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Abstract23

Climate extremes such as droughts, floods, heatwaves, frosts, and windstorms add con-24

siderable variability to the global year-to-year increase in atmospheric CO2 through their25

influence on terrestrial ecosystems. While the impact of droughts on terrestrial ecosys-26

tems has received considerable attention, the response to flooding is not well understood.27

To improve upon this knowledge, the impact of the 2019 anomalously wet conditions over28

the Midwest and Southern US on CO2 vegetation fluxes is examined in the context of29

2017-2018 when such precipitation anomalies were not observed. CO2 is simulated with30

NASA’s Global Earth Observing System (GEOS) combined with the Low-order Flux In-31

version, where fluxes of CO2 are estimated using a suite of remote sensing measurements32

including greenness, night lights, and fire radiative power as well as with a bias correc-33

tion based on insitu observations. Net ecosystem exchange CO2 tracers are separated34

into the three regions covering the Midwest, South, and Eastern Texas and adjusted to35

match CO2 observations from towers located in Iowa, Mississippi, and Texas. Results36

indicate that for the Midwestern region consisting primarily of corn and soybeans crops,37

flooding contributes to a 15-25% reduction of annual net carbon uptake in 2019 in com-38

parison to 2017 and 2018. These results are supported by independent reports of changes39

in agricultural activity. For the Southern region, comprised mainly of non-crop vegeta-40

tion, annual net carbon uptake is enhanced in 2019 by about 10-20% in comparison to41

2017 and 2018. These outcomes show the heterogeneity in effects that excess wetness can42

bring to diverse ecosystems.43

Plain Language Summary44

Carbon dioxide (CO2) is the main driver of climate change whose atmospheric con-45

centration is governed by a mix of human emissions and absorption by land and ocean46

sinks. Understanding how these sinks will respond to climate change in the future, in-47

cluding in response to increasingly frequent extreme events like floods, is critical in set-48

ting reliable emission reduction targets and improving Earth system models. Here, the49

devastating flood of 2019 that affected the Midwestern and Southern US is examined with50

respect to its effects on the ability of land ecosystems to absorb CO2. The analysis is51

performed using NASA’s GEOS model, which simulates CO2 concentrations based on52

a simple land model that had previously been adjusted to match global background in-53

situ observations. In this study, fluxes are adjusted using CO2 observations from mea-54

surement towers in the U.S. Simulations covering the years of 2017-2019 are compared55

and indicate that parts of the affected region absorbed less CO2 in 2019 than in previ-56

ous years. The results demonstrate the effects of floods on the carbon cycle are complex57

and warrant further study, which is needed to understand how land ecosystems will re-58

spond to climate change in the future.59

1 Introduction60

Understanding the future evolution of the carbon cycle is crucial to improve cli-61

mate change predictions (Frank et al., 2015). Studies show that climate extremes (i.e.,62

extreme weather events) have a noticeable effect on terrestrial ecosystems influencing the63

cycling of carbon and thereby affecting global atmospheric CO2 concentrations (Reichstein64

et al., 2013; Frank et al., 2015). These extremes are characterized by meteorological phe-65

nomena such as droughts, floods, heat waves, frosts, and windstorms (Reichstein et al.,66

2013). While general understanding regarding how these extremes affect the global car-67

bon cycle exists, each case presents a unique challenge that may deviate from expected68

behavior. To better understand the effects of climate extremes on carbon exchange be-69

tween terrestrial ecosystem and atmosphere, detailed analysis of relevant case studies is70

required.71
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Droughts are common extreme weather events that impact terrestrial ecosystem72

carbon processes and are relatively well studied (van der Molen et al., 2011). In the time73

of drought, the ability of an ecosystem to consume CO2 decreases (Frank et al., 2015;74

Schwalm et al., 2012). While the impact of droughts on terrestrial ecosystem has received75

considerable attention over the recent years, the response of an ecosystem to flooding76

events is intricate and ambiguous (Zaerr, 1983; Miyata et al., 2000; Knapp et al., 2008;77

Dušek et al., 2009; Zona et al., 2012; Dalmagro et al., 2019). As the climate changes, cli-78

mate models predict an increase in precipitation for midlatitude regions, thereby increas-79

ing the likelihood of flooding events affecting these ecosystems (Knapp et al., 2008; Zhang80

& Villarini, 2021). Therefore, it is imperative to better understand how the potential in-81

crease in flooding events may affect future carbon budget.82

The effects of flooding on carbon exchange in the terrestrial ecosystem depends on83

the type of vegetation affected. Wetlands tend toward storing less atmospheric carbon84

during flooding as photosynthesis weakens; however, annual Net Ecosystem Exchange85

(NEE) may not change much as ecosystem respiration (RE) also decreases (Han et al.,86

2015). Typically, during a growing season trees, shrubs, and grasses support net uptake87

of atmospheric CO2 and continue to do so during moderate flooding, but it is not ex-88

actly clear how an increase in the magnitude of the flooding may alter this process (Kramer89

et al., 2008; Bourtsoukidis et al., 2014; Detmers et al., 2015). Ma et al. (2016) found that90

grasslands in Australia can even benefit from anomalously wet conditions and assimi-91

late more carbon compared to normal soil moisture conditions. Croplands, however, are92

easily susceptible to waterlogging and tend to be a net source of atmospheric carbon when93

flooding occurs (Rosenzweig et al., 2002; Ahmed et al., 2013; Yin et al., 2020; Yildirim94

& Demir, 2022). Although the majority of CO2 that is initially absorbed by croplands95

is eventually released back into the atmosphere, the cropland soils have the capacity to96

sequester atmospheric CO2 and their ability to hold carbon is critically important for97

reducing global atmospheric CO2 levels (Paustian et al., 2000; Follett, 2001; Zomer et98

al., 2017). Also, extreme precipitation events may cause topsoil erosion leading to ad-99

ditional carbon emissions into the atmosphere (Hilton et al., 2008; Dinsmore et al., 2013;100

Lal, 2019). To further the knowledge of the effects of flooding on ecosystem carbon fluxes,101

the spring/early summer Midwestern and central Southern US anomalously wet condi-102

tions of 2019 are investigated.103

Heavy precipitation in the spring/early summer of 2019 resulted in widespread flood-104

ing of the Upper Mississippi River Basin and the surrounding regions causing damages105

in the range of 2-3 billion US dollars (Neri et al., 2020; Reed et al., 2020; Price & Berkowitz,106

2020). The focus of this study is on the Midwest (M) and the South (S and T, Figure107

1), where anomalously wet conditions affected areas with different types of vegetation.108

Stream gauges levels along with variety of other data and survey reports indicate that109

the M region experienced periods of major flooding while the regions S and T were only110

partially affected (supporting information section S1). In the Midwest vegetation pri-111

marily consists of croplands such as maize (corn) and soybeans, while in the South there112

are mainly forests transitioning to prairies in Eastern Texas (Figure 1). The primary aim113

of this study is to investigate the impact of the 2019 anomalously wet conditions on the114

