
1 

Operational Forecasting Inundation Extents using REOF analysis (FIER) over  

Lower Mekong and Its Economic Impact on Agriculture  

Chi-Hung Chang, Hyongki Lee, Son K Do, Tien Du, Kel Markert, Faisal Hossain, Shahryar 

Khalique Ahmad, John D. Bolten, Chinaporn Meechaiya, Hahn Chul Jung 

 

Chi-Hung Chang 

Address: Department of Civil & Environmental Engineering, University of Houston, 5000 

Gulf Fwy, Bldg. 4, Rm#216, Houston, TX 77204, USA 

Email: cchang37@cougarnet.uh.edu 

 

Hyongki Lee (Corresponding Author) 

Address: Department of Civil & Environmental Engineering, University of Houston, 5000 

Gulf Fwy, Bldg. 4, Rm#216, Houston, TX 77204, USA 

Email: hlee45@central.uh.edu 

 

Son K Do 

Address: Department of Civil & Environmental Engineering, University of Houston, 5000 

Gulf Fwy, Bldg. 4, Rm#216, Houston, TX 77204, USA 

Email: skdo3@cougarnet.uh.edu 

 

Tien Du 

Address: Department of Civil & Environmental Engineering, University of Houston, 5000 

Gulf Fwy, Bldg. 4, Rm#216, Houston, TX 77204, USA 

Email: ldu10@cougarnet.uh.edu 

 

Manuscript File Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www.editorialmanager.com/envsoft/viewRCResults.aspx?pdf=1&docID=8922&rev=0&fileID=92603&msid=a1e55126-ac8a-4864-9810-4d6e68990b88
https://www.editorialmanager.com/envsoft/viewRCResults.aspx?pdf=1&docID=8922&rev=0&fileID=92603&msid=a1e55126-ac8a-4864-9810-4d6e68990b88


Kel N. Markert 

Address: SERVIR Science Coordination Office, NASA Marshall Space Flight Center, 

Huntsville, AL 35899, USA 

Email: kel.markert@nasa.gov 

Faisal Hossain 

Address: Department of Civil & Environmental Engineering, University of Washington, 

Wilcox Hall 167, 2117 Mason Rd., Seattle, WA 98195, USA 

Email: fhossain@uw.edu 

Shahryar Khalique Ahmad 

Address: NASA/GSFC, Greenbelt, MD 20771, USA 

Email: shahryarkhalique.ahmad@nasa.gov

 

John D. Bolten 

Address: NASA/GSFC, Greenbelt, MD 20771, USA 

Email: john.bolten@nasa.gov 

Chinaporn Meechaiya 

Address: Asian Disaster Preparedness Center, SM Tower, 24th floor, 979/69 

Paholyothin Road, Samsen Nai Phayathai, Bangkok 10400, Thailand 

Email: chinaporn.m@adpc.net 

Hahn Chul Jung 

Address: Korea Ocean Satellite Center, Korea Institute of Ocean Science & Technology, 
KIOST 

Email: hahnchul.jung@kiost.ac.kr 
2 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 

Abstract 

In the Lower Mekong River Basin floodplains, rice cultivation is highly crucial for 

regional and global economies and food security. However, prolonged flooding can pose 

damages to rice cultivation and other socio-economic aspects. Yet, there is no rapid operational 

inundation forecasting system that can help decision-makers proactively mitigate flood 

damages. Here, we integrated the so-called Forecasting Inundation Extents using Rotated 

empirical orthogonal function analysis (FIER) framework with an altimetry-based operational 

Mekong River level forecasting system and built an operational web application (FIER-

Mekong: https://skd862-fier-mekong-demo-vlobm9.streamlitapp.com/) that generates 

inundation forecasts with up to 18-day lead times in about 20 seconds on daily basis with a 

promising skill (> 70% of critical success index). Its application to predict spatial flood-induced 

rice economic losses is also presented, demonstrating FIER-Mekong could have contributed to 

save up to 87 and 53 million US dollars during the harvest time of 2020 and 2021, respectively. 

 

Keywords: Operational inundation forecasting, SAR imagery, flood risk prediction, Mekong 

River Basin 
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1 Introduction 

In the Lower Mekong River Basin (LMRB) floodplains, including the Tonle Sap Lake 

Floodplains (TSLF), Cambodian Floodplains (CF), and Vietnamese Mekong Delta (VMD), 

inhabitants have been heavily relying on the resources gifted by the Mekong River (MR) whose 

flood pattern with strong seasonality has nourished the floodplain agriculture and freshwater 

fishery that are major supporters of the livelihoods of local inhabitants (Mekong River 

Commission, MRC, 2011). In particular, agriculture, especially rice cultivation, has been a 

foundation of national economies and stabilizes not only regional but also global food supply 

(Maitah et al., 2020; Matsubara et al., 2020; Okazumi et al., 2014; Triet et al., 2018). The 

Cambodian population has relied on rice production in the TSLF and CF for both domestic 

consumption and commercial export (Cramb et al., 2020). Vietnam is the fifth largest rice 

producer and the third rice exporter in the world (Maitah et al., 2020) with more than half of 

production coming from the VMD (Kien et al., 2020; Bich Tho and Umetsu, 2022). However, 

rice paddies are vulnerable to prolonged floodings and can die after being continuously 

submerged in water for days (Mekong River Commission, MRC, 2009) which may 

consequently lead to regional or even global scale impacts. Prolonged floodings can also pose 

threats to other socio-economic aspects, such as infrastructure, fertile land, and even directly 

threaten human lives (Horton et al., 2022; Oddo et al., 2018). Moreover, recent studies have 

reported an increasing flood occurrence and intensity in the LMRB floodplains under climate 

change (Chen et al., 2020; Try et al., 2020a, 2020b). Therefore, it is vital to rapidly predict the 

inundation extents to help decision-makers develop a proactive damage prevention measure in 

a timely manner that can mitigate flood-induced socio-economic damages.  

Conventionally, hydrodynamic models based on solving one-dimensional Saint-Venant 

equations or two-dimensional shallow water equations have been widely used to transform 

discharge outputs from rainfall-runoff models to distributed inundation extents. However, these 

models suffer from several sources of error (Bates et al., 2014), including model structural errors 

and uncertainties in: (1) the model input data including the rainfall-runoff data to set the 

boundary and initial conditions, (2) input Digital Elevation Model (DEM) and channel 

bathymetry data, (3) friction coefficients to represent energy loss mechanisms, and (4) 

information about hydraulic structures in the reach. All these uncertainties in hydrodynamic 
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model calibration, boundary conditions, and topographic data can significantly influence flood 

inundation predictions (Teng et al., 2017; Bates et al., 2014). Furthermore, the required spatial 

parametric inputs may not always be available (Chen et al., 2019; Leandro et al., 2014; Teng et 

al., 2017). In addition, they carry a heavy computational burden, especially for a high-resolution 

large-scale forecasting framework, that could affect forecast lead-time and accuracy. These 

factors were also mentioned as sources of uncertainties and errors in Dung et al. (2011) and 

Triet et al. (2020, 2018), which simulated inundation extents in the VMD by a one-dimensional 

hydrodynamic model (MIKE11) with discharges at the upstream Mekong mainstem as the 

upstream boundary inputs along with a spatial interpolation technique. Triet et al. (2018) also 

pointed out it is challenging for the two-dimensional modeling approach to be implemented in 

the VMD due to the computational burden and the need of highly accurate data of the dense 

man-made channels and infrastructure in the region.  

