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INTRODUCTION 

This paper presents a modification of the well-known 
Duane-Crow reliability growth model.  In the abcd reliability 
growth model, the initial period of exponential decline of the 
failure rate in the Duane-Crow model may be followed by a 
period of constant failure rate.  Data often show that an 
exponential decline in failures is followed by a constant failure 
rate.  If a growth model including only the initial period of 
exponential decline is applied to increasingly longer failure rate 
data sets, the data will include longer periods of constant failure 
rate, and the estimated reliability growth rate will decline from 
an initially high value down toward zero.  Using the Duane-
Crow model without extending it to include a possible period 
of constant failure rate may create the mistaken impression that 
the initial reliability growth continues forever, but at an ever-
decreasing rate.   

1 THE DUANE RELIABILITY GROWTH MODEL 

Duane observed in 1964 that if n(t) is the number of failures 
occurring until time t, a plot of the cumulative failure rate, n(t)/t, 
versus the cumulative test time, t, usually follows a straight line 
when plotted on log-log graph paper.  This occurs when failures 
were fixed by redesigns that improved reliability.  Duane’s log-
log plot is described by the equation  

                       log [n(t)/t] = log k – a log t  (1) 

The usual form of the Duane reliability growth model is 
exponential.   

                                     n(t)/t = k t-a (2) 

The failure rate is n(t)/t.  k is a constant.  The reliability 
growth rate is a, the downward slope of n(t)/t versus t.  
Measured values of a usually vary from 0.2 to 0.6,1 which is 
between 0 and 1.  Since each failure contributes 1/t to the failure 
rate, a failure rate decline of greater than a = 1 is not possible. 
a = 0 corresponds to a constant failure rate.   

Crow used a 56-failure data set to illustrate reliability 
growth.1  A Duane log-log graphical model fit to this data gives  

                                     n(t)/t = 0.640 t-0.283 (3) 

Figure 1 plots the Crow 56-failure data set with the Duane 
mathematical model of equations (1) and (2).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Duane log-log cumulative failure rate plot. 
 
The downward slope is due to early reliability growth.  The 

final data points for n(t)/t are above the fitted line, suggesting 
that reliability growth has slowed or stopped.  If the later 
failures are ignored, the downward slope is much steeper.   

The downward slope of n(t)/t versus t varies between 0 and 
1.  Suppose k failures occur before t = 1 and testing continues 
without further failures.  Then the failure rate is n(t)/t = k /t = k 
t-1.  The downward slope of n(t)/t versus t is a = 1, the most 
rapid possible failure rate decline.  As time increases, n(t)/t = k/t 
= k t-a approaches 0 for all a.   

Given the two parameters k and a, and if they remain 
constant, the expected cumulative failure rate can be calculated 
for any time t.  It is also possible to solve this equation to find 
the test time needed to achieve any specific lower failure rate, 
even approaching zero.  These calculations are misleading if the 
failure rate becomes constant after an initial period of reliability 
growth.  This an obvious and known problem that is usually set 
aside in reliability growth analysis.1   

Figure 2 shows the cumulative failure rate, n(t)/t, of the 
Crow data set plotted versus time linearly, not in the usual 
Duane log-log graph.   
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Figure 2. Cumulative n(t)/t versus time, not log-log.  
 
The Duane reliability growth model assumes that 

reliability growth continues, and the failure rate decreases as 
long as testing is done.  This is clearly not the case for the Crow 
data set.  Reliability growth stops early when a constant low 
failure rate is reached.  However, a major redesign could both 
increase ultimate reliability but also add new significant failure 
modes to be removed in another period of reliability growth.  

2 THE CROW RELIABILITY GROWTH MODEL 

Crow in the 1970’s provided a theoretical basis for the 
Duane model.  He assumed that the failures of a system during 
development testing occur according to a non-Homogeneous 
(time-varying) Poison Process (NHPP) with a power law mean 
value function, m(t).1  The mean number of failures over time 
is assumed to be 

                                     m(t) = k tb   (4) 

where b is between zero and one.   
The instantaneous failure rate is the time derivative of the 

number of failures.   