NEE with simulations from NASA’s Goddard Earth Observing System (GEOS) Low-115

order Flux Inversion (LoFI) model in the affected regions, in contrast to the years 2017116

and 2018 which experienced comparatively lower anomalous precipitation levels, and to117

assess results in the context of the regional GEOS LoFI NEE climatology from the pe-118

riod 2000-2016.119

Previously, Yin et al. (2020) showed the ability to quantify Midwest atmospheric120

CO2 and Midwest croplands gross primary production (GPP) anomalies during the above-121

mentioned 2019 flood using XCO2 measurements from the Orbiting Carbon Observa-122

tory 2 (OCO-2) and solar-induced chlorophyll fluorescence (SIF) derived from the TRO-123

POspheric Monitoring Instrument (TROPOMI). Comparing 2019 to 2018, their results124
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Figure 1. Land cover map of the Eastern Conterminous United States (CONUS) derived from
Moderate Resolution Imaging Spectroradiometer (MODIS). White rectangles indicate regions af-
fected by the anomalous precipitation and are the focus of this study. Capital letter M indicates
the Midwest region, while capital letters S (South) and T (Texas) represent regions of the South
(for more details see Data and Methods section).
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suggest a reduction in the Midwest cropland GPP of −0.21 PgC in June and July and125

partial recovery of 0.14 PgC in August and September. Additionally, they noted a flood-126

forced 3-week delay in the planting date of crops across much of the area. Turner et al.127

(2021) also used TROPOMI SIF to study the impacts of the 2019 flood on CONUS veg-128

etation arriving at similar conclusions as Yin et al. (2020) with 2018 as a reference year.129

The present study builds upon Yin et al. (2020) and Turner et al. (2021) by an-130

alyzing optimized GEOS LoFI NEE of the flood-affected region over the period 2017-131

2019 using insitu tower data and extending the comparison to GEOS LoFI 2000-2016132

regional NEE climatology. The focus is on better understanding of the 2019 precipita-133

tion event and its impact on the affected ecosystems from the perspective of the atmo-134

spheric carbon monitoring system. Specifically, the study looks at monthly and annual135

regional optimized NEE budgets for years 2017-2019 comparing them to the GEOS LoFI136

2000-2016 NEE budget climatology. The key scientific inquiry at hand is determining137

the extent to which the 2019 late spring/early summer flood in the Midwest and parts138

of the South has impacted the annual NEE budget, and whether this impact is signif-139

icant enough to be observable with the tools employed. Additionally, the performance140

of the NASA near real time carbon modeling tool, GEOS LoFI, is assessed and impli-141

cations for carbon monitoring are discussed.142

2 Data and Methods143

2.1 MERRA-2144

To map out regions of the flooding in 2019, precipitation, root zone soil wetness,145

and 2-m temperature data from the Modern-Era Retrospective analysis for Research and146

Applications, Version 2 (MERRA-2) are used (Gelaro et al., 2017). Bias corrected MERRA-147

2 precipitation (mm) comprised of background data products [such as Goddard Earth148

Observing System Model, version 5 (GEOS-5) or Forward Processing system for Instru-149

ment Teams (FP-IT)] and observations [i.e., Global Precipitation Climatology Project150

(GPCP)] is utilized (Reichle, Draper, et al., 2017; Reichle, Liu, et al., 2017). Root zone151

soil wetness is described by the ground wetness variable for the 0-100 cm layer of soil.152

The variable is dimensionless in units of relative saturation ranging from 0 to 1, where153

value of 1 indicates completely saturated soil. Root zone soil wetness, precipitation, and154

2-m temperature May-August 2017-2019 anomalies with respect to May-August 1981-155

2010 climatology are calculated over the region of interest.156

2.2 Crop Data157

Since croplands contribute significantly to the carbon cycle of the M region, 2017-158

2019 United States Department of Agriculture (USDA) crop planting data are analyzed159

for corn (maize) and soybeans - the two most common crops in the US Midwest. In this160

study, three attributes, which are crop planting progress, acres planted, and grain yield161

of corn and soybeans from years 2017-2019 are compared. The following states are an-162

alyzed here: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska,163

Ohio, South Dakota, and Wisconsin. The data is taken from National Agriculture Statis-164

tics Service provided by USDA (https://quickstats.nass.usda.gov/).165

2.3 CO2 Data166

2.3.1 Optimization Data167

The optimization of the GEOS model (described later in section 2.6) takes place168

in two different areas, the Midwest (M) and the South (broken down into two regions:169

S and T, Figure 1). The process of optimization consists of adjusting GEOS NEE CO2170

tracers from the 3 regions (M, S, and T) over the 3 years (2017-2019) in an attempt to171
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match 5-day running mean of daily observations [averaged over the afternoon hours of172

1500-1700 local standard time (LST)] from insitu CO2 towers located in the regions of173

interest: West Branch, Iowa (WBI) in M, Magee, Mississippi (MS-01) in S, Grenada, Mis-174

sissippi (MS-02) in S, and Moody, Texas (WKT) in T (see Figure 2).175

The WBI tower is in the agricultural ecosystem (corn belt) of eastern Iowa and is176

part of the National Oceanic and Atmospheric Administration (NOAA) Earth System177

Research Laboratories/Global Monitoring Laboratory (ESRL/GML) tall tower network178

that is tasked with the goal of long-term carbon-cycle gas monitoring in the atmospheric179

boundary layer (ABL) of continental areas (Andrews et al., 2014; Schuldt et al., 2021).180

The location of the tower is ideal for CO2 monitoring pertinent to the Midwestern crop-181

lands and hence is used here to analyze the effects of the 2019 flooding.182

MS-01 and MS-02 towers are in Mississippi and were instrumented initially for the183

Gulf Coast Intensive, designed to characterize CO2 in the southeastern region of the US184

and maintained through 2019 as part of the airborne Atmospheric Carbon and Trans-185

port - America (ACT-America) project (Miles et al., 2018). The MS towers did not mea-186

sure CO2 simultaneously; therefore, to represent CO2 of the S region, MS-01 is used for187

2017 and MS-02 is used for 2018-2019. These towers are well suited for this study as the188

state of Mississippi did see significant wet anomalies in 2019 but avoided major flood-189

ing that occurred upstream of the state.190

Finally, WKT represents the T region of the South. Like WBI, the tower is part191

of the NOAA ESRL/GML tall tower network (Andrews et al., 2014). The location of192

the tower is optimal for capturing CO2 variability in eastern Texas and western Louisiana,193

where the flooding of 2019 was also partially present.194

2.3.2 Validation Data195

Validation process with tower-based and airborne measurements is aimed at de-196

termining how well the towers used for the optimization act as a proxy for the regions197

of interest. The M region is validated with the Indianapolis Flux Experiment (INFLUX)198

background tower 1 that is located on the southwestern part of Indianapolis, the direc-199

tion least influenced by the CO2 emissions from the city (Davis et al., 2017). As in Iowa200

