

## Deriving a Suite of Climate Data Records from 21-years of Sounder Observations

## Xu Liu

<sup>1</sup>W. Wu, <sup>1</sup>L. Lei, <sup>1</sup>X. Xiong, <sup>1</sup>Q. Yang, <sup>2</sup>Q. Yue, <sup>1</sup>D. K. Zhou, <sup>1</sup>A. L. Larar, <sup>3</sup>L. Strow, <sup>4</sup>P. Yang, <sup>5</sup>L. Zhou et. al.

<sup>1</sup> NASA Langley Research Center, Hampton, VA, USA
<sup>2</sup> Jet Propulsion Laboratory, California Institute of Technology, CA, USA
<sup>3</sup> Department of Physics, UMBC, MD, USA
<sup>4</sup> Texas A&M University, College Station, TX, USA
<sup>5</sup> NOAA STAR and JPSS Office, MD, USA

Acknowledgement for NASA funding, Sounder SIPS, and computer supports



## Introduction

- Hyperspectral IR sounders provide high quality observations on
  - Atmospheric temperature, water vapor and trace gas vertical profiles
  - Cloud and aerosol properties
  - Surface properties (temperature, emissivity, reflectivity ...)

|                 |                    |                    |                   |      | AQUA AIRS+AMSU+HSB |
|-----------------|--------------------|--------------------|-------------------|------|--------------------|
|                 | SNPP Crl           |                    |                   |      |                    |
|                 |                    | NOAA 20 CHS+/      | IOAA 21 CrIS+ATMS |      |                    |
| Metop-A IASI/AM | SU/MHS             |                    |                   |      | IASI_NG 2024?      |
| . , Me          | etop-B IASI/AMSU/I | MHS                |                   |      |                    |
|                 | Μ                  | etop-C IASI/AMSU/N | IHS               |      |                    |
| 2002            | 2006               | 2012               | 2018              | 2022 |                    |

- Challenges in producing Climate Data Records (CDRs) from all these IR sounders
  - L2 algorithms may be different for all these sounders which may introduce algorithmrelated errors in deriving long-term trend or time series
  - Time consuming to process or re-process 20-years CDR from these IR sounders
- Climate Fingerprinting Sounder Product (ClimFiSP) is a L3 algorithm developed at NASA Langley is designed to address these challenges



## **Special Features of the ClimFiSP Algorithm**

- ClimFiSP performs spectral fingerprinting retrievals on gridded L1 directly
  - > 3-4 orders of magnitude faster than L1-L2-L2 approach
  - Uses consistent radiative kernels for all IR sounders
  - ➢ Fit all-sky cloudy radiance spectra directly to ensure radiometric closure
  - > All sounder spectral channels (thousands) used in ClimFiSP L3 algorithm
- Principal Component-based Radiative Transfer Model (PCRTM) is used to
  - Compress thousands of hyperspectral channels into less than 200 Principal Components (PCs)
  - Capture all information content of the hyperspectral sounders
- Retrieved atmospheric and surface properties are compressed into PC-domain
  - Reduce the ill-condition of the inversion
  - Efficiently keep error covariance and averaging kernels into smaller dimension
- Radiative Kernels derived from a Single Field-of-view Sounding Atmospheric Product (SiFSAP) (Liu et al. 2009, Wan et al. 2020, 2023, Xiong et al. 2022, 2023)
  - PCRTM-based all-sky retrievals (radiance closure)
  - Uses all spectral channels
- Supported by NASA NNH17ZDA001N-TASNPP and NNH20ZDA001N-SNPPSP
  - Consistent climate products from AIRS, SNPP CrIS, and NOAA20 CrIS
  - Harvest decades of hyperspectral sounder measurements for climate studies
  - Soon will be available at NASA GES DISC for public access



## PC-compression of both Radiance Spectra and State Vector







#### Example of PCs representing H2O vertical profiles



| Satellite Sensors         | Original Dim            | PC-compressed<br>Dim       |
|---------------------------|-------------------------|----------------------------|
| CrIS                      | 2211                    | 124                        |
| AIRS                      | 2378                    | 120                        |
| IASI                      | 8461                    | 190                        |
| Geophysical<br>Parameters | Original<br>Dimension   | PC-compressed<br>Dimension |
| Temperature               | 101                     | 20                         |
| H2O                       | 101                     | 15                         |
| CO2                       | 101                     | 1                          |
| O3                        | 101                     | 10                         |
| CO                        | 101                     | 4                          |
| CH4                       | 101                     | 2                          |
| N2O                       | 101                     | 2                          |
| IR Surface<br>Emissivity  | Hundreds -<br>thousands | 8                          |
| MW Surface<br>Emissivity  | 15-22                   | 5                          |



