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SUMMARY & CONCLUSIONS 

This paper investigates the minimum cost of improving the 
reliability of complex technical systems.  The two major 
methods to improve reliability are redesigning the system for 
higher reliability or providing redundant components to replace 
failed elements.  The costs of redesign for reliability or adding 
redundancy are estimated.  The most cost-effective 
combination for high reliability can be identified.   

The cost of increasing the intrinsic reliability of a system 
can be modeled as cost proportional to 1/(system failure rate)a, 
where the exponent “a” measures the difficulty of increasing 
reliability.  The “a” exponent can vary from 0.25 to about 2.5.  
Operational reliability can also be increased by using redundant 
systems.  The failure rate for N parallel redundant units is 
(system failure rate)N. The cost of redundancy is N times the 
system cost.  The total redundant system cost is proportional to 
N/(system failure rate)a.   

The cost of redundancy increases as N gets larger, but 
larger N allows a higher system failure rate, which reduces the 
system design cost.  There is a certain N, a certain level of 
redundancy, that has the minimum cost to achieve the required 
overall redundant system failure rate.  The minimum cost for 
the redundant system is achieved at the optimum level of 
redundancy.  The N for minimum cost is equal to -a ln 
(redundant system failure rate).  The minimum cost of the N 
redundant systems is proportional to N * (original system 
failure rate)a.  The optimum redesigned individual system 
failure rate is proportional to exp (-1/a), so the greater the 
difficulty, the higher the optimum individual system failure 
rate.  Increasing the intrinsic reliability of a system encounters 
diminishing returns and at some point it becomes more cost-
effective to add redundancy.  The difficulty of increasing 
intrinsic system reliability determines the optimum design for 
high reliability at minimum cost.   

1 THE COST OF IMPROVING RELIABILITY 

Designing a system for higher reliability is usually 
considered very difficult but the first steps are sometimes 
surprisingly easy.  New systems are often designed by narrowly 
focusing on their peak operating performance so that long-term 
operational reliability can be neglected.  If reliability was not 
emphasized in the initial design, simply selecting more reliable 
components, derating components to reduce stresses, and 
carefully limiting the operational environment can greatly 
improve reliability.  On the other hand, commonly used 
commercial systems, such as automobiles and computers, have 

had their reliability greatly improved by continued intense 
effort and further improvements are very difficult.  Improving 
reliability has increasing costs and diminishing returns.   

It is useful to have a mathematical formula for the cost of 
increasing reliability.  The formula should reflect several basic 
constraints.  The cost of any gain in reliability should always be 
greater than zero.  The cost for higher reliability increases with 
higher reliability.  The cost of reliability equal to one should be 
infinite [1].  The engineering facts are no free lunch, 
diminishing returns, and sooner or later, everything fails.  
Several different mathematical rules have been proposed for the 
cost of improving reliability.   

1.1 Rechtin’s logarithmic rule of thumb 

Rechtin’s rule of thumb is, “Reducing the failure rate by a 
factor of 2 takes as much effort as the original development.” 
[2] If the original cost is C0 for the original failure rate, F0, of 
say 4 percent, it costs a second equal amount C0 to achieve F1 
= F0/2 = 2 percent and a third amount C0 to go from F1 = F0/2 
= 2 percent to F2 =F0/4 = 1 percent.  The mathematical equation 
for the total Rechtin cost C of a failure probability F is:  

 
Rechtin cost C(F) = C0 [1 + log2 (F0/F)]  (1) 

 
The Rechtin rule cost increases as the logarithm to the base 

two of the ratio of failure probability improvement.[3]  A failure 
rate improvement ratio of 10 requires 4.32 times the original 
cost.  Similar suggested cost functions have the cost of failure 
probability improvement increasing as the natural logarithm of 
the ratio of failure improvement [1, p. 277].   

