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SUMMARY & CONCLUSIONS 

This paper investigates the number of redundant units 
needed to achieve high reliability with high confidence.  The 
approach is developed for the case when the system failure rate 
is too high for a single unit to provide the required reliability 
over the mission duration.  To achieve high reliability, N 
redundant units can be used, one operating unit and N – 1 
spares.  If the unit failure rate is f, the mission length is L, and 
f * L is small (not the case assumed here), the unit failure 
probability over the mission duration is F1 = f * L << 1.  In this 
case, the probability that all N units will fail is Ffail = F1N, and 
the needed redundancy N = LN(F)/LN(F1).  For the case of 
large f * L assumed here, F1 = f * L > 1, and F1 is the expected 
number of failures during the mission. (When F1 = f * L << 1, 
F1 is the probability that a unit will fail during the mission.  
When F1 = f * L > 1, F1 is the expected number of failures 
during the mission.)   The needed redundancy, N, to achieve the 
required N redundant unit reliability, FN, can be computed 
using the cumulative Poisson distribution with mean equal to 
F1.  The number of spares, N - 1, is increased until the 
probability - that the total number of failures will be less than 
N -1 - is equal to the required reliability.  The confidence that 
this reliability can be achieved can be computed using the 
cumulative Poisson distribution or the chi-square distribution.  
Since the measured unit failure rate, f, has some probabilistic 
uncertainty, the actual failure rate will be randomly higher or 
lower.  This means that the reliability of the N redundant 
systems will be overestimated about half the time.  Adding 
more redundant units increases the confidence that the required 
reliability will be achieved.  For a fixed number of redundant 
units, the expected reliability and confidence can be traded off, 
since lower reliability goals will be achieved with higher 
confidence.  Both the desired reliability and confidence can be 
specified as initial requirements and the needed number of 
redundant units estimated using the measured failure rate.   

1 INTRODUCTION 

This paper considers how much test time is cost effective 
for computing the number of redundant units needed to achieve 
high reliability with high confidence.  This requires a two-phase 
test program, an initial period of testing to provide reliability 
growth, followed by life testing to more accurately determine 
the final failure rate achieved by reliability growth.  Newly 
designed systems often have high initial failure rates.  These are 

often reduced by finding the high-rate failure modes and 
removing them by redesign. This usually continues until the 
system achieves an acceptable failure rate.  This failure rate will 
be constant if there are no further redesigns or wear out.  For 
high reliability with high confidence using redundancy, longer 
test time should be used to better measure the failure rate, since 
this reduces the number of redundant units needed for high 
reliability with high confidence.   

The measured failure rate decreases throughout the 
reliability growth period as failure modes are removed.  After 
the reliability growth effort is terminated, the first few failures 
during life testing provide an estimate of the final failure rate.  
Given the measured failure rate and the desired reliability using 
redundancy, the number of spares can be determined and the 
confidence in the reliability computed.  If there are only a few 
failures, the failure rate estimate will have a wide variance.  
There is a 50% chance that the actual final failure rate is higher, 
and it could be much higher.  If a too low estimated failure rate 
is used to compute the redundancy needed to achieve the 
required reliability, the number of spare units provided will be 
too low.  Using the measured failure rate gives only a 50% 
confidence that the failure rate and number of spares are not too 
low.   

In the suggested approach, both the redundant reliability and 
the confidence level are initial requirements.  The confidence 
that the actual redundant reliability is not too low can be 
increased by increasing the number of spares.  When there are 
only a few failures, the variance of the failure rate is high, and 
the failure rate and number of spares must be increased greatly 
to reach high expected reliability with high confidence.  The 
higher number of spares increases the cost of redundancy.  
Longer test time reduces the variance in the failure rate and 
reduces the number of spares needed to increase confidence.   

As the test time is increased, the test cost increases linearly 
but the number of needed spares drops, at first exponentially.  
The total cost of reliability is the sum of the cost of the 
redundant units and of the test time.  There is an optimum test 
time that produces the minimum total cost for the system failure 
rate, mission length, reliability, and confidence level.  If the 
total cost must be reduced, the reliability, the confidence level, 
or both must be reduced.  The required reliability and 
confidence identify and justify a minimum total cost for 
redundant units and the testing.  Determining the optimum test 
time that minimizes the cost to meet reliability requirements can 
help plan efficient testing.   