On the other hand, a non-modeling, terrain-based approach, such as Height Above 

Nearest Drainage (HAND), that employs a planar approximation has also been used (Nobre et 

al., 2016; Zheng et al., 2018). The HAND approach normalizes the topography according to 

local relative heights along the drainage network. Then, a rating curve is used to transform 

streamflow forecasts to depths for a given river cell. Finally, flood inundation extents are 

determined by selecting surrounding land cells whose HAND values are less than the given 

water depth in the stream (Nobre et al., 2011; Teng et al., 2017). The HAND approach requires 

significantly less computational power than hydrodynamic models and may work well on 

confined floodplains with steep valleys and straight river reaches (Bates and De Roo, 2000; 

Wing et al., 2019). However, a recent study by Johnson et al. (2019) demonstrated that the 

method severely overpredicts inundation depth in regions of low relief. In addition, the HAND 

approach does not account for overland water flow and backwater effects caused by 

infrastructure and coastal flooding. With its flat terrains, especially over the CF and VMD 

(Balica et al., 2014), the HAND approach may not be applicable. In fact, there is currently no 

operational inundation extent forecasting system in the LMRB floodplains that provides a 

frequent (e.g., daily) forecast of inundation to the best of our knowledge. Most of the existing 

studies performed a scenario analysis using the hydrodynamic models, such as analyzing long-

term impacts of anticipated climate change or streamflow alteration (Horton et al., 2022; Pokhrel 
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et al., 2018; Triet et al., 2020; Try et al., 2020a, 2020b), or post-event damage assessment (Triet 

et al., 2018). 

Recently, space-borne remote sensing, especially using the Synthetic Aperture Radar 

(SAR) and visible and near-infrared sensors, has emerged as a powerful tool to depict areal 

inundation and its variation with repeated views over extensive spatial areas (e.g., Ahamed and 

Bolten, 2017; Kim et al., 2017; Lee et al., 2015; Oddo et al., 2018; Smith, 1997). Chang et al. 

(2020), using the TSLF as a test bed, proposed a satellite imagery-based inundation extent 

forecasting framework that addresses the need for computationally efficient areal inundation 

estimation and forecasts with high temporal resolution. This framework is named Forecasting 

Inundation Extents using Rotated empirical orthogonal function analysis (FIER). Simply 

speaking, FIER forecasts inundation extents based on a correlation between historical 

inundation extents and hydrological data (water levels or streamflow). Once the correlation is 

identified, inundation extents can be forecasted with forecasted hydrological data available from 

an external forecasting system. Specifically, FIER decomposes multi-temporal historical 

satellite images into significant spatiotemporal patterns using the Rotated Empirical Orthogonal 

Function (REOF) analysis (Kaiser, 1958; Lorenz, 1956). The patterns are then coupled with the 

hydrological data by regression models. Then, the forecasted hydrological data, when available, 

can be used as inputs to synthesize forecasted satellite-like images, from which the 

corresponding forecasted inundation extents can be delineated. Consequently, FIER becomes 

much more computationally efficient and scalable, compared with the conventional approaches 

using hydrodynamic models. FIER has been successfully implemented in the TSLF (FIER-

TSLF) for daily hindcast and forecast of inundation extents using a multi-temporal stack of 

Sentinel-1A images, daily interpolated Jason altimetry-derived TSL levels, and the climate 

index.  

This study further extended the research of Chang et al. (2020) by: (1) implementing 

FIER over the entire LMRB floodplains, where the use of conventional approaches is quite 

challenging, by integrating it with the operationally sustainable and computationally efficient 

satellite altimetry-based MR water level forecasting system (Chang et al., 2019) (see Section 

2.3 and the Supplementary Information); (2) developing a publicly available operational FIER 

web application for the LMRB floodplains, named FIER-Mekong, that can rapidly generate and 

visualize daily forecasted inundation extents with different lead times. The corresponding 
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forecasted inundation depths can also be generated and visualized by utilizing the Google Earth 

Engine (GEE)-based Floodwater Depth Estimation Tool (FwDET-GEE) (Peter et al., 2020). 

The forecasted inundation extents and depths can be used for further geospatial analysis, such 

as conducting spatial prediction on flood-induced socio-economic damages with other land 

cover data. Spatial flood damage prediction can help decision-makers take proactive actions, 

such as disseminating timely and effective early warnings, to manage and prevent flood 

damages. Here, considering the aforementioned importance of rice cultivation in the LMRB 

floodplains, we demonstrated the application of FIER-forecasted inundation extents on spatial 

prediction of flood-induced rice damages. To provide users with the flexibility to use the FIER-

forecasted inundation extents, the FIER-Mekong web application also allows users to export the 

forecasted inundation extents and depths as Geocoded TIFFs (GeoTIFFs), a widely used and 

supported georeferenced raster data format, that users can conveniently conduct further 

geospatial analysis of their interests.   

The structure of this paper is as follows: Section 2 introduces the data that were used for 

FIER-Mekong and its application. Section 3 explains the FIER-Mekong process, skill 

evaluation indices, and how the early risk assessment was conducted. Section 4 describes the 

FIER-Mekong web application. Section 5 presents skill evaluation of FIER-forecasted 

inundation extents and demonstrates early assessment of flood-induced rice economic losses. 

The scalability of FIER framework is also discussed. Finally, Section 6 concludes the paper and 

discusses future scopes. 

 

2 Data 

2.1 Sentinel-1 SAR imagery 

We used Sentinel-1A VV-polarized Ground Range Detection High-resolution (GRDH) 

intensity imagery from which the spatiotemporal patterns of the intensities have been extracted 

using the REOF analysis. Sentinel-1A, equipped with C-band (5.405 GHz) SAR imaging sensor, 

is a satellite mission under the Copernicus Earth observation program of the European Space 

Agency (ESA). It was launched on April 3rd, 2014, and has been consistently providing freely 

available imagery with a 12-day revisiting cycle. The VV-polarization was chosen considering 
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its superior surface water mapping capability (Markert et al., 2020; Twele et al., 2016). To cover 

the LMRB floodplains, four frames, including Frames 23, 29, 34, and 39 of Path 26, were used 

(see Figure 1). We also used Sentinel-1A images to delineate inundation extents for cross-

comparison with the FIER-forecasted inundation extents. Table 1 summarizes the numbers of 

Sentinel-1A images used with their acquisition periods.  

