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Abstract 17 

Soil moisture conditions are represented in existing fire danger rating systems mainly through 18 

relatively simple drought indices based on meteorological variables, even though better sources 19 

of soil moisture information are increasingly available and have been shown to help improve 20 

predictions of fuel loads, fuel moisture, wildfire probability, and wildfire size. Without 21 

operational use of this soil moisture information, the potential for more accurate and timely fire 22 

danger warnings is unrealized, while increasing wildfire activity harms human and natural 23 

systems in various regions around the world. This review summarizes a growing body of 24 

evidence indicating that greater utilization of in situ, remotely sensed, and modeled soil moisture 25 

information in fire danger rating systems could lead to better estimates of dynamic live and dead 26 

fuel loads, more accurate live and dead fuel moisture predictions, earlier warning of elevated 27 

wildfire danger, and more precise forecasts of wildfire occurrence and severity. Although 28 

important research questions remain, several of which are identified here, the path forward is 29 

clear. Soil moisture information can and should be used to improve fire danger rating systems 30 

and contribute to more effective fire management for the protection of communities and 31 

ecosystems worldwide. 32 

 33 

Summary: Soil moisture is an underused resource for improving fire danger rating systems and 34 

fire management worldwide.  We review key studies describing relationships between wildfires 35 

and in situ, remotely sensed, and modeled soil moisture; describe the potential to incorporate soil 36 

moisture into wildfire danger assessments; and identify outstanding challenges and opportunities. 37 

 38 
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Introduction 39 

At 6:33 a.m. on the morning of 8 November 2018, a small fire was reported under 40 

electrical power lines near Camp Creek Road outside the town of Pulga in northern California, 41 

USA. Dry conditions and strong downslope winds with gusts >25 m s-1 (Brewer and Clements 42 

2020) rapidly transformed that small fire into the deadliest and most costly wildfire in 43 

California’s history. The Camp Fire burned >62,000 ha, destroyed >18,000 structures, and 44 

resulted in 85 fatalities (California Department of Forestry and Fire Protection 2019). This 45 

tragedy powerfully illustrates the importance of fire danger rating systems and the need to 46 

provide earlier and more accurate warnings for fire management agencies and the public. Toward 47 

that end, this review explores recent developments, data gaps, and challenges in applying 48 

previously underutilized soil moisture information to better understand, assess, and predict 49 

wildfire danger.  Up until now, the incorporation of soil moisture information into existing fire 50 

danger rating systems has been limited to simplistic models or indices which use standard 51 

weather variables to estimate soil moisture, even though such information is becoming 52 

increasingly available via in situ measurements, remote sensing, and more sophisticated 53 

modeling.  One week prior to the tragic Camp Fire, for example, satellite observations showed 54 

strong negative soil moisture anomalies across northern California (Fig. 1), conditions that are 55 

known to substantially increase the probability of large wildfires (Krueger et al. 2015; Krueger et 56 

al. 2016; Sazib et al. 2021), but the tools needed to effectively put this information into 57 

action are currently lacking.   58 

That soil moisture conditions are important for fire danger rating is not a recent 59 

revelation.  Prominent fire danger rating systems in Canada, Australia, and the United 60 

States use approximations of the moisture of mineral or organic soil horizons to quantify 61 
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wildfire danger (Kumar and Dharssi 2015).  For example, the Canadian Forest Fire 62 

Danger Rating System (CFFDRS) (Stocks et al. 1989; Wotton 2009) includes three 63 

moisture indices, termed moisture codes, to represent moisture stored in the organic layers 64 

of the forest floor.  The Fine Fuel Moisture Code (FFMC) represents fuel moisture of fine 65 

surface litter with a depth of 10-20 mm, the Duff Moisture Code (DMC) represents fuel 66 

moisture of loosely compacted duff with a nominal depth of 50-100 mm, and the Drought 67 

Code (DC) represents fuel moisture of deep organic materials having a nominal depth of 68 

100-200 mm (de Groot 1987) (Fig. 2). While intended to represent moisture of surface 69 

organic layers, DMC and DC are strongly correlated to soil moisture of mineral horizons 70 

near the surface (D'Orangeville et al. 2016; Pellizzaro et al. 2007), likely in part because of 71 

capillary and vapor flow between mineral and organic soil layers (Zhao et al. 2022).  When 72 

considering soils with deep organic layers at the surface, i.e., deep O horizons in soil science 73 

terminology, the water stored in those layers may be viewed as either soil moisture or fuel 74 

moisture because the organic layer itself can become combustible at low water contents.  75 

In the recently modified Australian Fire Danger Rating System (Matthews 2022), 76 

fire danger ratings for dry eucalypt forests are dependent in part on soil moisture deficit 77 

estimated using the Keetch-Byram Drought Index (KBDI, Keetch and Byram 1968).  KBDI 78 

uses temperature and precipitation data to estimate the moisture deficit in the upper soil 79 

layers (mineral and organic, if present) using a water balance approach. KBDI was 80 

designed to represent approximately the top 760-890 mm for a fine-textured soil and 81 

greater depths for coarser-textured soils (Keetch and Byram 1968) (Fig. 2).  Similarly, in 82 

the National Fire Danger Rating System (NFDRS) used in the United States (Bradshaw et 83 

al. 1983; Burgan 1988; Deeming et al. 1972; Jolly 2018), KBDI helps determine fire danger 84 
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ratings through its influence on fuel load.  The inclusion of these moisture indices in widely 85 

used fire danger rating systems makes it clear that their developers recognized the 86 

importance of soil moisture for understanding wildfire danger.  But at the time these 87 

systems were developed, large-scale soil moisture measurement systems and physically-88 

based hydrologic models were not sufficiently developed, thus moisture indices were 89 

instead estimated from commonly measured weather data.  Given advances in soil moisture 90 

measurement and modeling systems in recent decades, there is a need to reassess how to 91 

best represent the moisture of organic and mineral soil layers in fire danger ratings systems 92 

and to better understand the effects of those representations on the accuracy of fire danger 93 

ratings. 94 

     The effectiveness of fire danger rating systems can be determined through retrospective 95 

analyses of the relationship between fire danger ratings and important wildfire metrics 96 

including occurrence and size.  For example, a recent analysis of the NFDRS showed generally 97 

positive correlations between fire danger ratings and fire sizes across the contiguous US, but 98 

there were important spatial inconsistencies. Notably, there was poorer performance in the 99 

eastern half of the country compared to the western half, possibly due to regional differences in 100 

soil-vegetation-climate interactions and in the timing and length of the fire season (Walding et al. 101 

2018). Furthermore, large areas in the central US lacked the necessary data to generate fire 102 

danger ratings because those areas contained no reporting stations for the Weather 103 

Information Management System, which provides weather data for the NFDRS (Walding et 104 

al. 2018). Thus, improvements to the NFDRS will likely need to consider both model structural 105 

improvements, as well as new and better sources and types of input data. Currently, the NFDRS 106 

and most other fire danger rating systems in use around the world rely on a relatively standard 107 
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set of input variables that are routinely measured at weather stations, chief among them being air 108 

temperature, relative humidity, precipitation, and wind speed (de Groot et al. 2015). However, 109 

as described in this review, a growing body of research provides strong evidence that new 110 

sources of soil moisture information can be important predictors of wildfire danger, but 111 

this valuable information has not yet been effectively integrated into fire danger rating 112 

systems.  113 

Historically, a major hindrance to such integration has been the limited availability of soil 114 

moisture information with adequate duration and spatial extent. That situation is rapidly 115 

changing as a variety of new sources of soil moisture information are becoming available, each 116 

with unique strengths (Fig. 3).  These new data sources include 1) soil moisture measured in 117 

situ, 2) soil moisture measured remotely by satellites, and 3) soil moisture data that is 118 

generated using physically-based models. This groundswell of information began with the 119 

advent of state and national automated soil moisture monitoring networks in the US in the late 120 

1990s and the subsequent emergence of similar networks in other countries around the world 121 

(Dorigo et al. 2021). In parallel, satellite missions capable of monitoring soil moisture and 122 

closely-related variables have been developed and launched by NASA and other space agencies, 123 

with substantial increases in daily coverage of the Earth’s surface since the late 1990s 124 

