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Key Points:

+ A devastating flood occurred in 2019 over the Midwestern and Southern regions
of the US significantly affecting ecosystem carbon cycling

« Net ecosystem exchange is examined in the flood-effected areas with NASA’s GEOS
modeling system from 2017 through 2019

» The 2019 floods caused a net reduction in Midwestern crop carbon uptake and smaller

net increase in non-crop uptake in Southern states
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Abstract

Climate extremes such as droughts, floods, heatwaves, frosts, and windstorms add con-
siderable variability to the global year-to-year increase in atmospheric COs through their
influence on terrestrial ecosystems. While the impact of droughts on terrestrial ecosys-
tems has received considerable attention, the response to flooding is not well understood.
To improve upon this knowledge, the impact of the 2019 anomalously wet conditions over
the Midwest and Southern US on COs vegetation fluxes is examined in the context of
2017-2018 when such precipitation anomalies were not observed. CO; is simulated with
NASA’s Global Earth Observing System (GEOS) combined with the Low-order Flux In-
version, where fluxes of CO are estimated using a suite of remote sensing measurements
including greenness, night lights, and fire radiative power as well as with a bias correc-
tion based on insitu observations. Net ecosystem exchange CO; tracers are separated
into the three regions covering the Midwest, South, and Eastern Texas and adjusted to
match COs, observations from towers located in Towa, Mississippi, and Texas. Results
indicate that for the Midwestern region consisting primarily of corn and soybeans crops,
flooding contributes to a 15-25% reduction of annual net carbon uptake in 2019 in com-
parison to 2017 and 2018. These results are supported by independent reports of changes
in agricultural activity. For the Southern region, comprised mainly of non-crop vegeta-
tion, annual net carbon uptake is enhanced in 2019 by about 10-20% in comparison to
2017 and 2018. These outcomes show the heterogeneity in effects that excess wetness can
bring to diverse ecosystems.

Plain Language Summary

Carbon dioxide (COg) is the main driver of climate change whose atmospheric con-
centration is governed by a mix of human emissions and absorption by land and ocean
sinks. Understanding how these sinks will respond to climate change in the future, in-
cluding in response to increasingly frequent extreme events like floods, is critical in set-
ting reliable emission reduction targets and improving Earth system models. Here, the
devastating flood of 2019 that affected the Midwestern and Southern US is examined with
respect to its effects on the ability of land ecosystems to absorb COs,. The analysis is
performed using NASA’s GEOS model, which simulates CO5 concentrations based on
a simple land model that had previously been adjusted to match global background in-
situ observations. In this study, fluxes are adjusted using COs observations from mea-
surement towers in the U.S. Simulations covering the years of 2017-2019 are compared
and indicate that parts of the affected region absorbed less CO2 in 2019 than in previ-
ous years. The results demonstrate the effects of floods on the carbon cycle are complex
and warrant further study, which is needed to understand how land ecosystems will re-
spond to climate change in the future.

1 Introduction

Understanding the future evolution of the carbon cycle is crucial to improve cli-
mate change predictions (Frank et al., 2015). Studies show that climate extremes (i.e.,
extreme weather events) have a noticeable effect on terrestrial ecosystems influencing the
cycling of carbon and thereby affecting global atmospheric CO5 concentrations (Reichstein
et al., 2013; Frank et al., 2015). These extremes are characterized by meteorological phe-
nomena such as droughts, floods, heat waves, frosts, and windstorms (Reichstein et al.,
2013). While general understanding regarding how these extremes affect the global car-
bon cycle exists, each case presents a unique challenge that may deviate from expected
behavior. To better understand the effects of climate extremes on carbon exchange be-
tween terrestrial ecosystem and atmosphere, detailed analysis of relevant case studies is
required.



73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

20

91

92

93

94

95

926

97

98

29

100

101

Droughts are common extreme weather events that impact terrestrial ecosystem
carbon processes and are relatively well studied (van der Molen et al., 2011). In the time
of drought, the ability of an ecosystem to consume COy decreases (Frank et al., 2015;
Schwalm et al., 2012). While the impact of droughts on terrestrial ecosystem has received
considerable attention over the recent years, the response of an ecosystem to flooding
events is intricate and ambiguous (Zaerr, 1983; Miyata et al., 2000; Knapp et al., 2008;
Dusek et al., 2009; Zona et al., 2012; Dalmagro et al., 2019). As the climate changes, cli-
mate models predict an increase in precipitation for midlatitude regions, thereby increas-
ing the likelihood of flooding events affecting these ecosystems (Knapp et al., 2008; Zhang
& Villarini, 2021). Therefore, it is imperative to better understand how the potential in-
crease in flooding events may affect future carbon budget.

The effects of flooding on carbon exchange in the terrestrial ecosystem depends on
the type of vegetation affected. Wetlands tend toward storing less atmospheric carbon
during flooding as photosynthesis weakens; however, annual Net Ecosystem Exchange
(NEE) may not change much as ecosystem respiration (RE) also decreases (Han et al.,
2015). Typically, during a growing season trees, shrubs, and grasses support net uptake
of atmospheric CO5 and continue to do so during moderate flooding, but it is not ex-
actly clear how an increase in the magnitude of the flooding may alter this process (Kramer
et al., 2008; Bourtsoukidis et al., 2014; Detmers et al., 2015). Ma et al. (2016) found that
grasslands in Australia can even benefit from anomalously wet conditions and assimi-
late more carbon compared to normal soil moisture conditions. Croplands, however, are
easily susceptible to waterlogging and tend to be a net source of atmospheric carbon when
flooding occurs (Rosenzweig et al., 2002; Ahmed et al., 2013; Yin et al., 2020; Yildirim
& Demir, 2022). Although the majority of CO2 that is initially absorbed by croplands
is eventually released back into the atmosphere, the cropland soils have the capacity to
sequester atmospheric CO5 and their ability to hold carbon is critically important for
reducing global atmospheric COs levels (Paustian et al., 2000; Follett, 2001; Zomer et
al., 2017). Also, extreme precipitation events may cause topsoil erosion leading to ad-
ditional carbon emissions into the atmosphere (Hilton et al., 2008; Dinsmore et al., 2013;
Lal, 2019). To further the knowledge of the effects of flooding on ecosystem carbon fluxes,
the spring/early summer Midwestern and central Southern US anomalously wet condi-
tions of 2019 are investigated.