 

Table 1. Usages, acquisition periods, and the corresponding numbers of Sentinel-1A images used. 

Usage Acquisition period  

(YYYY-MM-DD) 

Number of Sentinel-1A images 

Model building 2017-03-13 to 2019-12-22 85 

Cross-comparison references 2020-06-01 to 2020-10-23 13 

2021-06-08 to 2021-10-30 13 

 

We leveraged the cloud-based GEE data catalog and Application Programming Interface 

(API) to alleviate the computational burden of Sentinel-1A imagery retrieval and preprocessing. 

A GEE API-based, open-source Python application, called Hydrologic Remote Sensing 

Analysis for Floods (HYDRAFloods) (https://servir-mekong.github.io/hydra-floods/) was used 

for preprocessing, including image mosaicking, slope correction (Vollrath et al., 2020) using 

the Multi-Error-Removed Improved-Terrain Digital Elevation Model (MERIT DEM) 

(Yamazaki et al., 2017), and the Gamma-Map speckle filtering (Lope et al., 1990). The Joint 

Research Center (JRC)’s Global Surface Water Data was used to mask out the permanent water 

bodies in the Sentinel-1A images to mitigate the influence of their surface roughness change on 

SAR intensities, which are often caused by winds. Another GEE API-based Python package, 

called RESTEE (https://github.com/KMarkert/restee), was used to convert the preprocessed 

GEE server-side Sentinel-1A image collection to the client-side Python gridded dataset with 

user-defined spatial coverage and resampling resolution so it can be processed using non-GEE-

based APIs and Python libraries. To build the prototype of an operational inundation forecasting 

system, 0.005o of spatial resolution, which is equivalent to approximately 552 m, was simply 

set. The FIER-estimated inundation extents will also have the same spatial resolution. Both the 

HYDRAFloods and RESTEE are developed by NASA SERVIR Coordination Office (SCO). 
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The Sentinel-1A images, MERIT DEM, and JRC data were all retrieved from the GEE data 

catalog at no cost. 

 
 

Figure 1. Sentinel-1A VV-polarized intensity image acquired on October 10th, 2018, which illustrates 

the spatial coverage of the imagery used. Red dots mark the gauges whose water levels were identified 

to be best correlated with Sentinel-1A’s temporal patterns. The blue-shaded areas show the JRC 

historical maximum flooded areas. 

 

2.2 MERIT DEM 

The MERIT DEM (Yamazaki et al., 2017) was used for the slope correction of multi-

temporal Sentinel-1A images, and as the topographic reference to derive the inundation depth 

maps from the inundation extents. It is a 3 arc-second-resolution global DEM with the Earth 

Gravitational Model 1996 (EGM96) geoid as a datum. It uses the SRTM3 DEM and the 

Advanced land observing satellite World 3D-30 m DEM (AW3D-30m DEM) as the baseline, 

where the unobserved gaps are filled by the Viewfinder Panoramas DEM. It has improved 

accuracy than the SRTM DEM with bias and errors being estimated and mitigated based on Ice, 

Cloud, and land Elevation Satellite (ICESat) laser altimetry land surface elevation data, Landsat-

derived forest cover dataset (Hansen et al., 2013), and NASA global forest height data (Simard 

et al., 2011).  
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2.3 Mekong River water levels observations and forecasts 

The historical in-situ water levels, provided by the MRC 

(https://portal.mrcmekong.org/home), were used to examine their correlation with the temporal 

patterns extracted from the multi-temporal Sentinel-1A images. Figure 1 shows the locations of 

gauges used, which are Kratie, Koh Khel, Chau Doc, and Can Tho from upstream to 

downstream, with red dots. Since FIER requires forecasted water levels at these gauges to 

generate forecasted inundation extents, the operational Variable Infiltration Capacity (VIC) 

model-aided satellite altimetry-based water level forecasting system (Chang et al., 2019) was 

used (details in Supplementary Information). Essentially, the water level forecasting system 

uses upstream altimetry-derived water levels to forecast the downstream water levels by 

assuming a linear relationship between them. This approach was adopted because (1) it is 

computationally efficient and thus suitable for the operational purpose; and (2) it can generate 

the water level forecasts with promising skills at Can Tho inside the VMD which the MRC does 

not routinely issue (Chang et al., 2019; Pagano, 2014). Although Chang et al. (2019) built the 

MR water level forecast system with up to 20-day lead time, the operational maximal lead time 

becomes 18-day due to the latency of input forcings of the VIC model. 

 

2.4 Rice cover, market price, and yield  

To calculate the wet season flood-induced rice economic losses, it requires the spatial 

distribution, market price, and the yield of rice. The rice harvest times need to be also 

considered. The wet season harvest time in the CF is around late August to early September 

(Okazumi et al., 2014). On the other hand, in the VMD, the wet season harvest time spatially 

varies. For double-cropping areas, the harvest time is from July to early August. For triple-

cropping areas, there is an additional harvest time depending on whether the areas are fully 

protected or not (Triet et al., 2018). We only considered the additional harvest time of the triple-

cropping areas that are not fully protected and can be vulnerable to flooding, which is from late 

August to early September (Triet et al., 2018). For the spatial distribution of rice paddies in the 

CF, the latest landcover data (for the year 2018) from the SERVIR-Mekong Regional Land 

Cover Monitoring System (https://www.landcovermapping.org/en/landcover/) was used. In the 

VMD, since the wet season harvest time spatially varies depending on local annual cropping 

times, the land cover data of Vu et al. (2022) (https://data.mendeley.com/datasets/kpftzmsyyz/2) 
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was used. Both landcover data were spatially interpolated to be aligned with the inundation 

extents from FIER-Mekong using the nearest neighbor method. 

The rice market price in US Dollar (USD)/ton was retrieved from Food and Agriculture 

Organization (FAO) (https://www.fao.org/markets-and-trade/commodities/rice/fao-rice-price-

update/en/). The rice yield (ton/ha) was retrieved from the U.S. Department of Agriculture 

(USDA) (https://ipad.fas.usda.gov/countrysummary). Table 2 summarizes the retrieved data. 

For the rice market price, we used the average price of all rice varieties. For the rice yield, we 

used the average yield of the market year 2019/2020 and 2020/2021 for 2020, and the average 

yield of 2020/2021, and 2021/2022 for 2021.  

