Towards Integrated Computational Materials Engineering for Quantifying Performance Impacts of Microstructure and Defect Interactions in Powder Bed Fusion Parts

<u>Brodan Richter¹</u>, Joshua D. Pribe², Samuel J.A. Hocker¹, Saikumar R. Yeratapally³, George R. Weber¹, Vamsi R. Subraveti⁴, Caglar Oskay⁴, Edward H. Glaessgen¹

¹NASA Langley Research Center, Hampton, VA ²Analytical Mechanics Associates, Hampton, VA ³Science and Technology Corporation, Hampton, VA ⁴Vanderbilt University, Nashville, TN <u>brodan.m.richter@nasa.gov</u>

International Conference on Advanced Manufacturing 2023

NTRS #20230014203

Scenario: A New Alloy was Developed

- Our group has developed a new alloy...
- What build parameters should we use?
- Should we be concerned about defects?
- How will the new material perform?
- How long will this take to qualify?

How should these questions be addressed?

Scanning velocity? Hatch spacing? Laser power? **Beam diameter?** Scan strategy? **Contouring parameters?** Location in chamber? **Rotation angle? Orientation of part?** Plate temperature? Layer thickness? And more...

Scenario: A New Alloy was Developed

- Use heuristics?
 - Select parameters based on alloys with similar properties?
 - Reasonable, but need prior knowledge.
 - Also, which properties are the most important?
 - Thermophysical, absorptivity, powder, phases...
- Conduct an experimental survey?
- +11 parameters, 2 levels each...
 - 2048 samples. Can down-select parameters, but still may need multiple rounds of printing

For both, still need to...

- Cross-section, polish, etch, and examine the samples
- Execute x-ray computed tomography scans
- Perform tensile tests, fatigue tests....

Costs add up fast

Computational Process-Structure-Property (PSP) models provide a way to augment these approaches

PSP Models: Our Approach

PSP Models: Process-Structure Models

Physically-based Monte Carlo Modeling

- Stochastic Parallel Particle Kinetic Simulator (SPPARKS)*
 - Kinetic Monte Carlo framework from Sandia National Laboratories https://spparks.github.io/
 - Initially used for bulk microstructural • evolution (e.g., annealing, recrystallization)
- Application to AM: Physicallybased Monte Carlo [1,2]
 - Thermal model \rightarrow temperature field \rightarrow melt pool

[1] T.M. Rodgers et al., 2021 [2] J.G. Pauza et al., 2021

*The use of specific software names does not imply an endorsement by the U.S. Government or NASA.

Melt pool from analytical thermal model (Rosenthal equation)

Melting temperature

 $T = T_0 + \frac{Q}{2\pi rk} \exp\left(-\frac{v(\xi + r)}{2\alpha}\right)$

Background temperature

 ρ : mass density *T*: temperature c_p : specific heat capacity T_0 : background $r = \sqrt{\xi^2 + y^2 + (\eta_z z)^2}$ temperature *Q*: absorbed power ξ, y, z : local coordinates *v*: scan speed η_z : scale factor to control melt pool depth

k: thermal conductivity

 $\alpha = k/(\rho c_p)$

Where:

Physically-based Monte Carlo Modeling

- Stochastic Parallel Particle Kinetic Simulator (SPPARKS)*
 - Kinetic Monte Carlo framework from Sandia National Laboratories https://spparks.github.io/
 - Initially used for bulk microstructural • evolution (e.g., annealing, recrystallization)
- Application to AM: Physicallybased Monte Carlo [1,2]
 - Thermal model \rightarrow temperature field \rightarrow melt pool
 - Solidification \rightarrow epitaxial grain growth
- [1] T.M. Rodgers et al., 2021 [2] J.G. Pauza et al., 2021
- *The use of specific software names does not imply an endorsement by the U.S. Government or NASA.

Melt pool from analytical thermal model (Rosenthal equation)

Physically-based Monte Carlo Modeling

*Adapted from Rodgers, T.M. et al., 2021 [1]

<u>Capture distance is related to local</u> <u>undercooling and dendrite interface kinetics</u>

 $D_c = \sum_{T < T_l} V(T) dt$

dt: time step

<u>Texture develops by weighing (W_i) based on alignment</u> of <001> crystal directions with temperature gradient

Experimental Samples and Numerical Study

2² Factorial Design with Center Point (values half-way between end points) Results adapted from B.

- 600 µm x 600 µm x 695 µm numerical domain (20 layers)
- Experimentally characterized P1 and P4
- Hatch Spacing = $100 \, \mu m$
- Layer Thickness = $30 \,\mu m$

256 µm × 512 µm X-Y Plane

Richter et al., 2022 [3]

Simulated Microstructure vs. Energy Input

X-Z Plane

Comparison with Experiment – Low Energy

Comparison with Experiment – High Energy

PSP Models: Defect Models

PSP Models: Defect Models

Fig. 1 One-dimensional law for keyhole aspect ratio controlled by the Keyhole number.

