infection dynamics, we know little about how HPAI

68 infection affects mallard movement behavior, and until now, have had no data on North69 American mallards' movement responses to newly emerged HPAI H5N1.

70 In January 2022, we detected HPAI H5N1 in 11 wild mallards in Tennessee, USA. These 71 are the first known detections of HPAI in wild waterfowl in the Mississippi Flyway during the 2021–2022 North American outbreak ²⁴. These mallards, which showed no signs of disease at 72 capture, and 32 uninfected conspecifics were fitted with GPS transmitters that provided hourly 73 74 locations. We used these data to compare local movement behavior and migration patterns between infected and uninfected individuals, and to identify spatio-temporal interactions 75 76 between marked birds that could have resulted in HPAI transmission. We expected that HPAI 77 H5N1 infection would have pathogenic effects on mallards, which would be reflected in reduced 78 movement by infected mallards shortly after detection of the virus. We expected that this 79 reduced movement would decrease contact rates and shared space use between infected and 80 uninfected birds. We also hypothesized that energetic costs of infection could carry over to 81 spring migration, which would be reflected in later, slower, and/or shorter-distance migration in 82 mallards infected during winter, compared to those with no known history of HPAI infection. 83 Finally, we compared mortality rates and body condition between infected and uninfected birds 84 to understand whether infection with HPAI H5N1 had apparent energetic or fitness costs.

85 **Results**

We captured 11 mallards infected with HPAI H5N1 and 32 that were not shedding any
AIV in Tennessee, USA in January 2022. HPAI infection prevalence was 0.39 in females (*n* =
7/18), 0.16 in males (*n* = 4/25), 0.32 in juveniles (*n* = 7/22), and 0.19 in adults (*n* = 4/21).
Prevalence of antibodies to the nucleoprotein of AIV was 0.57 overall (*n* = 23/40; antibody data
were unavailable for three individuals) and 0.54 in HPAI-infected birds (*n* = 6/11); detection of

93 Local movements

94 Local movement behaviors in the first 19 days following sampling were unrelated to 95 HPAI infection status (Fig. 1, Table S1–S3); the 19-day period of study was designed to include both active infection and recovery for HPAI-infected birds and ended before any tracked 96 97 mallards initiated migration. On the first day following sampling, when differences between 98 groups would be expected to be largest, the average area of a HPAI-infected mallard's daily 100% minimum convex polygon (MCP) was 0.085 km^2 (95% CI: 0.036-0.203), which was 99 indistinguishable from that of the average uninfected mallard (mean: 0.148 km², 95% CI: 0.087-100 101 0.250). Regardless of infection status, mallard space use increased following sampling and 102 release, probably indicating temporary effects of capture or transmitter attachment and not 103 infection on movement. We also found no difference in movement behavior by infection status 104 for hourly movement distances or daily net displacement (Fig. 1B-C; Table S2-S3). In a second 105 set of models, we found no evidence that AIV antibody status (which could indicate either 106 seroconversion from the current infection or from a prior infection) moderated the relationship 107 between HPAI active infection and movement behavior (Table S4).

108 109 Figure 1: Local movement patterns are unrelated to infection with HPAI H5N1 clade 2.3.4.4b in 110 43 mallards (Anas platyrhynchos) sampled in Tennessee, USA during winter 2022. In each plot, 111 points show raw data, lines show estimated means from a linear mixed-effects model, and shaded areas show 95% confidence intervals of the mean. Models also included terms for age, sex, and a 112 113 temporal autoregressive term for each individual; plots show marginal values averaged across 114 age and sex. For plots that show predictions conditional on random effects, see Fig. S1. (A) Area 115 of a 100% minimum convex polygon (MCP), a measurement of space use. (B) Mean hourly step 116 lengths, a measurement of overall movement. (C) Net displacement, i.e., distance from the first 117 GPS fix, a measurement of dispersal from the capture site.

118 Contact rates

We observed 375 interactions between pairs of mallards (i.e., a mallard was detected within 25 meters of a known location of another bird within 65 minutes; Fig. S2), of which 80 (23%) were potential close or indirect HPAI contacts, i.e., an infected bird followed by an uninfected bird. When we compared this proportion to the expected frequency of contacts in the population, the observed proportion was in the 75th percentile of the randomized data, indicating no significant difference between the observed frequency of contacts and the expected frequency assuming birds were interacting independently of infection status.

Infected birds used a cumulative total area of 6.9 km² during the first four days following 126 127 sampling; birds were likely to be shedding HPAI for at least four days after sampling, so we 128 considered this area potentially HPAI-contaminated (hereafter "contaminated area"). All birds 129 initially spent most of their time in the contaminated area, but use of this area declined as the 130 winter progressed, at similar rates for infected and uninfected birds (Fig. 2, Table S5). Our model 131 estimated that on the first day of measurement (February 4), tracked mallards spent >90% of 132 their time in the contaminated area, but this time decreased to <5% by February 9. There was 133 substantial variation among individuals; two individuals (6%) were never detected in the 134 contaminated area while two others spent all their time in the contaminated area through the end 135 of the study period (individual ID standard deviation = 5.085; AR1 correlation = 0.862). Males 136 spent more time in the contaminated area than females (Table S5).

8

Figure 2: Time spent in the potentially HPAI-contaminated area declines prior to initiation of 138 139 migration. The contaminated area was defined as the total area of all 95% utilization distributions of HPAI-infected mallards (Anas platyrhynchos) in the first four days following 140 sampling. The proportion of time was calculated as the proportion of daily fixes for each mallard 141 142 within the contaminated area. Points show raw data and are jittered to increase visibility. The 143 line and shaded area show marginal means from a generalized linear mixed-effects model. The 144 model also included terms for HPAI infection status, age, and sex; only sex was related to time 145 spent in the contaminated area (Table S5, Fig. S3).