 

Table 2. Rice market price and rice yield of Cambodia and Vietnam, which were used to estimate 

flood-induced rice economic loss.  

Country Rice market price (USD/ton) Rice yield (ton/ha) 

2020 2021 2020 2021 

Cambodia 844.0 728.2 2.90 2.89 

Vietnam 479.3 462.4 5.94 6.00 

 

3 Methods 

This section explains how FIER was implemented in the LMRB floodplains (FIER-

Mekong). Figure 2 shows the flowchart of the entire process. FIER-Mekong was constructed 

using the multi-temporal Sentinel-1A intensity images and the in-situ MR water levels from 

MRC. With the forecasted MR water levels generated from Chang et al. (2019), the forecasted 

inundation extents were then produced. Then, the FIER-forecasted inundation extents were 

combined with the MERIT DEM to determine the forecasted two-dimensional inundation 

depths using the GEE-based Floodwater Depth Estimation Tool (FwDET-GEE) (Peter et al., 

2020). Finally, the corresponding flood-induced rice economic losses were estimated as a 

demonstration of the FIER-Mekong application in preventing or mitigating the anticipated flood 

damages. 
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*Rice data: Rice spatial cover, market price, and yield (see Section 2.4). 

Figure 2. Flowchart of FIER-Mekong, including how it was constructed, and how the forecasts were 

generated and applied to estimate rice economic losses. 

 

3.1 FIER  

The REOF analysis (Kaiser, 1958; Lorenz, 1956) was first applied to obtain the 

significant spatiotemporal patterns of multi-temporal Sentinel-1A images. Here, the first four 

modes of spatiotemporal patterns, accounting for about 64% of the total variance of the multi-

temporal Sentinel-1A images, were identified as significant based on the Monte Carlo 

simulation, and were rotated to obtain the static spatial patterns, called Rotated Spatial Modes 

(RSMs), and the corresponding temporal patterns, called Rotated Temporal Principal 

Components (RTPCs). Hereafter, the first mode of RSM (RTPC) will be called RSM-01 

(RTPC-01), and the second mode of RSM (RTPC) will be called RSM-02 (RTPC-02), and so 

forth.  

A correlation analysis between the four significant modes of RTPCs and the MRC in-

situ water levels was then conducted, and the four gauges whose water levels are best correlated 

with RTPC-01 to RTPC-04 were identified, which are Chau Doc, Koh Khel, Can Tho, and 

Kratie, respectively. The top panel of Figure 3 shows the RTPCs along with their best-correlated 
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in-situ water levels and correlation coefficients (Corr.) which are all higher than 0.7 to 0.8. It 

means the changes in Sentinel-1A SAR intensities are temporally relevant to the water level 

changes at these gauges, which can be further interpreted together with the corresponding RSMs 

shown in the bottom panel of Figure 3. The positive correlations between the RTPCs and water 

levels indicate that when water levels are higher, the RTPCs will also be higher and lead to 

lower values after multiplying with the negative-value pixels (blue pixels) in the RSMs, which 

represent the floodwater occurrences. It also reflects the behavior of SAR intensities which 

would be lower with floodwater due to the side-looking radar imaging geometry and the 

specular backscattering from the water surface. By comparing with the blue-shaded areas in 

Figure 1, we can see that the negative-value pixels in RSMs are mostly distributed inside the 

floodplains.  
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Figure 3. Significant RTPCs (top: blue), and the identified best-correlated in-situ water levels (top: 

orange) with correlation coefficients (Corr.), and the corresponding RSMs (bottom) where red dots 

mark the locations of the corresponding identified gauges. 

 

After identifying the gauges whose water levels are best correlated with RTPCs, the 

neural network regression was conducted as it can provide the regression model without pre-

assuming a function to be fit to the data (Imani et al., 2014). Thus, the regression models can be 

built without visual inspection upon the data distribution as Chang et al. (2020) did, which can 

help automate the FIER framework process. The optimal regression models were determined 

by the grid search with K-fold cross-validation approach. This approach is an automatic trial-

and-error process where the training and testing are conducted using different neural network 

architectures and different combinations of data subsets. The data are first divided into K 

subsets. One of the subsets is used as a test set, while others are used as a training set. The neural 

network architectures in the searching space are trained until the training scores have converged 

and then test scores are recorded. Finally, once every subset has been used as the test set, the 

process ends. The optimal neural network architecture is the one that provides the best mean 

test score over different test sets. Such a process helps prevent the models from being overfitted 

(Kim et al., 2021).  

The number of K is generally from 2 to 10 which could be determined based on data 

availability (Zhou et al., 2017). Considering the data size was 85 acquired within three years, 

we employed K=3 (three-fold) which ensured the test set encompassed a full hydrologic cycle 

(a year) of data. Both the RTPCs and MR in-situ water levels were normalized before the 

training, which is a common measure to expedite the training process. The Rectified Linear Unit 

(ReLU) activation function was adopted in the hidden layers, and the Adam gradient descent 

algorithm with default learning rate (0.001) was adopted as an optimizer. The mean squared 

error was used as the loss function to evaluate the scores. The Keras, a Python-based API with 

TensorFlow libraries as the backend, was used for the neural network regression process. Table 

2 shows the final neural network architecture, mean training score, mean test score, and the 

corresponding R2 of each mode. The R2 were all higher than 0.6 to 0.7, considered to be 

satisfactory (Moriasi et al., 2007). Figure 4 shows the scatter plots of RTPCs and their 

corresponding water level data along with the regression models. With these regression models, 
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the forecasted MR water levels can be fed into the models to estimate the corresponding RTPCs. 

Next, by summing the products of each mode of the forecasted RTPCs and RSMs, the 

synthesized forecasted Sentinel-1-like images can be generated. 

  

Table 2. The optimal neural network architecture of each mode, the corresponding mean training 

score, mean test score, and R2.  

Mode 
Number of  

hidden layers 

Number of 

units per 

hidden layer 

Mean 

training score 

Mean test 

score R2 

1 5 15 0.34 0.35 0.66 

2 3 15 0.37 0.41 0.62 

3 5 45 0.28 0.30 0.72 

4 3 40 0.25 0.34 0.74 

 

    

Figure 4. Scatter plots of RTPCs and their corresponding water level data along with regression 

models and R2. 

 

We applied a rapid and robust water classification method which is based on the Z-score 

statistics of the wet season images (DeVries et al., 2020). The method compares the change 

between the wet season and baseline images (representing the dry season) with the change 

among the baseline images using the Z-score statistics and then performs water classification. 

