

Digital Avionics Systems Conference Barcelona, Spain - October 1-5, 2023

Assessing Helicopter Pilots' Detect and Avoid and Collision Avoidance Performance with ACAS Xr

R. Conrad Rorie – NASA Ames Research Center, Human Systems Integration Division

Casey L. Smith - NASA Ames Research Center, Human Systems Integration Division

Megan Mitchell – California State University, Long Beach

Christian Schmitz – California State University, Long Beach

Outline

- Background
- Study Objectives
- Study Design
- Results (by Condition)
- Discussion
- Conclusion

Background

 Maintaining well clear and avoiding airborne collision hazards are critical requirements for both onboard and remote aircraft operators

- Extensive research has been performed on Detect and Avoid (DAA) and Collision Avoidance (CA) systems for <u>fixed-wing</u> aircraft
- Current-day helicopters and emerging Vertical Takeoff and Landing (VTOL) platforms would also benefit from DAA & CA systems

Background

- The Federal Aviation Administration's (FAA) Airborne Collision
 Avoidance System X for Rotorcraft (ACAS Xr) is being developed for these platforms
 - ACAS Xr builds on earlier ACAS X variants and corresponding research
 - ACAS Xu for large unmanned aircraft systems (UAS)
 - ACAS sXu for small UAS
- ACAS Xr supports architectures with onboard or remote pilots
 - Issues alerting and guidance aimed at preventing losses of DAA well clear and/or Near Midair Collisions (NMACs)
 - Alert schema differs by configuration

Background

- Collision Avoidance System (CAS) Configuration
 - Designed for platforms with an onboard pilot
 - Alerting structure highly similar to the existing Traffic Alert and Collision Avoidance System (TCAS II)
 - Traffic Advisory (TA) used to prepare pilot for imminent collision avoidance threat
 - Resolution Advisory (RA) issued with directive guidance, commanding a single or multi-axis maneuver
 - Vertical RA commands target vertical speed
 - Horizontal RA commands target heading
 - Blended RA commands target heading + vertical speed

Background

- Detect and Avoid (DAA) Configuration
 - Designed primarily for remotely-piloted platforms
 - Not explicitly prohibited for use by onboard pilots*
 - Alerting designed around Minimum Operational Performance Standards (MOPS) for DAA Systems**
 - Remain Well Clear (RWC) alerting and guidance can be acted upon by pilot to avoid loss of DAA well clear
 - Replaces the TA as issued in CAS configuration
 - Resolution Advisory (RA) also issued
 - Same RA set as provided in CAS configuration

^{*}Requires additional human factors work to assess viability

^{**}RTCA SC-228's DO-365B

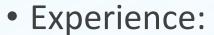
Study Objectives

- Assess pilot and ACAS Xr system performance in a high-fidelity simulation across multiple phases of flight
 - Onboard pilot in full-motion simulator with VTOL vehicle model
- Pilot and system performance defined as:
 - Response times and compliance rates to alerts in the CAS and DAA configurations
 - Rates of losses of DAA well clear and NMACs across configurations

Independent Variables

- Phase of Flight (within-subjects)
 - Cruise 110kts; starting altitude 500-1500ft MSL
 - Hover 10kts; starting altitude 500-1500ft MSL
 - Approach straight-in approach; **70kts**, starting altitude 700-1100ft, 6° glide slope
- ACAS Xr Configuration (within-subjects)
 - CAS Mode: TAs & RAs issued nominally in Cruise and Hover
 - Terminal area behavior: ACAS switched to "TA-Only"; all RAs suppressed
 - Low altitude behavior: fixed Descend RA inhibit below 750ft AGL
 - DAA Mode: RWC & RAs issued nominally in Cruise and Hover
 - Terminal area behavior: RWC alert and horizontal RAs suppressed
 - Low altitude behavior: dynamic Descend RA inhibit with lower threshold

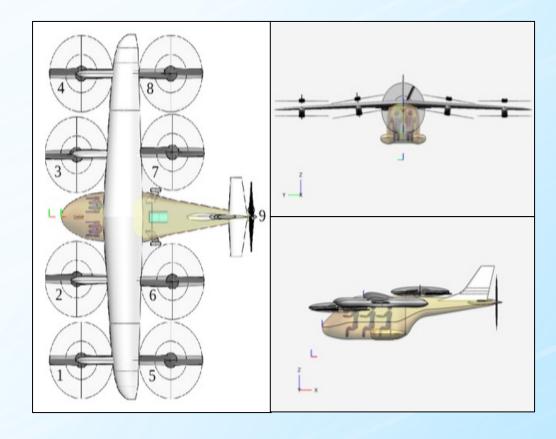
Scenarios


- Encounters flown as ~5-minute vignettes, all in the SF bay area
 - Scripted conflicts varied by intruder angle, relative altitude, & vertical/horizontal rate

- Aircraft in auto-pilot until RWC or RA alerting appeared
 - Pilots used inceptors to follow ACAS Xr guidance
- No ATC interaction or background traffic