Heavy precipitation in the spring/early summer of 2019 resulted in widespread flood-
ing of the Upper Mississippi River Basin and the surrounding regions causing damages
in the range of 2-3 billion US dollars (Neri et al., 2020; Reed et al., 2020; Price & Berkowitz,
2020). The focus of this study is on the Midwest (M) and the South (S and T, Figure
1), where anomalously wet conditions affected areas with different types of vegetation.
Stream gauges levels along with variety of other data and survey reports indicate that
the M region experienced periods of major flooding while the regions S and T were only
partially affected (supporting information section S1). In the Midwest vegetation pri-
marily consists of croplands such as maize (corn) and soybeans, while in the South there
are mainly forests transitioning to prairies in Eastern Texas (Figure 1). The primary aim
of this study is to investigate the impact of the 2019 anomalously wet conditions on the
NEE with simulations from NASA’s Goddard Earth Observing System (GEOS) Low-
order Flux Inversion (LoFI) model in the affected regions, in contrast to the years 2017
and 2018 which experienced comparatively lower anomalous precipitation levels, and to
assess results in the context of the regional GEOS LoFI NEE climatology from the pe-
riod 2000-2016.

Previously, Yin et al. (2020) showed the ability to quantify Midwest atmospheric
CO4 and Midwest croplands gross primary production (GPP) anomalies during the above-
mentioned 2019 flood using XCOs measurements from the Orbiting Carbon Observa-
tory 2 (OCO-2) and solar-induced chlorophyll fluorescence (SIF) derived from the TRO-
POspheric Monitoring Instrument (TROPOMI). Comparing 2019 to 2018, their results



Tundra
Additional Crops
Urban

Crops

Wetlands
Grassland

Savannah

Woody Savannah
Shrubs
Mixed

Deciduous

Evergreen

Water

Figure 1. Land cover map of the Eastern Conterminous United States (CONUS) derived from
Moderate Resolution Imaging Spectroradiometer (MODIS). White rectangles indicate regions af-
fected by the anomalous precipitation and are the focus of this study. Capital letter M indicates
the Midwest region, while capital letters S (South) and T (Texas) represent regions of the South

(for more details see Data and Methods section).



suggest a reduction in the Midwest cropland GPP of —0.21 PgC in June and July and
partial recovery of 0.14 PgC in August and September. Additionally, they noted a flood-
forced 3-week delay in the planting date of crops across much of the area. Turner et al.
(2021) also used TROPOMI SIF to study the impacts of the 2019 flood on CONUS veg-
etation arriving at similar conclusions as Yin et al. (2020) with 2018 as a reference year.

The present study builds upon Yin et al. (2020) and Turner et al. (2021) by an-
alyzing optimized GEOS LoFI NEE of the flood-affected region over the period 2017-
2019 using insitu tower data and extending the comparison to GEOS LoFI 2000-2016
regional NEE climatology. The focus is on better understanding of the 2019 precipita-
tion event and its impact on the affected ecosystems from the perspective of the atmo-
spheric carbon monitoring system. Specifically, the study looks at monthly and annual
regional optimized NEE budgets for years 2017-2019 comparing them to the GEOS LoFI
2000-2016 NEE budget climatology. The key scientific inquiry at hand is determining
the extent to which the 2019 late spring/early summer flood in the Midwest and parts
of the South has impacted the annual NEE budget, and whether this impact is signif-
icant enough to be observable with the tools employed. Additionally, the performance
of the NASA near real time carbon modeling tool, GEOS LoFI, is assessed and impli-
cations for carbon monitoring are discussed.

2 Data and Methods
2.1 MERRA-2

To map out regions of the flooding in 2019, precipitation, root zone soil wetness,
and 2-m temperature data from the Modern-Era Retrospective analysis for Research and

Applications, Version 2 (MERRA-2) are used (Gelaro et al., 2017). Bias corrected MERRA-

2 precipitation (mm) comprised of background data products [such as Goddard Earth
Observing System Model, version 5 (GEOS-5) or Forward Processing system for Instru-
ment Teams (FP-IT)| and observations [i.e., Global Precipitation Climatology Project
(GPCP)] is utilized (Reichle, Draper, et al., 2017; Reichle, Liu, et al., 2017). Root zone
soil wetness is described by the ground wetness variable for the 0-100 cm layer of soil.
The variable is dimensionless in units of relative saturation ranging from 0 to 1, where
value of 1 indicates completely saturated soil. Root zone soil wetness, precipitation, and
2-m temperature May-August 2017-2019 anomalies with respect to May-August 1981-
2010 climatology are calculated over the region of interest.

2.2 Crop Data

Since croplands contribute significantly to the carbon cycle of the M region, 2017-
2019 United States Department of Agriculture (USDA) crop planting data are analyzed
for corn (maize) and soybeans - the two most common crops in the US Midwest. In this
study, three attributes, which are crop planting progress, acres planted, and grain yield
of corn and soybeans from years 2017-2019 are compared. The following states are an-
alyzed here: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska,
Ohio, South Dakota, and Wisconsin. The data is taken from National Agriculture Statis-
tics Service provided by USDA (https://quickstats.nass.usda.gov/).

2.3 CO3 Data

2.3.1 Optimization Data

The optimization of the GEOS model (described later in section 2.6) takes place
in two different areas, the Midwest (M) and the South (broken down into two regions:
S and T, Figure 1). The process of optimization consists of adjusting GEOS NEE CO»
tracers from the 3 regions (M, S, and T) over the 3 years (2017-2019) in an attempt to



match 5-day running mean of daily observations [averaged over the afternoon hours of
1500-1700 local standard time (LST)| from insitu CO2 towers located in the regions of
interest: West Branch, Iowa (WBI) in M, Magee, Mississippi (MS-01) in S, Grenada, Mis-
sissippi (MS-02) in S, and Moody, Texas (WKT) in T (see Figure 2).

The WBI tower is in the agricultural ecosystem (corn belt) of eastern Iowa and is
part of the National Oceanic and Atmospheric Administration (NOAA) Earth System
Research Laboratories/Global Monitoring Laboratory (ESRL/GML) tall tower network
that is tasked with the goal of long-term carbon-cycle gas monitoring in the atmospheric
boundary layer (ABL) of continental areas (Andrews et al., 2014; Schuldt et al., 2021).
The location of the tower is ideal for COs monitoring pertinent to the Midwestern crop-
lands and hence is used here to analyze the effects of the 2019 flooding.

MS-01 and MS-02 towers are in Mississippi and were instrumented initially for the
Gulf Coast Intensive, designed to characterize CO5 in the southeastern region of the US
and maintained through 2019 as part of the airborne Atmospheric Carbon and Trans-
port - America (ACT-America) project (Miles et al., 2018). The MS towers did not mea-
sure CO5 simultaneously; therefore, to represent CO5 of the S region, MS-01 is used for
2017 and MS-02 is used for 2018-2019. These towers are well suited for this study as the
state of Mississippi did see significant wet anomalies in 2019 but avoided major flood-
ing that occurred upstream of the state.