146	Migration	patterns
-----	-----------	----------

147	We quantified migration patterns for birds with sufficient telemetry data to measure the
148	beginning of spring migration ($n = 35$) and arrival at summer sites ($n = 29$); some birds lacked
149	sufficient data due to mortality, lack of transmitter signal, or transmitter failure. The mean spring
150	migration initiation date was March 15 for infected birds ($n = 9$) and March 20 for uninfected
151	birds ($n = 26$). Infected birds departed slightly earlier than uninfected birds (13 days, 95% CI: 27
152	days earlier to 0.2 days later, $R^2 = 0.33$; Fig. 3, Table S6) and males departed earlier than females
153	(14 days, 95% CI: 1–28 days earlier).
154	The time between winter site departure and summer site arrival (i.e., migration duration)

154 The time between winter site departure and summer site arrival (i.e., migration duration)

averaged 63 days for infected birds (n = 8) and 69 days for uninfected birds (n = 21). Our model

156	indicated no difference in migration duration by infection status or age (Fig. 3, Table S6; $R^2 =$
157	0.24). There was weak evidence that males migrated for longer than females (estimate: 33 days
158	longer, 95% CI: 3 days shorter to 70 days longer).
159	The average migration distance was 1,540 km for infected birds ($n = 8$) and 1,445 km for
160	uninfected birds ($n = 21$). Our model showed no evidence for a difference in migration distances
161	in infected birds (difference: 228 km, 95% CI: 80 km shorter to 536 km farther, $R^2 = 0.17$; Fig.
162	3, Table S6). We found no evidence for a difference in migration distance by age or sex.
163	The average migration speed for infected birds was 38 km/day and for uninfected birds
164	was 36 km/day. We found no relationship between infection status and migration speed
165	(estimate: 16 km/day, 95% CI: 24 km/day slower to 57 km/day faster, $R^2 = 0.14$; Fig. 3, Table
166	S6). We also found no evidence for differences in migration speed by sex or age.
167	We found no evidence that AIV antibody status was related to migration date, duration,
168	distance, or speed (Fig. S4, Table S7).

170 Figure 3: Relationships between HPAI infection status, sex, and migration patterns in mallards 171 (Anas platyrhynchos). Each panel shows the estimated mean and 95% confidence interval of the 172 mean from a linear model. Partially transparent points show raw data. Models also included a 173 term for age; plots show values for juveniles. (A) HPAI-infected birds departed on spring 174 migration slightly earlier than uninfected birds and males migrated earlier than females. The y-175 axis shows the day of year of spring migration initiation (day 80 = March 21). (B) The duration 176 of migration was unrelated to infection status. (C) Migration distance was unrelated to infection 177 status, but males migrated farther than females. (D) Migration speed was unrelated to infection 178 status or sex.

179 Body condition and mortality

180 We found no evidence for differences in body condition at capture between infected and

uninfected birds ($F_{1,47} = 0.073$, p = 0.787) or for differences in survival by infection status, age,

or sex. Model-estimated mortality rates were 0.38 for infected birds (n = 7; 95% CI: 0.01–0.77) and 0.33 in uninfected birds (n = 14; 95% CI: 0.05-0.62).

184 **Discussion**

204

185 We detected infections with HPAI H5N1 clade 2.3.4.4b in 11 of 43 (26%) mallards 186 sampled in Tennessee, USA, during January 2022. These detections represent some of the 187 earliest detections in live birds during the ongoing HPAI outbreak in North America, which has 188 severely impacted wild bird health (e.g., colonially nesting seabirds) and poultry production ¹¹. 189 Collectively, our analyses show that HPAI infection in wild mallards during winter had no 190 detectable effects on movement behavior at local (within 19 days) or migratory scales or on body 191 condition or survival. Importantly, we observed shared space use between infected and 192 uninfected birds on the wintering grounds as well as extensive movement of infected birds on the 193 wintering grounds (up to 50 km from the capture site) and during migration. Together, these 194 results suggest that tolerance of HPAI H5N1 infection could promote transmission within this 195 wintering mallard population and beyond, including to other species and geographic areas. 196 Our finding that HPAI-infected and uninfected birds migrated similarly suggests that 197 mallards had the potential to be effective dispersal agents for this emerging virus during its initial 198 introduction to North America in winter 2021–2022. In general, host-parasite combinations 199 where pathogenicity is low or tolerance is high should be associated most strongly with longdistance pathogen dispersal ³², especially for migratory species ³³. Although the expected 200 201 duration of infection with this clade of HPAI H5N1 can be up to 14 days (in experimentallyexposed immunologically naïve mallards²⁷) and most migrations began more than 14 days after 202 203 sampling, the shared space use that we observed suggest potential ongoing transmission during

winter. Thus, we strongly suspect that many birds could be actively infected at the time of their

205	migration. In addition, all birds either completed their migrations or made a stopover in less than
206	14 days (Fig. S5), thus providing a potential mechanism for long-distance spread of this
207	pathogen ³⁴ . However, infection statuses of all marked birds were unknown at the time of
208	migration. It is possible that active and recent HPAI infection affects migration behavior, but that
209	we could not detect these effects because recovery and transmission occurred between the time
210	of sampling and initiation of migration. Nevertheless, our data and analyses show no relationship
211	between infection and movement behavior in the week following sampling, or between infection
212	and body condition, collectively suggesting that HPAI H5N1 infection had minimal negative
213	effects on health or behavior in these wild North American mallards.
214	Laboratory studies show that HPAI infection often has minimal or no effects on duck
215	health or behavior ^{27,35,36} , and that in experimental settings, mallards can shed high
216	concentrations of HPAI H5N1 relative to other duck species ²⁶ . Likewise, we found no
217	differences in body condition or mortality between infected and uninfected birds in this wild
218	population, even though natural settings exhibit higher variability in food availability ^{37,38} , body
219	condition ^{39,40} , social interactions ⁴¹ , previous AIV exposure, and influenza viral loads in the
220	environment ⁴¹ than laboratory settings, all of which could influence the dynamics and
221	pathogenicity of influenza infection. Still, infections with the same pathogen can differ in their
222	pathogenicity across individuals and across time, depending on body condition, time since
223	infection, behavior, or infection history ^{39,42–44} ; if the most negatively affected birds are more
224	likely to die or "hunker down," they would not have been sampled, thus potentially biasing our
225	sample towards individuals that are tolerant of HPAI infection. We also found no evidence that
226	AIV antibodies mediated the effects of HPAI infection on movement behavior. Antibody
227	prevalence is relatively high during winter ⁴⁵ , which could have limited our ability to detect

subtle changes in behavior of infected mallards; this protective benefit of prior exposure could differ at other times of year or in groups of immunologically naïve birds (e.g., juveniles), which could alter infection-movement relationships. A combination of experimental, observational, and theoretical studies across more species and seasons is necessary to fully understand how immunology and the environment interact to determine the impacts of influenza infection on wild bird behavior and health.