The Z-score statistics can be derived as 

 𝑍 =
𝜎0 − 𝜎0

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑆𝑇𝐷(𝜎0
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

 (1) 

where 𝑍 is the Z-score image, 𝜎0 is the wet season image to be classified (FIER-synthesized or 

observed Sentinel-1A image), 𝜎0
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ , and 𝑆𝑇𝐷(𝜎0

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)  are the mean and standard 

deviation of the baseline images, respectively. Note that the FIER-synthesized forecasted 
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images are the anomalies with respect to the mean of the multi-temporal Sentinel-1A images, 

from which the spatiotemporal patterns were extracted by the REOF analysis. Since the multi-

temporal Sentinel-1A images encompass the wet season images, their mean also contains some 

water-related signals, and therefore was added back to the FIER-synthesized forecasted images 

before water classification. The baseline period was considered as the months when the monthly 

average in-situ water levels from 2017 to 2019 (corresponding to the acquisition period of the 

multi-temporal Sentinel-1A images) at the four identified gauges were the lowest. Then, the 

Sentinel-1A images acquired in these months were used to calculate 𝜎0
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  and 

𝑆𝑇𝐷(𝜎0
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒). The Z-score image was then generated and the pixels that have low Z-scores 

were considered to be flooded. Here, we classified the pixels whose Z-scores are lower than -3 

as flooded following DeVries et al. (2020) to generate the inundation extents. The FIER- 

forecasted inundation extents will be cross-compared with the inundation extents derived from 

the real Sentinel-1A images for the skill evaluation. 

 

3.2 Skill evaluation statistics  

The skill of FIER forecasted inundation extents in the LMRB floodplains (estimation) 

was evaluated with pixel count-based indices including the overall accuracy, and Critical 

Success Index (CSI), derived from the confusion matrix (Kohavi and Provost, 1998). The 

inundation extents derived from real Sentinel-1A images were considered as observations. As 

Figure 5 illustrates, 𝑎  and 𝑑  are the numbers of pixels that FIER correctly estimates (true 

positive and true negative), respectively. Conversely, 𝑏 and 𝑐 are the numbers of misestimated 

pixels, indicating false positive and false negative, respectively.  

Confusion Matrix 
Sentinel-1A image (Observation) Marginal 

Total Inundation Non-inundation 

FIER 

(Estimation) 

Inundation 
𝑎 

(true positive) 

𝑏 

(false positive) 
𝑎 + 𝑏 

Non-inundation 
𝑐 

(false negative) 

𝑑 

(true negative) 
𝑐 + 𝑑 

Marginal 

Total 
𝑎 + 𝑐 𝑏 + 𝑑 

Total = 

𝑎 + 𝑏 + 𝑐 + 𝑑 
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Figure 5. Confusion matrix explaining the definition of true positive, false positive, false negative, 

and true negative. 

 

The overall accuracy is the percentage of pixels that FIER correctly estimated, either 

true positive or true negative, over the total number of pixels: 

 Overall accuracy =
𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
 × 100(%). (2) 

The CSI (Gilbert, 1884), also called threat score, is the number of pixels that FIER 

correctly estimated as inundated over the number of pixels that were either estimated or 

observed as inundated: 

 CSI =
𝑎

𝑎 + 𝑏 + 𝑐
× 100(%). (3) 

The CSI avoids possible bias caused by true negative (𝑑) (Wing et al., 2017)(Wing et al., 2017). 

Both overall accuracy and CSI can have a value from 0% to 100%, where 0% means there is no 

match between the estimation and observation, while 100% means perfect estimation. 

 

3.3 FwDET-GEE: GEE-based inundation depth estimation 

The inundation depths were determined by using the FwDET-GEE (Peter et al., 2020). 

The tool overlays the inundation extents on a DEM and then calculates the differences between 

the elevations of inundated pixels and their nearest inundated boundary pixels to estimate the 

inundation depths. Firstly, the inundation boundary pixels are identified, and their elevations 

are retrieved. Secondly, elevations of the nearest inundation boundary pixels are assigned to the 

non-boundary inundated pixels. Finally, the floodwater depths are estimated by subtracting the 

DEM value from the assigned boundary elevation at inundated pixels. Compared with the 

previous ArcGIS and QGIS versions, the major advantage of the GEE version is its significantly 

reduced processing time. The GEE script is freely accessible online 

(https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/JQ4BCN). In this 

study, FIER-forecasted inundation extents were used as inputs to obtain the corresponding 

inundation depths, i.e., FIER-forecasted inundation depths, which were then used to 

demonstrate the application of FIER for forecasting the flood-induced rice economic loss. 
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3.4 Flood-induced rice economic loss estimation 

To demonstrate the practical application of FIER, we estimated the flood-induced rice 

economic losses based on the FIER-forecasted inundation depth maps. The process starts with 

a rice relative damage curve, which is a function of consecutive flood duration (days) and 

inundation depths (m) (MRC, 2009), and has been widely used in the literature (Okazumi et al., 

2014; Chung et al., 2019). In the MRC report (2009), the flood damage to rice paddies are 

categorized with respect to different inundation depths and duration as: (1) rice paddies will not 

be affected with inundation depth ≤ 0.5 m; (2) rice crops will be damaged by flood with a 

duration longer than 5 days; (3) rice will be completely destroyed with inundation depth ≥ 1.5 

m and duration > 13 days. With these, Okazumi et al. (2014) applied the damage curve with up 

to 13 days of flood duration, and up to 1.5 m of inundation depth as: 

 

 𝑅𝐷 = (ℎ𝑤 − 0.5)(−86.875 + 22.5𝑑 − 0.625𝑑2) (4) 

where 𝑅𝐷 is rice relative damage (%), ℎ𝑤 is inundation depth (m) (0.5 ≤ ℎ𝑤 ≤ 1.5, if ℎ𝑤 >

1.5 then ℎ𝑤 = 1.5), and 𝑑  is inundation duration (day) (If 𝑑 > 13, then 𝑑 = 13). Figure 6 

shows examples of the relative damage curves. Both ℎ𝑤 and 𝑑 can be derived from the daily 

FIER-forecasted inundation depth maps. 

 

 

Figure 6. Rice relative damage curve (MRC, 2009). 

 

The rice relative damages (𝑅𝐷) were then used to quantify the corresponding rice 

economic losses by 
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 𝐷 = 𝑀𝑃 × 𝑌 × 𝐴 × ∑ 𝑅𝐷𝑖

𝑊

𝑖=1

 (4) 

where 𝐷  is flood-induced rice damage (USD) of the country inside the Sentinel-1A image 

frames we used, 𝑀𝑃 is rice market price (USD/ton), 𝑌 is rice yield (ton/ha), 𝐴, and 𝑅𝐷 are area 

(ha) and aforementioned relative damage of a pixel, and 𝑊 is the total number of pixels that 

represent rice under flood risk based on the aforementioned criteria in the MRC report (2009) 

inside the image frame for each country. 