Finally, WKT represents the T region of the South. Like WBI, the tower is part
of the NOAA ESRL/GML tall tower network (Andrews et al., 2014). The location of
the tower is optimal for capturing COs variability in eastern Texas and western Louisiana,
where the flooding of 2019 was also partially present.

2.3.2 Validation Data

Validation process with tower-based and airborne measurements is aimed at de-
termining how well the towers used for the optimization act as a proxy for the regions
of interest. The M region is validated with the Indianapolis Flux Experiment (INFLUX)
background tower 1 that is located on the southwestern part of Indianapolis, the direc-
tion least influenced by the COq emissions from the city (Davis et al., 2017). As in Iowa
(where WBI is located), vegetation in Indiana mainly consists of crops, making it a good
choice for the validation of the model optimizations at WBI. However, INFLUX tower
1 is immediately surrounded by forests, in contrast to WBI. The S and T regions are val-
idated using towers in Millerville, Alabam (AL-01) and Monroe, Louisiana (LA-01). To
be consistent with the optimization, 5-day running mean of daily observations (averaged
over the afternoon hours of 1500-1700 LST) is utilized.

The 2019 ACT-America campaign is also used for validation. ACT-America is an
airborne NASA Earth Venture mission dedicated to improving the accuracy, precision,
and resolution of atmospheric inverse estimates of CO5 and CH4 sources and sinks on
a regional scale (Davis et al., 2021). The mission conducted 5 seasonal campaigns (in-
cluding 2 summer campaigns) over the 2016-2019 period. For each campaign two air-
craft (C-130 and B-200) were used to survey three different regions in the United States:
The South, the Midwest, and the Mid-Atlantic. Data from the 2019 campaign covering
the South and the Midwest is used, which occurred in June and July of 2019. Most of
the flights took place in the period of 1100-1700 LST. For validation purposes the bound-
ary layer [~330 m above ground level (AGL)] CO2 was averaged for each of the selected
flight days.

2.4 GEOS Model Configuration Including LoFI Flux Package

NASA GEOS general circulation model, constrained by MERRA-2 meteorology fields,
with resolution of 0.5 by 0.625 degrees and 72 vertical layers (Molod et al., 2015) is uti-
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lized to simulate CO5 over the region of interest from January 14" to December 14"

for the years 2017-2019 (Weir et al., 2021). It includes the Low-order Flux Inversion (LoFT)
package, which contains a compilation of carbon fluxes driven by remote-sensing land
surface data (Ott et al., 2015; Weir et al., 2021) and a bias correction process designed

to reproduce COy mole fractions observed at NOAA’s in situ network. There are five com-
ponents to the mentioned LoFI flux package: NEE, biomass burning, fossil fuel combus-
tion, ocean exchange, and an empirical land sink (bias correction of the fluxes).

NEE is computed using the Carnegie-Ames-Stanford Approach — Global Fire Emis-
sions Dataset version 3 (CASA-GFED 3; Randerson et al., 1996; van der Werf et al., 2010)
that estimates carbon fluxes using satellite-derived vegetation products and MERRA-

2 meteorology. Biomass burning CO4 emissions are derived with the Quick Fire Emis-
sions Dataset (QFED; Koster et al., 2015), which is constructed using MODIS fire ra-
diative power (FRP) estimates in near real-time. Fossil fuel combustion is provided by
the Open-source Data Inventory for Anthropogenic CO2 (ODIAC; Oda & Maksyutov,
2015; Oda et al., 2018) that is based on disaggregated country-level fossil fuel COq emis-
sion inventories using a global power plant database and satellite observations of night-
time lights. Ocean exchange of COs is estimated using the differences between the par-
tial pressure of CO3 in seawater (pCO®V3) derived from the Takahasi et al. (2009) cli-
matology and the partial pressure in the atmosphere (pCO*™,) taken from the NOAA
marine boundary layer (MBL) reference (Masarie & Tans, 1995; Dlugokencky & Tans,
2016). An empirical land sink is applied as a bias correction to the collection of fluxes
to constrain the modeled atmospheric COy growth with the observed growth rates de-
rived from the NOAA MBL reference (Weir et al., 2021). The empirical sink matches
the global total fluxes for a year to a specified atmospheric growth rate of COs by re-
ducing heterotrophic respiration during months when there is an increase in the 2-m air
temperature, which is used as an approximate indicator of soil temperature, compared
to the previous month.

In addition to using LoFI as a driver of GEOS COq simulation, it is also used to
compute 2000-2016 monthly and annual NEE climatology that could be used as a sup-
plemental metric for comparison to initial and optimized 2017-2019 NEE. Monthly 2000-
2016 NEE climatology is computed by averaging the sum of 3-hourly NEE values for each
month (except January and December) over the 17 years and annual climatology is com-
puted by summing all 3-hourly NEE values for each year and then finding an average
of these 17 sums. Due to the way the model is ran, for January 3-hourly values from the
dates of 18" through 31% are summed and for December 3-hourly values from the dates
of 1st through 14*" are summed. Furthermore, monthly spatial NEE 2017-2019 anoma-
lies of regions M, S, and T with respect to spatial monthly 2000-2016 NEE climatology
are computed (supporting information section S6).

2.5 Definition of Tagged Tracer Regions

Before the optimization an area that influences towers is designated using NOAA’s
Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model backward
trajectories (Stein et al., 2015). The trajectories are released backwards for every 6 hours
for May through September of 2019 at the three optimization towers WBI, MS-02 (it is
assumed MS-02 is representative of MS-01), and WKT from the level of the correspond-
ing sensor (121-379 m AGL) using the North American Regional Reanalysis (NARR)
meteorology. The approximate area influencing each tower combined with the MODIS
Land Cover Climate Modeling Grid Product (MCD12C1) allow for the generation of COq
mole fraction tracer masks applied to tag regional NEE within GEOS that can be then
used in the optimization (Figure 3). MCD12C1 is the reprojection of the tiled MODIS
Land Cover Type Product (MCD12Q1) with the sub-pixel proportions of each land cover
class in each 0.05° pixel and the aggregated quality assessment information from the In-
ternational Geosphere-Biosphere Programme (IGBP) scheme (Sulla-Menashe & Friedl,
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Figure 3. Masks for the optimization based on the backward HYSPLIT trajectories, where
red region 1 influences WBI tower in Iowa and is labeled as M NEE COx tracer, the green region
2 influences MS-01 and MS-02 towers in Mississippi and is labeled as S NEE COx tracer, the pur-
ple region 3 influences both MS and WKT towers (part of both S and T NEE CO» tracers), and
finally the yellow region 4 influences WKT tower in Texas and is labeled as T NEE CO3 tracer.