2 PRELIMINARY ANALYSIS 

The process of developing reliable new systems can take 
three steps, first designing for reliability, then testing for 
reliability growth, and finally further testing to accurately 
measure reliability.   

The engineering process of Design for Reliability (DfR) is 
described in many books and articles.  First, the reliability 
requirement is defined, then a system reliability model is 
developed, next the reliability requirement is allocated to the 
subsystems, and finally an estimate of reliability is made.  If the 
expected reliability is considered inadequate, the system can be 
redesigned for higher reliability.  The difficulty of increasing 
reliability varies greatly, depending on the technology and how 
much previous effort has been made to improve reliability.  A 
proportional cost increase formula with a variable exponent can 
be used to model the additional cost incurred to reduce the 
failure rate.  Suppose the current system cost C0 to achieve a 
failure probability F0.  The cost C(F1) to achieve a failure 
probability of F1 can be estimated as  

 
C(F1) = C0 (F0/F1)a  (1) 

 
The exponent “a” can vary from 0.25 to about 2.5.  This 

formula can approximate many of the cost of reliability 
formulas in the literature [1].  Designing to reduce the failure 
rate can be expected to have diminishing returns. At some point 
the Design for Reliability process is completed and then 
reliability growth testing usually begins.   

Newly designed systems often have an unexpectedly high 
initial failure rate, possibly due to mistaken performance 
assumptions or design oversights.  Testing identifies the failure 
modes and, if these are removed by redesign, the failure rate 
will decrease.  The process of identifying and removing the 
failure causes creates reliability growth, but the frequent 
observation of a continually declining failure rate over time is 
sometimes a mathematical artifact.   

The failure rate is l(t) =  n(t)/t, where n(t) is the number of 
failures occurring up to time t.  If N failures occur in time T, l 
= N/T. Suppose that these failure causes are corrected, and no 
further failures occur.  Then l(t) =  N/t and declines as t-1, 
ultimately approaching zero.  This rapid failure rate decline is 
due to averaging the initial failure count over longer time 
periods, unlike true reliability growth created by identifying and 
removing failure modes.   

In a more typical case, rather than no failures occurring 
during continued testing, there may be continuing random 
failures with different causes that are too infrequent to require 
redesign.  As the early failure count is averaged down over time, 
the time varying failure rate often declines to a constant value.  
The abcd model for reliability growth includes a period of 
failure rate decline followed by a period with a constant failure 
rate.  The abcd mathematical model for reliability growth is  

 
l(t) =  n(t)/t = a t-b + c, from t = 0 to td.  (2a) 

= c + d after td, where d = a td-b  (2b) 

The failure rate is n(t)/t, a is a constant and b is the 
reliability growth rate, the downward slope of n(t)/t versus t.  
The parameter c is the constant failure rate due to failure modes 
that will not be corrected.  The time td is when reliability is no 
longer being improved by correcting failure modes and the 
failure rate becomes constant.  The longer td, the more failures 
are found and removed.  The parameter d is the constant failure 
rate due to failure modes that could have been corrected during 
a longer reliability growth period.  It measures the remaining 
unused reliability growth potential. [2] [3] [4] [5]  

The abcd reliability growth model was fit to different 
failure test data sets.  The most surprising result was that b, the 
exponential decline rate is often exactly 1, reflecting the fastest 
possible reliability growth.  This indicates that the reliability 
growth process of finding and fixing failures was well 
implemented.  In most cases the final failure rate is significant, 
typically fifteen percent of the initial failure rate. Usually, the 
reliability growth period td is relatively long, and d is 
approximately zero.  [2] A normalized general model for 
reliability growth would be 

 
l(t) =  n(t)/t = t-1 + 0.15  (3) 

 
If the final failure rate, equal to c + d in the abcd model, is 

relatively high or the mission length, L, is relatively long, 
redundant units or spares are needed to achieve the required 
overall system failure rate.  