(Karthikeyan et al. 2017). These advances in soil moisture measurements have occurred 125 

alongside advances in numerical soil moisture models, which can now provide soil moisture 126 

estimates for large domains with sub-km resolution (Holden et al. 2019).  Using these three 127 

types of soil moisture information, researchers began to generate first glimpses of the strong 128 

relationships between wildfire and in situ soil moisture (Krueger et al. 2015), remotely-sensed 129 

soil moisture (Bartsch et al. 2009), and modeled soil moisture (Slocum et al. 2010). Subsequent 130 



Using Soil Moisture Information to Better Understand and Predict Wildfire Danger: A 
Review of Recent Developments and Outstanding Questions 

 

7 
 

studies have provided new insights into the relationships between soil moisture and fuel 131 

characteristics including fuel loads (e.g., Ellsworth et al. 2013; Sharma et al. 2018), curing 132 

(e.g.,Sharma et al. 2021; Wittich 2011), and live (e.g., Bianchi and Defossé 2015; Fan et al. 133 

2018) and dead fuel moisture (e.g., Masinda et al. 2021; Rakhmatulina et al. 2021). Other 134 

studies have directly related soil moisture to fire occurrence (e.g., Jensen et al. 2018; 135 

Vinodkumar and Dharssi 2019) and fire size (e.g., Forkel et al. 2012; Krueger et al. 2015; 136 

Slocum et al. 2010), while still others have identified the impact of vegetation type on soil 137 

moisture-wildfire relationships (e.g., Rigden et al. 2020; Schaefer and Magi 2019).  These 138 

and other important contributions to our understanding of soil moisture—wildfire relationships 139 

have emerged across a wide variety of scientific disciplines, which often are not well-connected, 140 

making the accelerating progress difficult to track and synthesize.  141 

A further roadblock complicating the use of soil moisture information for fire 142 

danger ratings is that soil moisture conditions can be expressed in a variety of ways, 143 

making it more difficult to compare results across studies.  For example, soil moisture can 144 

be expressed simply as soil volumetric water content (e.g., Ambadan et al. 2020; Schaefer 145 

and Magi 2019; Vinodkumar et al. 2021) or water content summed over some soil depth, 146 

i.e., soil water storage (e.g., Chikamoto et al. 2015; Krawchuk and Moritz 2011; Slocum et 147 

al. 2010).  Alternatively, soil moisture can be formulated to represent the amount of soil 148 

moisture available to plants (Krueger et al. 2019), and it may also be normalized to allow 149 

for comparison across sites or across different soil moisture metrics.  This normalization 150 

procedure may be based on the physical properties of the soil (e.g., Krueger et al. 2015; 151 

Vinodkumar et al. 2017; Waring and Coops 2016) or use statistical techniques (Lyons et al. 152 

2021).  To further complicate the situation, soil moisture may be expressed across different 153 
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soil depths (Fan et al. 2018; Vinodkumar et al. 2021) and as absolute values or anomalies 154 

(O et al. 2020; Sazib et al. 2021).  These varied formulations of soil moisture must be 155 

understood to properly interpret the growing body of literature establishing the important 156 

relationships between soil moisture and wildfire.  157 

Therefore, our objectives are to 1) summarize the rapidly growing body of research on 158 

soil moisture—wildfire relationships, 2) broaden the community of researchers aware of and 159 

engaged in this line of research, and 3) make a convincing case for more widespread use of soil 160 

moisture information in operational fire danger rating systems. This review is organized into four 161 

primary sections. The first three sections summarize what is known about the relationships of 162 

wildfire and fuel bed properties to 1) in situ soil moisture measurements, 2) remotely sensed soil 163 

moisture, and 3) modeled soil moisture. The fourth section explains potential links between soil 164 

moisture information and existing fire danger rating systems, using NFDRS as one specific 165 

example. We conclude by describing primary challenges and opportunities for using soil 166 

moisture information to better understand and predict wildfire danger, including the 167 

identification of key areas of needed future research. 168 

 169 

In situ soil moisture measurements  170 

      In situ soil moisture measurements are the gold standard of soil moisture information 171 

(Levi et al. 2019) against which remote sensing and modeled values are evaluated (Fig. 3), and in 172 

some geographic areas, in situ soil moisture data are available at sufficient spatial and temporal 173 

resolutions to inform wildfire management. The International Soil Moisture Network houses 174 

publicly available data from nearly 2700 in situ soil moisture monitoring stations across 65 175 

networks worldwide, a number that is steadily growing (Dorigo et al. 2021).  The United States 176 
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has an especially prolific collection of in situ soil moisture monitoring networks, and the ongoing 177 

National Coordinated Soil Moisture Monitoring Network initiative aims to produced harmonized 178 

data products from in situ soil moisture measurements from approximately 2000 sites across the 179 

nation (Cosh et al. 2021). One of the longest running and densest large-scale soil moisture 180 

monitoring networks in the US, and in the world, is the Oklahoma Mesonet (McPherson et al. 181 

2007; Ochsner et al. 2013). Oklahoma is also consistently among the top 10 states in the US for 182 

wildfire risk (III 2021); accordingly, data from Oklahoma has proven valuable for understanding 183 

soil moisture-wildfire relationships. 184 

      A striking example of the connections between soil moisture, fuel bed properties, and 185 

wildfire comes from the Marena, Oklahoma, In Situ Sensor Testbed (MOISST) located in north-186 

central Oklahoma. The MOISST site was established in 2010 to compare in situ soil moisture 187 

sensing technologies (Cosh et al. 2016) and measure vegetation dynamics in tallgrass prairie 188 

(PhenoCam 2021), with fuel bed properties measured at and around the site (Sharma et al. 2018). 189 

PhenoCam images collected at the site show markedly different vegetation conditions during 190 

August of 2012 and 2013 (Fig. 4). Drought conditions from May through July 2012 resulted in a 191 

fuel moisture content for mixed live and dead fuels of only 27% in early August when the photo 192 

on the left was taken. The severity of the drought was reflected in the measured soil moisture, 193 

expressed as fraction of available water capacity (FAW).  FAW is a measure of plant-available 194 

water that is calculated based on measured volumetric water content and the available 195 

water capacity of the soil (Krueger et al. 2015), and it can be determined for any landscape 196 

(e.g., grassland, forest, cropland) for which these variables are known.  It is defined as the 197 

ratio of measured plant available water to the maximum plant available water capacity of the 198 

soil, and it typically ranges from 0 (no plant available water) to 1 (maximum plant available 199 
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water).  From May through July 2012, FAW averaged only 0.23 (i.e., plant available water was 200 

at 23% of its possible maximum), levels indicative of severe drought (Sridhar et al. 2008).  In 201 

contrast, FAW averaged 0.82 (i.e., 82% of possible maximum) over the same period in 2013, 202 

which corresponded with green vegetation in August 2013 (photo on the right) and a mixed fuel 203 

moisture content of 101%.  The low fuel moisture contents in August 2012 contributed to 204 

extreme wildfire danger and the devastating Freedom Hill Fire, which ignited approximately 80 205 

km east of the MOISST site the same day the photo was taken.  This fire burned nearly 24,000 206 

hectares of mostly prairie, savanna, and woodland over a two-week period; destroyed more than 207 

300 homes; and resulted in Federal Emergency Management Agency assistance claims totaling 208 

more than $7 million. 209 

      The qualitative soil moisture-fuel bed relationships that are clear in Figure 4, and may be 210 

intuitive to fire managers, have been described in detail by recent research based on in situ soil 211 

moisture measurements. The soil moisture-fuel moisture relationship was quantified for various 212 

shrub species in Italy by Pellizzaro et al. (2007), who found that soil moisture was a better 213 

predictor of live fuel moisture than weather variables or weather-derived drought indices.  Their 214 

finding was corroborated by Qi et al. (2012), who found that soil moisture explained 66% of the 215 

variability in live fuel moisture for oak and sagebrush in northern Utah, and soil moisture was 216 

more strongly correlated with live fuel moisture than were remotely sensed vegetation indices. 217 

Similar linear relationships between soil moisture and fuel moisture have also been reported for 218 

grassland fuels in South Africa (McGranahan et al. 2016).  219 

      These findings have been corroborated by a series of studies in Oklahoma, the key results 220 

of which are summarized in Figure 5. Sharma et al. (2021), using data from a grassland field 221 

study close to the MOISST site, reported that when soil moisture was plentiful (FAW values of 222 
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at least 0.59), mixed fuel moisture was not related to soil moisture, but mixed fuel moisture 223 

declined as FAW decreased below this threshold. When FAW dropped below 0.40, the 224 

transpiration and growth rate of grassland live fuels declined, reflecting the intensification of 225 

drought stress (Krueger et al. 2021). When FAW declined below 0.36, the greenness of the 226 

vegetation, as indicated by the normalized difference vegetation index (NDVI), began to 227 

decrease (Sharma et al. 2021) (Figure 5).  At a still lower FAW threshold of 0.30, the transition 228 

of live fuel to dead (i.e., curing rate) increased rapidly, from near 0 g m-2 day-1 when FAW was > 229 