1.2 Misra et al. exponential cost of reliability 

An exponential function for the cost of reliability was 
suggested by Misra et al. [1, pp. 276, 278]   

 
 Exponential cost C(F) = a exp (b/F)  (2) 

 
The factor “a” is a constant, the reliability cost increase 

exponent.  Following Aggrawall [1 p. 278], suppose we know 
the cost C0 for failure probability F0,  

 
C(F0) = C0 = a exp (b/F0)   (3) 

 
and suppose cost is C1 for very low reliability, F1 ~ 1,  
 

C(F1 ~1) = C1 ~ a exp b   (4) 



 
Then,  
 

a = C1 exp -b, and   (5) 
 

b = [F0/(1-F0)] ln (C0/C1)  (6) 
 
Substituting for a and b in (2) and rearranging,  
 

Exponential cost C(F) = C1 (C0/C1) F0 (1-F)/F(1-F0)   (7) 
 
This checks, since for F = F0, C(F) = C0, and for F = F1 ~ 

1, C(F) = C1.  Suppose F0 is small, << 1, and we need a lower 
failure probability, F < F0,  

 
C (F) ~ C1 (C0/C1) F0/F   (8) 

 
The cost increases as the power of F0/F, the failure rate 

reduction ratio.  For this exponential power cost rule, the cost 
increases much more rapidly with the ratio of failure 
improvement than for the Rechtin or other logarithmic rules.   

1.3 Proportional cost of reliability 

In Rechtin’s logarithmic rule, cost increases roughly as 
log2 (1/F), where F is the failure rate improvement ratio.  In 
Misra’s exponential power law rule, cost increases as C 1/F.  An 
intermediate proportional cost rule would be,  

 
Proportional cost C(F) = C/F a  (9) 

 
Several similar reliability cost functions have been 

suggested with the exponent of F, a = 1, or a > 0, or 0 <a < 1 [3] 
[1, p. 277].  If the cost is C0 for failure probability F0, C(F0) = 
C0 =C/F0a, so C = C0 F0a and,  

 
Proportional cost C(F) = C0 (F0/F) a (10) 

 
For a =1, the cost increase ratio, C(F)/C0, is equal to the 

failure rate improvement ratio, F0/F.   

1.4 Mettas exponential cost of reliability 

Mettas has also proposed an exponential cost of reliability 
[4] [5],  

 
C = exp [(1 – f) (R-R min)/(R max-R)]  (11) 

 
Here f is the feasibility of increasing a component's 

reliability, between 0 and 1, R min is the initial reliability value 
of the component, and R max is its maximum achievable 
reliability.  Converting from reliability, R, to failure probability, 
F = 1 – R, Metttas’ formula becomes,   

 
C(F) = C(0) exp [(1 – f) (F0 - F)/(F-F min)] (12) 

 
Checking, C(F) = C(F0) for F = F0 and C(F) is infinite for 

F = F min.  Setting f = 0 for minimum feasibility and setting the 
minimum failure rate bound F min = 0, the formula becomes,  

 
C(F) = C(0) exp [(F0 - F)/F]  (13) 

 
The simplified equation (13) is like Misa’s equation (2) 

above.  Mettas’ equation (12) adds the feasibility factor, f, and 
a minimum failure rate bound, F min, approaching which drives 
cost to infinity.   

1.5 Military equipment cost of reliability 

Alexander considered the cost of increasing reliability in 
military equipment. [6].  He found “that reliability 
improvements are possible, that the greater the improvement 
the more costly the necessary investment, and that the 
improvement probably rises proportionally faster than the 
investment.” The military equipment considered was 
surprisingly easy to improve in reliability.  Specifically, “These 
data indicate increasing returns to reliability investments: a 10 
percent increase in reliability would cost 5 percent more in total 
RDT&E expenditures, whereas a doubling of reliability would 
cost 20 percent more; and a five-fold reliability gain would 
require at least a 50 percent increase in development costs.” 
(Emphasis added.).  

Here the word “reliability” corresponds to the MTBF 
(Mean Time Before Failure).  The MTBF ratio and cost ratio 
data points are, (1,1), (1.1, 1.05), (2, 1.2), and (5, 1.5).  Since 
the failure rate is the inverse of the MTBF, the failure rate ratio 
and cost ratio data points are (1,1), (0.91, 1.05), (0.5, 1.2), and 
(0.2, 1.5).  These points are plotted, and a power curve fitted in 
Figure 1.   

Figure 1.  Military equipment cost increase versus failure rate 
decrease ratio.   

This is a proportional cost as in formula (10) with a = 0.25.   
 

Military equipment cost C(F) = C0 (F0/F)0.25      (14) 
 

1.6 Internet web site cost of reliability 

Shirazi discussed the cost for high reliability for internet 
sites, “A common Site Reliability Engineering (SRE) estimate 
is that the more reliability you want, the more it costs, with a rule 
of thumb that each additional 9 of reliability (eg., moving from 
99% to 99.9% reliability) costs 10 times (10x) more to achieve.” 
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[7] (Emphasis in original.) As the reliability increases 0.9, 0.99, 
and 0.999, the failure probability decreases 0.1, 0.01, and 0.001, 
and the cost increases 1, 10, 100.  This is a proportional cost of 
formula (10) with a = 1.   