Yellow circles indicate towers used for optimization.

2018). MCD12C1 is used to generate the appropriate masks of vegetation areas of in-
terest while removing any urban and coastal environments.

2.6 Optimization Approach

To quantify the effects of 2019 flooding on regional vegetation, NEE is compared
to the years 2017 and 2018. Though NEE is available from the LoFI flux package, it is
possible that these fluxes are inaccurate because of the use of a highly simplified diag-
nostic vegetation model. To provide a better estimate, the NEE component of the LoFI
collection, representative of the vegetation fluxes of a given area, is adjusted to minimize
the model-observation CO5 mole fraction difference. The optimization is independently
performed for the three different regions of M, S, and T (Figure 3), where each region
is characterized by its individual NEE COs tracer based on the selected insitu towers.

The observed CO2 mole fraction can be expressed in the following way:

CO2ps = CO2m0del + ACOQ, (1)
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where CO2,,04e1 represents CO5 from GEOS and ACO2 is the mole fraction of CO4 that

needs to be added to the modeled mole fraction to arrive at the observed value. The CO2,,04e1

term can be expanded as

CO2model = CO2ZTLL + 00200n + C’()2FF + COinre + COZNEEa (2)

where C'O2;,,; is an initial condition that consists of all the accumulated CO5 at a par-
ticular model grid cell in the model prior to January 14*® of a given year (either 2017,
2018, or 2019) and the rest of the right-hand terms are additions from ocean (OCN), fos-
sil fuels (FF), fire, and NEE. In the current work it is hypothesized that NEE term is

the most uncertain and that the ACO2 term in equation (1) is mainly driven by the CO2ygEg

term. Therefore, it is the only term adjusted to bring the modeled COs closer to the ob-
served COs. The CO2ypg tracer is tracked by the model from the selected regions and
the rest of the globe as shown in Figure 3 and can be expressed as

CO2xpp = CO2N pp + CO2% o + CO2L o + CO29508L 3)

with the right hand terms representing regional and the rest of the globe NEE CO4 trac-
ers. Only the regional tracers are adjusted in this study.

The optimization is performed at each of the three towers (M, S, and T) by solv-
ing for the minimum value of the cost function (Rodgers, 2000):

1 ~ region — ~ region 1 —
J(a) = 5[(9 +aCO2ygzg") —yIR 1[(1‘/ +aCO2yEE") — y]T + 5043 ol (4)

where « is a scaling factor by which NEE need to be changed, ¢ is modeled 5-day run-
ning mean of daily afternoon (1500-1700 LST) averages of CO3, y is observed 5-day run-
ning mean of daily afternoon (1500-1700 LST) averages of COs, B is the scaling factor
error covariance term, and R is the observation-model error covariance matrix. B can
be a matrix if more than one tracer is optimized, but in the current case of optimizing
just one tracer, B becomes equivalent to O’ip = 0.5, which determines by how much the
scaling factor a can be adjusted from the initial scaling factor o, = 0. The value of 0.5
is empirically derived and in this case is just large enough to allow for physically reason-
able NEE variation. R matrix represents combined observation-model error as well as
the covariances among the days in each segment. The adjustment is performed on a to-
tal of 22 segments consisting of 15 daily y and g values to smooth out NEE daily vari-
ability over the time of about 2 weeks (Friend et al., 2007; Chevallier et al., 2012). Square
matrix R is generated by first calculating observation-model daily error terms ¢ with the
expression (Heald et al., 2004):

E=y—9-y—9. (5)

Then ¢ terms are divided into 22 segments consisting of consecutive 15 daily values from
the total of m daily values (in this case total is 330 days comprising most of the year).
Variance is calculated for each segment as follows,

15 N2

This variance is unique to each segment and repeated for every day inside of an individ-
ual segment. Afterwards, the variance is converted to standard deviation o (by taking
a square root) and the initial version of R is

—10-
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where the covariance terms representing propagation of error in time are modified by co-
efficient

i = e—li—jl/d, (8)

with d being a time scale. After the completion of the initial optimization, R is adjusted
using reduced y? statistic when initial term «a becomes available for every segment with
22 being the total number of optimized segments,

1 ~ region - ~ region
X* = 3516+ aCO2EE") — YR (5 + aCO2EE") — I ©)

For each segment, o is modified until reduced x? approximately approaches a value of
1 and final value of « is determined.

The error covariance of « is estimated with

R=[(CO25% s RTICO2ga + B 7L (10)

Once « is estimated, it is used to construct an optimized time series of CO5 mole frac-
tions along with its variation based on the estimated vector R (which provides 22 val-
ues of Goptimized) by randomly drawing 1000 times from the normal distribution in the
following fashion,

of =a+ Normal((), Uoptimized)~ (11)

Then a and o are used to generate optimized CO5 time series with the corresponding
noise:

CO2optimized = COQmodel + OLCOQTNE%ign7 (12)
CO2Zptimized = CVOQmodel + a*CO27J‘\?%Z§'n’ (13)

Afterwards, the adjusted NEE is estimated by summing the LoFI NEE (N EE"“9°™) over

model
all the pixels of each region (M, S, and T) in 15-day increments and then using

NEE finizca = NEE, Sc + aNEE 7. (14)
The optimized NEE for each month is computed by summing the appropriate derived
increments. For January, dates of 18*" through 315 are used for the summation and for
December dates of 15 through 14" are summed. The total annual NEE is found by adding
all the 22 increments of each year. The uncertainties of 15-day segments are represented

by the variance values from the R and uncertainties of the monthly and annual NEE are
found by summing corresponding variances.

—11-
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Figure 4. Precipitation, root zone soil wetness, and 2-m temperature August-May anomalies
with respect to 1981-2010 climatology from MERRA-2 (Gelaro et al., 2017) in the eastern and
central US for years 2017-2019, where panels (a), (b), and (c¢) correspond to precipitation anoma-
lies over 2017-2019, panels (d), (e), and (f) correspond to root zone soil wetness over 2017-2019,

and panels (g), (h), and (i) correspond to 2-m temperature anomalies over 2017-2019.