Table 1 shows the data points, l(t), for a 41-failure data set 
with a continually declining failure rate.  [6, p. 121] The last 
failure is at t = 43.1 and l(t) continues to decline until t = 49.2, 
due to the division of the total number of failures by the 
increasing test time.  The final failure rate is 0.8 and the required 
mission operating length is L = 2.  The expected number of 
failures during the mission is 0.8 * 2 = 1.6 and so spares are 
needed to prevent mission failure.   

The data in Table 1 include the failure count, n, the failure 
times, t, the decreasing failure rate l(t) = n(t)/t, the increased 
failure rate for confidence = 0.9, l0.9(t), the required number 
of units N for reliability = 0.9 and confidence = 0.9, the 
increasing test time cost for testing one unit, and the total cost.  
The cost unit is the cost of developing one system.  The test cost 
is assumed to be 0.015 of the unit cost per unit time.   

 
 
 



Table 1. Data, units, and cost for the 41-failure data set.   

3 UPPER CONFIDENCE BOUNDS 

The failure rate data for the 41-failure data set in Table 1 
show the typical pattern of a rapid initial decline during a 
reliability growth period followed by a long period when the 
cumulative average failure rate declines due to averaging the 
initial failure count over time.  The actual failure rate for the 21 
failures over time 17.7 to 49.2 is 0.67.  An important reason to 
continue testing beyond the reliability growth period is 
determine the final failure rate to more accurately, which is used 
to determine the required number of spares.   

The measured failure rate l(t) = n(t)/t is a data-based 
average subject to random variation.  The fewer the failures, the 
wider the computed l(t) may vary.  If testing stops after only a 
few failures, it is possible that the true system failure rate would 
have produced many more failures than occurred.  This would 
make the measured l(t) much lower than the true l(t), and so 
the calculated number of redundant units N would be too few 
to provide the required reliability.   

If the measured failure rate is used to determine the number 
of spares, there is only a 50% confidence that the number of 
spares is not too low.  If a higher, say a 90%, confidence is 
needed that there are sufficient spares, this can be achieved by 
using an increased failure rate l(t) that would produce fewer 
than the measured number of failures only 10% of the time.  
Instead of using the measured failure rate to determine the 

number of spares, the 90% upper confidence bound on l(t), 
l0.9(t), would be used.  If this is done, there is a 90% 
confidence that l0.9(t) is not lower than the actual failure rate 
and the number of spares is not too low for 90% confidence in 
the predicted reliability.  l0.9(t) is the 90% upper confidence 
bound on l(t) and is shown in Table 1.   

The upper confidence bounds on l(t) can be determined 
using either the Poisson distribution or the chi-square 
distribution, which are included in available spreadsheets. [7] 
[8] The chi-square distribution approach is most direct.  

 
å mx e-m/x!, x = 0, 1, 2, …M = Probability c2 (x, f) > 2m (4) 

 
The “m” is the mean number of failures, m = l(t) L, where 

L is mission length.  The summation is over the number x = n 
of failures included, 0 to M.  The x in c2 (x, f) is not the 
counting index x = n.  The x in c2 (x, f) is the fraction of the 
distribution summed, equal to the cumulative probability of 
being below the upper bound when the mean of the Poisson 
distribution is mu = lx(t) L.  And f is the number of degrees of 
freedom.  Here f = 2 (n(t)+1) where n(t) is the number of 
failures.  [7] [8]  

The available spreadsheets have a function that iteratively 
computes the inverse of the chi-square distribution.  The 
confidence bound lx(t) is the inverse of the left-tailed 
probability of the chi-square distribution for probability P and f 
degrees of freedom.   

 
lx(t) = Inverse chi-square (x, 2*(n(t)+1)/(2 t) (5) 

 
The 90% confidence bounds equal to l0.9(t) are shown in 

Table 1.  As expected, the distance between the upper 0.9 
probability confidence bound and the measured failure rate 
decreases as the test time t increases.   

4 THE INCREASED NUMBER OF REDUNDANT 
UNITS N BASED ON CONFIDENCE BOUNDS 

The Poisson distribution gives the number of failures that 
occur during a given time interval, for the expected number of 
failures. It is used to calculate the probability of any given 
number of failures.  For high reliability, the number of spares 
provided must be greater than the expected number of failures.   