(where WBI is located), vegetation in Indiana mainly consists of crops, making it a good201

choice for the validation of the model optimizations at WBI. However, INFLUX tower202

1 is immediately surrounded by forests, in contrast to WBI. The S and T regions are val-203

idated using towers in Millerville, Alabam (AL-01) and Monroe, Louisiana (LA-01). To204

be consistent with the optimization, 5-day running mean of daily observations (averaged205

over the afternoon hours of 1500-1700 LST) is utilized.206

The 2019 ACT-America campaign is also used for validation. ACT-America is an207

airborne NASA Earth Venture mission dedicated to improving the accuracy, precision,208

and resolution of atmospheric inverse estimates of CO2 and CH4 sources and sinks on209

a regional scale (Davis et al., 2021). The mission conducted 5 seasonal campaigns (in-210

cluding 2 summer campaigns) over the 2016-2019 period. For each campaign two air-211

craft (C-130 and B-200) were used to survey three different regions in the United States:212

The South, the Midwest, and the Mid-Atlantic. Data from the 2019 campaign covering213

the South and the Midwest is used, which occurred in June and July of 2019. Most of214

the flights took place in the period of 1100-1700 LST. For validation purposes the bound-215

ary layer [∼330 m above ground level (AGL)] CO2 was averaged for each of the selected216

flight days.217

2.4 GEOS Model Configuration Including LoFI Flux Package218

NASA GEOS general circulation model, constrained by MERRA-2 meteorology fields,219

with resolution of 0.5 by 0.625 degrees and 72 vertical layers (Molod et al., 2015) is uti-220
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Figure 2. Observations that are used for the GEOS model optimization and validation. Air-
craft transect mole fractions are shown inside the ABL and are used for validation. Towers are
labeled by circles.
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lized to simulate CO2 over the region of interest from January 14th to December 14th
221

for the years 2017-2019 (Weir et al., 2021). It includes the Low-order Flux Inversion (LoFI)222

package, which contains a compilation of carbon fluxes driven by remote-sensing land223

surface data (Ott et al., 2015; Weir et al., 2021) and a bias correction process designed224

to reproduce CO2 mole fractions observed at NOAA’s in situ network. There are five com-225

ponents to the mentioned LoFI flux package: NEE, biomass burning, fossil fuel combus-226

tion, ocean exchange, and an empirical land sink (bias correction of the fluxes).227

NEE is computed using the Carnegie-Ames-Stanford Approach – Global Fire Emis-228

sions Dataset version 3 (CASA-GFED 3; Randerson et al., 1996; van der Werf et al., 2010)229

that estimates carbon fluxes using satellite-derived vegetation products and MERRA-230

2 meteorology. Biomass burning CO2 emissions are derived with the Quick Fire Emis-231

sions Dataset (QFED; Koster et al., 2015), which is constructed using MODIS fire ra-232

diative power (FRP) estimates in near real-time. Fossil fuel combustion is provided by233

the Open-source Data Inventory for Anthropogenic CO2 (ODIAC; Oda & Maksyutov,234

2015; Oda et al., 2018) that is based on disaggregated country-level fossil fuel CO2 emis-235

sion inventories using a global power plant database and satellite observations of night-236

time lights. Ocean exchange of CO2 is estimated using the differences between the par-237

tial pressure of CO2 in seawater (pCOsw
2) derived from the Takahasi et al. (2009) cli-238

matology and the partial pressure in the atmosphere (pCOatm
2) taken from the NOAA239

marine boundary layer (MBL) reference (Masarie & Tans, 1995; Dlugokencky & Tans,240

2016). An empirical land sink is applied as a bias correction to the collection of fluxes241

to constrain the modeled atmospheric CO2 growth with the observed growth rates de-242

rived from the NOAA MBL reference (Weir et al., 2021). The empirical sink matches243

the global total fluxes for a year to a specified atmospheric growth rate of CO2 by re-244

ducing heterotrophic respiration during months when there is an increase in the 2-m air245

temperature, which is used as an approximate indicator of soil temperature, compared246

to the previous month.247

In addition to using LoFI as a driver of GEOS CO2 simulation, it is also used to248

compute 2000-2016 monthly and annual NEE climatology that could be used as a sup-249

plemental metric for comparison to initial and optimized 2017-2019 NEE. Monthly 2000-250

2016 NEE climatology is computed by averaging the sum of 3-hourly NEE values for each251

month (except January and December) over the 17 years and annual climatology is com-252

puted by summing all 3-hourly NEE values for each year and then finding an average253

of these 17 sums. Due to the way the model is ran, for January 3-hourly values from the254

dates of 18th through 31st are summed and for December 3-hourly values from the dates255

of 1st through 14th are summed. Furthermore, monthly spatial NEE 2017-2019 anoma-256

lies of regions M, S, and T with respect to spatial monthly 2000-2016 NEE climatology257

are computed (supporting information section S6).258

2.5 Definition of Tagged Tracer Regions259

Before the optimization an area that influences towers is designated using NOAA’s260

Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model backward261

trajectories (Stein et al., 2015). The trajectories are released backwards for every 6 hours262

for May through September of 2019 at the three optimization towers WBI, MS-02 (it is263

assumed MS-02 is representative of MS-01), and WKT from the level of the correspond-264

ing sensor (121-379 m AGL) using the North American Regional Reanalysis (NARR)265

meteorology. The approximate area influencing each tower combined with the MODIS266

Land Cover Climate Modeling Grid Product (MCD12C1) allow for the generation of CO2267

mole fraction tracer masks applied to tag regional NEE within GEOS that can be then268

used in the optimization (Figure 3). MCD12C1 is the reprojection of the tiled MODIS269

Land Cover Type Product (MCD12Q1) with the sub-pixel proportions of each land cover270

class in each 0.05° pixel and the aggregated quality assessment information from the In-271

ternational Geosphere-Biosphere Programme (IGBP) scheme (Sulla-Menashe & Friedl,272
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Figure 3. Masks for the optimization based on the backward HYSPLIT trajectories, where
red region 1 influences WBI tower in Iowa and is labeled as M NEE CO2 tracer, the green region
2 influences MS-01 and MS-02 towers in Mississippi and is labeled as S NEE CO2 tracer, the pur-
ple region 3 influences both MS and WKT towers (part of both S and T NEE CO2 tracers), and
finally the yellow region 4 influences WKT tower in Texas and is labeled as T NEE CO2 tracer.
Yellow circles indicate towers used for optimization.