3 Results and Discussion
3.1 Relevant meteorology and its effects on crops

Figure 4 shows precipitation, root zone soil wetness, and 2-m temperature anoma-
lies for the eastern and central US over the years of 2017-2019 during the period of May-
August when most of the 2019 flooding and its effects occurred. Comparing May-August
precipitation totals over the years 2017-2019 indicate that 2019 (Figure 4c¢) saw notice-
able wet anomalies in the central US including the Midwest and the South with the Mid-
west experiencing much of the flooding and the South only being partially affected (more
information about the flood is in the supporting information section S1). The same re-
gions in 2017 and 2018 (Figures 4a and 4b) generally saw negative anomalies except for
coastal regions of southeastern Texas, southern Louisiana, southern Mississippi, and south-
ern Alabama in 2017, when extremely wet conditions occurred. More evidence of the 2019
flood can be gleaned from the widespread root zone soil wetness positive anomalies in
May-August of 2019 (Figure 4f) in comparison to May-August of 2017 and 2018 (Fig-
ures 4d and 4e), although some slightly positive anomalies can be seen in Wisconsin and
coastal gulf states in 2017. Surface (2-m) temperature anomalies over May-August in
2019 are mostly below normal in the Midwest and close to normal values in the eastern
regions, while in May-August of 2018 whole shown area except for Florida is well-above
average, and 2017 in general is unremarkable.

The immediate effects of 2019 flooding on the two major US crops is evident from
Figure 5, where in Figures 5a and 5b planned planting of corn and soybeans is delayed
by almost a month. The delay is likely caused by the severe waterlogging that occurred
in early May not allowing farmers to proceed with the planned crop planting timetables.
Figures 5¢ and 5d indicate that the total planted annual acres of corn and soy are about
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Figure 5. Corn and soybean statistics in the Midwestern states (listed in section 2.2)
showing progress (percent planted), acres planted, and yield for the years 2017-2019, where
(a), (c), and (e) indicate the mentioned statistics for corn and (b), (d), and (f) for soy
(https://quickstats.nass.usda.gov/).

3-15% lower in 2019 than in years 2017 and 2018. Figures 5e and 5f show both corn and
soy yields are lower in 2019 in comparison to 2017 and 2018.

These results are also partially supported by Figure S3 exhibiting Fraction of Pho-
tosynthetically Active Radiation (FPAR) anomalies for years 2017-2019. FPAR indicates
plant’s ability to incorporate solar radiation to promote its growth (more details are in-
cluded in supporting information section S2; Los et al., 2000). The figure shows notice-
able negative FPAR anomalies in parts of the Midwest over 2019 suggesting that the flood
is significant enough to affect plant function and to cause pronounced reduction of crop
yields in the Midwest compared to years 2017 and 2018. This may imply that the amount
of carbon assimilated by the crops is also lower in 2019 than in the two prior years. This
hypothesis as well as the possible opposite effects of the anomalously wet conditions on
the non-crop vegetation (positive FPAR anomalies in the S and T regions) is addressed
in the next section.

3.2 NEE Optimization in the Midwest and the South

In Figure 6, the results of the optimization process are presented by comparing the
optimized GEOS CO; time series with the original non-optimized GEOS CO; time se-
ries and the tower observations. Uncertainty of the optimization is denoted by grey lines
representing one sigma variation. The time series are 5-day running daily means plot-
ted as the days of year at the regions M, S, and T over the years 2017-2019. The adjust-
ments made because of the optimization process (explained in section 2.6) are illustrated
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Figure 6. COg: insitu observations vs. GEOS model along with its optimization for towers
WBI, MS (1 and 2), and WKT located in M, S, and T regions, where (a) WBI in 2017, (b) WBI
in 2018, (c) WBI in 2019, (d) MS-01 in 2017, (¢) MS-02 in 2018, (d) MS-02 in 2019, (g) WKT in
2017, (h) WKT in 2018, (i) WKT in 2019.

in Figure 7, which shows 9 time series of the resultant scaling factors for GEOS NEE CO,
tracer mole fractions reflecting the time series shown in Figure 6. The scaling factors in
Figure 7 are plotted in a such way that positive values indicate a need to increase up-
take in the model, while negative values indicate a need to decrease uptake in the model.
Scaling factor uncertainty of one sigma is indicated by black lines.

Beginning with the analysis of CO2 cycle in the M region (Figures 6a-c), growing
seasons differ for each of the years with 2017 having the earliest drawdown start day on
about 100*" day of the year as evident from Figure 6a. The model picks up this feature
in 2017 generally well, but with incorrect magnitude. The years 2018 and 2019 exhibit
slightly later drawdown start days with 2019 experiencing the beginning of the net up-
take earlier than 2018 by about 10-20 days. For both years the model erroneously pre-
dicts the start of growing season around the day 100. The peak period of net uptake lasts
about 20-30 days longer in 2017 compared to 2018, and only a few days longer compared
to 2019. Overall, the model performs adequately in replicating the shape of the draw-
down cycle; however, during the peak net uptake period, it appears to exhibit a deficiency
in the necessary uptake.

Upon further examination of the model’s performance in the M region, it is dis-
covered that during the three-year period, scaling factors shown in Figures 7a-c demon-
strate comparable characteristics, although with variations in magnitude. The princi-
pal trends of GEOS LoFI model biases in region M are identified as insufficient uptake
during the first 50 days, excessive uptake between days 100-170, inadequate uptake from
around day 170 to approximately day 230, elevated uptake from roughly day 250 to day
300, and insufficient uptake during the remainder of the year. The year 2018 necessitates
the most significant optimization adjustments, particularly within the period spanning
from day 100 to approximately day 220.

Possible explanations for some of the observed variations in drawdown cycle in the
M region can be found in Figure 4. From a meteorological perspective, there are no re-
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Figure 7. Scaling factors (shown in green) in percentages of GEOS NEE CO; tracer mole
fractions as a function of day of year using towers WBI, MS (1 and 2), and WKT located in M,
S, and T regions, where (a) WBI in 2017, (b) WBI in 2018, (¢) WBI in 2019, (d) MS-01 in 2017,
(e) MS-02 in 2018, (d) MS-02 in 2019, (g) WKT in 2017, (h) WKT in 2018, (i) WKT in 2019.
Black lines indicate one sigma interval of an overall uncertainty of an estimated scaling factor.
The scaling factors are plotted in such a way as to indicate a decrease in carbon uptake when the
scaling factor is negative and to indicate an increase in carbon uptake when the scaling factor is

positive.

markable anomalies observed in the Midwest region during 2017, while the years 2018

and 2019 exhibit anomalous levels of heat and precipitation, respectively. During the peak
of growing season between May and August, Figure 4h reveals widespread positively anoma-
lous 2-m temperatures encompassing the Midwest region in 2018. Also Figure 4e hints

at some deficit in root zone soil wetness in some of the central states. These meteoro-
logical parameters indicate that spring and summer of 2018 experienced partial drought
conditions, which led to a slight setback in corn progress (Figure 5a) delaying drawdown
cycle. The year 2019 witnessed extreme flooding because of the above-normal precip-
itation illustrated in Figure 4c, and substantially increased root zone soil wetness as demon-
strated in Figure 4f. These anomalously wet conditions impeded the growth of corn and
soybean, as indicated in Figures 5a and 5b, consequently reducing carbon uptake.