234 Mechanistic models are important tools for understanding the maintenance, dispersal, transmission, and reassortment of influenza viruses ^{46,47}, but often face uncertainties in parameter 235 236 values (e.g., HPAI pathogenicity) or model structures (e.g., HPAI transmission routes). This 237 study can inform several important parameters for these models. First, in North American 238 wintering mallards with some prior AIV exposure, infection with HPAI H5N1 is unrelated to 239 movement distances at local or migratory scales based on our fine-scale location data; therefore, 240 modeling movement as homogeneous among infectious groups could be a reasonable assumption 241 in mechanistic models. Second, mallards in our study contacted one another independent of 242 infection status, but shared space use between birds declined over the course of the winter, 243 probably coincident with increases in movement and changes in habitat selection and availability as the hunting season ended and preparation for migration began 48 . This pattern suggests that, 244 245 while contact rates and contact with virions in the environment might be homogeneous within a population, they might vary within seasons. HPAI was also detected concurrently in 246 247 heterospecific birds at the same refuge (R. Gerhold, unpubl. data), which could further contribute 248 to environmental contamination. Modeling these spatio-temporal patterns in environmental 249 transmission will require more complex functions than assuming that all birds are equally likely

to encounter influenza virus in the environment. Our data and analyses can inform more realistic
models that more accurately predict the mechanisms of HPAI transmission and dispersal.

252 The current HPAI H5N1 outbreak in North America has affected over 47 million 253 domestic poultry in the United States and threatens some wild bird species of conservation 254 concern, including seabirds and raptors ^{11,24,49,50}. As this outbreak continues, wildlife managers 255 and farmers must adapt their practices to prevent influenza infection in these sensitive species. 256 Our results suggest that mallard populations – which are important culturally as a game species and for wildlife viewing 51 - might not be substantially impacted by the ongoing outbreak, at 257 258 least for wintering mallards with prior exposure to AIV infected with the genotype of HPAI 259 circulating in North America in January 2022. However, reduced wetland availability, as has been observed over the last century ⁵², can promote disease transmission within wild waterfowl 260 261 populations by increasing local densities, contact rates, and probabilities of environmental transmission ⁵³. Waterfowl densities at these and other state- and federally-owned waterfowl 262 refuges can be high ^{54,55}, meaning that contacts and shared space observed in our study represent 263 264 only a small fraction of potential direct and environmental transmission among the entire (mostly 265 unmarked) population. As these mallards move locally and northwards on their spring migration, they travel through agricultural areas ⁵⁶ and share stopover sites with other waterfowl species ⁵⁷. 266 267 We therefore expect that, because of their apparent tolerance to infection and gregarious 268 behavior, wild mallards (and potentially other waterfowl) are important for the epidemiology of 269 HPAI H5N1 in North America. However, because influenza viruses are constantly evolving and some strains exhibit higher pathogenicity than others ^{7,58,59}, it is critical to continue to monitor 270 271 the effects of HPAI H5N1 across larger samples of multiple wildlife species, especially as the 272 virus continues to reassort with North American-origin LPAI. More broadly, these results

highlight that interspecific variation in behavior and responses to an emerging infectious disease
can impact how these diseases spread, how long they persist, and their potential impacts on
wildlife, domestic animal, and human health.

276 Methods

277

Study area, capture, and sampling

278 We captured male and female mallards using rocket nets at Lake Isom National Wildlife 279 Refuge (NWR; 36.3049°N, -89.4173°W) on 24, 25, 30, and 31 January 2022 (*n* = 20, 8, 5, and 10 individuals, respectively ⁶⁰. Lake Isom NWR was established in 1938 as Tennessee's first 280 281 NWR and maintains a diversity of managed wetlands including croplands, forested wetlands, and 282 a large ~150 ha shallow-water lake that is seasonally dried, mechanically manipulated, and 283 flooded during winter to provide moist-soil vegetation and seeds for wintering waterfowl. Lake 284 Isom NWR hosts nearly 40,000 ducks on average in January (January 2022 aerial estimate = 36.834 55). 285

286 We banded all captured mallards with U.S. Geological Survey aluminum tarsal bands and 287 determined sex and age based on cloacal inversion, wing plumage, and bill color ⁶¹. We aged 288 ducks as juvenile (second year) or after adult (after second year). We measured weight $(\pm 0.10 \text{ g})$ 289 and wing cord length $(\pm 1 \text{ mm})$ for all individuals. We collected oropharyngeal and cloacal 290 swabs of all individuals and placed paired swabs into 2 mL viral transport medium (VTM; 64). 291 We also extracted ≤ 3 mL of blood from the brachial artery for each individual and separated the 292 serum fraction. Swabs and sera were stored at -80°C until sent for virologic testing and 293 additional analyses at the University of Georgia (Athens, GA, USA). 294 We attached 20-g solar rechargeable and remotely programmable Global Positioning 295 System-Global System for Mobile (GPS-GSM) transmitters (OrniTrack; Ornitela, UAB

296	Švitrigailos, Vilnius, Lithuania) to birds weighing ≥ 1 kg to ensure deployment package remained
297	below recommended body weight limits $(3-5\%^{63})$. We attached transmitters using dorsally-
298	mounted body harnesses made of automotive moisture-wicking elastic ribbon ⁶⁴ . Completed
299	harnesses had two body loops knotted and sealed with cyanoacrylic glue above the keel and
300	across the abdomen 64 . Total package of GPS-GSM transmitter and harness weighed ~22 g.
301	Transmitters were remotely programmed to record hourly locations and were not synchronized
302	among individuals. Calibration data on this tag model indicates median location error of <25 m.
303	We used all available telemetry data from AIV-sampled birds from the first capture (24 January
304	2022) until we began analysis (27 October 2022) 65.
305	All duck capture, handling, and sampling procedures were approved by and carried out in
306	accordance with Tennessee Technological University's Institutional Animal Care and Use
307	Committee (protocol #19-20-0020) and authorized under Federal Banding Permit #05796. This
308	study complies with the relevant portions of the ARRIVE guidelines for observational studies.
309	Influenza lab methods
310	We attempted virus isolation on all swab samples by inoculating a total 1mL of VTM
311	into the allantoic cavities of three 9-11 day-old embryonated chicken eggs ⁶⁶ and incubating at
312	37°C for 120 hours. Amnioallantoic fluid was collected and tested by hemagglutination assay ⁶⁷ .
313	RNA was extracted from amnioallantoic egg fluids for all putative virus isolation-positive
314	samples using the QIAamp viral RNA mini kit (Qiagen Inc.; Germantown, MD, USA) following
315	manufacturer recommendations, and screened for the matrix gene of influenza A virus in real-
316	time reverse transcription polymerase chain reaction (rRT-PCR) as previously described ⁶⁸ .
317	Influenza A-positive samples were further screened for 2.3.4.4 HP H5 via rRT-PCR; suspect

319 Veterinary Services Laboratory, Ames, Iowa for confirmation. A positive virus isolation result
320 indicates active shedding of influenza at the time of capture.