2018). MCD12C1 is used to generate the appropriate masks of vegetation areas of in-273

terest while removing any urban and coastal environments.274

2.6 Optimization Approach275

To quantify the effects of 2019 flooding on regional vegetation, NEE is compared276

to the years 2017 and 2018. Though NEE is available from the LoFI flux package, it is277

possible that these fluxes are inaccurate because of the use of a highly simplified diag-278

nostic vegetation model. To provide a better estimate, the NEE component of the LoFI279

collection, representative of the vegetation fluxes of a given area, is adjusted to minimize280

the model-observation CO2 mole fraction difference. The optimization is independently281

performed for the three different regions of M, S, and T (Figure 3), where each region282

is characterized by its individual NEE CO2 tracer based on the selected insitu towers.283

The observed CO2 mole fraction can be expressed in the following way:284

CO2obs = CO2model +∆CO2, (1)285
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where CO2model represents CO2 from GEOS and ∆CO2 is the mole fraction of CO2 that286

needs to be added to the modeled mole fraction to arrive at the observed value. The CO2model287

term can be expanded as288

CO2model = CO2ini + CO2ocn + CO2FF + CO2fire + CO2NEE , (2)289

where CO2ini is an initial condition that consists of all the accumulated CO2 at a par-290

ticular model grid cell in the model prior to January 14th of a given year (either 2017,291

2018, or 2019) and the rest of the right-hand terms are additions from ocean (OCN), fos-292

sil fuels (FF), fire, and NEE. In the current work it is hypothesized that NEE term is293

the most uncertain and that the ∆CO2 term in equation (1) is mainly driven by the CO2NEE294

term. Therefore, it is the only term adjusted to bring the modeled CO2 closer to the ob-295

served CO2. The CO2NEE tracer is tracked by the model from the selected regions and296

the rest of the globe as shown in Figure 3 and can be expressed as297

CO2NEE = CO2MNEE + CO2SNEE + CO2TNEE + CO2globalNEE , (3)298

with the right hand terms representing regional and the rest of the globe NEE CO2 trac-299

ers. Only the regional tracers are adjusted in this study.300

The optimization is performed at each of the three towers (M, S, and T) by solv-301

ing for the minimum value of the cost function (Rodgers, 2000):302

J(a) =
1

2
[(ŷ + αCO2regionNEE )− y]R−1[(ŷ + αCO2regionNEE )− y]T +

1

2
αB−1αT , (4)303

where α is a scaling factor by which NEE need to be changed, ŷ is modeled 5-day run-304

ning mean of daily afternoon (1500-1700 LST) averages of CO2, y is observed 5-day run-305

ning mean of daily afternoon (1500-1700 LST) averages of CO2, B is the scaling factor306

error covariance term, and R is the observation-model error covariance matrix. B can307

be a matrix if more than one tracer is optimized, but in the current case of optimizing308

just one tracer, B becomes equivalent to σ2
αp

= 0.5, which determines by how much the309

scaling factor α can be adjusted from the initial scaling factor αp = 0. The value of 0.5310

is empirically derived and in this case is just large enough to allow for physically reason-311

able NEE variation. R matrix represents combined observation-model error as well as312

the covariances among the days in each segment. The adjustment is performed on a to-313

tal of 22 segments consisting of 15 daily y and ŷ values to smooth out NEE daily vari-314

ability over the time of about 2 weeks (Friend et al., 2007; Chevallier et al., 2012). Square315

matrix R is generated by first calculating observation-model daily error terms ε with the316

expression (Heald et al., 2004):317

ε = y − ŷ − y − ŷ. (5)318

Then ε terms are divided into 22 segments consisting of consecutive 15 daily values from319

the total of m daily values (in this case total is 330 days comprising most of the year).320

Variance is calculated for each segment as follows,321

σ2
i =

(
∑15

i=1 εi)
2

15− 1
. (6)322

This variance is unique to each segment and repeated for every day inside of an individ-323

ual segment. Afterwards, the variance is converted to standard deviation σ (by taking324

a square root) and the initial version of R is325
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R =


σ2
1 r12σ1σ2 . . . r1mσ1σm

r21σ2σ1 σ2
2 . . . r2mσ2σm

...
...

. . .
...

rm1σmσ1 rm2σmσ2 . . . σ2
m

 , (7)326

where the covariance terms representing propagation of error in time are modified by co-327

efficient328

rij = e−|i−j|/d, (8)329

with d being a time scale. After the completion of the initial optimization, R is adjusted330

using reduced χ2 statistic when initial term α becomes available for every segment with331

22 being the total number of optimized segments,332

χ2 =
1

22
[(ŷ + αCO2regionNEE )− y]R−1[(ŷ + αCO2regionNEE )− y]T . (9)333

For each segment, σ is modified until reduced χ2 approximately approaches a value of334

1 and final value of α is determined.335

The error covariance of α is estimated with336

R̂ = [(CO2regionNEE )TR−1CO2regionNEE +B−1]−1. (10)337

Once α is estimated, it is used to construct an optimized time series of CO2 mole frac-338

tions along with its variation based on the estimated vector R̂ (which provides 22 val-339

ues of σoptimized) by randomly drawing 1000 times from the normal distribution in the340

following fashion,341

α∗ = α+Normal(0, σoptimized). (11)342

Then α and α∗ are used to generate optimized CO2 time series with the corresponding343

noise:344

CO2optimized = CO2model + αCO2regionNEE , (12)345

CO2∗optimized = CO2model + α∗CO2regionNEE . (13)346

Afterwards, the adjusted NEE is estimated by summing the LoFI NEE (NEEregion
model ) over347

all the pixels of each region (M, S, and T) in 15-day increments and then using348

NEEregion
optimized = NEEregion

model + αNEEregion
model . (14)349

The optimized NEE for each month is computed by summing the appropriate derived350

increments. For January, dates of 18th through 31st are used for the summation and for351

December dates of 1st through 14th are summed. The total annual NEE is found by adding352

all the 22 increments of each year. The uncertainties of 15-day segments are represented353

by the variance values from the R̂ and uncertainties of the monthly and annual NEE are354

found by summing corresponding variances.355

–11–



manuscript submitted to JGR: Atmospheres

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Precipitation, root zone soil wetness, and 2-m temperature August-May anomalies
with respect to 1981-2010 climatology from MERRA-2 (Gelaro et al., 2017) in the eastern and
central US for years 2017-2019, where panels (a), (b), and (c) correspond to precipitation anoma-
lies over 2017-2019, panels (d), (e), and (f) correspond to root zone soil wetness over 2017-2019,
and panels (g), (h), and (i) correspond to 2-m temperature anomalies over 2017-2019.