0.30 to more than 10 g m-2 day-1 as FAW approached 0.20 (Sharma et al. 2021).  This drought-230 

induced curing is vividly depicted in Figure 4, with extremely low soil moisture corresponding 231 

with vegetation that was almost completely cured by early August 2012, while little curing had 232 

occurred by the same time in 2013 when soil moisture was plentiful.  A perhaps subtler 233 

distinction in fuel bed characteristics between these years is that the live fuel load in 2013 was 234 

more than double that in 2012, which portended potentially high wildfire activity if dry and 235 

windy conditions prevailed during the subsequent dormant season. These findings offer a 236 

physical explanation for the observed dependence of growing season wildfire size and 237 

probability on soil moisture conditions (Fig. 5).   238 

In a different study that used in situ soil moisture data from the entire state of Oklahoma, 239 

Krueger et al. (2015) showed that 90% of large growing season wildfires across all Oklahoma 240 

landscapes (forest, shrubland, grassland) occurred when FAW was < 0.40, which matches the 241 

threshold for transpiration reduction due to moisture stress in grassland vegetation (Krueger et al. 242 

2021).  These soil moisture-wildfire relationships were further described using probabilistic 243 

models in a subsequent study (Krueger et al. 2016).  When plant available soil moisture was near 244 

its maximum, the probability of a large growing season wildfire across all Oklahoma landscapes 245 
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was near zero even when temperature, wind speed, and relative humidity conditions were ripe for 246 

wildfires (Fig. 4 and Krueger et al. 2016).  As FAW decreased to 0.59, the soil moisture 247 

threshold below which grassland fuel moisture decreases, wildfire probability increased to 0.10, 248 

and for a FAW value of 0.30, the threshold for rapid fuel curing, wildfire probability more than 249 

tripled to 0.44 (Fig. 5).  These results suggest that soil moisture and weather conditions work in 250 

concert to support high growing season wildfire probability.  Low soil moisture is associated 251 

with decreased fuel moisture and accelerated curing, while high temperatures, low relative 252 

humidity, and high wind speed facilitate fire ignition and spread. 253 

      When vegetation is dormant, however, current FAW levels were not a strong predictor of 254 

the probability of large wildfires in Oklahoma (Krueger et al. 2016), likely because in grasslands 255 

dead fuel moisture content was not strongly dependent on soil moisture (Sharma et al. 2021). But 256 

dormant season wildfire probability was increased by high soil moisture during the previous 257 

growing season.  For example, when FAW during the growing season was at least 0.40, the 258 

probability of a large wildfire during the subsequent dormant season was approximately double 259 

compared with growing season FAW values near 0.20 (Krueger et al. 2016).  Vegetation 260 

productivity, at least for Oklahoma grasslands, is maximized when FAW > 0.40 (Krueger et al. 261 

2021), contributing to increased fine fuel loads in the subsequent dormant season.  262 

      Although there is a lack of evidence for soil moisture effects on dead fuel moisture in 263 

grasslands, in situ measurements from a diverse array of sites around the world reveal important 264 

links between soil moisture and dead fuel moisture for surface fuels in forests. In Australia, the 265 

influence of soil moisture on the fuel moisture content of fine dead fuels, i.e., leaf litter, was 266 

observed in plantations of Monterey pine (Pinus radiata) approximately three decades ago (Pook 267 

and Gill 1993). The fuel moisture content for the pine needle litter on the surface was positively 268 
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correlated with measured soil moisture in the 0-40 cm soil layer, and the correlation was stronger 269 

for un-thinned and un-pruned stands (r = 0.91) than in thinned and pruned stands (r = 0.45). The 270 

fuel moisture content of the surface leaf litter was predicted more accurately when soil moisture 271 

data were included along with temperature and humidity data in a multiple regression model 272 

compared to a similar model without soil moisture data. More recently in Australia, in situ soil 273 

moisture measurements have been linked to the fuel moisture content of the surface and 274 

subsurface litter layer under various Eucalyptus species (Zhao et al. 2021). A follow-up 275 

experiment showed that dry soil had a limited influence on the fuel moisture content of the litter, 276 

primarily through vapor flow between the soil and the litter (Zhao et al. 2022). In contrast, wet 277 

soil had a stronger influence on litter moisture content, with evidence for both vapor and 278 

capillary flow between the soil and the litter. Similarly, in situ measurements from forested sites 279 

in the foothills of the Sierra Nevada in central California showed that soil moisture had a 280 

stronger influence than any other environmental or meteorological factor on fuel moisture of 10-281 

h fuels (6 to 25 mm diameter dead fuels) for wet soil conditions (Rakhmatulina et al. 2021).  A 282 

dominant influence of soil moisture on the moisture content of dead fine fuels was also 283 

documented through in situ measurements in Korean pine (Pinus koraiensis) and Scots pine 284 

(Pinus sylvestris) stands in northeastern China (Masinda et al. 2021).  These reports of the 285 

connection between moisture of mineral soils and that of overlying organic layers 286 

corroborate previous studies correlating soil moisture measurements with moisture codes 287 

from the CFFDRS.  For example, correlation coefficients ranging from 0.6-0.8 were 288 

reported between measured soil moisture and soil moisture estimated from the DC index in 289 

Canadian forests (D'Orangeville et al. 2016). 290 
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      These findings from diverse ecosystems and geographies highlight the dependencies 291 

of fuel loads, fuel moisture content, and wildfire probability on soil moisture. They have also laid 292 

the groundwork for a new generation of wildfire danger assessment tools that use in situ soil 293 

moisture information.  However, even with expanding national and regional scale soil moisture 294 

monitoring networks, using in situ data for wildfire danger monitoring and management 295 

decisions is still constrained by the limited number of measurement sites in some locations [e.g., 296 

the boreal forest, and most of South America, Africa, and Australia (Dorigo et al. 2021)].  297 

And because soil moisture can vary greatly across even small distances (Famiglietti et al. 2008), 298 

point measurements of soil moisture are not necessarily representative of soil moisture at the 299 

landscape scale (Fig. 3).  Therefore, there is a clear need for supplemental strategies for 300 

quantifying soil moisture, which include remotely sensed and modeled soil moisture information. 301 

 302 

Remotely sensed soil moisture  303 

      Remote sensing technology has advanced rapidly since the first photograph of Earth was 304 

taken from space in 1946.  Since that time, improvements in sensor fidelity, satellite and rocket 305 

launch technology, data storage, and aperture development have enabled many new capabilities, 306 

including near real-time operations related to earth sciences and hydrology (McCabe et al. 2017). 307 

The ability to characterize the land surface using strategic regions of the electromagnetic 308 

spectrum has resulted in opportunities to remotely monitor and assess near-surface soil moisture 309 

and vegetation dynamics (Kumar et al. 2020; Mladenova et al. 2020), which are key to 310 

understanding the risks and impacts of wildfires. With the advent of refined satellite-based 311 

microwave sensors such as the European Space Agency’s Soil Moisture Ocean Salinity (SMOS) 312 

mission, which launched in 2009 (Kerr et al. 2010), and NASA’s Soil Moisture Active-Passive 313 
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(SMAP) mission (Entekhabi et al. 2010), which launched in 2015, evidence is beginning to 314 

emerge that satellite-based soil moisture data can provide value for understanding and 315 

predicting wildfire danger in many ecosystems (O et al. 2020).  316 

      Remotely sensed soil moisture data have proven useful for assessing fuel bed properties 317 

including biomass accumulation (i.e., fuel production) and fuel moisture content. For example, in 318 

southern France live fuel moisture measurements for Mediterranean shrub species were 319 

significantly correlated with the preceding 15-day average remotely sensed soil moisture from 320 

the European Space Agency’s Climate Change Initiative Soil Moisture dataset (ESA CCI SM, 321 

formerly known as ESV SM) (Fan et al. 2018). A subsequent study used soil moisture data from 322 