Because no birds displayed visible indications of illness, laboratory testing was
completed after capture and release, meaning that infection statuses were unknown at time of
release.

324 Serum samples were tested for the presence of AIV antibodies by commercial blocking 325 enzyme-linked immunosorbent assay (bELISA, IDEXX Laboratories, Westbrook, ME) as 326 described by the manufacturer. An initial serum-to-negative control (S:N) absorbance ratio < 0.5327 represents the cutoff threshold recommended by the manufacturer, so we considered samples 328 with an S:N ratio >0.5 to be positive. A positive bELISA result represents the presence of 329 antibodies to AIV, which indicates prior infection with any AIV (HPAI or LPAI). Influenza antibodies are estimated to be detectable for 6 months-1.5 years ^{69–71} but usually peak within 3 330 weeks of infection 69,70 331

332 Data analysis

333 Local movements

We analyzed daily movement patterns within 19 days of capture to determine whether movement behavior differed between HPAI-infected and uninfected birds, beginning at the time of capture and ending after presumed recovery from infection (\leq 14 days; ²⁷). We expected that, if HPAI infection affected local movement behavior, infected and uninfected birds would move differently in the first few days following sampling, but any differences in movement would no longer be observed by the end of the 19-day window. One mallard started migrating 20 days after capture, so we used a 19-day window to include non-migratory movements only.

341	To measure daily movements, we used three related metrics of local movement: the area
342	of a daily 100% minimum convex polygon (MCP), mean hourly step lengths per day, and mean
343	daily net displacement. Daily MCPs draw a convex hull around all daily locations (i.e., GPS
344	fixes); a larger MCP indicates more movement and more exploratory behavior ^{72,73} . Mean step
345	length is the average distance between hourly GPS fixes in a day and has been used in prior
346	analyses of influenza in ducks ^{14,15} . Finally, mean net displacement measures a bird's daily
347	average distance from its capture location and measures the timing and distance of initial
348	dispersal. We resampled telemetry data to 1-hour intervals with a tolerance of 8 minutes (i.e.,
349	GPS fixes between 52 and 68 minutes apart), then calculated each movement metric per
350	individual per day. We split days at sunrise because ducks usually move between foraging and
351	roosting areas at dawn and dusk ^{64,73} , so using sunrise as the beginning of a day helps ensure that
352	movement or resting at a single foraging or roosting site are included as part of the same day. We
353	identified sunrise times using statistical software (suncalc package version 0.5.0 in R version
354	4.0.1 74,75) and calculated MCPs and step lengths (<i>amt</i> package version 0.1.4 76).
355	For each local movement metric, we fit a linear mixed-effects model with log-
356	transformed area or distance as the response variable (<i>glmmTMB</i> package version 1.1.3 77,78).
357	Explanatory variables were: active influenza infection status at capture (positive or negative);
358	days since influenza sampling; sex; age; and the pairwise interaction between infection status
359	and days since sampling. This interaction was included to test the prediction that movement
360	would change as birds recovered from infection. We log-transformed days since sampling
361	because we expected that differences in movement between infected and uninfected birds would
362	be largest in the first few days following sampling ^{14,79} . We included log-transformed number of
363	GPS fixes as a fixed effect to account for the sensitivity of movement metrics to sample sizes.

We also included an AR1 autoregressive random slope for each individual to account for interindividual variation and temporal autocorrelation in individuals' locations over time ⁸⁰. We evaluated models using standard plots and tests of residuals (*DHARMa* package version 0.4.3 ⁸¹) and calculated post-hoc estimated marginal means and 95% confidence intervals (CIs, *emmeans* package version 1.6.3 ⁸²).

Antibodies from a prior infection can protect birds from the most severe effects of 369 370 infection, and the presence of antibodies can indicate that an individual is relatively late in its 371 current infection; in either case, we hypothesized that effects of HPAI infection on movement 372 behavior might be smaller in individuals with antibodies to influenza. Therefore, we repeated 373 these models using a combination of active infection and antibody status as a predictor variable. 374 This variable had three levels: HPAI+/antibody+, HPAI+/antibody-, and HPAI- with either 375 antibody status. These models were otherwise identical to the models using active infection 376 status only.

377 Contact rates and environmental transmission

378 We used observed movement patterns of birds within four days of sampling to identify 379 close and indirect contacts that could have led to transmission. Based on experimental infection data, four days is a conservative estimate of the shedding period for HPAI ²⁷. We defined a pair 380 381 of locations as a contact if two birds were observed within 25 m of the same location within 65 382 minutes ¹⁵; this 65-min window accounted for different schedules among GPS transmitters, 383 which were not synchronized to provide fixes at the same time as each other, and allowed five 384 minutes for deviations from this hourly schedule. We considered an interaction to be a contact 385 that could lead to transmission if the bird that was present first was infected and the bird that was 386 present second was uninfected.

Next, we examined whether contacts that could have led to transmission were more or less common than would be expected if contacts were random with respect to infection status. To do so, we randomized infection statuses among individuals, then calculated the proportion of contacts that were "possible transmission contacts" in the randomized data. We repeated this process 500 times with replacement, then compared the distribution of proportions in the randomized data to the proportion in the observed data.

393 We also assessed the potential for environmental transmission of HPAI from GPS-tagged 394 mallards by estimating shared space use between infected and uninfected birds; note that this 395 analysis does not account for the presence of untagged HPAI-positive birds at the site and 396 therefore represents a conservative estimate of environmental transmission. For each infected bird, we calculated a dynamic Brownian bridge movement model (dBBMM⁸³; *move* package 397 version 4.0.6⁸⁴) for the first four days following sampling (as above, a conservative estimate of 398 399 the HPAI shedding period). We used a location error of 23.5 m and a raster resolution of 30 m 400 for dBBMMs. We then extracted the 95% utilization distribution (UD) contour for each infected 401 bird, which represents the area where the infected individual spent 95% of its time during the 402 four-day period. We then defined the "HPAI-contaminated area" for the population, which 403 included any location covered by at least one infected bird's 95% UD (i.e., the union of the 95% 404 UDs across all infected birds).