3 Results and Discussion356

3.1 Relevant meteorology and its effects on crops357

Figure 4 shows precipitation, root zone soil wetness, and 2-m temperature anoma-358

lies for the eastern and central US over the years of 2017-2019 during the period of May-359

August when most of the 2019 flooding and its effects occurred. Comparing May-August360

precipitation totals over the years 2017-2019 indicate that 2019 (Figure 4c) saw notice-361

able wet anomalies in the central US including the Midwest and the South with the Mid-362

west experiencing much of the flooding and the South only being partially affected (more363

information about the flood is in the supporting information section S1). The same re-364

gions in 2017 and 2018 (Figures 4a and 4b) generally saw negative anomalies except for365

coastal regions of southeastern Texas, southern Louisiana, southern Mississippi, and south-366

ern Alabama in 2017, when extremely wet conditions occurred. More evidence of the 2019367

flood can be gleaned from the widespread root zone soil wetness positive anomalies in368

May-August of 2019 (Figure 4f) in comparison to May-August of 2017 and 2018 (Fig-369

ures 4d and 4e), although some slightly positive anomalies can be seen in Wisconsin and370

coastal gulf states in 2017. Surface (2-m) temperature anomalies over May-August in371

2019 are mostly below normal in the Midwest and close to normal values in the eastern372

regions, while in May-August of 2018 whole shown area except for Florida is well-above373

average, and 2017 in general is unremarkable.374

The immediate effects of 2019 flooding on the two major US crops is evident from375

Figure 5, where in Figures 5a and 5b planned planting of corn and soybeans is delayed376

by almost a month. The delay is likely caused by the severe waterlogging that occurred377

in early May not allowing farmers to proceed with the planned crop planting timetables.378

Figures 5c and 5d indicate that the total planted annual acres of corn and soy are about379
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Figure 5. Corn and soybean statistics in the Midwestern states (listed in section 2.2)
showing progress (percent planted), acres planted, and yield for the years 2017-2019, where
(a), (c), and (e) indicate the mentioned statistics for corn and (b), (d), and (f) for soy
(https://quickstats.nass.usda.gov/).

3-15% lower in 2019 than in years 2017 and 2018. Figures 5e and 5f show both corn and380

soy yields are lower in 2019 in comparison to 2017 and 2018.381

These results are also partially supported by Figure S3 exhibiting Fraction of Pho-382

tosynthetically Active Radiation (FPAR) anomalies for years 2017-2019. FPAR indicates383

plant’s ability to incorporate solar radiation to promote its growth (more details are in-384

cluded in supporting information section S2; Los et al., 2000). The figure shows notice-385

able negative FPAR anomalies in parts of the Midwest over 2019 suggesting that the flood386

is significant enough to affect plant function and to cause pronounced reduction of crop387

yields in the Midwest compared to years 2017 and 2018. This may imply that the amount388

of carbon assimilated by the crops is also lower in 2019 than in the two prior years. This389

hypothesis as well as the possible opposite effects of the anomalously wet conditions on390

the non-crop vegetation (positive FPAR anomalies in the S and T regions) is addressed391

in the next section.392

3.2 NEE Optimization in the Midwest and the South393

In Figure 6, the results of the optimization process are presented by comparing the394

optimized GEOS CO2 time series with the original non-optimized GEOS CO2 time se-395

ries and the tower observations. Uncertainty of the optimization is denoted by grey lines396

representing one sigma variation. The time series are 5-day running daily means plot-397

ted as the days of year at the regions M, S, and T over the years 2017-2019. The adjust-398

ments made because of the optimization process (explained in section 2.6) are illustrated399
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Figure 6. CO2 insitu observations vs. GEOS model along with its optimization for towers
WBI, MS (1 and 2), and WKT located in M, S, and T regions, where (a) WBI in 2017, (b) WBI
in 2018, (c) WBI in 2019, (d) MS-01 in 2017, (e) MS-02 in 2018, (d) MS-02 in 2019, (g) WKT in
2017, (h) WKT in 2018, (i) WKT in 2019.

in Figure 7, which shows 9 time series of the resultant scaling factors for GEOS NEE CO2400

tracer mole fractions reflecting the time series shown in Figure 6. The scaling factors in401

Figure 7 are plotted in a such way that positive values indicate a need to increase up-402

take in the model, while negative values indicate a need to decrease uptake in the model.403

Scaling factor uncertainty of one sigma is indicated by black lines.404

Beginning with the analysis of CO2 cycle in the M region (Figures 6a-c), growing405

seasons differ for each of the years with 2017 having the earliest drawdown start day on406

about 100th day of the year as evident from Figure 6a. The model picks up this feature407

in 2017 generally well, but with incorrect magnitude. The years 2018 and 2019 exhibit408

slightly later drawdown start days with 2019 experiencing the beginning of the net up-409

take earlier than 2018 by about 10-20 days. For both years the model erroneously pre-410

dicts the start of growing season around the day 100. The peak period of net uptake lasts411

about 20-30 days longer in 2017 compared to 2018, and only a few days longer compared412

to 2019. Overall, the model performs adequately in replicating the shape of the draw-413

down cycle; however, during the peak net uptake period, it appears to exhibit a deficiency414

in the necessary uptake.415

Upon further examination of the model’s performance in the M region, it is dis-416

covered that during the three-year period, scaling factors shown in Figures 7a-c demon-417

strate comparable characteristics, although with variations in magnitude. The princi-418

pal trends of GEOS LoFI model biases in region M are identified as insufficient uptake419

during the first 50 days, excessive uptake between days 100-170, inadequate uptake from420

around day 170 to approximately day 230, elevated uptake from roughly day 250 to day421

300, and insufficient uptake during the remainder of the year. The year 2018 necessitates422

the most significant optimization adjustments, particularly within the period spanning423

from day 100 to approximately day 220.424

Possible explanations for some of the observed variations in drawdown cycle in the425

M region can be found in Figure 4. From a meteorological perspective, there are no re-426
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Figure 7. Scaling factors (shown in green) in percentages of GEOS NEE CO2 tracer mole
fractions as a function of day of year using towers WBI, MS (1 and 2), and WKT located in M,
S, and T regions, where (a) WBI in 2017, (b) WBI in 2018, (c) WBI in 2019, (d) MS-01 in 2017,
(e) MS-02 in 2018, (d) MS-02 in 2019, (g) WKT in 2017, (h) WKT in 2018, (i) WKT in 2019.
Black lines indicate one sigma interval of an overall uncertainty of an estimated scaling factor.
The scaling factors are plotted in such a way as to indicate a decrease in carbon uptake when the
scaling factor is negative and to indicate an increase in carbon uptake when the scaling factor is
positive.

markable anomalies observed in the Midwest region during 2017, while the years 2018427

and 2019 exhibit anomalous levels of heat and precipitation, respectively. During the peak428

of growing season between May and August, Figure 4h reveals widespread positively anoma-429

lous 2-m temperatures encompassing the Midwest region in 2018. Also Figure 4e hints430

at some deficit in root zone soil wetness in some of the central states. These meteoro-431

logical parameters indicate that spring and summer of 2018 experienced partial drought432

conditions, which led to a slight setback in corn progress (Figure 5a) delaying drawdown433

cycle. The year 2019 witnessed extreme flooding because of the above-normal precip-434

itation illustrated in Figure 4c, and substantially increased root zone soil wetness as demon-435

strated in Figure 4f. These anomalously wet conditions impeded the growth of corn and436

soybean, as indicated in Figures 5a and 5b, consequently reducing carbon uptake.437

Moving on to the S region (Figures 6d-f), where the model generally tracks accu-438

rately tower observations except for a period in 2018 where it is too high. The growing439

season is much less defined in the S region than in the region M making it difficult to440

state exactly how it differs among the shown years. The drawdown begins earlier in the441

S region than in the M region by about 20-30 days. Additionally, the S region CO2 time442

series exhibit an interesting feature in the form of noticeable jaggedness, which reflects443

variations in air masses. During summer, air moving from the north tends to be depleted444

in CO2 as it passes over the widespread crop areas, resulting in dips in the time series445

