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Abstract: Passive microwave remote sensing of soil moisture (SM) requires a physically based die- 12 
lectric model that quantitatively converts the volumetric SM into the soil bulk dielectric constant. 13 
Mironov 2009 is the dielectric model used in the operational SM retrieval algorithms of the NASA 14 
Soil Moisture Active Passive (SMAP) and the ESA Soil Moisture and Ocean Salinity (SMOS) mis- 15 
sions. However, Mironov 2009 suffers a challenge in deriving SM over organic soils as it does not 16 
account for the impact of soil organic matter (SOM) on the soil bulk dielectric constant. To this end, 17 
we presented a comparative performance analysis of nine advanced soil dielectric models over or- 18 
ganic soil in Alaska and four of them incorporate SOM. In the framework of the SMAP single-chan- 19 
nel algorithm at vertical polarization (SCA-V), SM retrievals from different dielectric models were 20 
derived using an iterative optimization scheme. The skills of different dielectric models over organic 21 
soils were reflected by the performance of their respective SM retrievals, which was measured by 22 
four conventional statistical metrics calculated by comparing satellite-based SM time series with in- 23 
situ benchmarks. Overall, SM retrievals of organic-soil-based dielectric models tended to overesti- 24 
mate while those from mineral-soil-based models displayed dry biases. All the models showed com- 25 
parable values of unbiased root-mean-square error (ubRMSE) and Pearson Correlation (R), but 26 
Mironov 2019 exhibited a slight and consistent edge over others. An integrated consideration of the 27 
model inputs, the physical basis, and the validated accuracy indicated that the separate use of 28 
Mironov 2009 and Mironov 2019 in the SMAP SCA-V for mineral soils (SOM < 15%) and organic 29 
soils (SOM ≥ 15%) would be a preferred option.    30 
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 32 

1. Introduction 33 
Passive microwave remote sensing is considered the most suitable tool to map spatial 34 

soil wetness owing to the negligible atmospheric influence and less interference from can- 35 
opy and surface roughness [1,2]. The remarkable performance of soil moisture (SM) re- 36 
trievals from spaceborne L-band radiometers (i.e., Soil Moisture and Ocean Salinity 37 
(SMOS) [3] and Soil Moisture Active Passive (SMAP) [4]) has been substantiated by a 38 
number of validation studies [5-9]. The mechanism that physically bridges the surface 39 
emission at microwave bands and surface SM is based on the contrasting difference be- 40 
tween the dielectric constants of liquid water (~ 80) and dry soil (~ 4) [10]. The dielectric 41 
model that quantitatively links the SM with the bulk dielectric constant of the soil-water- 42 
air system is therefore critical in the retrieval algorithms of SMOS and SMAP. 43 
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Recently, numerous dielectric models were developed and applied for both space- 44 
borne microwave radiometers and in-situ electromagnetic sensors [11]. An ideal dielectric 45 
model is envisioned to accurately account for the dielectric response of wet soils as a func- 46 
tion of all the relevant factors, including soil compaction, soil composition, the fraction of 47 
bound and free water, salinity, soil temperature, soil particle size distribution, and obser- 48 
vation frequency, etc. [12]. However, the practical dielectric models are often established 49 
on a limited set of soil properties and are unable to approximate proper dielectric con- 50 
stants for all the surface conditions. Previous studies found that applying mineral-soil- 51 
based dielectric models over organic soils could lead to a substantial underestimation of 52 
SM [11]. [13] revealed a significant drop in the SMAP retrieval quality in regions with soil 53 
organic carbon (SOC) exceeding 8.72%. Given that Mironov 2009 [14] currently used in 54 
the SMOS and SMAP operation algorithms, was developed exclusively on samples of 55 
mineral soils, an update on the dielectric model that incorporates the effect of soil organic 56 
matter (SOM) is pressingly required for areas with organic-rich soils.  57 

The influence of SOM on the bulk dielectric constant of the soil-water system is often 58 
summarized in two aspects. First, organic substrates have larger specific surface areas 59 
than minerals, indicating that organic soil has a higher fraction of bound water relative to 60 
mineral soil when they contain the same amount of water [11,15,16]. As such, at the same 61 
moisture, the dielectric constant of organic soil tends to be lower than that of mineral soil 62 
as the dielectric constant of bound water is much smaller than that of free water. Second, 63 
organic soil is often marked with a larger porosity than mineral soil due to its complex 64 
structure [11,15-17]. Based on these principles, several organic-soil-based dielectric mod- 65 
els have been developed in recent years.  66 

Although model developers pointed out the potential applicability of their models in 67 
the retrieval of SM, assessment of the efficacy of these newly developed organic-soil-based 68 
dielectric models in the derivation of passive microwave remote sensing of SM, has not 69 
been widely carried out. In light of these, nine advanced dielectric mixing models were 70 
selected and tested in the context of the SMAP single-channel algorithm at vertical polar- 71 
ization (SCA-V) [18]. This study has two major objectives: 1) present the differences be- 72 
tween the available mineral- and organic-soil-based models in describing the complex di- 73 
electric behaviors of wet soils under various SOM conditions, and 2) evaluate their per- 74 
formances in organic-rich soils. The latter was achieved by comparing the SCA-V SM re- 75 
trievals from different models against in-situ measurements scattered over Alaska where 76 
the soils are identified with noticeably higher SOM (~ 25%) relative to the global average 77 
level (Figure A1). The dielectric models considered here have been classified as the min- 78 
eral-soil-based dielectric models, including Wang 1980 [19], the semi-empirical Dobson 79 
1985 modified by Peplinski 1995 [12,20] (hereafter Dobson 1985), the prevalent Mironov 80 
2009 [14], Mironov 2012 [21], and Park 2017 [22], and organic-soil-based dielectric models, 81 
including the natural log fitting model in [11] (hereafter Bircher 2016), Mironov 2019 [23], 82 
Park 2019 [16], and Park 2021 [24].  83 