SMAP to estimate live fuel moisture of chamise (Adenostoma fasciculatum) at 12 chaparral sites 323 

in southern California (Jia et al. 2019). At those sites, a statistical model using weighted, 324 

accumulative soil moisture and growing degree days outperformed models using vegetation 325 

optical depth or other optical indices. There is also some evidence that remotely sensed soil 326 

moisture might be useful for estimating dead fuel moisture. Burapapol and Nagasawa (2016) 327 

reported that remotely sensed soil moisture based on Landsat and MODIS was closely linked 328 

with fuel moisture of dead leaves in dipterocarp and deciduous forests in Thailand.  Soil 329 

moisture based on microwave remote sensing may be preferrable to optical reflectance indices 330 

commonly used to characterize fuel moisture [see reviews by Gale et al. (2021); Yebra et al. 331 

(2013); and Arroyo et al. (2008)] because microwave sensors are less prone to disturbances from 332 

unfavorable weather (e.g., clouds) and because soil moisture is physiologically linked to plant 333 

processes (Nolan et al. 2020).  334 

      The results of the above regional studies (Fan et al., 2018; Jia et al., 2019) were supported 335 

by a nationwide analysis of the ESA CCI SM data and live fuel moisture at >1000 sites across 336 
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the contiguous US (Lu and Wei 2021). That analysis spanned numerous vegetation types and 337 

climate zones and revealed that the correlations between soil moisture and live fuel moisture 338 

were typically strongest when soil moisture was measured 10-50 days in advance. Important 339 

vegetation types showing a relatively high sensitivity to soil moisture included pine, redcedar, 340 

sagebrush, oak, manzanita, chamise, mesquite, and juniper. The SMAP Level-4 surface and root 341 

zone soil moisture products, which result from assimilation of SMAP observations into a land 342 

surface model, and in situ soil moisture measurements at selected sites both showed somewhat 343 

stronger correlations with live fuel moisture than did the ESA CCI SM data.  344 

      The links between remotely sensed soil moisture data and fuel bed characteristics make 345 

those data useful for assessing wildfire danger.  For example, positive soil moisture anomalies 346 

observed by Earth Resources Satellite 1 and 2 corresponded with a lower burned area of forest 347 

fires in the boreal forest of Siberian (Bartsch et al. 2009). Furthermore, extreme fire events in 348 

this region were more closely associated with remotely sensed soil moisture [AMSR-E 349 

(Njoku et al. 2003)] than precipitation anomalies or fire danger indices (Forkel et al. 2012).  350 

More recently, SMOS observations over boreal Canada revealed that wildfires occurred more 351 

frequently in anomalously low soil moisture conditions (Ambadan et al. 2020). At more 352 

southerly latitudes, models using SMOS-derived soil moisture, in conjunction with temperature 353 

and site specific variables such as land cover type, explained 68% of variability of maximum fire 354 

extent on the Iberian Peninsula (Chaparro et al. 2016).  And the inclusion of SMAP soil moisture 355 

observations increased skill in predicting wildfire occurrence in the western US relative to the 356 

use of vapor pressure deficit alone, particularly in grasslands (Rigden et al. 2020).   357 

Because current soil moisture conditions can influence future fuel moisture and fuel load, 358 

soil moisture observations may be particularly helpful for forecasting wildfire danger. In 359 



Using Soil Moisture Information to Better Understand and Predict Wildfire Danger: A 
Review of Recent Developments and Outstanding Questions 

 

17 
 

Australia and California, for example, Sazib et al. (2021) found that soil moisture from SMAP 360 

was negatively correlated with wildfires at 1-2 month lead times in moist regions where fuels are 361 

typically plentiful, and it was positively correlated with wildfires in drier regions where fuel is 362 

scarce.  These trends were attributed to a decrease in moisture of surface fuels in moist regions 363 

and increased biomass accumulation in dry regions.  In an analysis that spanned the globe, O et 364 

al. (2020) found that soil moisture from ECV-SM was an important early predictor of wildfires. 365 

They reported that in arid regions positive soil moisture anomalies corresponded with increased 366 

biomass accumulation followed by wildfire outbreaks at lead times of 5 months. In humid 367 

regions, negative soil moisture anomalies were related to wildfires at lead times of four months, 368 

presumably because of decreased moisture of surface fuels. Likewise, soil moisture inferred from 369 

NASA’s Gravity Recovery and Climate Experiment (GRACE) mission was often positively 370 

correlated with wildfire occurrence in herbaceous vegetation, shrublands, and forests at 371 

seasonal lead times, indicating that a wetter pre-fire-season can lead to increased plant (i.e., 372 

fuel) production in these landscapes (Jensen et al. 2018).   373 

The large spatial extent of remote sensing datasets provides natural opportunities to 374 

explore how soil moisture-wildfire relationships vary across different land cover types. Schaefer 375 

and Magi (2019) used satellite-based fire counts from NASA (Giglio et al. 2018), land-use and 376 

land cover maps (Hurtt et al. 2020), and the ESA CCI SM product (Dorigo et al. 2017) with a 377 

biome map (Levavasseur et al. 2012) to study how fires behave relative to soil moisture 378 

variability within land cover types and across biomes. They found that the fire-productivity curve 379 

shape, which describes resource and climate limits surrounding a zone of optimal fire conditions 380 

(Krawchuk and Moritz 2011), was captured within the phase-space of fire and soil moisture. Fire 381 

counts were generally greatest when remotely sensed average monthly soil moisture was 382 
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relatively low, often around 0.1 m3 m-3. At lower soil moisture levels, the average number of 383 

fires decreased with decreasing soil moisture, presumably because of resource limitations (i.e., 384 

decreasing fuel availability).  At higher soil moisture levels, the average number of fires 385 

decreased with increasing soil moisture, likely due to increased fuel moisture contents.  But the 386 

shape of the fire-soil moisture curve differed as a function of biomes and land cover types. For 387 

example, the occurrence of fires in boreal forests (Fig. 6, lower panel), which have a 388 

shallower rooting depth than forests in other biomes (Fan et al. 2017), relates to soil 389 

moisture availability in a way that is similar to grasslands (Fig. 6, upper panel), which also 390 

have shallow root depths.  This apparent effect of root depth on the sensitivity of fire 391 

occurrence to soil moisture under different biomes reinforces the value of soil moisture as a 392 

predictor of fire danger. Consistent with these results, Forkel et al. (2017) showed that across the 393 

world, biophysical models of fire activity (e.g., Rabin et al. 2015) performed better when 394 

remotely sensed soil moisture (and moisture state in general) was considered.  395 

These global scale analyses are possible because, unlike in situ soil moisture 396 

measurements, remotely sensed measurements provide data on soil moisture conditions across 397 

large spatial domains. However, remotely sensed measurements typically represent soil moisture 398 

conditions in only the top few centimeters of the soil (Abbaszadeh et al. 2021) and have lower 399 

temporal resolution compared to in situ networks.  Furthermore, remotely sensed soil 400 

moisture measurements have historically shown a limited ability to accurately monitor soil 401 

moisture conditions where a dense vegetative canopy is present (Djamai et al. 2015; Dorigo 402 

et al. 2015). But recent advances provide unequivocal evidence that remote sensing 403 

measurements are sensitive to soil moisture under forest canopies (Ayres et al. 2021; 404 

Colliander et al. 2020).  There is a clear need to focus future research on remotely sensed soil 405 
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moisture-wildfire relationships at higher spatial resolution and for specific land cover types. 406 

Such studies may enhance the relevance of satellite-based soil moisture data to fire managers. 407 

These types of studies may also be particularly well-suited for linking with model-based 408 

approaches as described in the next section. 409 

 410 

Modeled soil moisture  411 

Given the historical lack of in situ and satellite measurements, proxies and estimates of 412 

soil moisture conditions have long been used in the context of wildfire danger.  Approaches have 413 

ranged from drought indices based on simplified soil water balance models (e.g., Keetch and 414 

Byram 1968; Mount 1972; Palmer 1965), to actual soil moisture values simulated using more 415 

complex process-based models (Carrega 1991; Holden et al. 2019), to hybrid approaches that 416 

incorporate measured soil moisture data into plant growth models (Krueger et al. 2021).  These 417 

approaches have been applied across widely-varying time horizons, with some showing the 418 

possibility to facilitate predictions of soil moisture, and subsequently wildfire, for time frames 419 

potentially spanning decades (Chikamoto et al. 2015).  The Keetch-Byram Drought Index 420 