405 Starting at the end of the four-day period for the latest-captured infected bird (February 4, 406 2022) and continuing until the first date of spring migration (see below; February 11, 2022), we 407 calculated the proportion of time that birds that were uninfected at the time of capture spent 408 inside the HPAI-contaminated area. We started at the end of this period because we had 409 incomplete data on infected birds until the end of this time. For each bird, we calculated the 410 proportion of fixes in the HPAI-contaminated area vs. outside the area for each bird-day. This 411 proportion is a proxy for the daily environmental transmission risk per individual. To understand 412 how this risk varied across individuals, by infection status, over time, and by age or sex, we used 413 a generalized linear mixed-effects model with a logit link to model the proportion of fixes within 414 the contaminated area as a function of days since February 3 (log transformed), HPAI infection 415 status, age, sex, and the interaction between infection status and days since February 3 (using $glmmTMB^{77,78}$). We also included an AR1 autoregressive term for each bird ⁸⁰, because each 416 417 bird's locations on consecutive days are autocorrelated. The model used the number of fixes 418 inside and outside the HPAI-contaminated area as the response variable.

419 *Migration patterns*

420 To measure differences in migration phenology and migration patterns between infected 421 and uninfected mallards (Fig. S5), we first segmented each track into wintering, migration, and 422 summer periods. We used bivariate time-series segmentation on latitude and longitude using the segclust2d package ⁸⁵. This method uses the mean and/or variance in these two variables across 423 424 the track to identify discrete segments. We visually inspected each track to identify the number 425 of segments that most accurately separated wintering and summering phases from migration and 426 stopover. Because segmentation accurately identifies break points in segments but includes 427 movement bouts with either the previous or subsequent segment, we further segmented tracks by 428 creating a new segment each time a bird was observed moving 20 km/h or faster; this speed was 429 a clear distinction between dispersive (flight) and non-dispersive (local) movements for most birds⁸⁶. 430

We then classified each segment as winter, migration/stopover, or summer. We defined
winter as segments with median locations within 50 km of capture. We defined summer

433 locations as segments lasting at least 30 days and beginning in March-July, with a range of net 434 displacement ≤50 km 87,88 . For birds whose transmitters failed before this 30-day period was 435 over, we assigned the last segment as a summer segment if it was at least 1000 km from the 436 capture location and started in March-July. We verified all classifications manually using plots of 437 net displacement over time and maps of the locations of each segment.

438 From these segmented tracks, we measured four characteristic of each individual's spring 439 migration: (1) the initiation date of spring migration, i.e., the end date of a bird's last wintering 440 segment; (2) the duration of spring migration, i.e., the time elapsed between the last day of 441 wintering and the first day of summering; (3) migration distance, i.e., the median net 442 displacement of all summer locations (i.e., median distance from capture site); and (4) migration 443 speed, i.e., migration distance divided by migration duration. For six individuals, it was possible 444 to calculate migration initiation date but not the other metrics because they did not have 445 sufficient tracking data for the full migration period. For each migration metric, we modeled 446 differences between infected and uninfected birds using linear models. Each model used the 447 migration metric as the response variable and included infection status, sex, and age as 448 predictors.

We also developed a separate set of models that measured relationships between these same variables and prior infection (as opposed to active infection status). These models were constructed identically except that infection was measured using bELISA results as well as virus isolation (i.e., active infection) results. We considered an individual as previously infected at the time of migration if it tested positive for antibodies at the time of capture (i.e., a positive bELISA result) or if it was actively infected at the time of capture.

455 Body condition and mortality

456 We examined differences in body condition at capture between infected and uninfected 457 birds. We estimated body condition using the residuals from a linear regression between body 458 mass (g) and wing chord length (cm), which represent deviation from the expectation of sizeadjusted mass in the population⁸⁹. We found no evidence for differences in this relationship by 459 460 age or sex, so we did not account for age or sex in our calculation of body condition. We tested 461 for differences in body condition between infected and uninfected birds using a linear model 462 with body condition as the response variable and infection status as the predictor variable. 463 Finally, we evaluated whether survival to the end of the study (October 2022) was related 464 to HPAI infection status at capture. We only included birds confirmed to be dead or alive on 465 October 25, 2022 and omitted birds with unknown fates due to transmitter back-log, lack of 466 cellular connectivity, and/or transmitter failure. We fit a generalized linear model with a logit link that measured mortality as a function of infection status, age, and sex. 467

468 Acknowledgements

469 We appreciate support and funding from Tennessee Wildlife Resources Agency; U.S. 470 Fish and Wildlife Service Refuge System, Southeast Region; and the Center for the 471 Management, Protection, and Utilization of Water Resources (Water Center) at Tennessee 472 Technological University. R. Bealer, L. Bull, and K. Hall assisted in capture of mallards, viral 473 sampling, and deployment of GPS transmitters. At the University of Georgia, Alinde Fojtik 474 assisted in laboratory analysis. USGS scientists are supported in part by the Ecosystems Mission 475 Area. We thank David Stallknecht for valuable comments on an earlier version of the 476 manuscript. Any use of trade, product, or firm names are for descriptive purposes only and do

477	not imply endorsement by the U.S. Government. Views expressed in this article are those of the
478	authors and do not necessarily represent views of the U.S. Fish and Wildlife Service.
479	Data availability statement
480	Data are available at USGS ScienceBase ⁶⁵ and code to reproduce all analyses is available at
481	Zenodo ⁹⁰ .
482	Competing interests
483	All authors declare no competing interests.
484	Author contributions
485	NMM, BSC, and ACK designed with study with input from HMH, JCF, and RWG. NMM,
486	AGBB and CJH collected telemetry data. RLP and DLC performed and interpreted influenza
487	analysis. CST analyzed data with input from NMM, DJP, and JDS. CST prepared figures. CST
488	wrote the first draft, with editing from JDS, DJP, NMM, RLP and review by all authors. Project
489	administration and funding acquisition by BSC, JCF, HMH, and DJP.

