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Space Environment

• Solar radiation (ultraviolet (UV), x-rays)
• Charged particle radiation (electrons, protons)
• Cosmic rays (energetic nuclei) 
• Temperature extremes & thermal cycling
• Micrometeoroids & orbital debris (space particles)
• Atomic oxygen (AO) (reactive oxygen atoms)
• Planetary dust and wind
• Reactive atmospheres

Moon from ISS, NASA Image

Art Image of solar flares and solar wind, NASA Image
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Atmospheric Comparison Between Earth and Mars

Graphs from NASA JPL
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Mars Atmosphere Density Profiles

Graphs Courtesy of Hank Garrett, NASA JPL



Atomic Oxygen Formation by Photodissociation

UV Radiation
E = hν > 5.12 eV (< 243 nm)

Atomic Oxygen (O)

Diatomic Oxygen (O2)
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Atomic Oxygen Earth Atmosphere Number Density 
Dependence Upon Solar Activity
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Solar Cycle Caused Variation in Level of 
Atomic Oxygen in Low Earth Orbit at 400 km
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Year at 400 km circular orbit, 28.5 degree inclination
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Logarithmic Polar Plot of Atomic Oxygen Arrival Flux
(400 km Earth orbit at 28.5º inclination and 1000 K thermosphere)
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Basic Atomic Oxygen Interaction  
with Organic Surfaces

O2

UV Radiation

O O
CO or CO2

OH
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RCH2CH2 +   

OH

OH

de Groh, K. K.,  Banks, B. A., Miller, S. K. R., and Dever, J. A., Degradation of Spacecraft Materials (Chapter 28) in 
Handbook of Environmental Degradation of Materials, Myer Kutz (editor), William Andrew Publishing, 2018. 
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LDEF

F09 Pre-Flight          F09 Post-Flight          After 5.8 years in LEOPrior to Flight

What Can Atomic Oxygen Do to Spacecraft?
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After Exposure to an AO Effective
Fluence of 2x1021 atoms/cm2As Received

Mirrored Silver Back of Solar Cell 
Prior to and After Exposure to Atomic Oxygen
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DC 93-500 Silicone
Exposed to LEO Atomic Oxygen on STS-46

Fluence = 2.3 x 1020 atoms/cm2

Pre-flight Post-flight

Oxidative Cracking of Silicone

Chart From Kim K. de Groh, NASA GRCNational Aeronautics and Space Administration                                                                                www.nasa.gov  



Stress level: Force/Area = ~4000psi (2.76e7 

N/m2)

Strain = Stress/Modulus = 4000 psi/480000 

psi  (3.3e9 N/m2) = ~0.008

For Kapton XC this represents ~3 % of the 

maximum strain and ~24% of the tensile 

strength

Stressed UV-S-2 Unstressed UV-U-2

Under Mount

Exposed

Kapton XC 
experienced a factor 
of 4 higher erosion 
rate under tension 

Polymers Exposed Under Stress on Materials 

International Space Station Experiment (MISSE) 6 
Stressed (left) and Unstressed (right)

Black Kapton XC

Stress Dependent Atomic Oxygen Erosion 
of Black Kapton XC
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Atomic Oxygen Mitigation Using Protective Coatings

Polymer

Dust Particle Scratch or
Rill

Protective Coating

Imperfections in Thin Film Coatings Aluminized Kapton Flown on LDEF
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Blanket Box Cover Failure of Aluminized Kapton Observed on ISS

Coating

Coating

Polymer
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Monte Carlo Computational Model Predictions

• 2-D Computational modeling of atomic oxygen erosion 
of polymers based on observed in-space results

• Takes into account:
• Energy dependence of reaction probability
• Angle of impact dependence on reaction 

probability
• Thermalization of scattered oxygen atoms
• Partial recombination at surfaces
• Atomic oxygen scattering distribution functions

• Modeling parameters tuned to replicate in-space 
erosion

Aluminized on both sides

Aluminized on exposed side only

O

O
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Material Testing in Low Earth Orbit
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Materials International Space Station Experiment (MISSE)

Long Duration Exposure Facility (LDEF)
Wake Side of MISSE Flight Facility 



Material Testing in Ground-Based Simulation Facilities
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Difference in Erosion Rates Between Ground-Based and Space 
Exposure Due to Energy of Incoming Atoms for Coated Polymers 
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Coated Kapton samples exposed to ground-based 
isotropic atomic oxygen prior to and after flight. Central 
slope region represents loss during MISSE flight. Ground 

based isotropic system about 18 times more reactive 
than in LEO for a protected polymer



Difference in Erosion Yield for FEP Teflon in Combined 
Environments for Ground and Space
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FEP Teflon

Erosion yield versus solar exposure (ESH) for FEP Teflon  
flown on various missions. Graph from de Groh, K.; and 
Banks, B. “Atomic Oxygen Erosion Data From the
MISSE 2–8 Missions”; NASA TM 2019-219982. May, 2019



Summary

• Atomic oxygen is present in the upper atmosphere of many planetary 
bodies and is created by dissociation of oxygen by ultraviolet 
radiation from the sun

• The amount of atomic oxygen arriving at a spacecraft surface 
depends on the solar cycle and orientation

• Atomic oxygen is  very reactive and can cause changes in optical, 
thermal and mechanical properties of materials

• The degree of erosion can depend on the presence of other 
environmental and induced factors

• It is important to consider the total environment that materials will 
be exposed to when testing materials in space or in ground-based 
systems
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