Moving on to the S region (Figures 6d-f), where the model generally tracks accu-
rately tower observations except for a period in 2018 where it is too high. The growing
season is much less defined in the S region than in the region M making it difficult to
state exactly how it differs among the shown years. The drawdown begins earlier in the
S region than in the M region by about 20-30 days. Additionally, the S region COs time
series exhibit an interesting feature in the form of noticeable jaggedness, which reflects
variations in air masses. During summer, air moving from the north tends to be depleted
in CO4 as it passes over the widespread crop areas, resulting in dips in the time series
(Figure S4). Conversely, air moving from the south tends to be enriched in COs as it
accumulates over the Gulf of Mexico, leading to spikes in the time series. In winter, COq
tends to pile up along a frontal boundary introducing spikes in COy tower observations
over the southern areas (Figures S5). Such spikes are also produced by spring frontal in-
trusions as higher-COs air is brought to the South (where a growing season has already
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started) from the Midwest where the switch from efflux to uptake did not yet occur (Fig-
ure S6).

The scaling factors derived from the optimization for the S region shown in Fig-
ures 7d-f share a few important similarities although also contain differences. All three
years indicate a need for more uptake in the GEOS LoFI from about day 150 to about
day 250. The time series markedly differ in magnitude of the scaling factors with 2017
showing the least amount of variation and 2018 with the most dramatic bias peaking at
about 150%.

Meteorologically, the S region is slightly less affected by the temperature anoma-
lies in 2018 and the root zone soil wetness anomalies in 2019; however, the mentioned
features are still found in Figures 4h and 4f. Also, a large amount of coastal precipita-
tion in 2017, evident from Figure 4a, makes year 2017 potentially atypical. It is difficult
to make any conclusions about how the weather specifically affected vegetation carbon
uptake in the S region over the years 2017-2019, but a little more analysis on this is pre-
sented in section 3.4.

The T region is characterized by mostly consistent CO5 time series with a slight
hint of growing season beginning to occur early in a year, interspersed with occasional
sharp drops and spikes (Figure 6g-i), similar to what is observed in the S region. The
NEE tracer derived from GEOS LoFT does not exhibit large values in the T region and
therefore does not allow for much optimization. The model generally does a decent job
predicting COs, but it consistently fails at identifying peaks of COs suggesting challenges
associated with carbon arriving from other areas.

In the T region, the scaling factors tend to be noisy, varying up and down, except
for a period in 2019 from day 150 to day 200 where it is positive suggesting the need for
more net carbon uptake in GEOS LoFI. The overall oscillatory nature of the scaling fac-
tor in the T region reflects the savanna/grasslands vegetation of the T region correspond-
ing to the smaller values of NEE tracer that are hard to adjust effectively in compari-
son to the M and S regions.

3.3 Optimization Validation

In this study, the validation is meant to gauge the tower representativeness of each
respective region by evaluating determined adjustments of the GEOS simulation using
independent-from-optimization observations. The scaling factors derived at the optimiza-
tion sites in all the 3 regions are combined and used to adjust COs values at every val-
idation site. The optimization described in the previous section is validated with 3 tow-
ers INFLUX, LA-01, and AL-01 and with data from the 2019 airborne ACT-America
campaign. INFLUX tower results are demonstrated in the Figures 8a-c, where 5-day run-
ning daily averages of the observed, modeled, and model-adjusted CO4 are plotted over
a year. Comparing Figures 6a-c and Figures 8a-c indicates that the GEOS model bias
is generally similar for both WBI and INFLUX towers although with different magni-
tudes — too much uptake in the first part of the growing season (days 100-160) and too
little uptake at the heart of the drawdown (days 170-230). This result is reasonable as
Indiana, like Towa, is mainly an agriculture state (Figure 1). Therefore, the NEE opti-
mization corrections (shown in green) adjust the model in the right direction. However,
it is likely that the different vegetation in the proximity of INFLUX tower 1 (forests) and
a somewhat different transport influence area affect the local CO5 mole fractions.

Next, validation performed at LLA-01 tower in years 2017 and 2018 is illustrated in
Figures 8d and 8e. Validation at this tower serves to verify optimizations in both regions
S and T. For the most part validation time series tend to line up well with observations
demonstrating that MS-1, MS-2, and WKT towers are well representative of the S and
T regions. The near-perfect alignment of optimized and observed values during days 150-
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200, as illustrated in Figure 8e, is particularly impressive. Unfortunately, a significant
portion of the observed data is missing in 2017. Also, it is possible to see that the cor-
rection of days 136-150 for 2017 (Figure 8d) is inconsistent with the Louisiana data. This
discrepancy may imply that although the T and S regions share similarities they are not
identical.

The only data that is available from the AL-01 tower is for 2018 and at that it is
incomplete. The AL-01 tower can partially validate the S region optimization. Figure
8f shows that in the days 120-150 optimization is not helpful, but later in the period (start-
ing at about day 210) some improvement can be noted confirming higher carbon uptake.
In this regard 2018 LA-01 and AL-01 towers are consistent and support the evidence of
too little uptake in the GEOS LoFTI system at the peak of growing season.

Finally, airborne ACT-America 2019 campaign is used to validate the optimiza-
tions. ACT-America focused on all the regions of interest, first in the S and T regions
during the second half of June (days 168-178) and then in the M region during the first
part of July (days 185-191). Figure 8g compares airborne COs averages to correspond-
ing original and adjusted model values. Noticeable improvement can be seen in the ad-
justed model, signaling that the S and T regions likely did experience higher carbon up-
take than the original GEOS calculation showed. Regarding ACT-America flights in the
M region denoted in Figure 8h, the original and adjusted models do not differ by much
and generally closely resemble the airborne measurements. This is not surprising as Fig-
ure 7c suggests that in early July of 2019 (days 185-191) the model accurately estimated
CO3 mole fractions not requiring substantial adjustment.

Overall, the process of validating the optimizations showed that the derived scal-
ing factors from the towers can be extended to the regions of interest albeit at times with
a considerable error, which is difficult to quantify precisely. Established GEOS biases
based on the WBI tower in the M region are partially observed at INFLUX tower 1. Re-
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gional ACT-America 2019 flights in the M region also indicate that the optimizations

are reasonable. With regards to the S and T regions, towers LA-01 and AL-01 in 2018
and corresponding ACT-America 2019 flights show improved agreements with adjusted
model fields. On the other hand, the LA-01 tower in 2017 does not suggest much improve-
ment; however, those are limited fragments of the overall validation dataset. Addition-
ally, Figures S7 and S8 demonstrate a reverse process (supporting information section

S4), where validation sites are used to solve for the regions M, S, and T providing con-
sistent results to the ones obtained in the current section.