490	References
490	References

- 491 1. Keesing, F. *et al.* Impacts of biodiversity on the emergence and transmission of infectious diseases. *Nature* 468, 647–652 (2010).
- 493 2. Cunningham, A. A., Daszak, P. & Wood, J. L. N. One health, emerging infectious
 494 diseases and wildlife: Two decades of progress? *Philos. Trans. R. Soc. B* 372, (2017).
- Tompkins, D. M., Carver, S., Jones, M. E., Krkošek, M. & Skerratt, L. F. Emerging
 infectious diseases of wildlife: A critical perspective. *Trends Parasitol.* 31, 149–159
 (2015).
- 498 4. Jones, K. E. *et al.* Global trends in emerging infectious diseases. *Nature* **451**, 990–993 (2008).
- 500 5. Kuiken, T. Is low pathogenic avian influenza virus virulent for wild waterbirds? *Proc. R.*501 Soc. B 280, 20130990 (2013).
- 502 6. Lycett, S. J., Duchatel, F. & Digard, P. A brief history of bird flu. *Philos. Trans. R. Soc. B*503 374, 20180257 (2019).
- Verhagen, J. H., Fouchier, R. A. M. & Lewis, N. Highly Pathogenic Avian Influenza
 Viruses at the Wild-Domestic Bird Interface in Europe: Future Directions for Research
 and Surveillance. *Viruses* 13, 212 (2021).
- 8. Pohlmann, A. *et al.* Has Epizootic Become Enzootic? Evidence for a Fundamental Change
 in the Infection Dynamics of Highly Pathogenic Avian Influenza in Europe, 2021. *MBio*13, 1–8 (2022).
- 510 9. Ramey, A. M. *et al.* Highly pathogenic avian influenza is an emerging disease threat to wild birds in North America. *J. Wildl. Manage.* **86**, e22171 (2022).
- 512 10. Bevins, S. N. *et al.* Intercontinental Movement of Highly Pathogenic Avian Influenza
 513 A(H5N1) Clade 2.3.4.4 Virus to the United States, 2021. *Emerg. Infect. Dis.* 28, 1006–
 514 1011 (2022).
- 515 11. Harvey, J. A., Mullinax, J. M., Runge, M. C. & Prosser, D. J. The Changing Dynamics of
 516 Highly Pathogenic Avian Influenza H5N1: Next Steps for Management & Science in
 517 North America. *Biol. Conserv.* In Press, 110041 (2023).
- 518 12. Horwood, P. F. Avian influenza H5N1: still a pandemic threat? *Microbiol. Aust.* 42, 152–
 519 155 (2021).
- van Gils, J. A. *et al.* Hampered foraging and migratory performance in swans infected
 with low-pathogenic avian influenza A virus. *PLoS One* 2, e184 (2007).
- 522 14. Bengtsson, D. *et al.* Does influenza A virus infection affect movement behaviour during
 523 stopover in its wild reservoir host? *R. Soc. Open Sci.* **3**, 150633 (2016).
- Prosser, D. J. *et al.* A lesser scaup (Aythya affinis) naturally infected with Eurasian 2.3.4.4
 highly pathogenic H5N1 avian influenza virus: Movement ecology and host factors. *Transbound. Emerg. Dis.* 69, e2653–e2660 (2022).
- 527 16. Gaidet, N. *et al.* Evidence of infection by H5N2 highly pathogenic avian influenza viruses
 528 in healthy wild waterfowl. *PLoS Pathog.* 4, 1–9 (2008).
- 529 17. Hénaux, V. & Samuel, M. D. Avian influenza shedding patterns in waterfowl:
 530 Implications for surveillance, environmental transmission, and disease spread. *J. Wildl.*531 *Dis.* 47, 566–578 (2011).
- Luczo, J. M., Prosser, D. J., Pantin-Jackwood, M. J., Berlin, A. M. & Spackman, E. The
 pathogenesis of a North American H5N2 clade 2.3.4.4 group A highly pathogenic avian
 influenza virus in surf scoters (Melanitta perspicillata). *BMC Vet. Res.* 16, 1–10 (2020).

- 535 19. Stephens, C. B., Prosser, D. J., Pantin-Jackwood, M. J., Berlin, A. M. & Spackman, E.
 536 The pathogenesis of H7 highly pathogenic avian influenza viruses in lesser scaup (Aythya affinis). *Avian Dis.* 63, 230–234 (2019).
- Spackman, E., Prosser, D. J., Pantin-Jackwood, M., Stephens, C. B. & BerlinB, A. M.
 Clade 2.3.4.4 H5 North American Highly Pathogenic Avian Influenza Viruses Infect, but
 Do Not Cause Clinical Signs in, American Black Ducks (Anas rubripes). *Avian Dis.* 63,
 366–370 (2019).
- 542 21. Costa, T. P., Brown, J. D., Howerth, E. W., Stallknecht, D. E. & Swayne, D. E. Homo543 and heterosubtypic low pathogenic avian influenza exposure on H5N1 highly pathogenic
 544 avian influenza virus infection in wood ducks (Aix sponsa). *PLoS One* 6, (2011).
- 545 22. Berhane, Y. *et al.* Pre-exposing Canada geese (Branta canadensis) to a low-pathogenic
 546 H1N1 avian influenza virus protects them against H5N1 HPAI virus challenge. *J. Wildl.*547 Dis. 50, 84–97 (2014).
- 548 23. Munster, V. J. *et al.* Spatial, temporal, and species variation in prevalence of influenza a viruses in wild migratory birds. *PLoS Pathog.* 3, e61 (2007).
- 550 24. USDA APHIS. 2022 Detections of Highly Pathogenic Avian Influenza in Wild Birds.
 551 https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease552 information/avian/avian-influenza/hpai-2022/2022-hpai-wild-birds (2022).
- 553 25. Brown, J. D., Stallknecht, D. E., Beck, J. R., Suarez, D. L. & Swayne, D. E. Susceptibility
 554 of North American ducks and gulls to H5N1 highly pathogenic avian influenza viruses.
 555 *Emerg. Infect. Dis.* 12, 1663–1670 (2006).
- 556 26. Keawcharoen, J., Riel, D. Van, Amerongen, G. Van, Bestebroer, T. & Beyer, W. E. Wild
 557 Ducks as Long-Distance Vectors of Highly Pathogenic Avian Influenza Virus (H5N1).
 558 *Emerg. Infect. Dis.* 14, 600–607 (2008).
- Spackman, E., Pantin-Jackwood, M. J., Lee, S. A. & Prosser, D. The pathogenesis of a
 2022 North American highly pathogenic clade 2.3.4.4b H5N1 avian influenza virus in
 mallards (Anas platyrhynchos). *Avian Pathol.* In Press, 1–28 (2023).
- 562 28. Hill, N. J. *et al.* Transmission of influenza reflects seasonality of wild birds across the annual cycle. *Ecol. Lett.* 19, 915–925 (2016).
- 564 29. Hill, N. J. *et al.* Migration strategy affects avian influenza dynamics in mallards (Anas platyrhynchos). *Mol. Ecol.* 21, 5986–5999 (2012).
- 566 30. Baldassarre, G. Ducks, geese, and swans of North America. (JHU Press, 2014).
- 31. Wille, M., Lindqvist, K., Muradrasoli, S., Olsen, B. & Järhult, J. D. Urbanization and the
 dynamics of RNA viruses in Mallards (Anas platyrhynchos). *Infect. Genet. Evol.* 51, 89–
 97 (2017).
- 570 32. Altizer, S., Bartel, R. & Han, B. A. Animal migration and infectious disease risk. *Science* 331, 296–302 (2011).
- 572 33. Fritzsche McKay, A. & Hoye, B. J. Are migratory animals superspreaders of infection?
 573 *Integr. Comp. Biol.* 56, 260–267 (2016).
- 574 34. Gaidet, N. *et al.* Potential spread of highly pathogenic avian influenza H5N1 by wildfowl:
 575 Dispersal ranges and rates determined from large-scale satellite telemetry. *J. Appl. Ecol.*576 47, 1147–1157 (2010).
- 577 35. Kim, J. K., Negovetich, N. J., Forrest, H. L. & Webster, R. G. Ducks: The 'Trojan Horses' of H5N1 influenza. *Influenza Other Respi. Viruses* 3, 121–128 (2009).
- 579 36. Van Den Brand, J. M. A. *et al.* Wild ducks excrete highly pathogenic avian influenza virus
 580 H5N8 (2014-2015) without clinical or pathological evidence of disease. *Emerg. Microbes*