The paper is organized as follows. In Section 2, all the data sets and the preprocessing 84 
steps are presented. The followings are the workflow of in-situ measurements screening 85 
and the partial SMAP SCA-V retrieval process used to derive SM from the identical ob- 86 
servation and different models (Section 3). The results of synthetic experiments, validation 87 
consequences over Alaska, and a detailed discussion are subsequently displayed in Sec- 88 
tion 4. Finally, conclusions are followed by a brief summary presented in Section 5. 89 

2. Data 90 
2.1. SMAP L2 Radiometer Half-Orbit 36km EASE-Grid Soil Moisture, Version 8 91 

Launched on January 31, 2015, the SMAP mission was designed to map high-resolu- 92 
tion SM and freeze/thaw state by combining the attributes of L-band radar and radiome- 93 
ter. However, the SMAP SM products presently rely on the radiometer’s observations 94 
alone due to an unexpected malfunction of the SMAP radar in July 2015. With an average 95 
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revisit frequency of two to three days, the SMAP sensors cross the Equator at the local 96 
solar time of 6 a.m. and 6 p.m. 97 

SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture, Version 8 (SMAP 98 
V8) [25] was adopted in this study. Here, we only used the descending (6 a.m.) SM re- 99 
trievals derived using the SCA-V algorithm. A series of masking procedures were utilized 100 
to avoid the applications of SM retrievals of low accuracy and high uncertainty. Specifi- 101 
cally, only the retrievals flagged as the ‘recommended quality’ were retained and em- 102 
ployed in the later analysis. A threshold of 4 ºC based on in-situ temperature observations 103 
has also been selected to filter out those SM measurements likely obtained during a period 104 
of active thawing and re-freezing (e.g., Figure 3c in [26]) . Given Alaska, the focused region 105 
of this study, locates at the high-latitude portion with a long-term frozen duration, we 106 
only considered those qualified SM retrievals within the time intervals from June to Au- 107 
gust between 2015 and 2021. 108 

One noticeable improvement in the SMAP V8 (relative to an older version) is the 109 
update and extension of gridded soil parameters, ranging from SOC, silt and sand fraction 110 
to bulk density. These newly added soil attributes originate from the SoilGrid 250m [27] 111 
and replace the earlier patched version composed of the National Soil Data Canada 112 
(NSDC), the State Soil Geographic Database (STATSGO), the Australia Soil Resources In- 113 
formation System (ASRIS), and the Harmonized World Soil Database (HWSD) [28]. Since 114 
these soil attributes are often necessary inputs for dielectric models of soil, they were also 115 
extracted from the SMAP V8. 116 
2.2. in-situ Soil Moisture Measurements  117 

Ground-based SM measurements over Alaska were employed as benchmarks to as- 118 
sess the skills of diverse dielectric mixing models. Historical files of soil water content 119 
observed by in-situ sensors were first downloaded from the Natural Resources Conserva- 120 
tion Service (NRCS), the National Water and Climate Center (NWCC) homepage 121 
(https://www.nrcs.usda.gov/wps/portal/wcc/home). At present, there are more than 40 122 
operating stations from the Snow Telemetry (SNOTEL) [29] and Soil Climate and Analysis 123 
Network (SCAN) [30]. These stations are able to monitor the sub-daily variations of SM 124 
and many other climatic variables in near-real time.  125 

However, some typical errors [26] of in-situ SM readings, such as breaks and plat- 126 
eaus, have been found before their application. As a response, the other authoritative data 127 
source of in-situ SM, the International Soil Moisture Network (ISMN) [31,32], was also 128 
considered, aiming at incorporating its flag information. Given the limited stations in 129 
Alaska, it is expected that SM data from the above two sources (NWCC and ISMN) are 130 
mostly from the same set of stations. Additionally, for the same station, the observed SM 131 
time series from the NWCC and ISMN should be identical as the ISMN only gathers data 132 
and harmonizes them in units and time steps without extra data processing. Given the 133 
frequent abnormal SM readings (even after adopting the quality flag) and the necessity of 134 
checking the consistency of SM measurements from two different sources, several rigor- 135 
ous pre-checking procedures were applied (as described in Section 3.1) to filter out those 136 
suspicious observations where possible in advance.  137 

        138 

3. Methodology 139 
3.1. Preliminary Examination of in-situ Measurements 140 

The quality of in-situ SM data is of great importance as these ground measurements 141 
are generally seen as the benchmark for evaluating remotely sensed and/or modeled SM 142 
data sets [5-7]. However, monitoring SM dynamics over high-latitude regions is still chal- 143 
lenging due to the long-term frozen periods and harsh environments. Such difficulties 144 
have been reflected by the flat limbs and breaks frequently occurring in the SM time series 145 
from the Alaskan stations. Given those, a careful examination of in-situ SM measurements 146 
is necessary.  147 

https://www.nrcs.usda.gov/wps/portal/wcc/home
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The general workflow of the preliminary examination steps is delineated in Figure 1. 148 
Specifically, the in-situ SM data measured at the local time of 6 a.m. and 6 p.m. (temporally 149 
align with the SMAP overpass time) were first extracted from the NWCC and ISMN’s 150 
stations. Like the SMAP SM pre-processing, SM measurements with the corresponding 151 
land surface temperature below 4 ºC were excluded. Additionally, stations with a distance 152 
shorter than 36 km to large water bodies or oceans were also masked as the SMAP SM 153 
over those regions is likely influenced by water contamination. The flag information from 154 
the ISMN was also incorporated to filter in-situ data of low quality.  155 