The Poisson distribution gives the probability (Pr) that the 
number n events will occur in an interval, given that the 
expected or mean number of events is m.   

 
Poisson (x, m) = Pr (n = x) = mx e-m/x!  (6) 

 
The number of redundant units, N, must be sufficient that 

the probability of N-1 failures is less than the required 
reliability y.  N-1 is determined by the cumulative Poisson 
distribution, which is the sum of the probabilities of n =0, 1, 2, 
…N-1 failures occurring.   

 
Cumulative Poisson = å mx e-m/x!, x = 0, 1, 2, …M (7) 

 

n Time 
t l(t) l0.9(t) Units 

N 
Test 
cost 

Total 
cost 

7 1.9 3.7 6.2       
8 3.1 2.6 4.2 13.0 1.0 14.0 
9 4.3 2.1 3.3 11.0 1.1 12.1 
10 5.5 1.8 2.8 10.0 1.1 11.1 
11 6.8 1.6 2.5 9.0 1.1 10.1 
12 8.0 1.5 2.2 8.0 1.1 9.1 
13 9.2 1.4 2.1 8.0 1.1 9.1 
14 10.4 1.3 1.9 7.0 1.2 8.2 
18 15.3 1.2 1.6 7.0 1.2 8.2 
19 16.5 1.2 1.6 6.0 1.2 7.2 
20 17.7 1.1 1.5 6.0 1.3 7.3 
23 21.4 1.1 1.4 6.0 1.3 7.3 
24 22.6 1.1 1.4 6.0 1.3 7.3 
27 26.2 1.0 1.3 6.0 1.4 7.4 
28 27.4 1.0 1.3 5.0 1.4 6.4 
29 28.7 1.0 1.3 5.0 1.4 6.4 
30 29.9 1.0 1.3 5.0 1.4 6.4 
31 31.1 1.0 1.3 5.0 1.5 6.5 
35 35.9 1.0 1.2 5.0 1.5 6.5 
36 37.2 1.0 1.2 5.0 1.6 6.6 
37 38.4 1.0 1.2 5.0 1.6 6.6 
40 42.0 1.0 1.2 5.0 1.6 6.6 
41 43.1 1.0 1.2 5.0 1.6 6.6 
41 44.3 0.9 1.1 5.0 1.7 6.7 
41 49.2 0.8 1.0 5.0 1.7 6.7 



The number of redundant units, N, can be determined from 
tables of the cumulative Poisson distribution.   

The upper 0.9 probability confidence bound, l0.9(t), is set 
as the expected failure rate.  The increased number of failures 
for a single unit over the mission length L is lx(t) L.  The 
increased number of failures is set equal to the expected number 
of failures for the required confidence bound.  The values for 
l0.9(t) are listed in Table 1.  The required number of redundant 
units can be computed for confidence = 0.9 and any reliability.  
Here a reliability of 0.9 is chosen.  The mission duration is L = 
2.  As shown in Table 2, the cumulative Poisson distribution is 
scanned down for an increasing number of failures and an 
increasing probability that the # of failures will be less than 
indicated.   

Table 2. Using the cumulative Poisson table to determine N 
for reliability y = 0 9 and confidence x = 0.9.   

 
Table 1 shows that as the test time t increases, the increased 

failure rate for confidence = 0.9, l0.9(t), decreases from 6.2 to 
1.0.  F0.9(t) = l0.9(t) L is the increased single unit failure 
probability over the mission length L = 2 that is required to 
achieve confidence x.  Table 2 describes a segment of time 
horizontally, from 3.11 to 27.44, and F0.9(t) decreases from 
8.36 to 2.30.  The single unit failure probability for confidence 
0.9, F0.9(t), is used as the mean of the Poisson distribution.  The 
cumulative Poisson is tabulated for 0 to 14 failures.  Scanning 
down the table shows the # failures that must be replaced using 
spares for the redundancy reliability of 0.9 or more to be 
achieved.  To always have an operating system, the number of 
redundant units N > 1 + # failures.  The numbers in bold are the 
smallest reliability that exceeds the required reliability of 0.9.  
The number of required units drops from 13 to 5 as test time 
increases.  The failure rate decrease that occurs during 
reliability growth reduces the number of redundant units needed 

to achieve a particular mission reliability with a particular 
confidence.  Longer testing produces a slower reduction in the 
number of redundant units because it reduces the width of the 
confidence interval.   