581		Infect. 7, (2018).
582	37.	Kross, J., Kaminski, R. M., Reinecke, K. J., Penny, E. J. & Pearse, A. T. Moist-Soil Seed
583		Abundance in Managed Wetlands in the Mississippi Alluvial Valley. J. Wildl. Manage.
584		72, 707–714 (2008).
585	38.	Hagy, H. M. & Kaminski, R. M. Winter waterbird and food dynamics in autumn-managed
586		moist-soil wetlands in the Mississippi Alluvial Valley. Wildl. Soc. Bull. 36, 512-523
587		(2012).
588	39.	Arsnoe, D. M., Ip, H. S. & Owen, J. C. Influence of body condition on influenza a virus
589		infection in mallard ducks: Experimental infection data. PLoS One 6, e22633 (2011).
590	40.	Devries, J. H., Brook, R. W., Howerter, D. W. & Anderson, M. G. Effects of spring body
591		condition and age on reproduction in Mallards (Anas platyrhynchos). Auk 125, 618–628
592		(2008).
593	41.	van Dijk, J. G., Verhagen, J. H., Wille, M. & Waldenström, J. Host and virus ecology as
594		determinants of influenza A virus transmission in wild birds. Curr. Opin. Virol. 28, 26–36
595		(2018).
596	42.	Sánchez, C. A. <i>et al.</i> On the relationship between body condition and parasite infection in
597		wildlife: a review and meta-analysis. <i>Ecol. Lett.</i> 21 , 1869–1884 (2018).
598	43.	Hove, B. J., Fouchier, R. A. M. & Klaassen, M. Host behaviour and physiology underpin
599		individual variation in avian influenza virus infection in migratory Bewick's swans. <i>Proc.</i>
600		<i>R. Soc. B</i> 279 , 529–534 (2012).
601	44.	Hill, S. C. <i>et al.</i> Antibody responses to avian influenza viruses in wild birds broaden with
602		age, Proc. R. Soc. B 283, 20162159 (2016).
603	45.	Stallknecht, D. E. <i>et al.</i> Naturally Acquired Antibodies to Influenza A Virus in Fall-
604		Migrating North American Mallards, Vet. Sci. 9. (2022).
605	46.	Rohani, P., Breban, R., Stallknecht, D. E. & Drake, J. M. Environmental transmission of
606		low pathogenicity avian influenza viruses and its implications for pathogen invasion.
607		Proc. Natl. Acad. Sci. 106, 10365–10369 (2009).
608	47.	Li, X., Xu, B. & Shaman, J. The impact of environmental transmission and
609		epidemiological features on the geographical translocation of highly pathogenic avian
610		influenza virus, Int. I. Environ. Res. Public Health 16, 1–14 (2019).
611	48.	Casazza, M. L., Coates, P. S., Miller, M. R., Overton, C. T. & Yparraguirre, D. R. Hunting
612		influences the diel patterns in habitat selection by northern pintails Anas acuta. <i>Wildlife</i>
613		<i>Biol.</i> 18, 1–13 (2012).
614	49.	Nemeth, N. M. <i>et al.</i> Bald eagle mortality and nest failure due to clade 2.3.4.4 highly
615		nathogenic H5N1 influenza a virus. <i>Sci. Rep.</i> 13 , 191 (2023).
616	50	Purvear, W. et al. Outbreak of Highly Pathogenic Avian Influenza H5N1 in New England
617	001	Seals $1-10$ (2022).
618	51	Heusmann, H. W. The history and status of the mallard in the Atlantic flyway <i>Wildl. Soc.</i>
619	011	<i>Bull</i> 19 14–22 (1991)
620	52	Dahl, T. E. Wetland Losses in the United States: 1780's to 1980's. US Department of the
621	021	Interior, Fish and Wildlife Service, Washington, DC Jamestown, ND, Northern Prairie
622		Wildlife Research Center (Version 16IUL97) (1990)
623	53	Yin S <i>et al.</i> Habitat loss exacerbates pathogen spread. An Agent-based model of avian
624	55.	influenza infection in migratory waterfowl. <i>PLoS Comput. Biol.</i> 18 e1009577 (2022)
625	54	Hagy, H. M. et al. Waterfowl Monitoring Plan for National Wildlife Refuses in the
626		Southeast (2021)
5-5		