3.4 Regional Annual NEE Variability

Once the optimization and validation procedures are accomplished it is possible to
adjust GEOS NEE over all the regions and compare the outcomes among the years 2017-
2019 as well as 2000-2016 LoFI climatology. Figure 9 presents a comparison of the monthly
and annual original, adjusted, and climatological GEOS NEE for the M region, span-
ning the years 2017-2019. Figure 9a reflects Figure 6a, where 2017 begins to exhibit grow-
ing season sometime in April-May as optimized NEE is hovering around 0 Pg C. The grow-
ing season ends in October when net carbon source becomes apparent. Year 2018, as de-
scribed in section 3.2 (Figure 6b), displays a notably later inception to a growing sea-
son. Optimized NEE implies that net uptake begins sometime in June and ends in Oc-
tober (Figures 9b. The delay of the growing season in 2018 is likely a result of the drought
conditions (Haigh et al., 2022). Another interesting feature that could be spotted in 2018
is a drastic net uptake in July (Figure 9b), which can be explained by the fact that most
of the crops in 2018 experienced an earlier than average blooming stage leading to a higher
than usual net uptake in July but lower than usual net uptake in September. Although
in the analysis of the optimized time series it appeared that 2019 had a delayed start to
a growing season, Figure 9c¢ seems to suggest that in terms of carbon uptake 2019 be-
haves similarly to 2017 in April-May despite experiencing the flood. It is only later in
the growing season that 2017 is able to assimilate more carbon than the growing season
of 2019 implying that if 2017 can be considered a normal year the impact of flooding on
NEE was not instantaneous but delayed. However, determining whether 2017 qualifies
as a typical year is not a simple matter (supporting information S6). As pointed out in
section 3.2, optimized NEE for all the 3 years conveys that non-optimized GEOS has not
enough uptake in July and August.

An assessment of NEE yearly totals for the M region (Figure 9d) shows that 2019
has the smallest NEE compared to 2017 and 2018 supporting the assertion that the 2019
flood did reduce annual carbon uptake in the M region; however, the actual reduction
in net uptake mainly occurred in June and July of 2019. The climatological LoFI NEE
is close to the 2019 value indicating that the effect of this flooding on annual carbon bud-
get is not as unusual. However, it is important to note that the GEOS LoFI climatol-
ogy is likely biased as it is based on the CASA model product that is known to under-
estimate carbon uptake over the US Midwestern croplands (Y. Zhou et al., 2020).

The overall growing season magnitude of NEE in the S region (Figures 10a-c) is
approximately four times lower than that of the M region. It is hypothesized here that
this difference between M and S regions can be explained by the switch of vegetation from
mostly crops to mixed forests and savannas (Figure 1). Crops such as corn and soybean
that are abundant in the M region exhibit more efficient GPP with relatively less atten-
dant RE than many other plant types (Guanter et al., 2014). Comparing GPP and RE
outputs from GEOS LoFI between regions M and S in 2019 leads to similar conclusions
(Figure S9). According to the examined 3 years and climatology the growing season in
the S region appears to be from April to September-October. In 2017 the optimization
does not significantly alter GEOS model fluxes, while noticeable changes are observed
in 2018 and 2019. In years 2018 and 2019 the optimization implies that carbon uptake
in the S region should be noticeably higher than what the original GEOS simulation in-
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Figure 9. Original, adjusted, and climatological (2000-2016) GEOS NEE (in Pg of carbon)
in the M region, where (a-c) panels show monthly flux for years 2017-2019 and (d) summarizes

annual NEE flux for years 2017-2019. The uncertainty is one sigma.

dicates. That is especially true of 2018, where the annual uptake is increased by about
50% after the adjustment. Out of all the examined years, 2019 reveals the highest an-
nual carbon uptake in the S region as evident from Figure 10d. This may indicate that
the above-average rainfall of 2019 (Figure 4c) along with near or slightly above normal
2-m temperatures (Figure 4f) enhanced the regional plant growth, which is reflected by
the higher than typical COy drawdown. Climatological values of NEE tend to lack up-
take from mid to late summer in comparison to 2017-2019 optimized values (Figures 10a-
¢) implying potential systematic bias in GEOS LoFT.

The T region can be characterized by an even smaller NEE annual variability in
comparison to M and S regions reflecting the local vegetation consisting of grasslands
and savannas (Figure 1). Figures 11la-c imply shifted growing seasons from those in the
regions M and S lasting from about March to early August. Although GEOS LoFI is gen-
erally in agreement with the optimization, it tends to show a net uptake that is too high
during April and May. An interesting feature can be noted in Figure 11b, where Septem-
ber of 2018 exhibits relatively high net source of carbon in both GEOS LoFI and opti-
mization. This could be potentially explained by the anomalously wet September that
occurred that year in the region (National Centers for Environmental Information, 2018).
The Figure S10 indicates that RE rate surpassed GPP rate during September 2018 in
the T region, which suggests that extreme precipitation significantly contributed to the
net source of atmospheric carbon. In Figure 11d, 2018 has the least negative NEE likely
attributable to the unseasonably warm conditions during the summer (Figure 4h) and
extreme flooding in early fall. On the other hand, 2019 looks like a completely normal
year for the T region with annual carbon budget being near identical to the 2000-2016
regional climatology. Indeed, Figures 4c and 4f show that root zone soil wetness and pre-
cipitation fields are near normal in Texas for May-August period in 2019.
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As an additional exploration, section S6 in supporting information examines spa-
tial anomalies of NEE, GPP, and RE from the GEOS LoFI model (Figures S11, S12, and
S13) and contrasts them against adjusted spatial NEE anomalies (Figure S14). All of
the calculated anomalies are based on the LoFI 2000-2016 climatology and therefore should
be treated with caution as the climatology itself is likely biased. This is supported by
the optimization results shown in Figures 9-11. The bias is also evident in Figure S14
where generally for all the years it can be observed that May and June tend to have too
much carbon uptake while July and August too little [with the exception of July 2019
(Figure Sllc), which is being affected by the flood]. Such consistent anomalies make it
difficult to separate actual anomalies from the GEOS LoFT biases, but it could be con-
cluded with a high measure of confidence that GEOS LoFT overpredicts NEE in the first
part of the growing season and under predicts NEE in the second half of the growing sea-
son. Interestingly, it is difficult to point out which NEE component is responsible for such
a bias at any given situation as Figures S12 and S13 do not suggest consistent variations
between GPP and RE indicating the complexity of the issue.