                               l(t) = d[m(t)]/dt = k b tb-1 (5) 

This is known as the Weibull distribution failure rate, 
although the full Weibull distribution is more complex.  The 
mathematically expected cumulative failure rate is given by 

                          Expected [n(t)/t] = m(t)/t = k tb-1  (6) 

The Crow and Duane reliability growth models are 
equivalent, with the Duane a equal to Crow’s 1 - b.  The 
parameter k is the same in both.  The parameter b is the ratio of 
the current instantaneous failure rate, l(t), to the average 
cumulative failure rate, m(t)/t.   

                          b = l(t)/[m(t)/t] = k b tb-1/k tb-1 (7) 

The typical b of 0.4 to 0.8 corresponds to a decreasing 
failure rate and positive reliability growth.1  The reliability 

growth parameters can be estimated from failure time data.  
Suppose that N failures are observed during the test time (0, T), 
and that they occur sequentially at times s1, s2, … , sN.  The 
maximum likelihood estimate of b is 

                               b* = N / ∑ ln (T/si)  (8) 

where ln is the natural logarithm and the summation ∑ is 
over i = 1 to N.  The maximum likelihood estimate of k is 

                           k* = N / Tb* (9) 

The Crow model analysis of the Crow 56-failure data set 
using the equations (8) and (9) found k = 0.217 and b = 0.927.   

                  [n(t)/t] = k tb-1 = 0.217 t -0.073 (10) 

The b corresponds to an a = 1 - b = 0.073, which is much 
less than the a = 0.283 found using the Duane graphical 
method.  Figure 3 shows the cumulative failure rate data n(t)/t 
plotted versus time, t, in a log-log graph, along with the Duane 
line fit and Crow model fit.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The failure rate n(t)/t data and the Duane line and 
Crow model fits.  

 
Crow mathematical model fits the early data less well than 

the Duane graphical log-log fit. The Crow model is much less 
influenced by the early infant mortality data and gives a much 
more pessimistic projection of future reliability growth.  
Nevertheless, the reliability growth claim is that “While growth 
is small, hypothesis testing indicates it is significantly different 
from 0. Thus, growth is occurring, and the failure intensity 
(failure rate) is decreasing.”1  This seems a serious 
misinterpretation of the data.  Both models have the same 
fundamental problem, the assumption that reliability growth 
continues without end.   

3 THE abcd RELIABILITY GROWTH MODEL 

The Duane-Crow exponential reliability growth model 
does not include the later constant failure rate period that often 
appears after long testing.  It is incorrect to assume that 
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reliability growth will continue forever.  The abcd reliability 
growth modelling approach combines the initial reliability 
growth period with a later constant failure rate period to form 
the abcd model.  The constant failure rate period includes two 
types of failures, those due to acceptable low-rate limited life 
failures that will not be corrected, and others due to 
unacceptable failures that will be corrected later.1   

The abcd mathematical model for reliability growth 
followed by constant failure rate is  

n(t)/t = a t-b + c from t = 0 to td.       (11a) 
                                     = c + d after td, where d = a td-b   (11b) 

 
The failure rate is n(t)/t, a is a constant and b is the 

reliability growth rate, the downward slope of n(t)/t versus t.  
The parameter c is the constant failure rate due to failure modes 
that will not be corrected.  The time td is when reliability 
improvement no longer occurs, and the total failure rate 
becomes constant.  The longer td, the more failures will be 
found and fixed.  The parameter d is the constant failure rate 
due to failure modes that could be corrected later, equal to the 
remaining reliability growth potential.   

The abcd model is computed for the Crow reliability 
growth data set.   

Failure rate = 1.37 t-0.99 + 0.14 from t = 0 to td = 100 (12a)  
= 0.01 + 0.14 = 0.15 after td = 100            (12b) 

The remaining correctable failures, d, are few since the 
reliability growth time, td = 100 is long compared to the initial 
failure rate MTBF = 1/n(t) ~ 10 hr.  Figure 4 shows the 
exponential fit of the Crow data out to td = 100.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Crow data and partial abcd model.  
 