The matched SM data of the overlapped stations from the NWCC and ISMN are anticipated, and 156 
the greater consistency further enhances the reliability of these benchmarks. Therefore, an automatic 157 
consistency checking procedure constrained by three requirements was applied. Since breaks and 158 
plateaus still appeared on the SM time series after consistency checking, a manual visual inspection 159 
was then performed to screen those suspicious measurements. After those, there are 21 qualified 160 
stations left, and we assume that their SM data from the NWCC and ISMN are interchangeable. 161 
Furthermore, pairing with the SMAP observations removed 9 stations, and the remaining 12 stations 162 
(Figure S1) would be used in the later validation steps. 163 

 164 
Figure 1. The flow chart of the preliminary examination on the Alaskan in-situ soil moisture ob- 165 
tained from the NWCC and ISMN 166 

3.2. Derivation of Soil Moisture from Various Dielectric Models 167 
In the SCA-V algorithm, SMAP SM value is finally determined when there is a min- 168 

imized difference between the simulated and the observed reflectivity (𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) (reflectivity 169 
= 1 – emissivity) of smooth soil. At each temporal step, the value of 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 over a pixel is 170 
fixed as SMAP SCA algorithm have determined the radiative contribution from the can- 171 
opy layer and the impact of surface roughness before subtracting them from SMAP ob- 172 
served surface brightness temperature (𝑇𝑇𝐵𝐵). Hence, the influence of adopting different di- 173 
electric constant models on SM retrievals can be examined using the iterative feedback- 174 
loop procedure to minimize the difference between the simulated reflectivity (𝑟𝑟𝑒𝑒𝑠𝑠𝑒𝑒) and 175 
𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and without the need to construct the whole process from SM to 𝑇𝑇𝐵𝐵  in considera- 176 
tion of simplicity. 177 

However, 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is an intermediate product and unavailable from the original SMAP 178 
data set. Given this, the values of 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 were first estimated leveraging SMAP SM and 179 
Mironov 2009. With these benchmarks, the SM retrievals of other dielectric models were 180 
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then acquired based on the optimization flow described in Figure 2. Notably, the SM re- 181 
trieval at a given time point is reproducible while the identical 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and model are used. 182 

 183 
Figure 2. Flow chart that describes the retrieval of soil moisture using different dielectric models 184 
based on the identical SMAP observations. 185 

 186 
3.3. Performance Metrics 187 

The skill of the remote sensing SM data set has been described by four conventional 188 
metrics, which are bias, root-mean-square error (RMSE), unbiased root-mean-square error 189 
(ubRMSE), and the Pearson correlation (R) [33]. These metrics could effectively reflect the 190 
discrepancies in terms of magnitudes as well as the links of the temporal evolutions be- 191 
tween the SM estimations and the ground truth. The formulas used to compute these met- 192 
rics are shown from Eq 1 to Eq 4 where E […] represents the arithmetic mean; 𝜎𝜎𝑜𝑜𝑠𝑠𝑒𝑒 and 193 
𝜎𝜎𝑟𝑟𝑒𝑒𝑟𝑟  denote the standard deviations of SM retrievals of the respective dielectric model and 194 
in-situ measured SM.  195 

bias = E[smret] − E[smref] (1) 

RMSE =  �E[(smret − smref)2] (2) 

ubRMSE =  �RMSE2 − bias2 (3) 

R =  
E[(smret − E[smret])(smref−E[smref])]

σretσref
 (4) 

 196 

4. Results and Discussion 197 

4.1. Simulated Brightness Temperature of Smooth Soil through Synthetic Experiments 198 
Synthetic experiments have the capability to afford complete dielectric responses to 199 

a whole SM range by artificially controlling all the inputs required for the dielectric mod- 200 
els (Table 1). With SOM increasing from 0% to 75% at a step of 15%, the differences be- 201 
tween the dielectric constants estimated by mineral- and organic-soil-based dielectric 202 
models were explored. These various dielectric responses were further transferred to their 203 
corresponding thermal radiations of smooth soils, represented by the vertically polarized 204 
𝑇𝑇𝐵𝐵.  205 

Figure 3 presents the 𝑇𝑇𝐵𝐵 curves derived using different dielectric models across the 206 
range of SM from 0 to 0.8 m3/m3. Generally, 𝑇𝑇𝐵𝐵 values estimated using organic-soil-based 207 
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models are greater than those derived using the mineral-soil-based models particularly 208 
when SOM exceeds 15% and SM is higher than 0.1 m3/m3. In other words, SM retrievals 209 
from organic-soil-based models tend to be wetter than the SM retrievals from mineral- 210 
soil-based models (e.g., Mironov 2009) given the same surface reflectivity (or 𝑇𝑇𝐵𝐵) of bare, 211 
smooth soil. The discrepancies between the simulated 𝑇𝑇𝐵𝐵 magnitudes from mineral- and 212 
organic-soil-based models further grow with the increase of SOM (Figure 3). However, it 213 
should be noted that the estimated dielectric constants and their subsequent 𝑇𝑇𝐵𝐵 values 214 
from mineral-soil-based models do not vary with SOM. The higher SM estimations of or- 215 
ganic-soil-based models relative to mineral-soil-based models could be attributed to the 216 
fact that those organic-soil-based models assume a higher volumetric proportion of bound 217 
water [11,15,16].  218 