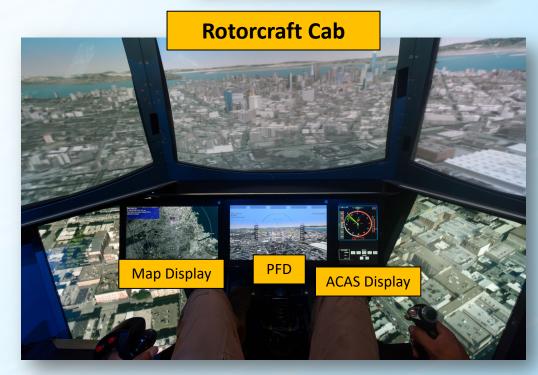
Participants

- 6 helicopter pilots participated
 - All male, average 51 years of age (SE = 4)
 - Each participated for 2 days total
 - Day 1 = training and data runs in CAS or DAA
 - Day 2 = training & data runs in remaining configuration


- Avg. 4,542 rotorcraft flight hours
- 5/6 had fixed-wing experience & were IFR rated
- Half had experience with TCAS II

Vehicle Model

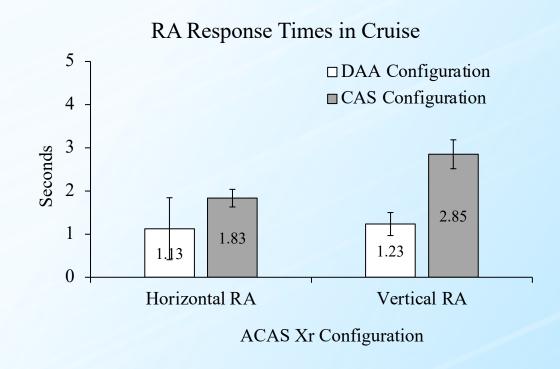

- NASA's Lift Plus Cruise (LPC) hybrid VTOL model
 - Capable of fully transitioning from thrustborne flight to wing-borne lift
- Characteristics
 - Cruise speeds: 70-110KTAS
 - Altitude: 500-1500ft MSL
 - Max. bank: 40°
 - Max. climb rate: 1000fpm
- No sensor noise modeled


Simulator

- NASA Ames' Vertical Motion Simulator (VMS) Rotorcraft Cab (R-Cab)
 - 6D motion, turbulence, & out the window visual traffic

- 2 side-stick controllers & rudders
 - Left = accelerate/decelerate
 - Right = commands vertical rate & bank angle
- Top-down map display (left)
- PFD display with camera underlay (center)
- ACAS Xr traffic display (right)

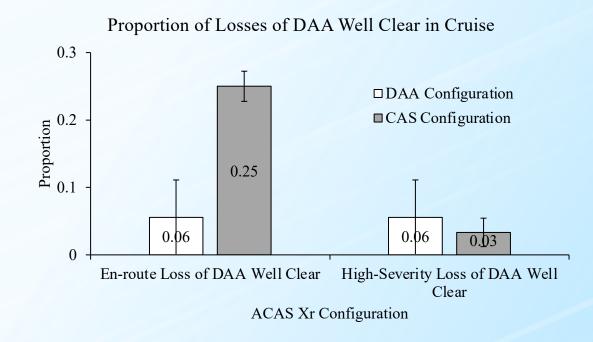
Results




Cruise Scenarios

Response Times in Cruise

- Average DAA response time 5.24 sec
 (SE = 1.02 sec)*
 - (DAA configuration only)
- RA response times
 - Initial *Horizontal* RA: no significant difference between DAA & CAS
 - Initial *Vertical* RA: DAA significantly faster than CAS (p = 0.047)



Losses of Separation in Cruise

- En-route losses of DAA well clear
 - Significantly more in CAS configuration (p = 0.036)

- High-severity losses of DAA well clear
 - No significant difference between conditions

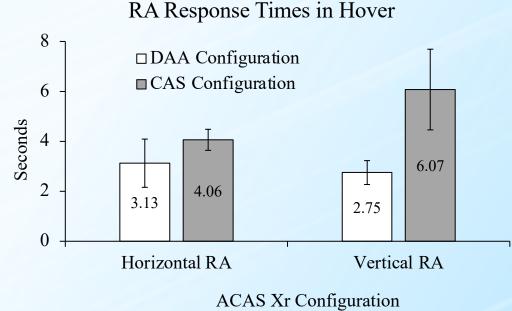
No NMACs recorded

	Horizontal Separation	Vertical Separation	Time to Closest Point of Approach (CPA)
En-route loss of DAA well clear	4000′	450′	35 seconds
High-severity loss of DAA well clear	4000′	450′	N/A
NMAC	500′	100′	N/A

RA Non-Compliance* in Cruise

- No significant difference between conditions
 - DAA configuration non-compliance rate = 0.11 (SE = 0.07)
 - 2 total cases; 1 was apparent pilot error
 - CAS configuration non-compliance rate = 0.18 (SE = 0.07)
 - 11 total cases; primarily a result of pilots disagreeing with a Level Off RA (preferring a climb/descent)