(KBDI) (Keetch and Byram 1968), in particular, has been used extensively to address the 421 

challenges of representing moisture deficits and their influence of wildfire danger. For example, 422 

KBDI has been used in the McArthur Mark 5 forest fire danger index (Holgate et al. 2017), the 423 

Fosberg fire weather index (Goodrick 2002), and the US National Fire Danger Rating System 424 

(Burgan 1988).  425 

      Developed in the southern United States in the 1960s to predict moisture deficits in duff 426 

and mineral soil layers, KBDI is a unitless index ranging from 0-800. The KBDI calculation 427 

attempts to address important physical processes such as canopy interception of precipitation and 428 
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the effects of biomass on rates of soil water loss. However, it has significant limitations. For 429 

example, it does not include humidity, wind, or radiation in its estimate of soil water loss. The 430 

model also uses climatological average precipitation as a surrogate for both leaf area and canopy 431 

interception, based on the assumption that wetter sites support more vegetation. Finally, KBDI 432 

does not consider variability in soil properties, instead assuming a water holding capacity of 8 433 

inches for all soils. Given these limitations, it is not surprising that in situ and remotely sensed 434 

soil moisture are more strongly related to wildfires than KBDI in grasslands in the western US 435 

(Rigden et al. 2020) and grasslands, shrublands, and forests in Oklahoma (Krueger et al. 436 

2017). 437 

When compared to in situ soil moisture observations in Australia, KBDI showed a large 438 

wet bias relative to measurements in the 0-30 cm and 0-90 cm soil layers, had correlations with 439 

measured soil moisture that vary widely across climate zones and were sometimes negative, 440 

tended to dry down too slowly after wet periods, and performed more poorly than simulations 441 

from a physically-based land surface model (Holgate et al. 2017; Vinodkumar et al. 2017). 442 

Although KBDI can be calibrated to represent temporal variations in live fuel moisture at 443 

specific sites, it is unable to accurately represent spatial variations in live fuel moisture, and thus 444 

is not recommended for use in operational fire management (Ruffault et al. 2018).  Replacing 445 

drought indices like KBDI with more robust soil moisture models has been noted as a priority for 446 

improving fire danger rating in the US (Jolly 2018) and is well underway in Australia 447 

(Vinodkumar and Dharssi 2019; Vinodkumar et al. 2021). 448 

Process-based models link vegetation growth and functioning with soil properties and 449 

climate information and are sometimes referred to as land surface models or soil-vegetation-450 

atmosphere-transfer models (Moran et al. 2004). These models can be particularly useful because 451 
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they represent plant physiological processes, allowing vegetation to be modelled accurately over 452 

space and time, and thus capture many of the vegetation fuel attributes that are relevant for fire 453 

spread models (Landsberg et al. 2003).  One example is the TOPOFIRE model, which was 454 

recently developed to provide high spatial resolution, daily estimates of soil moisture, fuel 455 

moisture, and fire danger data and maps for the conterminous US (Holden et al. 2019) (Figure 7). 456 

Another recent example is the modeling system developed by the Australian Bureau of 457 

Meteorology based on the Joint UK Land Environment Simulator (JULES) called the JULES-458 

based Australian Soil Moisture Information (JASMIN) system (Vinodkumar and Dharssi 2019). 459 

The JASMIN system was specifically designed for application in operational fire prediction and 460 

risk management.  461 

Such models hold promise, not only for wildfire decision support, but also for revealing a 462 

new foundational understanding of soil moisture—wildfire relationships. For example, modeled 463 

soil moisture values from the US National Oceanic and Atmospheric Administration Climate 464 

Prediction Center have been used with remotely sensed active fire data to understand global 465 

patterns in the constraints of fine fuel loads and fuel moisture on wildfire occurrence (Krawchuk 466 

and Moritz 2011). Fuel moisture content strongly influences fire ignition and spread, and recent 467 

simulations from a physics-based model showed the close interaction of soil moisture with the 468 

fuel moisture of the litter layer in shrubland, woodland, and forests (Zhao et al. 2021).  469 

Likewise, soil moisture modeled using TOPOFIRE has been shown to be a better predictor of 470 

canopy water content across the western US than is atmospheric vapor pressure deficit (Lyons et 471 

al. 2021). In fact, gridded 5-km resolution live fuel moisture estimates in grasslands, 472 

shrublands, and forests have been generated for Australia based on soil moisture values 473 

simulated with the JASMIN system (Vinodkumar et al. 2021). These live fuel moisture 474 
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predictions used soil moisture as a leading indicator with a 14-d lag period. The 0-35 cm soil 475 

layer was determined to be the best layer for live fuel moisture prediction. This is similar to the 476 

0-40 cm layer used for in situ soil moisture measurements in several prior wildfire-related studies 477 

(Krueger et al. 2015; Krueger et al. 2016; Krueger et al. 2017; Pook and Gill 1993; Sharma et al. 478 

2021). There is a clear need for further development and refinement of process-based models 479 

specifically designed to capture soil moisture-fuel load-fuel moisture-fire danger relationships 480 

and for the application of those models for greater scientific understanding and improved fire 481 

danger ratings.  482 

One limitation to process-based modeling approaches relative to simple drought indices 483 

is the increased complexity of model inputs and sometimes intensive calibration needs. 484 

Necessary inputs typically include gridded data sets for climate conditions, soil properties, and 485 

vegetation type and condition. Obtaining these input data at the necessary spatial and temporal 486 

scale and resolution can be challenging. For example, soil maps are often compiled at broad 487 

spatial scales, often do not cross political boundaries, and sometimes use inconsistent 488 

nomenclatures (Mulder et al. 2011; Zheng et al. 1996).  Some critical soil attributes, for example 489 

soil depth and available water capacity, can be hard to derive using traditional soil mapping 490 

techniques, making these even more challenging to input into fire danger models.  Levi and 491 

Bestelmeyer (2018) summarize available spatial soil information datasets for fire modeling in the 492 

US and suggest that advances in soil modeling can lead to improved soil property maps and 493 

therefore more accurate fire predictions. 494 

One promising approach is to use process-based models in an inverse fashion to estimate 495 

the necessary soil physical properties.  For example, forest leaf area index has been shown to be 496 

indicative of soil properties, with increases in leaf area associated with increases in fertility and 497 
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available soil water (Waring 1983; White et al. 1997). Therefore, by modeling tree growth and 498 

variables such as leaf area index, soil physical properties can be inferred, which can then be input 499 

into land surface models. Following this approach with the 3PG model (Landsberg and Waring 500 

1997), Coops et al. (2012) predicted available soil water storage capacity across western North 501 

America and compared model predictions of leaf area with those observed from satellite 502 

observations. They developed soil maps at a much finer scale (1 km) than those previously 503 

available over the area. When these updated soil maps were integrated into modeling, the forest 504 

model predictions more closely matched the anticipated growth of a key forest species in the area 505 

compared to models driven solely from pre-existing soil map information.  506 

There appears to be great potential for these types of hybrid approaches that incorporate 507 

in situ or satellite soil moisture measurements into process-based models. For example, 508 

predictions of grassland fuel loads can be improved by direct insertion of in situ soil moisture 509 

observations into a simulation model’s soil water balance routine (Krueger et al. 2021), or a soil 510 

moisture model can be improved by assimilating satellite-based soil moisture observations, as 511 

demonstrated in Bolten et al. (2010). Hybrid approaches have also proven useful when predicting 512 

areas of vegetation stress, which may be more prone to wildfires.  For example, areas of 513 

increased land surface temperature and decreased greenness are likely to be subject to lower 514 

vegetation growth and increased stress (Nemani et al. 1996). If prolonged, these stresses can 515 

result in increased litter fall, increased non-photosynthetic vegetation, and drier soil, which in 516 

turn correspond with increased fuel load. Based on this concept, Mildrexler et al. (2009) 517 

developed a global disturbance index using remotely sensed land surface temperature and 518 

greenness and demonstrated that this index could identify areas of broad scale vegetation stress. 519 

Waring et al. (2011) applied this index over western North America and demonstrated that 520 
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increases in the area designated as stressed were positively correlated with the areas of increased 521 

simulated soil water stress and wildfire. Waring and Coops (2016) then compared simulated soil 522 

moisture with satellite derived area burned (Fig. 8, left). Using a decision tree approach, they 523 

identified four seasonal combinations of current and antecedent soil moisture conditions that 524 

predicted where forest fires >1 km2 occurred with 69% accuracy (Fig. 8, right).   525 