When SOM is at 15% (and below), the simulated 𝑇𝑇𝐵𝐵 curves from all the considered 219 
models are clustered together, bounded by Dobson 1985 and Bircher 2016 (Figure 3b). 220 
Therefore, SOM of 15% might be treated as an appropriate demarcation point for the sep- 221 
arate use of mineral- and organic-soil-based dielectric models over mineral soils and or- 222 
ganic soils. Similar features of the 𝑇𝑇𝐵𝐵 curves of those considered dielectric models have 223 
been observed while a sandy sample is tested (Figure S2).  224 

Compared to Mironov 2019, the influence of organic content on the simulated 𝑇𝑇𝐵𝐵 225 
magnitude seems more pronounced for Park 2019 and Park 2021. When SOM increases 226 
from 0% to 75% and SM values are smaller than 0.5 m3/m3, the 𝑇𝑇𝐵𝐵 curve of Park 2021 227 
jumps from the bottom one to the top line, with a varying amplitude on the order of tens 228 
of Kelvins (Figure 3). In contrast, as a response to growing SOM, the estimations from 229 
Mironov 2019 slowly move upward approaching the 𝑇𝑇𝐵𝐵 curve of Bircher 2016. According 230 
to Figure 3e and f, there is a rapidly dropping segment on the 𝑇𝑇𝐵𝐵 curve of Park 2019. 231 
Such abnormal dielectric behavior can be attributed to the improper formulas used to cal- 232 
culate the wilting point and porosity, with a detailed explanation in Section 4.4. 233 

 234 

Table 1. Input variables required for nine dielectric models. 235 

Model 
Inputs 

Mineral Soil Based Models Organic Soil Based Models 

Wang 
1980 

Dobson 
1985 

Mironov 
2009 

Mironov 
2013 

Park 
2017 

Bircher 
2016 

Mironov 
2019 

Park 
2019 

Park 
2021 

 
Soil 

Moisture 

Volumetric 
Soil Mois-

ture 
(m3/m3) 

Volumet-
ric Soil 

Moisture 
(m3/m3) 

Volumetric 
Soil Moisture 

(m3/m3) 

Volumetric 
Soil Moisture 

(m3/m3) 

Volumet-
ric Soil 

Moisture 
(m3/m3) 

Volumetric 
Soil Mois-

ture 
(m3/m3) 

Gravimetric 
Soil Moisture 

(g/g) 

Volumet-
ric Soil 

Moisture 
(m3/m3) 

Volumet-
ric Soil 

Moisture 
(m3/m3) 

Soil Or-
ganic 

Matter 

 
/ 

 
/ 

 
/ 

 
/ 

 
/ 

 
/ 

Gravimetric 
Soil Organic 
Matter (%) 

Gravimet-
ric Soil 

Organic 
Matter (%) 

Gravimet-
ric Soil 

Organic 
Matter (%) 

 
Clay 

Gravimet-
ric Clay 

Fraction (0-
1) 

Gravi-
metric 
Clay 

Fraction 
(0-1) 

Gravimetric 
Clay Fraction 

(%) 

Gravimetric 
Clay Fraction 

(%) 

Volumet-
ric Clay 
Fraction 

(0-1) 

 
/ 

 
/ 

Volumet-
ric Clay 
Fraction 

(0-1) 

Volumet-
ric Clay 
Fraction 

(0-1) 

 
Sand 

Gravimet-
ric Sand 

Fraction (0-
1) 

Gravi-
metric 
Sand 

Fraction 
(0-1) 

 
/ 

 
/ 

Volumet-
ric Sand 
Fraction 

(0-1) 

 
/ 

 
/ 

Volumet-
ric Sand 
Fraction 

(0-1) 

Volumet-
ric Sand 
Fraction 

(0-1) 

 
Silt 

 
/ 

 
/ 

 
/ 

 
/ 

Volumet-
ric Silt 

 
/ 

 
/ 

Volumet-
ric Silt 

Volumet-
ric Silt 
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Fraction 
(0-1) 

Fraction 
(0-1) 

Fraction 
(0-1) 

Bulk 
Density 

Bulk Den-
sity (g/cm3) 

Bulk 
Density 
(g/cm3) 

/ / / / 
Bulk Density 

(g/cm3) 

/ / 

Fre-
quency 

/ 
Fre-

quency 
(Hz) 

Frequency 
(Hz) 

/ 
Frequency 

(Hz) 
/ / 

Frequency 
(Hz) 

Frequency 
(Hz) 

Salinity / / / / 
Salinity 

(‰) 
/ / 

Salinity 
(‰) 

Salinity 
(‰) 

Soil 
Temper-

ature 

 
/ 

Soil Tem-
perature 

(℃) 

 
/ 

Soil Temper-
ature (℃) 

Soil Tem-
perature 

(℃) 

 
/ 

Soil Temper-
ature (℃) 

Soil Tem-
perature 

(℃) 

Soil Tem-
perature 

(℃) 

Total 
Number 
of Inputs 

 
4 

 
6 

 
3 

 
3 

 
7 

 
1 

 
4 

 
8 

 
8 

 236 

 237 
Figure 3. Simulated brightness temperature of a silty clay with various soil organic matter, and the 238 
accompanied table displays all the input values where most of soil parameters are directly taken 239 
from the sample of silty clay used in [34]. 240 