(Figure S4). Conversely, air moving from the south tends to be enriched in CO2 as it446

accumulates over the Gulf of Mexico, leading to spikes in the time series. In winter, CO2447

tends to pile up along a frontal boundary introducing spikes in CO2 tower observations448

over the southern areas (Figures S5). Such spikes are also produced by spring frontal in-449

trusions as higher-CO2 air is brought to the South (where a growing season has already450
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started) from the Midwest where the switch from efflux to uptake did not yet occur (Fig-451

ure S6).452

The scaling factors derived from the optimization for the S region shown in Fig-453

ures 7d-f share a few important similarities although also contain differences. All three454

years indicate a need for more uptake in the GEOS LoFI from about day 150 to about455

day 250. The time series markedly differ in magnitude of the scaling factors with 2017456

showing the least amount of variation and 2018 with the most dramatic bias peaking at457

about 150%.458

Meteorologically, the S region is slightly less affected by the temperature anoma-459

lies in 2018 and the root zone soil wetness anomalies in 2019; however, the mentioned460

features are still found in Figures 4h and 4f. Also, a large amount of coastal precipita-461

tion in 2017, evident from Figure 4a, makes year 2017 potentially atypical. It is difficult462

to make any conclusions about how the weather specifically affected vegetation carbon463

uptake in the S region over the years 2017-2019, but a little more analysis on this is pre-464

sented in section 3.4.465

The T region is characterized by mostly consistent CO2 time series with a slight466

hint of growing season beginning to occur early in a year, interspersed with occasional467

sharp drops and spikes (Figure 6g-i), similar to what is observed in the S region. The468

NEE tracer derived from GEOS LoFI does not exhibit large values in the T region and469

therefore does not allow for much optimization. The model generally does a decent job470

predicting CO2, but it consistently fails at identifying peaks of CO2 suggesting challenges471

associated with carbon arriving from other areas.472

In the T region, the scaling factors tend to be noisy, varying up and down, except473

for a period in 2019 from day 150 to day 200 where it is positive suggesting the need for474

more net carbon uptake in GEOS LoFI. The overall oscillatory nature of the scaling fac-475

tor in the T region reflects the savanna/grasslands vegetation of the T region correspond-476

ing to the smaller values of NEE tracer that are hard to adjust effectively in compari-477

son to the M and S regions.478

3.3 Optimization Validation479

In this study, the validation is meant to gauge the tower representativeness of each480

respective region by evaluating determined adjustments of the GEOS simulation using481

independent-from-optimization observations. The scaling factors derived at the optimiza-482

tion sites in all the 3 regions are combined and used to adjust CO2 values at every val-483

idation site. The optimization described in the previous section is validated with 3 tow-484

ers INFLUX, LA-01, and AL-01 and with data from the 2019 airborne ACT-America485

campaign. INFLUX tower results are demonstrated in the Figures 8a-c, where 5-day run-486

ning daily averages of the observed, modeled, and model-adjusted CO2 are plotted over487

a year. Comparing Figures 6a-c and Figures 8a-c indicates that the GEOS model bias488

is generally similar for both WBI and INFLUX towers although with different magni-489

tudes – too much uptake in the first part of the growing season (days 100-160) and too490

little uptake at the heart of the drawdown (days 170-230). This result is reasonable as491

Indiana, like Iowa, is mainly an agriculture state (Figure 1). Therefore, the NEE opti-492

mization corrections (shown in green) adjust the model in the right direction. However,493

it is likely that the different vegetation in the proximity of INFLUX tower 1 (forests) and494

a somewhat different transport influence area affect the local CO2 mole fractions.495

Next, validation performed at LA-01 tower in years 2017 and 2018 is illustrated in496

Figures 8d and 8e. Validation at this tower serves to verify optimizations in both regions497

S and T. For the most part validation time series tend to line up well with observations498

demonstrating that MS-1, MS-2, and WKT towers are well representative of the S and499

T regions. The near-perfect alignment of optimized and observed values during days 150-500
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Figure 8. Validation of the optimization using various datasets throughout the years of in-
terest, where the INFLUX tower 1 is shown in (a-c) for years 2017-2019, LA-01 tower is shown
in (d-e) for years 2017-2018, AL-01 tower is shown in (f) for year 2018, southern ACT-2019 daily
averaged flights are shown in (g), and Midwestern ACT-2019 daily averaged flights are shown in
(h).

200, as illustrated in Figure 8e, is particularly impressive. Unfortunately, a significant501

portion of the observed data is missing in 2017. Also, it is possible to see that the cor-502

rection of days 136-150 for 2017 (Figure 8d) is inconsistent with the Louisiana data. This503

discrepancy may imply that although the T and S regions share similarities they are not504

identical.505

The only data that is available from the AL-01 tower is for 2018 and at that it is506

incomplete. The AL-01 tower can partially validate the S region optimization. Figure507

8f shows that in the days 120-150 optimization is not helpful, but later in the period (start-508

ing at about day 210) some improvement can be noted confirming higher carbon uptake.509

In this regard 2018 LA-01 and AL-01 towers are consistent and support the evidence of510

too little uptake in the GEOS LoFI system at the peak of growing season.511

Finally, airborne ACT-America 2019 campaign is used to validate the optimiza-512

tions. ACT-America focused on all the regions of interest, first in the S and T regions513

during the second half of June (days 168-178) and then in the M region during the first514

part of July (days 185-191). Figure 8g compares airborne CO2 averages to correspond-515

ing original and adjusted model values. Noticeable improvement can be seen in the ad-516

justed model, signaling that the S and T regions likely did experience higher carbon up-517

take than the original GEOS calculation showed. Regarding ACT-America flights in the518

M region denoted in Figure 8h, the original and adjusted models do not differ by much519

and generally closely resemble the airborne measurements. This is not surprising as Fig-520

ure 7c suggests that in early July of 2019 (days 185-191) the model accurately estimated521

CO2 mole fractions not requiring substantial adjustment.522

Overall, the process of validating the optimizations showed that the derived scal-523

ing factors from the towers can be extended to the regions of interest albeit at times with524

a considerable error, which is difficult to quantify precisely. Established GEOS biases525

based on the WBI tower in the M region are partially observed at INFLUX tower 1. Re-526
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gional ACT-America 2019 flights in the M region also indicate that the optimizations527

are reasonable. With regards to the S and T regions, towers LA-01 and AL-01 in 2018528

and corresponding ACT-America 2019 flights show improved agreements with adjusted529

model fields. On the other hand, the LA-01 tower in 2017 does not suggest much improve-530

ment; however, those are limited fragments of the overall validation dataset. Addition-531

ally, Figures S7 and S8 demonstrate a reverse process (supporting information section532

S4), where validation sites are used to solve for the regions M, S, and T providing con-533

sistent results to the ones obtained in the current section.534

3.4 Regional Annual NEE Variability535

Once the optimization and validation procedures are accomplished it is possible to536

adjust GEOS NEE over all the regions and compare the outcomes among the years 2017-537