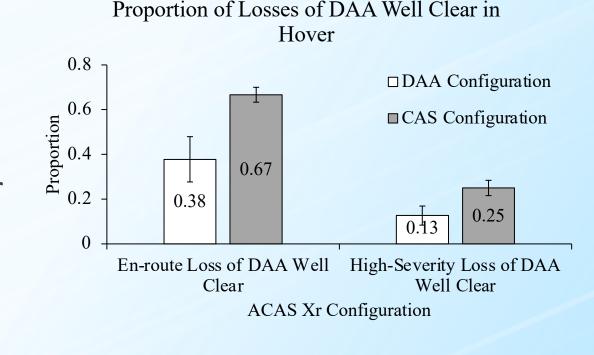
^{*}Non-compliance = pilot intentionally disregarded RA or maneuvered contrary to what was commanded



Hover Scenarios

Response Times in Hover

- Average DAA response time 7.18 sec* (SE = 1.04 sec)
 - (DAA configuration only)
- RA response times
 - No significant differences



Losses of Separation in Hover

- En-route losses of DAA well clear
 - Significantly more in CAS configuration (p = 0.018)
 - Rates 3-6 times higher than in Cruise
- High-severity losses of DAA well clear
 - Significantly more in CAS configuration (p = 0.049)
 - Rates 2-8 times higher than in Cruise
- No NMACs recorded

	Horizontal Separation	Vertical Separation	Time to Closest Point of Approach (CPA)
En-route loss of DAA well clear	4000′	450′	35 seconds
High-severity loss of DAA well clear	4000′	450′	N/A
NMAC	500′	100′	N/A

RA Non-Compliance* in Hover

- Significantly higher rate in DAA configuration (p = 0.001)
 - DAA configuration non-compliance rate = 0.46 (SE = 0.08)
 - 15 total cases; all due to pilots stopping their descent while Descend RA was still active
 - CAS configuration non-compliance rate = 0.13 (SE = 0.04)
 - 8 total cases; half were a result of pilots disagreeing with a Level Off RA (preferring a climb/descent)

^{*}Non-compliance = pilot intentionally disregarded RA or maneuvered contrary to what was commanded

Approach Scenarios

Response Times on Approach

- Average TA response time 22.88 sec (SE = 7.07 sec)
 - (CAS configuration only; no RAs issued)
- Average Vertical RA response time 2.64 sec (SE = 0.25)
 - (DAA configuration only; only Vertical RAs issued)

Losses of Separation on Approach

- Terminal-area losses of DAA well clear
 - No significant effect of configuration
 - DAA configuration rate = 0.22 (SE = 0.05)
 - CAS configuration rate = 0.30 (SE = 0.12)
- 4 NMACs recorded
 - 2 in DAA & 2 in CAS configuration
 - All due to the same encounter type (ownship overtaking intruder)
 - In DAA configuration, ACAS Xr commanded Level Off RA, providing insufficient separation
 - In CAS configuration, pilots hesitated when determining if/when to maneuver against TA

	Horizontal Separation	Vertical Separation
Terminal-area loss of DAA well clear	1500′	450′
NMAC	500'	100′

RA Non-Compliance* on Approach

- DAA configuration non-compliance rate = 0.18 (SE = 0.11)
 - 10 total cases; 9 were due to pilots disagreeing with a Level Off RA (preferring a climb/descent)
 - (No RAs issued in CAS configuration on approach)

^{*}Non-compliance = pilot intentionally disregarded RA or maneuvered contrary to what was commanded

Discussion

Discussion

- Effect of ACAS Xr configuration
 - Minimal impact on response times
 - DAA response times especially fast ~10 seconds faster than previous DAA work
 - RA response times within expected response window (5 seconds)
 - As expected, DAA configuration reduced rates of losses of well clear
 - CAS performed as well as DAA in preventing high-severity losses of well clear in Cruise
 - But had twice as many high-severity losses in Hover scenarios
 - Non-compliance rate far higher for DAA configuration compared to CAS in Hover scenarios
 - Result of Descend RAs bringing pilots closer to ground in DAA than CAS

Discussion

- Effect of phase of flight
 - Losses of DAA well clear in the DAA configuration were far more common in Hover than in Cruise
 - Result of ACAS Xr not accounting for the time needed for the vehicle to accelerate
 - RAs twice as common in Hover than in Cruise in the DAA configuration
 - In approach scenarios, configuration had no impact on rates of losses of DAA well clear and NMACs
 - In CAS configuration, pilots struggled to handle conflicts without RAs
 - In DAA configuration, Level Off RAs seemed to not produce adequate vertical separation

Conclusion

Conclusion

- Cruise Scenarios
 - Strong overall performance
 - Occasional non-compliance against Level Off RAs
 - Pilots desired additional separation
- Hover Scenarios
 - Alerting should take time needed to accelerate into account when aircraft in in low-speed flight regime
 - Frequent non-compliance in DAA configuration against Descend RAs
 - Pilots uncomfortable with proximity to terrain
- Approach Scenarios
 - Both configurations had similar rates of losses of DAA well clear and NMACs
 - Level Off RAs failed to generate adequate separation
 - Also inconsistent with pilot expectation (go-around more appropriate)

Questions?