4.2. Evaluation of Dielectric Models over in-situ Sites in Alaska 241 
Here, SM measurements from 12 sites served as benchmarks to evaluate the skills of 242 

multiple dielectric models in the setting of SMAP observations and its SCA-V algorithm. 243 
Before inter-comparison, it has been found that the assessment metrics of the satellite- 244 
based SM retrievals over the same pixel could vary a lot in different years. Using the time 245 
series in Monument Creek as an instance (Figure 4), R values range from 0.18 (2017) to 246 
0.69 (2015). Hence, the obtained metrics (Table 2, Table 3, and Table 4) averaged over 247 
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multiple years of each station might be underrated as they may be compromised by ab- 248 
normal behavior in one year. Additionally, the amplitudes and frequencies of in-situ SM 249 
variations are often more pronounced relative to the SM retrievals as the latter reflects the 250 
changes over a coarse spatial extent (Figure 4). 251 

 252 
Figure 4. Time series of soil moisture derived from satellite observations and in-situ measurements 253 
at Monument Creek (65.18º N, 145.87º W). 254 

Assessment metrics of the SM retrievals derived using identical 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 values and 255 
different dielectric models were computed by their temporally paired in-situ measure- 256 
ments. According to Table 2, SM estimates from mineral-soil-based models tend to un- 257 
derestimate while organic-soil-based models generally exhibit wet biases compared to 258 
ground recordings. In terms of both ubRMSE and R (Table 3 and Table 4), all the models 259 
show comparable accuracy levels similar to previous results of [35] whereas Mironov 2019 260 
displays a slight but consistent edge over other models. Compared to other dielectric mod- 261 
els, the modest improvement in R of Mironov 2019 is likely due to its simultaneous con- 262 
sideration of bulk density and SOM effects [23]. 263 

The other aspect that we attempted to evaluate the predictive power of various die- 264 
lectric models was checking the correlations between the SM retrievals of different models 265 
and SMAP observed vertically polarized 𝑇𝑇𝐵𝐵. If the higher absolute R values between the 266 
time series of SM and SMAP vertically polarized 𝑇𝑇𝐵𝐵 are assumed as a criterion that re- 267 
flects the better skill of a dielectric mixing model, Mironov 2019 presents an overwhelm- 268 
ing superiority over other models in the 765 Alaskan pixels (Figure 5). Table SX displays 269 
that in-situ measured SM usually has a lower correlation with SMAP vertically polarized 270 
𝑇𝑇𝐵𝐵 relative to correlations between satellite-based SM retrievals and SMAP 𝑇𝑇𝐵𝐵. However, 271 
it should be noted that such correlation-based results were inconclusive and functioned 272 
as a reference only since the impacts of vegetation disturbance and surface roughness 273 
were entirely ignored. 274 
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 275 
Figure 5. Boxplots of the absolute correlations between the soil moisture retrievals from various 276 
dielectric mixing models and the SMAP vertically polarized brightness temperature over the 765 277 
pixels in Alaska. 278 

Table 2. Bias of soil moisture retrievals using various dielectric models over in-situ sites in Alaska 279 
where biases from mineral- and organic-soil based models tend to underestimate and overestimate 280 
relative to in-situ measurements. 281 

Station/Bias 
(m3/m3) 

N 
Mineral Soil Based Models Organic Soil Based Models 

Wang198
0 

Dobson 
1985 

Mironov 
2009 

Mironov 
2013 

Park 
2017 

Bircher 
2016 

Mironov 
2019 

Park 
2019 

Park 
2021 

Gulkana River 72 0.058 0.025 0.046 0.044 0.039 0.195 0.142 0.104 0.085 

Spring Creek 37 -0.108 -0.153 -0.137 -0.137 -0.139 -0.022 -0.051 -0.105 -0.109 

Atigun Pass 81 0.047 -0.002 0.015 0.016 0.009 0.092 0.092 0.044 0.061 

Coldfoot 156 -0.085 -0.133 -0.121 -0.121 -0.124 -0.030 -0.036 -0.083 -0.067 

Eagle Summit 320 -0.028 -0.068 -0.062 -0.061 -0.068 0.014 0.017 -0.033 -0.015 
Gobblers Knob 262 0.031 -0.010 -0.003 -0.003 -0.007 0.096 0.083 0.039 0.055 

Monahan Flat 121 -0.047 -0.093 -0.076 -0.077 -0.081 0.035 0.009 -0.029 -0.029 

Monument Creek 405 0.018 -0.022 -0.014 -0.014 -0.016 0.091 0.073 0.029 0.041 

Mt. Ryan 194 0.114 0.078 0.082 0.082 0.080 0.196 0.172 0.132 0.142 

Munson Ridge 383 0.018 -0.019 -0.015 -0.015 -0.016 0.096 0.075 0.034 0.045 

Tokositna Valley 253 0.014 -0.008 -0.006 -0.008 -0.008 0.147 0.093 0.062 0.046 

Upper Nome 
Creek 

283 
-0.138 -0.180 -0.171 -0.171 -0.176 -0.086 -0.091 -0.138 -0.120 

Mean 214 -0.009 -0.049 -0.038 -0.039 -0.042 0.069 0.048 0.005 0.011 
Where the column of the number tagged by bold font represents the dielectric model with the smallest absolute 282 
bias in that station or mean. 283 

 284 
 285 
 286 
 287 
 288 
 289 
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Table 3. ubRMSE of soil moisture retrievals using various dielectric models over in-situ sites in 290 
Alaska. 291 

Station/ubRMSE 
(m3/m3) 