 

4 Operational FIER-Mekong Web Application 

4.1 Configuration 

The operational FIER-Mekong web application was constructed using Streamlit, an 

open-source Python framework that helps create, deploy, and host web applications. In Streamlit 

framework, a main frontend Python script that depicts the frontend elements (e.g., button, select 

box, calendar for the date input) along with other required libraries, and data are stored in a 

GitHub repository. The web application and repository are deployed and hosted by Streamlit 

Cloud Platform and any changes on the GitHub repository will be automatically updated. 

The operational FIER-Mekong web application requires (1) automatically updated MR 

water level forecasts as inputs, and (2) the FIER regression models and the RSMs in the 

backend. As Figure 7 shows, the water level forecasts are automatically generated and then 

managed, stored, and updated to the Google Sheet database by using Google Sheets API and a 

Python library, called pygsheets. The automatic data updating process is executed by the 

Windows Task Scheduler on daily basis. The FIER regression models and the RSMs were pre-

generated (see Section 3.1) and uploaded to the GitHub repository. 

 

4.2 Graphic User Interface (GUI) 

The user-friendly frontend GUI is shown in Figure 8. With the selected date of interest 

of up to 18 days of lead time, the corresponding forecasted water levels in the Google Sheet 

database will be retrieved, and the forecasted inundation extents will be visualized. There is also 
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an option to generate and visualize the inundation depth. End-users can also choose to export 

the maps as GeoTIFF for further geospatial analysis.  

 

 

Figure 7. Configuration of the operational FIER-Mekong web application. 

 

 

Figure 8. Frontend GUI of the operational FIER-Mekong web application (https://skd862-fier-

mekong-demo-vlobm9.streamlitapp.com/). 
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5 Results and Discussions 

5.1 Skill of FIER-forecasted inundation extents 

To evaluate the skill of FIER-Mekong, we generated FIER-forecasted inundation extents 

with up to 18-day lead time in the wet season of 2020 and 2021 (estimation) and were cross-

compared with the inundation extents directly delineated from 26 Sentinel-1A images acquired 

during the same period (observation) (see Table 1). The spatial resolution of inundation extents 

is 0.005o, equivalent to approximately 552 m (see Section 2.1). Figure 9 shows the mean and 

STandard Deviation (STD) of overall accuracies and CSIs of different lead times. As can be 

expected, the skills of FIER-forecasted inundation extents generally degrade with longer lead 

times. However, the mean accuracies are near 98%, and mean CSIs are about 72 to 74%, which 

are considered to be “fairly good” (Bernhofen et al., 2018).  

The degradation of FIER inundation forecasting skills with longer lead times may be 

due to the errors in the forecasted water levels (see Figure 8 of Supplementary Information) 

which are used as an input of inundation forecasts. Since the forecasted water levels were 

generated based on VIC model-simulated discharges and altimetry-derived water levels at 

upstream Virtual Stations (VSs), errors from both of them can influence the FIER inundation 

forecasting skills. The potential error sources include (1) the errors of input forcing data of the 

VIC model, (2) the errors in the altimetry-derived water levels at upstream VSs, and (3) the 

assumption that there is a linear relationship between upstream and downstream water levels, 

ignoring the impact of tributaries and direct rainfall in between. In addition, the LMRB 

floodplains, specifically in the VMD, have a strong human intervention that alters the natural 

flood regime. Irregular human operation of water resources infrastructure (e.g., sluice gates, 

water pumping) in the region could affect the water levels and inundations over the floodplains 

(Hung et al., 2014, 2012) that cannot be predicted and consequently leads to errors in the FIER-

forecasted inundation extents. The human intervention on floodplain water could also lead to 

uncertainties in the FIER regression models, as the models coupled the RTPCs that represent 

the intervened floodplain water fluctuation with the MR levels. It is, however, difficult to refine 

as the availability of water level observations over the floodplain is quite limited. 
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(a) (b) 

Figure 9. Mean and STD of (a) overall accuracy and (b) CSI of FIER-forecasted inundation extents 

in the wet seasons of 2020 and 2021. 

 

Figure 10 shows the wet season monthly inundation occurrences (days), representing the 

inundation dynamics, generated using FIER-Mekong. The top and middle panels of Figure 10 

illustrate the occurrences using the FIER-forecasted inundation extents (with 18-day lead time) 

for the wet seasons of 2020 and 2021. We start to see some inundations in August and much 

higher occurrences from September. In October, the inundation occurrences in the lower VMD 

slightly increased. The FIER-forecasted inundation extents were not large in 2020 and 2021 as 

they were both dry years (MRC, 2021). To demonstrate the capability of FIER-Mekong to 

estimate inundations in a wet year, FIER-hindcasted inundation extents for the wet season of 

2018, the most recent wet year, were generated. It should be mentioned here that FIER-Mekong 

can also generate hindcast of inundation using the historical water levels for a date of interest 

obtained at the four in-situ stations (see Figure 1). The corresponding monthly inundation 

occurrences for the wet season of 2018 is shown at the bottom panel of Figure 10. By cross-

comparing with real inundation extents derived from 11 Sentinel-1A images acquired in the 

2018 wet season, the accuracy and CSI of the FIER-hindcasts are 96.6±1.9%, and 75.6±14.9%, 

respectively. In 2018, inundations spread out earlier than in 2020 and 2021 and were much more 

extensive. Some inundations started to occur in July. In August, the inundation occurrences 

became much higher all over the TSLF and CF. Then in October, the inundation occurrences 

significantly increased and widely spread over the lower VMD. The results show that FIER-

Mekong is capable of generating inundation extents even for an extreme case. In other words, 

if the input forecasted water levels for this upcoming wet season are much higher than the ones 

2020 and 2021, FIER-Mekong can be used to obtain more widespread and extreme inundations. 
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Using 18-day lead time forecasts in 2020 and 2021 wet season 

     
Using hindcasts in 2018 wet season 

 
Figure 10. Monthly wet season inundation occurrences (days) generated based on (top & 

middle) FIER-forecasted inundation extents with 18-day lead time in 2020 and 2021 (dry 

years), and (bottom) FIER-hindcasted inundation extents in 2018 (wet year). 
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To show the locations where users can have higher confidence in the FIER-forecasted 

inundation extents, pixel-wise temporal correctness rates (%) were also calculated. The 

temporal correctness rates represent the percentage of times that each pixel was correctly 

estimated (either true positive or true negative) which were calculated by dividing the times that 

each pixel was correctly estimated by the total number of Sentinel-1A images used for the cross-

comparison (26 images as Table 1 shows). To summarize the temporal correctness rates over 

different lead times, the mean and STD of the rates with 1-day to 18-day lead times were 

calculated as the top panel of Figure 11a and 11b shows, respectively. Their cumulative 

histograms over the pixels that have ever been estimated or observed as inundated were also 

generated, showing approximately 83% of pixels have mean temporal correctness rates ≥ 80% 

(bottom panel of Figure 11a), and about 93% of pixels have STD of temporal correctness rates 

≤ 4% (bottom panel of Figure 11b). The cumulative histograms indicate that most of the pixels 

were correctly estimated most of the time and consistently with different lead times. 
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Figure 11. (a) Mean, and (b) STD of temporal correctness rates of FIER-forecasts over 

different lead times (top panel), along with the cumulative histograms (in ratio) over the pixels 

that have ever been estimated or observed as inundated (bottom panel). 