These studies add to the growing body of evidence that an accurate accounting of soil 526 

moisture status, either by in situ measurements, remote sensing, or modeling, can improve our 527 

ability to anticipate when and where wildfires will occur. While soil moisture models can suffer 528 

from errors caused by inaccuracies in input data and the model structure, they are appealing 529 

because of their capability to incorporate diverse data sources including measured soil moisture 530 

and vegetation condition (Fig. 3). Yet as described in the following section, soil moisture 531 

information has thus far been largely absent from major fire danger rating systems. 532 

 533 

Potential for inclusion of soil moisture information into fire danger rating systems 534 

In this section we explore the potential for integration of soil moisture information into 535 

fire danger rating systems.  We begin with a brief review of some of the leading fire danger 536 

rating systems and how they incorporate weather and other information to estimate fuel bed 537 

properties, estimates that could potentially be improved by incorporating soil moisture 538 

information. 539 

National fire danger rating systems 540 

  Fire danger rating systems integrate inputs representing multiple fire danger factors, often 541 

via a model, into one or more qualitative or numerical indices of fire danger.  Some systems also 542 
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model physical characteristics of the fire, such as fire intensity, rate of spread, and flame length.  543 

Fire danger rating systems provide assessments of fire danger over broad geographical areas, 544 

encompassing up to millions of hectares, and are typically not designed to provide detailed fire 545 

danger information at the field scale.  Spatially, when calculated over a grid, the fire danger for 546 

each grid cell represents the average fire danger at a given time over that cell, assuming 547 

homogeneous fuels, weather, and topography within the cell.  Such systems are used to provide 548 

public warnings, set preparedness levels, provide a good indication of the difficulty of fire 549 

suppression over a wide range of conditions, and to help wildfire managers make wise tactical 550 

and strategic management decisions (NWCG 2002). 551 

 While there are a number of fire danger ratings systems across the world, ranging from  552 

national to regional to local scales, it is instructive to look at three national systems that have 553 

been widely used for many decades, those of Australia, Canada, and the United States. While a 554 

new Australian system is becoming operational in 2022 (AFAC 2022), the previous system 555 

consisted of two fire danger indices, each with six fire danger categories: the McArthur Forest 556 

Fire Danger Index (FFDI) and the McArthur Grassland Fire Danger Index (GFDI) (McArthur 557 

1966, 1967; Noble et al. 1980). The FFDI and GFDI each required temperature, relative 558 

humidity, wind speed, and rainfall as weather inputs.  The FFDI assumed a standard eucalyptus 559 

forest in its calculations, while the GFDI assumed a standard grassland.  For each, the fuel type 560 

and total fuel load (live + dead) were constant.  For the FFDI, fuel availability (drought factor) 561 

was calculated from soil moisture deficit, time since last rain, and rainfall amount (Matthews 562 

2009).  The soil moisture deficit used KBDI or the Soil Dryness Index (SDI, Mount 1972).  For 563 

the GFDI, the degree of curing was also an input, which was typically estimated by ground-564 

based visual observations, satellite imagery, or a combination of both.   565 
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 The Canadian Forest Fire Danger Rating System (CFFDRS, Stocks et al. 1989) has 566 

been in its current form since 1992, with a series of improvements planned for release 567 

beginning in 2025 (CFSFDG 2021).  It consists of two major subsystems, the Fire Weather 568 

Index (FWI) System (Van Wagner 1987) and the Fire Behavior Prediction (FBP) System 569 

(FCFDG 1992).  The FWI System uses a standard jack pine forest and consists of six 570 

components: three moisture indices (fine fuel moisture code, duff moisture code, and drought 571 

code) that represent three organic layers at or beneath the forest floor (Fig. 2), and three fire 572 

danger indices, including FWI itself.  Weather inputs are temperature, relative humidity, wind 573 

speed, and rainfall.  The FBP System consists of 16 available fuel models, including a grass 574 

model that requires degree of curing as an input (De Groot 1993). The system incorporates three 575 

outputs from the FWI System and uses topography in its calculations.  Foliar (live) fuel moisture 576 

is modeled using elevation, geographical location, and date; thus, the foliar moisture remains the 577 

same on a given date and location from year to year.  Outputs of the FBP System include 578 

physical characteristics of the wildfire (e.g., rate of spread and fire intensity). 579 

The National Fire Danger Rating System (NFDRS) of the United States was originally 580 

released in 1972 (Deeming et al. 1972) with major updates in 1978 (Bradshaw et al. 1983) and 581 

1988 (Burgan 1988).  The latest version (NFDRS2016) includes five standard fuel models, 582 

reduced from 20 in the 1978 and 1988 versions (Jolly 2018).  As with the two former versions, 583 

NFDRS2016 separately calculates live and dead fuel moisture as well as the dynamic fuel load 584 

transfer (i.e., curing or green-up) between 1-hour dead (< 6 mm diameter dead fuels) and live 585 

herbaceous fuels (Fig. 9).  The live fuel moisture and dynamic fuel load transfer calculations in 586 

NFDRS2016 are a function of Growing Season Index (GSI), which is a function of temperature, 587 

relative humidity, and photoperiod (Jolly et al. 2005).  As with the 1988 NFDRS, the new system 588 

Tyson Ochsner
Does this mean that during green-up 1-hr dead fuels are presumed to become alive again? That seems odd.
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uses KBDI as a drought surrogate to linearly increase the dead fuel loads when KBDI increases 589 

above a threshold of 100.  The inputs to NFDRS2016 are temperature, relative humidity, rainfall, 590 

wind speed, solar radiation, and photoperiod (based on latitude and day of year).  The outputs 591 

from NFDRS consist of four components describing the wildfire danger: Spread Component, 592 

Energy Release Component, Burning Index, and Ignition Component. 593 

Potential pathways for inclusion of soil moisture information 594 

Within fire danger rating systems like those described above, there are at least five 595 

potential uses for soil moisture information: 1) as a replacement or supplement for drought 596 

indices; 2) as an input for live and 3) dead fuel moisture modeling; 4) as an input to estimate 597 

curing for herbaceous fuels; and as 5) as an input for estimation of fuel loads. We now briefly 598 

discuss each of these potential uses within the context of NFDRS2016 (Fig. 9), which provides a 599 

representative example for how soil moisture could potentially be used in fire danger rating 600 

systems worldwide.   601 

First, soil moisture measurements or simulations from process-based models could be 602 

used to replace drought indices in fire danger rating systems. Moisture indices that can 603 

represent soil moisture have been used in fire danger rating systems across the world, including 604 

KBDI and SDI in the Australian FFDI system, the drought code in the Canadian FWI System, 605 

and KBDI in the US NFDRS system.  A growing body of evidence indicates that new sources 606 

of soil moisture information are useful for predicting wildfire danger across a variety of 607 

landscapes including grasslands, shrublands, and temperate and boreal forests, and soil 608 

moisture information may be more closely related to wildfire danger than traditional 609 

drought indices (e.g., Ambadan et al. 2020; Bartsch et al. 2009; Chaparro et al. 2016; 610 

Forkel et al. 2012; Krueger et al. 2015; Rigden et al. 2020; Schaefer and Magi 2019).  For 611 
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example, in Oklahoma in situ soil moisture measurements provided an average of ten days 612 

earlier warning than KBDI for the largest growing-season wildfires (Krueger et al. 2017). For 613 

one of the largest wildfires in that study, the Chester Fire, soil moisture reached dangerously low 614 

levels (FAW ≤ 0.2) more than 3 weeks before the actual fire, while KBDI never reached levels 615 

considered dangerous (≥ 600), thus providing no advance warning at all. When FAW is < 0.2, as 616 

it was leading up to the Chester Fire, grassland curing rates of ~13 g m-2 d-1 can occur (Sharma et 617 

al., 2021), which could result in the accumulation of >270 g m-2 of dead fuel in 3 weeks, or near 618 