627 628 629	55.	Hagy, H. M. et al. Midwinter Aerial Waterfowl Surveys on National Wildlife Refuges in the Southeast during 2022. https://ecos.fws.gov/ServCat/Reference/Profile/144230. (2022)
630 631	56.	Krementz, D. G., Asante, K. & Naylor, L. W. Spring migration of mallards from Arkansas
632	57.	Williams, B. R., Benson, T. J., Yetter, A. P., Lancaster, J. D. & Hagy, H. M. Stopover
633 634		duration of spring migrating dabbling ducks in the Wabash river valley. <i>Wildl. Soc. Bull.</i> 43 , 590–598 (2019).
635 636	58.	Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M. & Kawaoka, Y. Evolution and ecology of influenza A viruses. <i>Microbiol. Rev.</i> 56 , 152–179 (1992).
637 638	59.	Pantin-Jackwood, M. J. & Swayne, D. E. Pathogenesis and pathobiology of avian influenza virus infection in birds. <i>QIE Sci. Tech. Rev.</i> 28 , 113–136 (2009)
639 640	60.	Sharp, D. E. & Smith, H. I. Rocket-projected net trap use in wildlife management and research, 1979-85. (1986).
641 642	61.	Carney, S. M. <i>Species, age and sex identification of ducks using wing plumage</i> . (US Department of the Interior, US Fish and Wildlife Service, 1992).
643 644 645	62.	Hanson, B. A., Stallknecht, D. E., Swayne, D. E., Lewis, L. A. & Senne, D. A. Avian Influenza Viruses in Minnesota Ducks During 1998–2000. <i>Avian Dis.</i> 47 , 867–871 (2003)
646 647	63.	Fair, J. M. & Jones, J. <i>Guidelines to the use of wild birds in research</i> . (Ornithological council 2010)
648 649	64.	McDuie, F. <i>et al.</i> GPS tracking data reveals daily spatio-temporal movement patterns of waterfowl Mov Ecol 7 6 (2019)
650 651	65.	Teitelbaum, C. S. <i>et al.</i> Data showing similar movement ecology between mallards infected and not infected with highly pathogenic avian influenza H5N1. <i>U.S. Geol. Surv.</i>
652 653 654	66.	Stallknecht, D. E., Shane, S. M., Zwank, P. J., Senne, D. A. & Kearney, M. T. Avian influenza viruses from migratory and resident ducks of coastal Louisiana. <i>Avian Dis.</i> 34 , 200, 405 (1000)
655 656	67.	 398–405 (1990). Killian, M. L. Hemagglutination Assay for the Avian Influenza Virus. in Avian Influenza Virus (ed. Speckwarg, E) 47, 52 (2009).
658 659 660	68.	Spackman, E. <i>et al.</i> Development of a Real-Time Reverse Transcriptase PCR Assay for Type A Influenza Virus and the Avian H5 and H7 Hemagglutinin Subtypes. <i>J. Clin.</i> <i>Microbiol</i> 40 , 33–44 (2002)
661 662	69.	Shriner, S. A. <i>et al.</i> Influenza A virus surveillance, infection and antibody persistence in snow seese (<i>Anser caerulescens</i>) <i>Transbound Emerg Dis</i> 69 742–752 (2021)
662 663 664	70.	 Fereidouni, S. R. <i>et al.</i> Dynamics of specific antibody responses induced in mallards after infection by or immunization with low pathogenicity avian influenza viruses. <i>Avian Dis.</i> 54, 79–85 (2010)
665 667 668	71.	Hoye, B. J. <i>et al.</i> Reconstructing an annual cycle of interaction: Natural infection and antibody dynamics to avian influenza along a migratory flyway. <i>Oikos</i> 120 , 748–755 (2011)
669 670	72.	Spiegel, O., Leu, S. T., Bull, C. M. & Sih, A. What's your move? Movement as a link between personality and spatial dynamics in animal populations. <i>Ecol. Lett.</i> 20 , 3–18 (2017)
672	73.	(2017). Bengtsson, D. <i>et al.</i> Movements, home-range size and habitat selection of mallards during

673		autumn migration. <i>PLoS One</i> 9 , e100764 (2014).
674	74.	Thieurmel, B. & Elmarhraoui, A. suncalc: Compute Sun Position, Sunlight Phases, Moon
675		Position and Lunar Phase. R Packag. version 0.5.0 (2019).
676	75.	R Development Core Team. R: A Language and Environment for Statistical Computing.
677		(2020).
678	76.	Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing
679		tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880-890 (2019).
680	77.	Magnusson, A. et al. Package 'glmmTMB'. R Packag. Version 1.1.2 (2017).
681	78.	Brooks, M. E. et al. glmmTMB Balances Speed and Flexibility Among Packages for
682		Zero-inflated Generalized Linear Mixed Modeling. <i>R J.</i> 9 , 378–400 (2017).
683	79.	Teitelbaum, C. S. et al. Waterfowl recently infected with low pathogenic avian influenza
684		exhibit reduced local movement and delayed migration. <i>Ecosphere</i> 14 , e4432 (2023).
685	80.	Zuur, A. F. et al. Mixed effects models and extensions in ecology with R. vol. 574
686		(Springer, 2009).
687	81.	Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression
688		models. <i>R Packag. version 0.4.3</i> (2019).
689	82.	Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means. <i>R Packag</i> .
690	0.2	version 1.6.3 (2021).
691	83.	Kranstauber, B., Kays, R., Lapoint, S. D., Wikelski, M. & Safi, K. A dynamic Brownian
692		bridge movement model to estimate utilization distributions for heterogeneous animal
693	0.4	movement. J. Anim. Ecol. 81, $738-746$ (2012).
694	84.	Kranstauber, B., Smolla, M. & Schart, A. K. move: Visualizing and Analyzing Animal
695	05	Irack Data. <i>R Packag. version</i> 4.0.0 (2020).
090 607	85.	Paun, R., Euenne, M. P., Lebardier, E., Chamanne-Jammes, S. & Bennamou, S.
09/ 609		modes and home range settlements. L Arim, East 80 , 44, 56 (2020)
098 600	96	MoDuia E at al Moving at the speed of flight: Dahling dual movement rotes and the
700	80.	relationship with electronic tracking interval Wildl Pas 46 523 543 (2010)
700	87	Hupp I W <i>at al</i> Variation in spring migration routes and breeding distribution of
702	07.	northern pintails Anas acuta that winter in Japan I Avian Riol 42 289–300 (2011)
702	88	Sullivan I D <i>et al</i> Waterfowl spring migratory behavior and avian influenza
704	00.	transmission risk in the changing landscape of the East Δ sign- Δ ustralasian Flyway. <i>Eront</i>
705		Fcol Evol 6 $1-14$ (2018)
706	89	Green A I Mass/Length Residuals: Measures of Body Condition or Generators of
707	07.	Spurious Results? <i>Ecology</i> 82, 1473–1483 (2001).
708	90	Teitelbaum C. S. Code release for: 'North American wintering mallards infected with
709	20.	highly pathogenic avian influenza show few signs of altered local or migratory
710		movement'. (2023) doi:10.5281/zenodo.8126569.
711		