 
Internet site cost C(F) = 1 (0.1/F)1  (15) 

 

2 GENERAL FORMULA FOR THE COST OF HIGHER 
RELIABILITY 

Four different mathematical functions have been proposed 
for the increasing cost to reduce the failure rate, F; log2 (1/F), 
exp (1/F), and (1/F)a for a = 0.25 and 1.  The log2 (1/F) and exp 
(1/F) can be approximated by (1/F)a for different specific a 
exponents, so that the proportional function cost of reliability 
seems able to model all the proposed formulas.   

Figure 2 shows the cost increase curves for log2 (1/F), exp 
(1/F), and (1/F)a for a = 0.25 and 1.   

Figure 2. Cost increase curves for log, exp, and proportional 
cost growth.   

The slowest cost increase is for (1/F) 0.25, and the next 
slowest for 1 + log2 (1/F), which can be approximated by 1.59 
(1/F) 0.35.  The third slowest increase is for (1/F)1, and the fastest 
increase is for exp [(F0-F)/F], which can be approximated by 
0.68 (1/F) 2.35.  It seems that a proportional cost increase formula 
with a variable exponent can describe the proposed range of 
cost increases required to reduce the failure rate.   

 
Proportional cost C(F) = C0 (F0/F)a  (16) 

 
The cost increase exponent “a” can vary from 0.25 to about 

2.5.   

3 DATA ON THE COST OF HIGHER RELIABILITY 

The proportional cost formula for the increasing cost of 
reduced failure probability could be used to model actual data 
and to estimate the value of the cost increase exponent, a.  

Unfortunately, data on the incremental cost of gradually 
increasing the reliability of a single system seems unavailable.  
However, there are studies that have measured the added cost 
of a single step increase in reliability for a group of similar 
systems.  This data on defense systems directly shows the cost 
of improved reliability.   

3.1 Killingsworth/McQueary Defense Systems 

Killingsworth et al. reported McQueary’s data showing the 
relationship between the additional investment in reliability and 
achieved reliability for about a dozen defense systems. [8]  The 
additional investment varied from about equal to the original 
investment to 1,000 times as much, with the resulting reliability 
improvement ratios from 0.5 to 10. The systems varied in 
complexity from pumps and gyros to entire aircraft.  The 
smaller, less costly systems could accept much higher 
investment ratios and achieve much greater reliability 
improvement ratios.  

The data fell close to a straight line on a log-log graph and 
the linear regression equation was  

 
LN(Reliability Improvement Ratio) =    

0.4719 LN (Investment/Original Cost) - 1 (17) 
 
The cost-reliability relation was also given as:  
 

Investment = Original Cost *     
(Reliability Improvement Ratio/0.3659)2.119  (18) 

 
In the previously used notation 
 

CF – C0 = C0 [(F0/F -1)/0.3659)]2.119 (19) 
 

CF/C0 = [(F0/F -1)/0.3659)]2.119 + 1  (20) 
 
This equation fit to the data is similar to the proportional 

cost model proposed here, but an approximation using the form 
C0 (F0/F)a would have the cost increase exponent a = 3.5.  

3.2 Lubas Defense Systems 

Lubas reported another study that confirmed the empirical 
relationship between reliability investment and reliability 
improvement for five defense systems. [9] The reliability 
improvement ratio ranged from 0.24 for a doubling of cost to 
6.75 for a cost 2,980 times higher.  Cutting the failure 
probability in half requires roughly an order of magnitude 
increase in cost, a factor of 11.6 times.   

Again the data fell close to a straight line on a log-log graph  
 

LN(Improvement in Reliability) =     
0.343 LN (Investment/Original Cost) - 0.81 (21) 

 
This can be transformed to the following 
 

C(F)/C0 = 10.6 (F0/F - 1)2.92  (22) 
 
Again, the equation fit to the data is similar to the 
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proportional cost model. An approximation using the form C0 
(F0/F)a would have the cost increase exponent a = 4.2.  