The long-term constant failure rate c = 0.14 was removed 

from the data before the exponential curve fit was calculated.  
The complete abcd model for the 56 failure /crow data set 

is shown in Figure 5.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Crow data and complete abcd model. 
 
The model fit to the Crow data closely reproduces the data.  

The initial failure rate at t = 1 is 1.37 + 0.14 =1.51, 
approximately equal to the first data point at time 0.7 hours, 
1.43.  At td = 100, failure rate = c + d = 0.14 + 0.01 = 0.15, 
which is close to the failure rates of 0.14 and 0.15 at time 99.6 
and 100.3 hours.   

4 ANALYSIS OF ADDITIONAL DATA 

The Duane Crow reliability growth model assumes that 
reliability growth continues without limit, ultimately removing 
all the failure modes and reaching a zero-failure rate. However, 
there is always a non-zero final failure rate which is equal to the 
total number of failures divided by the test time.  If this final 
failure rate is subtracted before fitting the exponential reliability 
growth curve, the fitted growth curve with the failure rate is 
added back will be closer to the data.  Extending the Duane 
Crow model to include the period of constant failure rate in the 
abcd model is useful when the final failure rate is significant.   

To check this, several failure time data sets were obtained 
from a military handbook on reliability test methods.2  The data 
sets having the most failures were chosen to illustrate the abcd 
model.  The data sets have 41, 19, and 16 failures.  

Figure 6 shows the data points n(t)/t, for the 41-failure data 
and the abcd model fit.   

 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. The 41-failure n(t)/t and the abcd model fit.  
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Unlike the Crow data, the 41-failure data set has a 
continually declining failure rate.  The last failure is at t = 43 
and n(t)/t continues to decline until t = 50, due to the division 
of the total number of failures by increasing test time.  The end 
of both the test and the reliability growth period is at td = 50 
and the final failure rate c + d = 0.83.  The computed abcd model 
provides a close fit to the data.   

Figure 7 shows the data points n(t)/t, for the19-failure data 
and the abcd model fit.   

 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. The 19-failure data, n(t)/t and the abcd model fit.   
 
The 19-failure data set is like the Crow data set in that there 

is a final constant failure rate, c = 1.0, after td = 15.  Also 
similarly, d ~ 0.0 indicating both that reliability growth due to 
redesign has ceased and that the decline in n(t)/t due to the 1/t 
factor has become small.   

The 16-failure data set is like the 19-failure data set and the 
Crow data set in having a final constant failure rate, c = 0.88, 
after td = 16 and d ~ 0.00.  Figure 8 shows the data points n(t)/t, 
for the16-failure data and the abcd model fit.   

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. The 16-failure data and the abcd model fit.   

5 THE FINAL FAILURE RATE IS USUALLY LARGE 

Extending the Duane Crow model to include the period of 
constant failure rate in the abcd model is useful when the final 
failure rate is significant.  To check this, most of the failure time 
data sets in two military handbooks on reliability test methods 
were checked.1, 2  Table 1 shows the initial and final failure 
rates and the percentage of the initial rate in the final rate.  

Table 1. Initial and final failure rates in reliability growth 
data.   
Number 

of 
failures 

Data set 
Initial 
failure 

rate 

Final 
failure 

rate 

Final 
percentage 

56 Crow, ref 1, p. 
114 1.43 0.14 9.8% 

41 Ref 2, p. 121 8.82 0.83 9.4% 

40 Ref 2, p. 128 6.60 0.81 12.2% 

27 Ref 1, p. 83 0.38 0.09 23.4% 

19 Ref 2, p. 122 12.50 0.87 7.0% 

18 Ref 2, p. 113 5.40 0.82 15.2% 

16 Ref 2, p. 128 4.29 0.78 18.2% 

15 Ref 2, p. 111 1.50 0.02 1.1% 

15 Ref 2, p. 114 5.79 0.73 12.6% 

8 Ref 2, p. 124 2.86 0.82 28.7% 

7 Ref 2, p. 114 4.18 0.72 17.2% 

7 Ref 2, p. 124 3.51 0.68 19.3% 

6 Ref 2, p. 115 5.40 0.58 10.7% 

5 Ref 2, p. 115 4.37 0.74 16.8% 
 
In all but one case the final failure rate is significant.  It is 

an average of 14.4% of the initial failure rate. In all but one case 
it is 7% or higher.  Assuming that acceptable or uncorrected 
failures can be neglected in modeling reliability growth data 
does not seem justified.   