N 
Mineral Soil Based Models Organic Soil Based Models 

Wang 
1980 

Dobson 
1985 

Mironov 
2009 

Mironov 
2013 

Park 
2017 

Bircher 
2016 

Mironov 
2019 

Park 
2019 

Park 
2021 

Gulkana River 72 0.0132 0.0164 0.0156 0.0154 0.0152 0.0209 0.0180 0.0169 0.0138 

Spring Creek 37 0.0460 0.0457 0.0452 0.0454 0.0455 0.0408 0.0428 0.0446 0.0462 

Atigun Pass 81 0.0311 0.0311 0.0311 0.0311 0.0311 0.0317 0.0311 0.0310 0.0310 

Coldfoot 156 0.0736 0.0736 0.0736 0.0736 0.0736 0.0743 0.0737 0.0739 0.0737 

Eagle Summit 320 0.0487 0.0490 0.0487 0.0487 0.0487 0.0480 0.0477 0.0482 0.0481 

Gobblers Knob 262 0.0665 0.0663 0.0660 0.0662 0.0662 0.0622 0.0643 0.0628 0.0637 

Monahan Flat 121 0.0722 0.0721 0.0720 0.0721 0.0721 0.0714 0.0718 0.0715 0.0722 

Monument Creek 405 0.0510 0.0509 0.0508 0.0508 0.0508 0.0505 0.0503 0.0504 0.0503 

Mt. Ryan 194 0.0163 0.0177 0.0173 0.0172 0.0173 0.0262 0.0186 0.0237 0.0187 

Munson Ridge 383 0.0499 0.0492 0.0490 0.0492 0.0492 0.0465 0.0475 0.0467 0.0478 

Tokositna Valley 253 0.1295 0.1296 0.1295 0.1295 0.1296 0.1298 0.1294 0.1296 0.1296 

Upper Nome 
Creek 

283 0.0122 0.0126 0.0124 0.0123 0.0126 0.0196 0.0129 0.0163 0.0160 

Mean 214 0.0509 0.0512 0.0509 0.0510 0.0510 0.0518 0.0507 0.0513 0.0509 
Where the column of the number tagged by bold font represents the dielectric model with the best ubRMSE in 292 
that station or mean. 293 

Table 4. R of soil moisture retrievals using various dielectric models over in-situ sites in Alaska. 294 

Station/R N 
Mineral Soil Based Models Organic Soil Based Models 

Wang 
1980 

Dobson 
1985 

Mironov 
2009 

Mironov 
2013 

Park 
2017 

Bircher 
2016 

Mironov 
2019 

Park 
2019 

Park 
2021 

Gulkana River 72 0.605 0.596 0.607 0.604 0.599 0.608 0.621 0.603 0.601 

Spring Creek 37 0.757 0.737 0.758 0.752 0.745 0.757 0.805 0.752 0.746 

Atigun Pass 81 0.342 0.348 0.344 0.344 0.344 0.341 0.333 0.347 0.347 

Coldfoot 156 0.205 0.205 0.204 0.204 0.205 0.206 0.199 0.202 0.208 

Eagle Summit 320 0.375 0.353 0.372 0.376 0.368 0.376 0.429 0.368 0.372 

Gobblers Knob 262 0.571 0.557 0.571 0.570 0.564 0.571 0.603 0.575 0.577 

Monahan Flat 121 0.276 0.273 0.275 0.274 0.274 0.277 0.275 0.284 0.276 

Monument Creek 405 0.407 0.401 0.406 0.405 0.404 0.409 0.413 0.406 0.418 

Mt. Ryan 194 0.604 0.595 0.604 0.601 0.599 0.605 0.624 0.604 0.601 

Munson Ridge 383 0.608 0.597 0.606 0.604 0.602 0.610 0.624 0.611 0.611 

Tokositna Valley 253 0.177 0.171 0.174 0.172 0.170 0.172 0.176 0.172 0.171 

Upper Nome 
Creek 

283 0.416 0.398 0.418 0.420 0.410 0.416 0.477 0.421 0.416 

Mean 214 0.445 0.436 0.445 0.444 0.440 0.446 0.465 0.445 0.445 
Where the column of the number tagged by bold font represents the dielectric model with the best R in that 295 
station or mean. 296 

4.3. A Global Intercomparison between Mironov 2009 and Mironov 2019 297 
Mironov 2009 and Mironov 2019 were selected as the representatives for mineral- 298 

and organic-soil-based dielectric models and were then compared with each other at the 299 
global scale using one-week SMAP observations from July 2, 2018, to July 8, 2018. The 300 
one-week SM retrievals of Mironov 2009 and Mironov 2019 were analyzed over more re- 301 
gions with abundant SOM and were also used to acquire performance clues for applying 302 
Mironov 2019 in mineral soils.  303 
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According to Figure 6a and b, satellite-based SM data are usually unavailable in 304 
many areas characterized by organic-rich soils likely owing to dense boreal forests, harsh 305 
surface roughness, as well as permanently frozen soils on the land surface [11,36]. The 306 
magnitude difference between Mironov 2009 and Mironov 2019 yielded SM retrievals are 307 
commonly above 0.05 m3/m3 generally when SOM is over 10% (Figure 6b and e). In the 308 
case of extreme dryness (SM < 0.1 m3/m3) over mineral soils (SOM < 5%), SM retrievals 309 
from Mironov 2019 are likely lower than those from Mironov 2009. As illustrated in Figure 310 
6d, there is a limb where SM retrievals of Mironov 2019 are nearly constant while those 311 
from Mironov 2009 vary, possibly because of soil texture.  312 