# **Examples of ClimFiSP Product Published in 2020**

- ClimFiSP enables of the fusion of AIRS and CrIS data into a consistent temperature anomalies at different atmospheric pressure levels
- ClimFiSP and AIRS L3 temperature anomalies from 2003 to 2018 show general agreement



Wu et. al. (2020) "Radiometrically Consistent Climate Fingerprinting Using CrIS and AIRS Hyperspectral Observations" Remote Sensing. <u>https://doi.org/10.3390/rs12081291</u>



## Examples of Temporal and Spatial Variations of ClimFiSP

-80



ClimFiSP ICE-CLD-OD (200209) 80 60 2.5 40 2 20 Latitude 0 1.5 -20 1 -40 -60 0.5 -80 0 -150 -100 -50 50 100 150 0 Longitude

ClimFiSP H<sub>2</sub>O 497 hPa (200209)





### ClimFiSP Surface Temperature from AIRS and CrIS (SNPP/NOAA20) Sep. 2002 – June 2022

#### Surface Temperature Warming Trend **Zonally Surface Temperature Anomalies** Skin Temp $(-60^{\circ} - -90^{\circ})$ -NOAA-20 SNP ClimFiSP 2006 2012 2014 $(-60^{\circ} - -30^{\circ})$ 60°W 120°W 60°E ClimFISP Skin T Trend (\*C/dr -0.5 0.5 1 1.5 2022 2006 2012 2014 2016 2018 2004 2008 2010 2020 $(-30^{\circ} - 30^{\circ})$ (X) LS (K) LS (K) HadCRUT5 2004 2010 2016 2018 2022 2006 2008 2012 2014 2020 $(30^{\circ} - 60^{\circ})$ 180° 120°W 60°W 0° 60°E 120°E 180 HadCRUT5 Skin T Trend (°C/decade) 2006 2008 2010 2012 2014 2016 2018 2022 2004 2020 $(-90^{\circ} - -60^{\circ})$ 40°N GISS 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 0 Year 40 PCRTM-based SiFSAP and ClimFiSP sounder products will be generated at NASA GES DISC for 180° 120°W 60°W 0° 60°E 120°E 180 GISS Skin T Trend (°C/decade) public access -2 -1 0 1 2



## **Surface Temperature Trends Comparisons**





## ClimFiSP Zonal Temperature Anomaly at 500 hPa





## ClimFiSP Zonal H<sub>2</sub>O Anomaly at 497 hPa



## Atmospheric Temperature and Water Vapor Trends (September 2002 to June 2022)



Stratospheric cooling (10 hPa)







IGARSS 2023, Pasadena,CA



## More Examples of ClimFiSP Trends (Total Ozone and Cloud Optical Depth)

CLIMCAPS (L1->L2->L3) cloud clearing OMI (DU/decade) Oct. 2004 –Dec. 2020)









ClimFiSP Ice Cloud Optical Depth Trend (Sept. 2002-June 2022)



ClimFiSP Ice Cloud Effective Radius Trend





## **Summary and Conclusions**

- Consistent CDRs from 20-years of IR hyperspectral Sounders has been derived using NASA Langley's ClimFiSP L1-L3 algorithm
  - Temperature, water vapor, and trace gas atmospheric profiles
  - Cloud temperature, pressure, optical depth, phase, and effective size
  - Surface skin temperature and surface emissivity spectra
- The advantages of ClimFiSP (L3) include
  - Observation-based radiative kernels derived from our PCRTM-based L2 algorithm SiFSAP
  - 3-4 orders of magnitude faster than traditional L1-L2-L3 algorithms
  - Consistent CDRs using the same radiative kernels for all IR sounders
  - Radiance closure by fitting observed radiance spectra (all channels)directly
- SiFSAP (L2) products are being produced at NASA GES DICS
  - Available to public soon
- ClimFiSP product will be delivered to NASA SIPS and GES DISC
  - > Aqua AIRS, SNPP and NOAA-20 ClimFiSP will be available soon
  - Will continue to process NOAA-21 CrIS and future JPSS IR sounder data
  - ClimFiSP Algorithm can also be applied to Metop IASI data