5 ESTIMATING THE NEEDED NUMBER OF 
REDUNDANT UNITS, N 

An equation to estimate N, the needed number of redundant 
units, was developed by fitting formulas to the data. [7] [10]  

 
N = - (0.305 LN((1.285 l(t) +(- 1.24 LN(x) + 0.19)/t) L) + 

0.86) LN(y) + (1.285 l(t) +(- 1.24 LN(x) + 0.19)/t) L (8) 
 
N is the increased number of redundant units required to 

increase the probability of having sufficient spares to 1 - y.  LN 
is the natural logarithm.  The measured system failure rate is 
l(t).  The failure rate estimation confidence is 1 - x, the 
probability that the failure rate is not underestimated.  The 
mission length is L.   

 N depends on the measured system failure rate, l(t), the 
mission length, L, the required redundancy reliability 1 -y, and 
the required confidence in the failure rate estimation upper 
bound, 1 – x.  The value y is the probability that all redundant 
units fail.  The value x is the probability that the upper bound 
failure rate is too low.  The confidence is (1 – x) 100 percent 
that the probability that the upper bound is not too low.  The 
approximation for N is close for l(t) L > 0.3, where l(t) L is the 
failure probability of a single system over the mission length.  
The exact N for any case can be calculated as shown above.  

6 MINIMIZING THE TOTAL SYSTEM 
DEVELOPMENT COST 

The cost is equal to the cost of developing N redundant 
operational units and M test units plus the estimated cost of 
testing the M test units.  Suppose as before that the cost of 
testing is the fraction 0.015 of the unit development cost per 
hour.  The test cost is  

 
Test cost = M + 0.015 M t   (9) 

 
The total cost is the cost of developing the N redundant 

units plus the test cost.   
 

Total cost = N + M + 0.015 M t  (10) 
 

The increasing test time reduces the upper confidence bound on 
the system failure probability so that the number of redundant 
units N decreases with test time.  Table 1 shows the number of 
redundant units N, the test cost for M = 1 test unit, and the total 
cost for the 41-failure data set.  The selected cost metric is the 
cost of producing a single unit, so the cost of N units is N.   

The minimum total cost is 6.4 units first reached at t = 27.4 
hours.  However, a cost of 7.2 is reached at 16.5 hours, so the 
test time can be cut 40% with only a 13% increase in cost.   

The final failure rate is 0.67, so the final Mean Time Before 
Failure (MTBF) = 1/0.67 = 1.5 hours.  The test time for 

 Time, t 
3.11 4.32 9.18 17.7 27.44 

F0.9(t) 8.36 6.58 4.13 3.06 2.30 
N = 1 
+ # 

failures 

 # 
failures Cumulative Poisson 

1 0 0.00 0.00 0.02 0.05 0.10 
2 1 0.00 0.01 0.08 0.19 0.33 
3 2 0.01 0.04 0.22 0.41 0.60 
4 3 0.03 0.11 0.41 0.63 0.80 
5 4 0.08 0.21 0.60 0.81 0.92 
6 5 0.16 0.36 0.76 0.91 0.97 
7 6 0.27 0.51 0.88 0.96 0.99 
8 7 0.40 0.66 0.94 0.99 1.00 
9 8 0.54 0.78 0.97 1.00 1.00 

10 9 0.67 0.87 0.99 1.00 1.00 
11 10 0.78 0.93 1.00 1.00 1.00 
12 11 0.86 0.96 1.00 1.00 1.00 
13 12 0.92 0.98 1.00 1.00 1.00 
14 13 0.95 0.99 1.00 1.00 1.00 
15 14 0.98 1.00 1.00 1.00 1.00 



minimum total cost is nearly twenty times the final MTBF.  
Testing for only about twice the MTBF, t = 3.1, would give N 
= 13 and total cost =14.0, more than double the minimum cost.   