100% curing given typical grassland fuel loads for the region (Krueger et al., 2021). Analyses 619 

from Australia indicate that SDI is on average more strongly correlated with in situ soil moisture 620 

measurements than is KBDI, but like KBDI, SDI exhibits slower dry downs than in situ soil 621 

moisture and greater variation in performance across regions than more advanced process-based 622 

models (Holgate et al. 2016). These results suggest that soil moisture measurements or 623 

simulations from process-based models could effectively supplement or replace drought indices 624 

in fire danger rating systems.   625 

          A second potential use of soil moisture information is for live fuel moisture modeling in 626 

fire danger rating systems. Soil moisture has been shown to be a strong predictor of live 627 

fuel moisture in grasslands, (Sharma et al. 2021), shrublands (Pellizzaro et al. 2007; Qi et 628 

al. 2012), and forest understory (Bianchi and Defossé 2015). In fact, soil moisture 629 

observations have shown stronger correlations with live fuel moisture than drought indices 630 

in some Mediterranean shrub species (Pellizzaro et al. 2007) and stronger than remotely 631 

sensed vegetation indices in Gambel oak and sagebrush (Qi et al. 2012).  In NFDRS2016, 632 

live fuel moisture is estimated using GSI, a simple empirical index for vegetation phenology 633 

based on photoperiod, vapor pressure deficit, and air temperature (Jolly et al. 2005 and Fig. 8). 634 
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We are not aware of any peer-reviewed evaluations of the accuracy of live fuel moisture 635 

estimates based on GSI, although GSI shows temporal trends similar to live fuel moisture 636 

content in sagebrush and chamise (Jolly 2018). Based on the evidence from the literature, we 637 

hypothesize that inclusion of soil moisture information as an additional input variable in the GSI 638 

calculation would lead to improved live fuel moisture estimates. Alternatively, live fuel moisture 639 

could be directly estimated from soil moisture information as has been successfully demonstrated 640 

in Australia (Vinodkumar et al. 2021).  641 

Third, soil moisture could also be useful for dead fuel moisture estimation in fire danger 642 

rating systems. Soil moisture influences near-surface air temperature and humidity (McKinnon et 643 

al. 2021), and water movement between the soil and dead surface fuels has been observed in 644 

shrubland and eucalyptus forests (Zhao et al. 2022; Zhao et al. 2021) and aspen forests 645 

(Samran et al. 1995). NFDRS2016 estimates dead fuel moisture using the Nelson model, which 646 

uses temperature, relative humidity, solar radiation, and precipitation as inputs (Nelson Jr 2000). 647 

The Nelson model has shown reasonable accuracy in estimating dead fuel moisture with r2 648 

values ranging from 0.51-0.79 (Carlson et al. 2007), but for some landscapes like conifer forests 649 

there is evidence that dead fuel moisture models incorporating soil moisture information provide 650 

better estimates than those that omit soil moisture information (Masinda et al. 2021; Pook and 651 

Gill 1993; Rakhmatulina et al. 2021). These studies highlight the potential to improve fire danger 652 

rating systems by using soil moisture information for estimating dead fuel moisture, particularly 653 

for dead surface fuels at forested sites.   654 

Improving representation of the curing of herbaceous fuels is a fourth promising use of 655 

soil moisture information. Few studies have directly considered the relationship between soil 656 

moisture and curing, but the limited available data suggest a strong relationship between soil 657 
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moisture conditions and the rate of curing in grasslands (Sharma et al. 2021). Likewise, positive 658 

correlations between the fuel moisture content and soil moisture content in grasslands have been 659 

observed during the curing period from the end of the growing season into mid-winter 660 

(McGranahan et al. 2016). The degree of curing in herbaceous fuels can be determined 661 

through direct measurements, visual estimates, remote sensing, or soil moisture deficit or plant 662 

phenology models (Duff et al. 2019). For example, in NFDRS2016 the dead herbaceous fuel 663 

load transfer is estimated as a function of the degree of curing, which is estimated from the 664 

GSI plant phenology model. Unpublished data show a negative relationship between GSI and 665 

grass curing (r2 = 0.41) for one site in North Dakota, USA (Jolly, 2018), but few, if any, 666 

published studies have compared GSI with curing levels measured in situ. Given that soil 667 

moisture deficits enhance curing (Wittich 2011), soil moisture information could perhaps be used 668 

as an additional input for the estimation of GSI and therefore curing, or the curing rate could be 669 

directly estimated from soil moisture observations.   670 

A fifth potential use of soil moisture information in fire danger rating systems is for the 671 

estimation of fuel loads. Current fire danger rating systems assume a constant fuel load (live + 672 

dead) regardless of the differences in weather from one growing season to the next. But loads 673 

can vary substantially year-to-year, especially for herbaceous fuels. For example, incorporation 674 

of soil moisture observations into a simple, process-based plant growth model can provide 675 

improved predictions of grassland productivity and fuel loads (Krueger et al., 2021). Likewise, 676 

soil moisture is a significant predictor of live fine fuel loads at guinea grass (Megathyrsus 677 

maximus) dominated sites in Hawaii (Ellsworth et al. 2013). There is also evidence for an 678 

important role of soil moisture conditions in regulating the growth rates of shrubland fuels in the 679 

Arctic (Ackerman et al. 2017; Martin et al. 2017; Myers-Smith et al. 2015). Accounting for soil 680 
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moisture effects on fuel production rates could lead to better approaches to represent dynamic 681 

fuel loads and could potentially improve the performance of fire danger rating systems. 682 

     While research provides evidence for these proposed uses of soil moisture in wildfire danger 683 

rating, the supporting studies have been relatively few and often of limited geographic scope.  684 

Substantiating research across diverse geographic locations and biomes is essential to support 685 

implementation on a large scale.  Furthermore, the usefulness of soil moisture information in fire 686 

danger rating systems is dependent on the way such information is generated.  In situ soil 687 

moisture measurements can monitor conditions deep into the soil profile rather than just the top 688 

few centimeters.  Therefore, these in situ measurements effectively represent root zone 689 

conditions, and they can be located in diverse vegetation types (e.g., grasslands, shrublands, 690 

forests). A main limitation of in situ measurements is that each measurement typically represents 691 

only a small area and may not adequately reflect heterogenous soil moisture conditions in the 692 

surrounding landscape. Unlike in situ observations, which are lacking in many regions, satellite 693 

remote sensing is available globally and can provide useful large-scale estimates of soil moisture 694 

conditions. But remotely sensed soil moisture measurements have limited capacity to monitor 695 

conditions below the 5-cm depth and limited accuracy beneath dense forest canopies, and less 696 

resolution in time as compared to in situ measurements.  In contrast, simulated soil moisture 697 

information from process-based models can represent the entire root zone, can be extended to 698 

almost any land cover and land use type, and have flexible spatial and temporal resolution. Yet, 699 

the accuracy of these simulated values is limited by the availability and quality of the necessary 700 

soil, vegetation, and weather input data and by uncertainties in the model structure and 701 

parameters. Another limiting factor is the sometimes large computational requirements for 702 

running the simulations.  The use of soil moisture information in fire danger rating systems may 703 
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need to rely on a combination of all three sources to represent the best available information 704 

across a range of relevant scales.   705 

 706 

Challenges and opportunities  707 

       We have described a steadily growing body of evidence indicating the need for and 708 

potential benefits of using soil moisture for wildfire danger assessments.  While this research is 709 

promising, many questions remain.  First, and perhaps most important, while the current body of 710 

research supports a litany of potential uses of soil moisture in fire danger rating systems, the 711 

practical benefits of these uses remain largely untested and logistical challenges likely remain. 712 

Pioneering efforts in the operational use of soil moisture information in fire danger rating 713 

systems include the use of in situ soil moisture measurements in OK-FIRE, a weather-based 714 

decision support system for wildland fire managers in Oklahoma that produces maps of growing-715 

season wildfire danger, updated every 30 minutes, based on soil moisture (Oklahoma Mesonet 716 

2021).  These maps supplement similar maps based on KBDI for operational fire management 717 

decisions.  Similarly, the operational use of remotely sensed soil moisture data is being explored 718 

by the Barcelona Expert Centre (BEC), which downscales SMOS soil moisture data to create 719 

near-real time fire risk maps (BEC Team 2018) that are currently used by Barcelona Provincial 720 

Council to provide wildfire early warning (Chaparro et al. 2016). And in Australia, modeled soil 721 

moisture values are being used to generate dynamic nationwide live fuel moisture estimates 722 

designed for use in operational fire danger ratings (Vinodkumar and Dharssi 2019; Vinodkumar 723 

et al. 2021). Further research specifically aimed at techniques for incorporating soil moisture into 724 

wildfire danger systems is critically needed, as well as evaluation of fire danger ratings with and 725 

without soil moisture information. 726 
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 Other important research needs and opportunities abound in this context. Some key 727 

research questions include: 1) What representations of soil moisture (absolute values, scaled 728 

values like FAW, anomalies, percentiles, etc.) are best suited for wildfire danger assessment? 2) 729 