2019 as well as 2000-2016 LoFI climatology. Figure 9 presents a comparison of the monthly538

and annual original, adjusted, and climatological GEOS NEE for the M region, span-539

ning the years 2017-2019. Figure 9a reflects Figure 6a, where 2017 begins to exhibit grow-540

ing season sometime in April-May as optimized NEE is hovering around 0 Pg C. The grow-541

ing season ends in October when net carbon source becomes apparent. Year 2018, as de-542

scribed in section 3.2 (Figure 6b), displays a notably later inception to a growing sea-543

son. Optimized NEE implies that net uptake begins sometime in June and ends in Oc-544

tober (Figures 9b. The delay of the growing season in 2018 is likely a result of the drought545

conditions (Haigh et al., 2022). Another interesting feature that could be spotted in 2018546

is a drastic net uptake in July (Figure 9b), which can be explained by the fact that most547

of the crops in 2018 experienced an earlier than average blooming stage leading to a higher548

than usual net uptake in July but lower than usual net uptake in September. Although549

in the analysis of the optimized time series it appeared that 2019 had a delayed start to550

a growing season, Figure 9c seems to suggest that in terms of carbon uptake 2019 be-551

haves similarly to 2017 in April-May despite experiencing the flood. It is only later in552

the growing season that 2017 is able to assimilate more carbon than the growing season553

of 2019 implying that if 2017 can be considered a normal year the impact of flooding on554

NEE was not instantaneous but delayed. However, determining whether 2017 qualifies555

as a typical year is not a simple matter (supporting information S6). As pointed out in556

section 3.2, optimized NEE for all the 3 years conveys that non-optimized GEOS has not557

enough uptake in July and August.558

An assessment of NEE yearly totals for the M region (Figure 9d) shows that 2019559

has the smallest NEE compared to 2017 and 2018 supporting the assertion that the 2019560

flood did reduce annual carbon uptake in the M region; however, the actual reduction561

in net uptake mainly occurred in June and July of 2019. The climatological LoFI NEE562

is close to the 2019 value indicating that the effect of this flooding on annual carbon bud-563

get is not as unusual. However, it is important to note that the GEOS LoFI climatol-564

ogy is likely biased as it is based on the CASA model product that is known to under-565

estimate carbon uptake over the US Midwestern croplands (Y. Zhou et al., 2020).566

The overall growing season magnitude of NEE in the S region (Figures 10a-c) is567

approximately four times lower than that of the M region. It is hypothesized here that568

this difference between M and S regions can be explained by the switch of vegetation from569

mostly crops to mixed forests and savannas (Figure 1). Crops such as corn and soybean570

that are abundant in the M region exhibit more efficient GPP with relatively less atten-571

dant RE than many other plant types (Guanter et al., 2014). Comparing GPP and RE572

outputs from GEOS LoFI between regions M and S in 2019 leads to similar conclusions573

(Figure S9). According to the examined 3 years and climatology the growing season in574

the S region appears to be from April to September-October. In 2017 the optimization575

does not significantly alter GEOS model fluxes, while noticeable changes are observed576

in 2018 and 2019. In years 2018 and 2019 the optimization implies that carbon uptake577

in the S region should be noticeably higher than what the original GEOS simulation in-578
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Figure 9. Original, adjusted, and climatological (2000-2016) GEOS NEE (in Pg of carbon)
in the M region, where (a-c) panels show monthly flux for years 2017-2019 and (d) summarizes
annual NEE flux for years 2017-2019. The uncertainty is one sigma.

dicates. That is especially true of 2018, where the annual uptake is increased by about579

50% after the adjustment. Out of all the examined years, 2019 reveals the highest an-580

nual carbon uptake in the S region as evident from Figure 10d. This may indicate that581

the above-average rainfall of 2019 (Figure 4c) along with near or slightly above normal582

2-m temperatures (Figure 4f) enhanced the regional plant growth, which is reflected by583

the higher than typical CO2 drawdown. Climatological values of NEE tend to lack up-584

take from mid to late summer in comparison to 2017-2019 optimized values (Figures 10a-585

c) implying potential systematic bias in GEOS LoFI.586

The T region can be characterized by an even smaller NEE annual variability in587

comparison to M and S regions reflecting the local vegetation consisting of grasslands588

and savannas (Figure 1). Figures 11a-c imply shifted growing seasons from those in the589

regions M and S lasting from about March to early August. Although GEOS LoFI is gen-590

erally in agreement with the optimization, it tends to show a net uptake that is too high591

during April and May. An interesting feature can be noted in Figure 11b, where Septem-592

ber of 2018 exhibits relatively high net source of carbon in both GEOS LoFI and opti-593

mization. This could be potentially explained by the anomalously wet September that594

occurred that year in the region (National Centers for Environmental Information, 2018).595

The Figure S10 indicates that RE rate surpassed GPP rate during September 2018 in596

the T region, which suggests that extreme precipitation significantly contributed to the597

net source of atmospheric carbon. In Figure 11d, 2018 has the least negative NEE likely598

attributable to the unseasonably warm conditions during the summer (Figure 4h) and599

extreme flooding in early fall. On the other hand, 2019 looks like a completely normal600

year for the T region with annual carbon budget being near identical to the 2000-2016601

regional climatology. Indeed, Figures 4c and 4f show that root zone soil wetness and pre-602

cipitation fields are near normal in Texas for May-August period in 2019.603
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Figure 10. Original, adjusted, and climatological (2000-2016) GEOS NEE (in Pg of carbon)
in the S region, where (a-c) panels show monthly flux for years 2017-2019 and (d) summarizes
annual NEE flux for years 2017-2019. The uncertainty is one sigma.

Figure 11. Original, adjusted, and climatological (2000-2016) GEOS NEE (in Pg of carbon)
in the T region, where (a-c) panels show monthly flux for years 2017-2019 and (d) summarizes
annual NEE flux for years 2017-2019. The uncertainty is one sigma.
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As an additional exploration, section S6 in supporting information examines spa-604

tial anomalies of NEE, GPP, and RE from the GEOS LoFI model (Figures S11, S12, and605

S13) and contrasts them against adjusted spatial NEE anomalies (Figure S14). All of606

the calculated anomalies are based on the LoFI 2000-2016 climatology and therefore should607

be treated with caution as the climatology itself is likely biased. This is supported by608

the optimization results shown in Figures 9-11. The bias is also evident in Figure S14609

where generally for all the years it can be observed that May and June tend to have too610

much carbon uptake while July and August too little [with the exception of July 2019611

(Figure S11c), which is being affected by the flood]. Such consistent anomalies make it612

difficult to separate actual anomalies from the GEOS LoFI biases, but it could be con-613

cluded with a high measure of confidence that GEOS LoFI overpredicts NEE in the first614

part of the growing season and under predicts NEE in the second half of the growing sea-615

son. Interestingly, it is difficult to point out which NEE component is responsible for such616

a bias at any given situation as Figures S12 and S13 do not suggest consistent variations617

between GPP and RE indicating the complexity of the issue.618

3.5 Effects of 2019 Flooding on NEE619

After examining the annual variability of NEE at the M, S, and T regions for both620