 

5.2 Application: Flood-induced rice economic losses  

Floods can cause significant damages to human lives, infrastructure, and agriculture, 

leading to severe negative socio-economic impacts (Oddo et al., 2018). Considering the 

importance of rice cultivation in the LMRB to the local inhabitants and the world, we 

demonstrated how FIER-Mekong can be used to estimate the flood-induced rice economic 

losses. Since rice paddies become destroyed when they are continuously submerged under water 

for days, FIER can be used to rapidly forecast prolonged inundation and consequently for spatial 

pre-event loss prediction. Here, the FIER-forecasted inundation extents, FwDET-GEE tool 

(Peter et al., 2020), and the flood-induced rice relative damage curves (MRC, 2009) along with 

the rice data were integrated to calculate the flood-induced rice economic losses (details in 

Section 3.4). As a result, spatial prediction of the maximal flood-induced rice economic losses 

for the next 13 days was conducted for 2020 and 2021. Since 2020 and 2021 were both dry 

years, to show the FIER-estimated flood damages in the case of more extensive flooding, a post-

event loss estimation for 2018, the most recent wet year, was also conducted based on the FIER-

hindcasted inundation extents and rice data of 2018. We focused on the wet season harvest time 

(see Section 2.4) to calculate the losses, assuming the rice has not been reaped. 

The rapid spatial predictions of flood-induced losses can give decision-makers timely 

information about when and where rice would be damaged along with the severity. Figure 12a 

shows an example of spatial predictions of flood-induced rice economic losses (in USDs) for 

the periods of August 29th to September 10th of 2020 (arbitrarily chosen) using the FIER-

forecasts made on August 28th of 2020. The differences in flood-induced rice economic losses 

from place to place can be seen. Such information can help decision-makers prioritize the 

proactive damage prevention measures, for instance, to whom the flood risk warnings should 

be first disseminated. For example, this map can be used to advise farmers when and where to 

harvest the crops before they become damaged or destroyed due to the forthcoming flooding.   

Figure 13 shows the time series of FIER-forecasted flood-induced rice economic losses during 

the wet season harvest time of 2020 and 2021 in the CF and VMD, indicating how much rice 
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paddies under flood risk could have been saved (in million USD) if the farmers had taken early 

actions based on outputs from FIER-Mekong. The maximal flood-induced rice economic losses 

that could have been saved with FIER-Mekong were about 86 and 52 million USD in Cambodia, 

and 1.5 and 1.2 million USD in Vietnam during the 2020 and 2021 wet season harvest time, 

respectively. The estimated losses in Vietnam were much lower than those in Cambodia 

probably because the Vietnamese farmers have adjusted the rice planting and harvesting 

calendar to the time before the arrival of main floodings (Triet et al., 2018). In addition, the 

VMD has a dense network of flood protection infrastructure (Hung et al., 2014, 2012). During 

the time of main floodings, the farmers do rice planting over fully protected areas (Triet et al., 

2018) which we did not take into account when estimating the losses. 

Figure 12b shows the FIER-based post-event estimation of maximal flood-induced rice 

economic losses during the wet season harvest time of 2018. We can observe that the largest 

losses occurred in the CF near the Cambodia-Vietnam national border. The post-event flood-

induced loss estimation can be used as a reference for flood risk mapping and future land-use 

planning by public administrators or insurance companies (Oddo et al., 2018). For example, the 

public administrators may consider reinforcing the flood prevention infrastructures (e.g., dikes 

or levees), adjusting the rice planting and harvesting calendar, or planting more flood-resistant 

rice varieties in the areas. The insurance companies can also prioritize to whom they should 

market and provide flood insurance. The maximal total flood-induced rice economic losses were 

about 316 and 46 million USD in Cambodia and Vietnam, respectively, during the wet season 

harvest time of 2018. 

 

Forecasted maximal rice economic losses 

2020-08-29 to 2020-09-10 

Hindcasted maximal rice economic losses 

2018 wet season harvest time 
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(a) (b) 

Figure 12. (a) FIER-based spatial prediction of maximal flood-induced rice economic losses in the 

next 13 days (August 29th to September 10th of 2020 as an arbitrarily chosen example), and (b) FIER-

based post-event spatial estimation of maximal flood-induced rice economic losses during the wet 

season harvest time of 2018. Light green pixels in the background represent the rice paddies. 
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(a) (b) 

Figure 13. Daily FIER-forecasted flood-induced rice economic losses within the next 13 days during 

the 2020 and 2021 wet season harvest time in (a) Cambodia, and (b) the VMD inside the Sentinel-1A 

image frames, assuming the rice has not been reaped. 

 

It is, however, challenging to numerically compare the estimated losses with government 

or agency statistics, as they are often reported from different data sources with ambiguous loss 

estimation formulas that can be based on insufficient or inaccurate information (Central Region 

Urban Environmental Improvement Project, CRUEIP, 2003; Chen et al., 2007; Oddo et al., 

2018). Hence, in this study, we attempt to demonstrate that a standardized loss estimation 

method can still provide valuable information for flood damage prevention. The quality of the 

estimated flood-induced economic impact is influenced by the skill of FIER-estimated 

inundation extents that has been discussed in Section 5.1. Another factor is the accuracy of the 

DEM as the calculation of inundation depths relies on it as a topographic reference. The spatial 

resolution of FIER-estimated inundation extents can also play a role, especially in the LMRB 

floodplains with extremely low relief. Since the calculation of the inundation depths starts from 

extracting the elevations of inundation boundaries, a finer resolution inundation map can be 

helpful for extracting more accurate elevations along the inundation boundary. The spatial 

resolution of FIER-forecasted inundation extents can be tuned to be finer during the Sentinel-1 

imagery retrieval from the GEE data catalog using RESTEE as Section 2.1 described. Finally, 

more detailed rice cultivation-related data, such as geospatial information of different rice 

varieties, and corresponding planting and harvesting calendars, if available, can further improve 

the accuracy of the estimated flood-induced rice economic losses. 
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The results here demonstrate the potential of FIER for rapidly forecasting the spatial 

distribution of flood-induced rice economic losses. While the post-event flood damage 

estimation has been done in many recent studies (Chung et al., 2019; Kwak et al., 2015; Oddo 

et al., 2018; Okazumi et al., 2014; Triet et al., 2018), FIER allows prompt pre-event forecasting 

of flood damages that can help decision-makers take timely proactive measures. Applications 

of FIER to rapidly forecast other flood-induced socio-economic damages, such as on 

infrastructure and households, are also possible with corresponding damage curves (Chen, 2007; 

Oddo et al., 2018). 