 313 

 314 
Figure 6. A global intercomparison of soil moisture retrievals from Mironov 2009 and Mironov 2019 315 
where (a) the spatial distribution of soil organic matter (SOM) in a north polar view, (b) the spatial 316 
distribution of mean differences between soil moisture estimations using Mironov 2009 and 317 
Mironov 2019 (bias = SM Mironov2019 – SM Mironov2009), (c) the probability distribution function of weekly 318 
mean soil moistures derived using the above two models, (d) the scatterplot of soil moisture using 319 
both models across the globe, and the color bar shows the number of pixels, and (e) the boxplot that 320 
describes the bias variations along with the increase of SOM that was already organized into 6 321 
groups (g1 - g6). The organic range of each group is 0% - 5% (g1), 5% - 10% (g2), 10% - 15% (g3), 15% 322 
- 20% (g4), 20% - 30% (g5), and > 30% (g6).  323 

4.4. Discussion 324 
4.4.1. The Applicable Range of Dielectric Models 325 

Although the above validation results over in-situ sites in Alaska demonstrated 326 
slightly better performance of Mironov 2019 over other models, it may be not the best 327 
model across all landscapes and climatic conditions. The accuracy of a dielectric model 328 
heavily depends on its respective applicable range. A dielectric model is likely to acquire 329 
a better performance score when being applied over samples used to develop it. In other 330 
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scenarios, potential degradation of the model skills can be expected. For instance, when 331 
Dobson 1985 is adopted in soils that fall beyond the prototypal soils on which Dobson 332 
1985 was established, some unrealistic dielectric constants could be yielded [14]. Accord- 333 
ing to SMAP configurations and parameters, the frequency is confined to 1.4 GHz while 334 
most pixels in Alaska show SOM values spanning from 15% to 30%. However, it should 335 
be noted that Mironov 2019 is designed for the surface soil layer with SOM ranging from 336 
35% to 80% [23]. Meanwhile, the natural log calibration function from [11] is proposed for 337 
highly organic soils and Decagon 5TE (in-situ sensor) which is operated at 70 MHz. Such 338 
imperfect alignments between the applicable ranges of dielectric models and the actual 339 
settings are surprisingly common, possibly leading to underestimations of the quality of 340 
these dielectric models. 341 
4.4.2. Organic-Soil-Based Dielectric Models 342 

Similar to other empirical dielectric models [37-42] accounting for the influence of 343 
SOM, SOM itself is not treated as a necessary input in Bircher 2016 to derive the dielectric 344 
constants of organic soils. Mironov 2019, however, incorporates the dielectric impacts of 345 
SOM and soil bulk density while omitting the clay fraction. In contrast, Park 2019 and 346 
Park 2021 consider both mineralogy and SOM. Though comprehensive, the confidence in 347 
representing the dielectric interactions among various soil properties and the quality of 348 
those global-scale soil databases greatly limit the practical uses of Park models. For exam- 349 
ple, SOM as the most critical index to classify mineral and organic soils was estimated by 350 
multiplying SOC content with a fixed factor of 1.724 [23,43]. However, the conversion fac- 351 
tor between SOC and SOM is unlikely a global constant while [43] pointed out that this 352 
conversion factor would vary from 1.4 to 2.5 across different geographical regions. 353 
4.4.3. Limitations of in-situ Benchmarks 354 

 Besides the limits of the model applicable range and the quality of input data sets of 355 
soil properties, the other critical factor that directly affects the assessment results is the 356 
quality of the benchmarks, i.e., in-situ SM measurements. As mentioned, breaks, missing 357 
values, and jumps were commonly found during the examination of in-situ SM time se- 358 
ries. Furthermore, many calibration functions used to deduce in-situ SM values are de- 359 
signed for mineral soils only due to the unavailability of organic-soil-based calibration 360 
functions over those regions. As a result, in-situ SM values might have an underestimation 361 
issue. Despite those, at this time, these data sets might be the most practical sources to 362 
support running those dielectric models at a wide spatial coverage whilst in-situ SM ob- 363 
servations still provide the most reliable volumetric moisture information of surface soils. 364 
4.4.4. Characteristics of Park Models 365 

Compared to other conventional semi-empirical dielectric models [12,16,19,21-23], 366 
Park models describe the fractions of bound water and free water differently [16,22,24]. 367 
First, Park models use the wilting point as the beginning point where free water starts to 368 
occur whereas other models set that value using an independent term named maximum 369 
bound water fraction. When the volumetric SM is between the maximum bound water 370 
fraction and porosity, most dielectric models fix the bound water content and the dielec- 371 
tric contribution of bound water. However, in the same SM range, Park models assume 372 
that the content of bound water and free water alters with the volumetric SM. Specifically, 373 
SM is treated as a weighted summation of the bound water and free water, where the sum 374 
of the weights of bound water (𝑤𝑤𝑏𝑏) and free water (𝑤𝑤𝑟𝑟) is constrained as one. It is assumed 375 
that 𝑤𝑤𝑏𝑏  is one when SM is equal to wilting point. On the contrary, 𝑤𝑤𝑏𝑏  declines to zero 376 
when SM reaches porosity. 377 

According to Figure 3e and f, there are a few rapid drops in the curves of Park 2019 378 
and Park 2021 when SOM exceeds 60%. Such scenarios could be explained by the wilting- 379 
point and porosity calculation equations used in Park 2019 and Park 2021. As shown in 380 
Figure S3, the porosity equation of Park 2019 could lead to a porosity greater than 1m3/m3 381 
when SOM ranges from 30% to 35%. Meanwhile, in Park 2019, the derived wilting point 382 
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could surpass the porosity when SOM is over 60%. Although the above issues have been 383 
substantially mitigated for Park 2021 with valid magnitudes of its derived porosity and 384 
wilting point, an evident bending near the wilting point could still be observed in its sim- 385 
ulated 𝑇𝑇𝐵𝐵 curves at highly organic soils. Therefore, caution should be paid when apply- 386 
ing Park 2019 and Park 2021 over organic-rich soils.  387 
4.4.5. Selection of A Globally Optimal Combination of Dielectric Models 388 