2017-2019 and the 2000-2016 LoFI climatology, it is now possible to contextualize the621

effects of the 2019 flooding on NEE within a broader perspective. The most significant622

impacts on NEE are apparent in the M and S regions, where the annual NEE budgets623

for 2019 stand out in contrast to years 2017-2018. In the M region, annual net carbon624

uptake is less than in years 2017-2018, but it is within the range of LoFI climatology value625

implying that the estimated NEE is not necessarily an extreme anomaly. For the S re-626

gion, 2019 annual NEE is more negative than that in previous two years and LoFI cli-627

matology, which can be mainly attributable to the enhanced net uptake in May of 2019628

(Figure 10c) when the precipitation event had the most influence.629

These identified features in the M and S regions could be inspected further by look-630

ing at NEE budgets specifically for growing seasons. For the purpose of this study grow-631

ing seasons are defined as a string of months with consistent negative NEE based upon632

Figures 9-11. As such the following timeframes are identified: May-September for the633

M region, April-September for the S region, and March-July for the T region. Figure 12634

compares optimized NEE summed over a region for the years 2017-2019. The result is635

similar to what was previously discussed with year 2019 in the M and S regions exhibit-636

ing decreased and increased net uptakes respectively. In Figure 12 the impacts on NEE637

appear more pronounced as only growing seasons are considered, which were affected by638

the extreme precipitation more directly. Another important note to be made here is that639

regional drought in 2018 did not affect the M region NEE as markedly as the flood of640

2019. Relatively small carbon flux variation over the T region suggests that the corre-641

sponding vegetation of grasslands and savannas is less affected by the anomalously wet642

conditions. Adding up all the surveyed information in this work it can be concluded that643

the extreme flooding of 2019 did affect NEE significantly in the M and S regions and more644

so during the growing season when the consequences of the flood were most pronounced.645

4 Conclusions646

Generally prolonged excessive water conditions will negatively influence a plant sys-647

tem causing anoxia (W. Zhou et al., 2020); however, the effects of flooding on an ecosys-648

tem are not straightforward and largely depend on a particular vegetation type and de-649

gree of waterlogging (Detmers et al., 2015; Sun et al., 2022). Wet conditions can result650

in an increase of carbon net uptake, but too much wetness may lead to a net carbon re-651

lease because in these conditions both productivity and respiration tend to decrease, and652

the overall NEE balance will be contingent on specific environmental conditions (Ahlström653
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Figure 12. Optimized total growing season NEE for years 2017-2019 and corresponding LoFI
2000-2016 climatology as a function of a region. Growing seasons are defined as follows: May-
September for the M region, April-September for the S region, and March-July for the T region.
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et al., 2015; Bloch & Bhattacharjee, 2020). The current study affirms the mentioned as-654

sertions and implies that crops such as corn and soybeans seem to be more susceptible655

to waterlogging than non-crop vegetation such as savannas, forests, and grasslands. This656

is expressed in the reduced carbon uptake in the first part of the growing season over657

the Midwestern region of the US (mainly crops) and overall increased carbon uptake in658

the Southern region of the US (mainly non-crop) during the flood of 2019 when compared659

to 2017 and 2018. The change in 2019 annual NEE in the Midwest with respect to 2017660

and 2018 of about 0.07 Pg C nearly equaled to the total magnitude of NEE in the re-661

gions S and T in 2019 when it was at the highest value among the examined years (−0.1662

Pg C). For the perspective, an annual average NEE over the years 2010-2019 in North663

America is about −0.5 Pg C (Jiang et al., 2022). In addition, significant slowdown of the664

crop planting progress occurred in the early growing season of 2019 as most of the corn665

and soybeans in the US are in the Midwest. Flooding impacts in managed ecosystems666

dominated the net effect for the 2019 event. As humans are considering a variety of strate-667

gies to tackle climate change, sustainable crop management practice can accelerate car-668

bon input into the soil (Meena et al., 2020). The exact effect of flooding on such prac-669

tices is unclear but the delay in planting of crops explored in the current work raises ques-670

tions that could influence future carbon balance and should be considered in strategies671

to reduce net emissions.672

The impact of flooding on NEE and atmospheric CO2 is readily observed by satel-673

lites (Yin et al., 2020) and a variety of insitu observational approaches (this study). Like674

Yin et al. (2020)), for the Midwestern region this study finds a decrease in net carbon675

uptake over June and July of 2019 of about 0.06-1.2 PgC [roughly 12-24% of an aver-676

age annual carbon net uptake in North America (Jiang et al., 2022)] when compared to677

both 2017 and 2018 and an increase in net carbon uptake in August and September of678

near 0.05 PgC (roughly 10% of an average annual carbon net uptake in North America)679

when compared to 2018 [Note that Yin et al. (2020) estimated Gross Primary Produc-680

tion (GPP), which does not account for RE, while this study estimated NEE]. However,681

the results from the current study suggest that comparing 2019 to 2018 may not be op-682

timal as 2018 may not be representative of an average growing season carbon activity683

(Jiang et al., 2022). For instance, assessment of 2019 NEE values with 2017 NEE val-684

ues does not seem to show a “recovery” in August-September time frame as stated in Yin685

et al. (2020) and Turner et al. (2021) suggesting that additional inquiries are required686

into the detailed effects of flooding on the carbon uptake. Atmospheric CO2 observations687

can play an important role in helping to monitor the impact of agricultural systems but688

require sustained planning and coordination (e.g., the discontinuity in towers made this689

study more difficult).690

Finally, the assessment of the GEOS LoFI model shows that the model can sim-691

ulate large-scale variations of CO2 with notable skill in the Midwest and parts of the South,692

but some biases are evident. For instance, more uptake is required in the second part693

of the summer across all the examined regions, while uptake generally tends to be too694

high in May over the Midwest. These biases are consistent with Y. Zhou et al. (2020)695

study, which evaluated CASA against flux towers and other ecosystem models. Given696

that the GEOS LoFI is based on CASA such result is not surprising. Additionally, the697

model struggled to replicate CO2 during passages of frontal systems that appear as spikes698

and dips in time series, specifically in the South. This could be attributable to the fact699

that LoFI is a monthly product downscaled to provide daily fluxes, which lack the needed700

resolution to accurately represent day to day variations in CO2 (Weir et al., 2021).701

Overall, the low latency flux estimation approach from LoFI is credible in discern-702

ing flooding and non-flooding events, which demonstrates the maturity of modeling tools703

that can be applied to carbon monitoring at the current stage. Further investigations704

in this direction are imperative as only a sparse amount of literature is available regard-705
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ing carbon exchange between an ecosystem and the atmosphere in a variety of water-706

excess conditions.707
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the NASA GEOS model is available under the NASA Open-Source Agreement at http://729
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