 

5.3 Framework scalability 

FIER is an innovative data-driven approach that produces inundation forecasts based on 

the correlation between the spatiotemporal patterns extracted from satellite imagery and external 

hydrological data. It is mathematically simple and has a high scalability, enabling us to relatively 

easily build and operate the framework for any flood-prone regions in the world with the cloud-

based GEE data catalog which has archived the Sentinel-1 GRDH imagery over the globe that 

can be retrieved and preprocessed by the GEE-based Python APIs as Section 2.1 described. 

Moreover, a Python implementation of FIER, called FIERpy and developed by SCO 

(https://github.com/SERVIR/fierpy), can be run on Python-based cloud computing platforms, 

such as the Google Colaboratory (Google Colab). Hence, end-users that are interested in 

building their regional FIER framework but have rather limited computational resources can 

implement it on the cloud computing platforms. Considering the increasing flood risks 

worldwide (Tellman et al., 2021), the flexibility and scalability of FIER provide valued 

opportunities toward a rapid operational inundation forecasting system that can be relatively 

easily implemented over other flood-prone regions such as Bangladesh where in-situ and 

forecasted water levels can be obtained from the Bangladesh Water Development Board 

(BWDB) (http://www.ffwc.gov.bd/). 

In addition, FIER has flexibility regarding the sources and types of the hydrological data 

used as inputs. The current FIER-Mekong system uses our in-house VIC model-aided satellite 

altimetry-based water level forecasting system (Chang et al., 2019) since the required water 

level forecasts at Can Tho are not provided by the operational water level forecasting system 

that MRC maintains (https://portal.mrcmekong.org/monitoring/flood-forecasting). However, 
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MRC’s water level forecasting system provides more accurate forecasts at the other three gauges 

(Kratie, Koh Khel, and Chau Doc), and therefore, it is possible to use both of the water level 

forecasting systems if such needs are identified from the end users. Moreover, not only water 

levels but streamflow data can be used to build the FIER framework. Thus, FIER can be 

integrated with natural streamflow obtained from a hydrologic model such as HYPE (Du et al., 

2020) or VIC (Hossain et al., 2017), and/or regulated outflow from a reservoir obtained from, 

for example, the Reservoir Assessment Tool (RAT) (Biswas et al., 2021; Das et al., 2022) or 

the Integrated Reservoir Operation Scheme (IROS) (Du et al., 2022).  

 

6 Conclusions and Future Scopes 

This study has implemented FIER, a data-driven satellite imagery-based inundation 

extent forecasting framework, for the LMRB floodplains, where the implementation of the 

conventional approach is challenging. A rapid inundation extent forecasting system and a freely 

available user-friendly web application hosted by a cloud platform have been built as well. The 

system can rapidly generate daily continuous forecasts of inundation extents and depths with 

lead times up to 18 days which can be exported as GeoTIFF. The GeoTIFF files can be 

conveniently used for further geospatial analysis, such as combing with different land cover data 

for spatial prediction of flood-induced damages and economic losses.  

Here, we generated FIER-forecasted inundation extents for the wet season of 2020 and 

2021, and cross-compared them with inundation extents from the real Sentinel-1A images, to 

demonstrate its fairly promising skills. The error sources of forecasted inundation extents 

include the error in the input forecasted water levels, as well as the uncertainties in the FIER 

regression models that were possibly caused by human intervention of the floodplain water 

dynamics (e.g., with the dense network of dikes, sluice gate operation, water pumping). We also 

demonstrated an application of FIER-derived continuous forecasted inundation extents for 

spatial prediction of the flood-induced rice economic losses. Such spatial loss prediction can 

help decision-makers prioritize when and where proactive flood damage prevention measures 

should be taken. For instance, decision-makers can disseminate flood risk warnings to the 

inhabitants in the areas where rice paddies may be damaged by floods in the following days 
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with severity information through Short Message Service (SMS) on mobile phones via local 

providers. After being informed, the local inhabitants can then evaluate the necessity to adjust 

the rice reaping schedule. For future work, the spatial flood-induced loss prediction will be made 

available on the web application, so decision-makers or any end-users that have an internet 

connection can directly obtain the results without processing the data on their own. Such an 

open web application can also help address the delays in flood warning dissemination caused 

by bureaucratic inefficiency since local inhabitants with internet access can get information 

directly from the web application on their own (Keoduangsine and Goodwin, 2012). Note that 

FIER-Mekong can also rapidly generate hindcasted inundation extents with historical water 

levels, which are also important for land-use planning and risk mapping (Oddo et al., 2018). 

The FIER-hindcasted inundation extents and rice economic losses for the year 2018, the most 

recent wet year, were also presented.  

More importantly, with cloud-based databases, such as the GEE data catalog that 

archives the Sentinel-1 imagery over the globe, FIER has the potential to be easily implemented 

in other flood-prone regions in the world. FIER also has the flexibility to use forecasted water 

levels from different models, ensembling their strengths to generate more accurate forecasted 

inundation extents. An example is to combine the VIC model-aided satellite altimetry-based 

water level forecasting system used in this study with the MRC’s operational forecasting system 

as Section 5.3 described. On the other hand, historical and forecasted natural and regulated 

streamflow obtained from hydrologic model and a reservoir operation scheme can be used as 

well to forecast inundation extents due to not only natural but regulated floods. 

It is also worth mentioning that the types of satellite imagery that can be used for the 

FIER process are not restricted to SAR imagery. In fact, the use of both SAR and optical imagery 

through data fusion can help address the limitation of FIER. Since FIER forecasts the inundation 

extents based on spatiotemporal patterns of historical satellite images, the maximal inundation 

extents it can forecast are limited by the historical inundation extents that have been observed. 

As Sentinel-1A itself was launched in 2014 and has a 12-day revisiting cycle, some historical 

extreme flood events may be missing. Thus, the sole use of Sentinel-1A imagery may limit the 

forecasting capability of FIER. The optical imagery, on the other hand, have temporally longer 

and denser observations. Therefore, it is expected that combining SAR and optical imagery 
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through data fusion techniques can help overcome the limitation of using a single source of 

satellite imagery.  

 

Software availability 

https://github.com/skd862/fier_mekong 
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