3.5 Effects of 2019 Flooding on NEE

After examining the annual variability of NEE at the M, S, and T regions for both
2017-2019 and the 2000-2016 LoFT climatology, it is now possible to contextualize the
effects of the 2019 flooding on NEE within a broader perspective. The most significant
impacts on NEE are apparent in the M and S regions, where the annual NEE budgets
for 2019 stand out in contrast to years 2017-2018. In the M region, annual net carbon
uptake is less than in years 2017-2018, but it is within the range of LoFI climatology value
implying that the estimated NEE is not necessarily an extreme anomaly. For the S re-
gion, 2019 annual NEE is more negative than that in previous two years and LoFT cli-
matology, which can be mainly attributable to the enhanced net uptake in May of 2019
(Figure 10c) when the precipitation event had the most influence.

These identified features in the M and S regions could be inspected further by look-
ing at NEE budgets specifically for growing seasons. For the purpose of this study grow-
ing seasons are defined as a string of months with consistent negative NEE based upon
Figures 9-11. As such the following timeframes are identified: May-September for the
M region, April-September for the S region, and March-July for the T region. Figure 12
compares optimized NEE summed over a region for the years 2017-2019. The result is
similar to what was previously discussed with year 2019 in the M and S regions exhibit-
ing decreased and increased net uptakes respectively. In Figure 12 the impacts on NEE
appear more pronounced as only growing seasons are considered, which were affected by
the extreme precipitation more directly. Another important note to be made here is that
regional drought in 2018 did not affect the M region NEE as markedly as the flood of
2019. Relatively small carbon flux variation over the T region suggests that the corre-
sponding vegetation of grasslands and savannas is less affected by the anomalously wet
conditions. Adding up all the surveyed information in this work it can be concluded that
the extreme flooding of 2019 did affect NEE significantly in the M and S regions and more
so during the growing season when the consequences of the flood were most pronounced.

4 Conclusions

Generally prolonged excessive water conditions will negatively influence a plant sys-
tem causing anoxia (W. Zhou et al., 2020); however, the effects of flooding on an ecosys-
tem are not straightforward and largely depend on a particular vegetation type and de-
gree of waterlogging (Detmers et al., 2015; Sun et al., 2022). Wet conditions can result
in an increase of carbon net uptake, but too much wetness may lead to a net carbon re-
lease because in these conditions both productivity and respiration tend to decrease, and
the overall NEE balance will be contingent on specific environmental conditions (Ahlstrom
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et al., 2015; Bloch & Bhattacharjee, 2020). The current study affirms the mentioned as-
sertions and implies that crops such as corn and soybeans seem to be more susceptible

to waterlogging than non-crop vegetation such as savannas, forests, and grasslands. This
is expressed in the reduced carbon uptake in the first part of the growing season over

the Midwestern region of the US (mainly crops) and overall increased carbon uptake in
the Southern region of the US (mainly non-crop) during the flood of 2019 when compared
to 2017 and 2018. The change in 2019 annual NEE in the Midwest with respect to 2017
and 2018 of about 0.07 Pg C nearly equaled to the total magnitude of NEE in the re-
gions S and T in 2019 when it was at the highest value among the examined years (—0.1
Pg C). For the perspective, an annual average NEE over the years 2010-2019 in North
America is about —0.5 Pg C (Jiang et al., 2022). In addition, significant slowdown of the
crop planting progress occurred in the early growing season of 2019 as most of the corn
and soybeans in the US are in the Midwest. Flooding impacts in managed ecosystems
dominated the net effect for the 2019 event. As humans are considering a variety of strate-
gies to tackle climate change, sustainable crop management practice can accelerate car-
bon input into the soil (Meena et al., 2020). The exact effect of flooding on such prac-
tices is unclear but the delay in planting of crops explored in the current work raises ques-
tions that could influence future carbon balance and should be considered in strategies

to reduce net emissions.

The impact of flooding on NEE and atmospheric COs is readily observed by satel-
lites (Yin et al., 2020) and a variety of insitu observational approaches (this study). Like
Yin et al. (2020)), for the Midwestern region this study finds a decrease in net carbon
uptake over June and July of 2019 of about 0.06-1.2 PgC [roughly 12-24% of an aver-
age annual carbon net uptake in North America (Jiang et al., 2022)] when compared to
both 2017 and 2018 and an increase in net carbon uptake in August and September of
near 0.05 PgC (roughly 10% of an average annual carbon net uptake in North America)
when compared to 2018 [Note that Yin et al. (2020) estimated Gross Primary Produc-
tion (GPP), which does not account for RE, while this study estimated NEE]. However,
the results from the current study suggest that comparing 2019 to 2018 may not be op-
timal as 2018 may not be representative of an average growing season carbon activity
(Jiang et al., 2022). For instance, assessment of 2019 NEE values with 2017 NEE val-
ues does not seem to show a “recovery” in August-September time frame as stated in Yin
et al. (2020) and Turner et al. (2021) suggesting that additional inquiries are required
into the detailed effects of flooding on the carbon uptake. Atmospheric COs observations
can play an important role in helping to monitor the impact of agricultural systems but
require sustained planning and coordination (e.g., the discontinuity in towers made this
study more difficult).

Finally, the assessment of the GEOS LoFI model shows that the model can sim-
ulate large-scale variations of CO5 with notable skill in the Midwest and parts of the South,
but some biases are evident. For instance, more uptake is required in the second part
of the summer across all the examined regions, while uptake generally tends to be too
high in May over the Midwest. These biases are consistent with Y. Zhou et al. (2020)
study, which evaluated CASA against flux towers and other ecosystem models. Given
that the GEOS LoFI is based on CASA such result is not surprising. Additionally, the
model struggled to replicate CO2 during passages of frontal systems that appear as spikes
and dips in time series, specifically in the South. This could be attributable to the fact
that LoFT is a monthly product downscaled to provide daily fluxes, which lack the needed
resolution to accurately represent day to day variations in COy (Weir et al., 2021).

Overall, the low latency flux estimation approach from LoFI is credible in discern-
ing flooding and non-flooding events, which demonstrates the maturity of modeling tools
that can be applied to carbon monitoring at the current stage. Further investigations
in this direction are imperative as only a sparse amount of literature is available regard-
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ing carbon exchange between an ecosystem and the atmosphere in a variety of water-
excess conditions.
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data are available here: https://gml.noaa.gov/ccgg/obspack/index.html. All of the
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ACT airborne data are located at https://actamerica.ornl.gov/airborne_data.shtml.
SCOAPE data are stored at https://www-air.larc.nasa.gov/missions/scoape/index
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are available at https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/. Source code for
the NASA GEOS model is available under the NASA Open-Source Agreement at http://
opensource.gsfc.nasa.gov/projects/GE0S-5. The NEE fluxes used in GEOS are based
on the CASA-GFED dataset provided at GES DISC (https://disc.gsfc.nasa.gov/
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