The development of a universal dielectric model outperforming other models across 389 
all possible conditions may be overambitious. Even if such a model exists, the uncertainty 390 
of the global-scale products of soil inputs will restrict its performance. Overall, the com- 391 
bined use of Mironov 2009 and Mironov 2019 in the SMAP SCA-V algorithm would be a 392 
preferred option. Although comparable skills of different dielectric models have been ob- 393 
served, the suggestion of employing Mironov 2009 and Mironov 2019 separately for min- 394 
eral and organic soils was made on account of the following reasons: 1) The input param- 395 
eters of those models are the major factors affecting the dielectric constants of the soil 396 
media while without introducing excessive uncertainties [35,44]; 2) Mironov 2009 and 397 
Mironov 2019 were both built on the physical-based dielectric mixing frame, and their 398 
parameters were then adjusted by fitting the model predictions with laboratory measure- 399 
ments, thereby more applicable in reality; 3) Their greater accuracy has been identified 400 
based on a previous study [45] and the results exhibited here.  401 

However, it seems that there is no rigorous set of rules about a SOM threshold used 402 
to distinguish the mineral and organic soils. [23] states that the soil can be categorized into 403 
organic soil if SOM is more than 20% whereas [46] and [47] declare that organic soil should 404 
at least contain SOM of 30% [11]. According to the results of synthetic experiments, a SOM 405 
of 15% might be an optimal threshold for distinguishing the soil types as the 𝑇𝑇𝐵𝐵 curves of 406 
different models are closely clustered and the divergence between mineral- and organic- 407 
soil-based models seems to start after SOM exceeding 15% (Figure 3). Such a threshold 408 
conforms to [48] that classifies soils into organic soil or highly organic soil when SOM is 409 
more than 15%.  410 

5. Conclusions 411 
In this study, the skills of nine dielectric models over organic soil in Alaska have been 412 

evaluated and compared in the context of the SMAP SCA-V algorithm. Four out of nine 413 
models carefully account for the SOM effect on the complex dielectric constant of the soil- 414 
water mixtures while the remaining models were designed for use in mineral soils. The 415 
dielectric responses (expressed in a form of 𝑇𝑇𝐵𝐵) of those models to the increasing SOM 416 
were comprehensively investigated through artificially controlling input values. At a 417 
given SM over 0.1 m3/m3 and SOM higher than 15%, the simulated 𝑇𝑇𝐵𝐵 values from or- 418 
ganic-soil-based dielectric models are greater than those estimated from mineral-soil- 419 
based dielectric models. In other words, relative to mineral-soil-based dielectric models, 420 
organic-soil-based models are inclined to obtain higher SM estimates from the identical 421 
observed radiations. Furthermore, a SOM threshold of 15% was suggested for the separate 422 
use of mineral- and organic-soil-based dielectric models in the retrieval algorithm as the 423 
divergence of 𝑇𝑇𝐵𝐵 curves of mineral- and organic-soil models was observed when SOM 424 
exceeds 15%.   425 

The predictive power of each dielectric model is represented by several statistic met- 426 
rics computed by comparing its SM retrievals with in-situ measurements. Compared to 427 
satellite products reflecting SM variations over a large spatial extent, in-situ point-based 428 
SM measurements exhibited more temporal variability. Additionally, even over the same 429 
place, the annual correlations between satellite-based SM retrievals and in-situ data 430 
would fluctuate a lot. Consistent with the results from synthetic experiments, organic- and 431 
mineral-soil-based models tended to induce wet and dry biases. In an integrated evalua- 432 
tion, Mironov 2019 presented a slightly but consistently better performance over other 433 
dielectric models, which showed a mean ubRMSE of 0.0507 m3/m3 and a mean R of 0.465. 434 
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Furthermore, an inter-comparison between SM retrievals within a one-week time in- 435 
terval from mineral- and organic-soil-based dielectric models was conducted at a global 436 
scale. Such a comparison would be useful to capture clues about the performance of or- 437 
ganic-soil-based models over mineral soils. Mironov 2009 and Mironov 2019 were elected 438 
as the representatives of mineral- and organic-soil-based models, respectively. As a result, 439 
SM estimates from Mironov 2019 were at least 0.05 m3/m3 higher than those from Mironov 440 
2009. When SM is below 0.1 m3/m3, SM retrievals from Mironov 2019 were occasionally 441 
smaller than SM retrievals from Mironov 2009 in mineral soils. 442 

   It should be noted that the performance of each dielectric model heavily depends 443 
on its designed application range, the quality of input data sets, as well as the accuracy of 444 
in-situ benchmarks. Different assessment results might be obtained with the update of 445 
dielectric models, in-situ measurements, and soil parameters. As such, a routine evalua- 446 
tion study that incorporates all the potential dielectric models and the most recent soil 447 
auxiliary data sets is recommended. In an integrated consideration of model inputs, the 448 
model physical foundation, and the practical accuracy, the separate use of Mironov 2009 449 
and Mironov 2019 in the SMAP SCA-V algorithm for mineral soils (SOM < 15%) and 450 
organic soils (SOM ≥ 15%) would be the optimal option at this time. Considering the 451 
SOM magnitudes at the 36 km scale, developing a sophisticated dielectric model account- 452 
ing for variable SOM from 10% to 30% is expected for passive microwave remote sensing 453 
of SM.    454 
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 476 
Figure A1. Global distribution of soil organic matter (SOM) where the inset describes the probability 477 
distribution function (PDF) of SOM at the global scale and in Alaska. 478 
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