What are the soil depths for which moisture conditions are most strongly related to fuel 730 

production rates, fuel moisture, and wildfire occurrence and size? 3) How can the various 731 

sources of soil moisture information (in situ, remotely sensed, modeled, or a combination of 732 

these) best be leveraged for improving operational fire danger assessments? 4) How can soil 733 

moisture information be used to produce accurate dynamic estimates of live and dead fuel loads 734 

in fire danger rating systems? 5) How are soil moisture conditions related to and predictive of 735 

wildfire occurrence and severity in organic soil layers, where the soil itself is the fuel (Elmes et 736 

al. 2018; Prat-Guitart et al. 2016; Reardon et al. 2007; Rein et al. 2008)? 6) How do pre-fire soil 737 

moisture conditions influence burn severity, soil heating, and post-fire impacts of both wildfire 738 

and prescribed fire across different landscapes? These questions must all be answered in parallel 739 

with continued research aimed at refining and expanding in situ, remotely sensed, and modeled 740 

soil moisture products. 741 

After clearing these scientific hurdles, there remains the further challenge of convincing 742 

wildfire professionals of the importance of soil moisture compared with more familiar wildfire 743 

danger metrics.  For example, the importance of KBDI has been engrained in generations of 744 

wildfire professionals, and it benefits from widespread familiarity and is inherently understood.  745 

It is critical that soil moisture be distinguished from other drought indicators, or it risks being 746 

overlooked as just another drought metric. The challenge for scientists is to formulate soil 747 

moisture information into a form that is easily understood and used by fire managers.  748 

Acceptance may be gained through a “snowball approach”, where use of soil moisture 749 
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encourages acceptance, and greater acceptance encourages greater use. If available soil moisture 750 

information had been included in operational fire danger rating systems in the US, would it have 751 

resulted in earlier warning of extreme fire danger prior to the Camp Fire in 2018? Would it have 752 

helped save the lives of any of the 85 people who died from the fire? We do not know. But we 753 

know that we now have sufficient soil moisture information and adequate scientific evidence to 754 

begin using that information to improve fire danger rating systems around the world. So, let’s 755 

begin. 756 
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Figures 1178 

Fig. 1. Soil moisture conditions on 1 Nov. 2018, one week prior to the Camp Fire in northern 1179 

California, the deadliest and most destructive wildfire in the state’s history. The map shows the 1180 

surface soil moisture anomaly as reported by NASA’s SMAP satellite mission, indicating 1181 

exceptionally dry soil conditions conducive to high fire danger in northern California (image: 1182 

USDA NASS Crop Condition and Soil Moisture Analytics system). 1183 

  1184 
Surface soil moisture anomaly 

https://nassgeo.csiss.gmu.edu/CropCASMA/
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Fig. 2. Diagram of a hypothetical forest soil profile with a thick layer of organic soil or duff at 1185 

the surface. The diagram approximates the relationships of the soil layers to moisture indices 1186 

used in fire danger rating systems in Canada (CFFDRS), the United States (NFDRS), and 1187 

Australia (AFDRS).  These indices do not use measured soil moisture, account for physical 1188 

properties of the soil, or directly account for impacts of overlying vegetation.  Instead, moisture 1189 

content is calculated using simplistic water balance approaches based on commonly measured 1190 

weather variables (e.g., temperature, relative humidity, wind speed, and rainfall). 1191 

   1192 
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Fig. 3.  A variety of in situ, remotely sensed, and modeled soil moisture data sources have been 1193 

recently developed, with each having unique qualities making them well suited for wildfire 1194 

danger modeling. 1195 

 1196 

  1197 

Carlson, Jd
In the figure, I'd REMOVE "KBDI" in the modeling box, as it's not the type of sophisticated model we're talking about, nor is it by any means "recent"!

Krueger, Erik S
I like KBDI here because helps us define that index as a model, which provides context for other models.  But I agree, it isn’t recent, and so is misleading.  I’ll ask Matt to remove it, but will wait to see if Tyson suggests any other changes.

Tyson Ochsner
I agree. I would remove KBDI.

Tyson Ochsner
I would also remove SMERGE, which is really a retrospective remote sensing product.

Tyson Ochsner
I would add NOAA CPC because it is another soil moisture model we mention in the text.

Tyson Ochsner
For the US, I think the compiled in situ dataset would still be referred to as the "North American Soil Moisture Database" as reported by Quiring et al. (2016).
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Fig. 4. PhenoCam images collected over grassland near Stillwater, Oklahoma on 2 August 2012 1198 

(left) and 6 August 2013 (right), show the influence of soil moisture on vegetation, and by 1199 

extension, fire danger. The graph shows the measured fraction of available water capacity 1200 

(FAW) at the image location, with colors indicating relative wildfire danger and solid circles and 1201 

diamonds representing the mixed (live + dead) fuel moisture and fuel load on days the images 1202 

were collected. Photo Credits: University of New Hampshire Phenocam Network (adapted from 1203 

Levi et al., 2019) 1204 
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Fig. 5.  Frequency distribution (histograms) and probabilistic relationship (solid black curve) 1213 

between fraction of available water capacity (FAW) and large growing-season wildfires in 1214 

Oklahoma from 2000–2012, adapted from Krueger et al. (2015) and Krueger et al. (2016).  1215 

Subsequent research provided physical explanations and thresholds for empirical soil moisture-1216 

wildfire links (Krueger et al. 2021; Sharma et al. 2021).  These thresholds describe how live 1217 

grassland fuels transition to dead fuels as soil moisture declines, beginning with a drop in live 1218 

fuel moisture (FAW = 0.59) followed by decreased transpiration and growth (FAW = 0.40).  1219 

Next, vegetative greenness declines (FAW = 0.36), which culminates in rapid fuel curing as soil 1220 

moisture conditions continue to deteriorate (FAW = 0.30). 1221 
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Fig. 6. Fire-soil moisture curves for different land cover types (grasses on the left, and forests on 1224 

the right) in different biomes (boreal, grassland-savanna, temperate, and tropical) showing the 1225 

resource and climate limits at low and high soil moisture values, respectively. The curves are 1226 

derived from monthly-averaged soil moisture for the 0-5 cm soil layer from the European Space 1227 

Agency Climate Change Initiative (version 4.2) and monthly fire counts from MODIS Collection 1228 

6. The area analyzed in each biome is shown on the maps in red, where this shading denotes 1229 

where greater than 75% of the grid cell is a single land cover type. The area covered by grasses 1230 

in temperate and tropical biomes (about 5.7 million km2, or 13% of global grasses) and area 1231 

covered by forests in grassland-savanna biomes (about 4.0 million km2, or 11% of global 1232 

forests) were excluded due to weaker statistical signal. The shape of the fire-soil moisture curves 1233 

varies across land cover types and across biomes, suggesting that soil moisture may be a viable 1234 

predictor of biome-scale fire danger for different land cover types (adapted from Schaefer and 1235 

Magi, 2019). 1236 
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Fig. 7. Example soil moisture output from TOPOFIRE for the 3 March 2019. Soil moisture maps 1239 

for the conterminous United States are produced daily as part of the TOPOFIRE processing 1240 

chain (Holden et al., 2019). 1241 
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Fig. 8. Example of model predictions of wildfires (red) based on available soil water (ASW) for 1245 

forested portions of western North America in 2004, along with the locations of MODIS active 1246 

fire hotspots (black dots) for the same period (left panel).  The right panel shows the relative 1247 

importance of different seasonal functions of available soil water used to predict MODIS Active 1248 

hotspot occurrence of wildfires in 2001, 2004, and 2007 (adapted from Waring and Coops, 1249 

2016). 1250 
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Fig. 9.  Structure of the United States National Fire Dander Rating System NFDRS2016 adapted 1252 

from Jolly (2018).  Possible uses of soil moisture information in NFDRS2016 are numbered and 1253 

in dark blue boxes, and potential downstream effects of the inclusion of soil moisture 1254 

information are in light blue boxes.  These potential uses include (1) supplementing or replacing 1255 

KBDI, (2) live fuel moisture modeling, (3) dead fuel moisture modeling, (4) to estimate 1256 

herbaceous curing, and (5) fuel load modeling. 1257 

 1258 
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