6 DISCUSSION 

The familiar bathtub curve used in reliability shows the 
failure rate initial declining with time, remaining constant for a 
long period, and finally increasing.  Operating equipment is 
usually assumed to have a constant failure rate.  This makes it 
surprising that in the widely used Duane-Crow reliability 
growth model, reliability growth is not assumed to end in a 
constant failure rate.  Even where the failure rate is still 
declining at the end of testing, the remaining failure rate should 
be removed from the data to compute a good fit to the data.   

The most surprising result shown in the abcd models of the 
56, 41, 19, and 16 failure data sets is that b, the exponential 
decline rate is exactly 1.  This is much different that the very 
variable growth rates found in the Duane Crow model. There, 
the reliability growth rate declines as longer periods of constant 
failure rate data are included.  n(t)/t = a t-1 is easily explained.  
Suppose failure 1 occurs at t = 1. The initial n(t)/t = a 1/1 but as 
t increases, the cumulative failure rate due to the first failure 
declines as a/t.  The first failure mode probably has a high 
failure rate and a short MTBF, but for reliability growth that 
failure mode is removed.  Later failures are usually not 
numerous enough or rapid enough to overcome this decline.  A 
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reliability growth exponent of 1 is significant because it 
indicates the reliability growth process of find and fix is being 
well implemented.  If failure modes are not removed or if fixes 
introduce new serious failure modes, the failure mode would 
not decline at the maximum possible rate.   

7 APPLICATIONS 

Implementing reliability growth helps cure a significant 
problem.  New system designs often have unexpected and 
unacceptable high initial failure rates.  This may be due to 
improper specifications, design errors, workmanship problems, 
unreliable components, or flawed materials.  When excessive 
failure rates are encountered, a “find and fix” program should 
identify and remove the high probability failure modes that 
appear in early testing.  The reliability growth testing may be 
terminated when the system has an acceptable low failure rate.  
Testing may be extended to improve the estimation of the final 
constant failure rate.  The duration of the reliability growth 
phase and the subsequent reliability testing is a design decision 
that can be optimized to reduce cost.4   

The abcd reliability growth model can help in analyzing 
completed tests, tracking ongoing tests, and planning future 
tests.  If a completed reliability growth test is analyzed, the time 
td when a constant failure rate begins, and the constant failure 
components c and d can be identified and the abcd model used 
to analyze the reliability growth patten.  A similar analysis can 
be applied during reliability growth. The current failure rate can 
be removed from the data and the exponential failure decline 
model used to check if the reliability growth exponent is 
approximately b = 1.  A slower failure rate decline would 
suggest that the find and fix process may be inefficient.3   

8 SUMMARY & CONCLUSIONS 

The abcd parameters of the model are determined by the 
failure test data, which is the time of each successive failure.  If 
the failure rate reaches a constant value, that value is c.  If 
Reliability growth testing is terminated at td, the remaining 
uncorrected failures have a failure rate of d.  The values of a 
and b are determined by fitting a t-b to n(t)/t -c.  Typically, b = 
1.0, reflecting the fastest possible reliability growth, where each 
failure mode contributes only once to the failure count and its 
effect on the average failure rate declines linearly with time.   

The abcd model was developed by combining an initial 
phase of exponential Duane Crow reliability growth model with 
a constant long term failure rate with two potential components.  
The failure rate n(t)/t = a t-b + c + d, where a t-b describes 
exponential reliability growth, c is the constant accepted failure 
rate, and d represents the potential failure rate reduction 
obtainable by further reliability growth testing.   
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