4 THE COST OF REDUNDANCY 

It would be straightforward if any system could be 
redesigned to have the required reliability, but the steeply 
increasing cost of reliability can make this impractical.  If 
greater reliability is needed than a single system can provide, 
the usual, solution is to provide redundant units.  If the 
probability that a system fails is F, the probability that two 
redundant units both fail is F2, assuming that the failures are 
independent.  If there are N redundant units, each with failure 
probability F, the overall failure probability is FN.   

This suggests that very low failure probabilities can be 
obtained using multiple redundancy, but often common cause 
failures due to design errors or mistaken requirements can occur 
in all the redundant units.  Thorough testing and long 
operational experience can remove most common cause 
failures, but new designs may have up to one-tenth of their total 
failure probability due to common cause failures.  If there is a 
failure probability of 0.1 F due to common cause failures, no 
amount of redundancy can reduce the failure probability below 
0.1 F.   

The cost to provide redundancy is simply the cost of the N 
redundant units.  Suppose that each system has a failure 
probability of Fs and that N redundant units are required to 
provide the required final failure rate of Ff.  We have,  

 
Ff = Fs N, and Fs = Ff 1/N  (23) 

 
The cost of a system with failure probability Fs is,  
 

C(Fs) = C0 (F0/Fs)a  (24) 
 
The cost of N redundant systems with the required final 

failure rate of Ff is,  
 

CN = N C(Fs) = N C0 (F0/Fs)a  (25) 
 
The cost increases as N gets larger, but larger N allows 

larger Fs, which reduces cost.  There is a certain N, a certain 
level of redundancy, that has the minimum cost to achieve Ff.  
Equation 25 can be rewritten in terms of Ff and N by using (23) 

 
CN = N C(Fs) = N C0 F0a/Ff a/N  (26) 

 
Taking the derivative of (26) and setting it to zero, the 

optimum number of redundant systems, N, for minimum cost is 
 

 Opt N = - a ln (Ff)  (27) 
 
N increases with higher a, the difficulty of improving 

system reliability, and with lower Ff, the final redundant failure 
probability.  The minimum total cost for N systems is,  

 
Min CN = N C0 F0a e  (28) 

 

Where N is the Opt N for minimum cost in (27) and e is 
2.718, the base of the natural logarithms.  The cost increases 
with N, with higher initial system cost, C0, with higher initial 
system failure probability, F0, and with the proportional 
difficulty of improving reliability, a.  Figure 3 plots the 
normalized minimum cost increase for different levels of 
difficulty, a, and decreasing final failure probability, Ff.   

 

Figure 3.  Minimum cost increase versus difficulty and final 
failure probability.   

The minimum cost plotted in Figure 3 is normalized with 
C0 =1, F0 =1, and divided by e, so the Min CN plotted = N = -
a ln (Ff).  The minimum cost is directly proportional to the 
optimum N for minimum cost.  The minimum cost and the 
optimum N are directly proportional to a, the difficulty of 
increasing reliability in the proportional cost model (9), and to 
the logarithm of Ff, the final failure probability.   

5 OPTIMUM SYSTEM RELIABILITY 

The optimum N and minimum cost CN correspond to an 
optimum system failure probability Fs,  

 
Fs = Ff 1/N  (29) 

 
For Ff and optimum N,   
 

Fs = e -1/a  (30) 
 
The difficulty of achieving Fs is proportional to a in the 

exponential proportional cost of reliability model,  
 

Proportional cost C(F) = C0 (F0/F)a  (16) 
 
Considering the possible high cost of increasing reliability, 

the minimum cost of reliability may be achieved using lower 
reliability systems with higher redundancy.   

6 CONCLUSION 

Many of the suggested formulas for the increased cost of 
higher reliability can be approximated by the proposed 
proportional cost formula, where cost is proportional to the 
(original failure rate/reduced failure rate) raised to an 
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exponential power.  The proportional cost formula is supported 
by data and appears useful in estimating the cost of reliability.  
The magnitude of the cost increase exponent is important.  A 
larger cost increase exponent indicates the cost increases more 
rapidly as the failure rate is reduced.   

In designing to achieve high reliability with minimum cost, 
the magnitude of the cost increase exponent directly determines 
a specific optimum combination of system reliability 
improvement and redundancy.  A small reliability cost increase 
exponent indicates that significant effort should be made in 
system reliability improvement, while a large exponent 
indicates that redundancy is probably more cost effective.  The 
value of the cost increase exponent directly determines the 
optimum combination of system reliability and redundancy for 
minimum cost.   
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