Extended testing reduces the number of units needed for 
high confidence in high reliability.  The extended test time has 
diminishing returns and it may not be practical to test until the 
minimum total cost is reached.  

7  THE TRADE-OFF BETWEEN 
CONFIDENCE, 1 -X, AND RELIABILITY, 1 - Y 

 For any given failure time data set, we can compute the 
minimum cost and corresponding optimum test time for any 
required confidence and reliability.  There is a defined trade-off 
between confidence and reliability.  For the finally chosen 
redundancy, N, a higher estimated reliability will be met with 
lower confidence and a higher confidence can be achieved only 
at a lower reliability estimate. 

 For the 41-failure data set of Table 1, we consider the 
result for N at time t = 10.4 with failure rate l(t) = 1.3 and 
mission length L =2.  For reliability and confidence both equal 
to 0.90, the computed integer N is 7, and the N estimated from 
the equation (8) is 7.01.  The trade-off between reliability and 
confidence is investigated by picking either reliability or 
confidence and then finding the other so that the estimated N is 
again 7.01.  The trade-off is shown in Table 3 and Figure 1.  

Table 3.  Reliability and confidence.   

Confidence and reliability 
are varied around the design 
point where both reliability and 
confidence are equal to 0.90.  
Increasing the reliability 
requirement from 0.90 to 0.91, 
0.92, … 0.94 causes the 
confidence that the requirement 
will be met to drop rapidly 
toward zero.  Reducing the 
reliability requirement in steps 
from 0.90 to 0.60 increases 
confidence it will be met from 
one 9 to two, three, and even 
four 9’s.   

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Confidence versus reliability. 

8 THE INCREASE IN N AS RELIABILITY AND 
CONFIDENCE REQUIREMENTS INCREASE 

We again consider the result for N at time t = 10.4 with 
failure rate l(t) = 1.3 and mission length L =2, in the case where 
reliability and confidence both have equal requirements, but 
requirements other than 0.90.  The increase of the estimated N 
for increasing reliability and confidence is shown in Table 4 and 
Figure 2. 

Table 4. Increasing N for higher reliability and confidence 

Although the estimated N 
is decimal, the actual number of 
needed units is the next higher 
integer.  As the requirements 
for the reliability and equal 
confidence increase from 0.50 
to 0.995, the required number 
of redundant integer units N 
increases from 5 to 12.   

9 CONCLUSION 

A statistical process was 
developed to compute N, the 
number of redundant units 
needed to achieve any required 
redundant reliability at any 
confidence level.  N depends on 
the measured system failure 
rate, l(t), the mission length, L, 
the required redundancy 
reliability, and the required 
confidence in that reliability.  

The first step is to determine the upper confidence bound on the 
measured failure rate needed to achieve the required confidence 
using the Poisson or inverse chi-square distribution.  This  

Figure 2. N versus increasing reliability and confidence.   

produces lx(t), the increased single unit failure rate over the 
mission that is used to achieve the required confidence.  The 
second step is to determine N, the increased number of 
redundant units N required to achieve the required reliability 
and confidence.  This is determined by scanning tables of the 
cumulative Poisson distribution.  Fortunately, the results of this 
statistical process can be closely approximated by an equation.   

It is possible to set the requirements for both the redundant 
reliability and the confidence level and then test until the time 
needed to minimize the total cost required to achieve these 
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requirements.  The total mission cost is the sum of the redundant 
units cost and the test time cost.  The optimum test time 
produces the minimum total cost given the unit failure rate, the 
mission length, and the required reliability and confidence 
level.  Initial testing produces reliability growth, which often 
has a major impact in reducing the unit failure rate.  Testing to 
better determine the long-term failure rate reduces the 
confidence interval of the failure rate, which seems to have a 
smaller effect in reducing cost.  Longer testing is justified if 
total cost is decreasing.  If the testing is terminated too soon, a 
greater number of redundant units must be provided to achieve 
the required reliability and confidence.   
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