Fig. 1 from [4] used under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/

- *P*: Laser power
- *V*: Scanning velocity
- *R*: Beam radius

Defects Models: Keyhole Porosity

• By characterizing keyhole porosity across a range of processing conditions, can fit distributions to integrate alongside computational models

Example of an experimental platen

- 2 powers (~260 W and 360 W)
- 14 velocities (0.25 m/s 1.4 m/s)
- 5 mm lines, 6 repetitions

Purposely had many low scanning velocities and high power to induce keyhole porosity

Analyzed porosity based on individual line location

Surface from computed tomography (CT) scan of sample

PSP Models: Defect Models

PSP Models: Defect Models

Defects Models: Lack-of-Fusion Porosity

[5] M. Tang et al., 2017

21

- Lack-of-fusion porosity is semi-deterministic and geometry related
- Tang et al. derived a lack-of-fusion criteria based on the melt pool geometry and processing [5]

No porosity occurs if ...

$$\left(\frac{L}{D}\right)^2 + \left(\frac{H}{W}\right)^2 \le 1$$

L: Layer thickness H: Hatch spacing W: Melt pool width D: Melt pool depth

Defects Models: Lack-of-Fusion Porosity

- By using a thermal model to calculate temperature field and calculating the melt pool geometry, a user can determine if porosity will occur
- If occurrence is likely, can track in process-structure model using distinct phases for melted vs. unmelted material

Melt pool geometry relationship

Melt pool from analytical thermal model (Rosenthal equation)

PSP Models: Structure-Property Models

Structure-Property: Crystal Plasticity

- Elasto-Viscoplastic Fast Fourier Transform (EVP-FFT) [7]*
- Advantages
 - Speed improvements over crystal plasticity finite element methods
 - Shares voxel-based microstructure representation with SPPARKS

0.6% applied strain in build direction; periodic One of 12 possible α variants boundary conditions on sides of domain randomly selected for each grain Prior β texture, z ref. direction [111] 200 µm [101] [001][7] R.A. Lebensohn et al., 2012

Section adapted from J.D. Pribe et al., 2023 [6]

> J.D. Pribe et al., 2023 [6]

*The use of specific software names does not imply an endorsement by the U.S. Government or NASA. 24

$\dot{\boldsymbol{\varepsilon}}^p$: plastic strain rate tensor

Structure-Property: Micromechanical Fields

- Goal: estimate distributions of fatigue indicator parameters (FIPs)
- Here: equivalent plastic strain

$$\varepsilon^p = \int \dot{\varepsilon}^p dt \qquad \dot{\varepsilon}^p = \sqrt{\frac{2}{3}} \dot{\varepsilon}^p : \dot{\varepsilon}^p$$

 Value assigned to each grain by volume averaging near hotspots

Microstructures with and without porosity

- Compare simulations with no porosity and with one 30-µm-diameter pore per simulation (~99.995% dense)
- Motivation: operating near the keyhole boundary could induce process-escape pores
 - Here: 370 W laser power, 1.2 m/s scan speed [8]; MAP estimates for thermophysical parameters

Microstructure with one pore, inserted stochastically during process-structure simulation

Microstructures with and without porosity

- 200 simulations with one 30-µm keyhole pore per simulation
- Overall distribution of plastic strain is similar
- But extreme values are shifted!
 - Bimodal distribution starts to develop

Equivalent plastic strain for all grains across 200 simulations, log scale

PSP Models: Revisiting Our Complete Approach

Revisiting Initial Questions

What build parameters should I use? PSP Should I be concerned about defects? App How will my new material perform?

Process-Structure-Property (PSP) models support solving these challenges Survey design space using PSP models

Apply defect models to predict if defects will occur

Simulate performance using a Structure-Property model

With continued maturity, it is hoped that PSP models will support next-generation, computational-materials augmented qualification and certification approaches

Acknowledgements and References

This work was supported by the NASA Aeronautics Research Mission Directorate (ARMD) Transformational Tools and Technologies (TTT) project, and the NASA Langley Research Center Internal Research and Development Program

[1] Rodgers, T.M. et al. "Simulation of powder bed metal additive manufacturing microstructures with coupled finite difference-Monte Carlo method," *Additive Manufacturing* 41 (2021): 101953

[2] Pauza, J.G. et al., "Computer simulation of microstructure development in powder-bed additive manufacturing with crystallographic texture." *Modelling and Simulation in Materials Science and Engineering* 29.5 (2021): 055019

[3] Richter, B. et al., "Integrated Monte Carlo microstructure and analytical temperature simulations of additive manufacturing," Additive Manufacturing Benchmark 2022 Conference (2022), Bethesda, MD

[4] Gan, Z. et al., "Universal scaling laws of keyhole stability and porosity in 3D printing of metals," *Nature Communications* 12.1 (2021): 2379 [5] Tang, M. et al., "Prediction of lack-of-fusion porosity for powder bed fusion," Additive Manufacturing, 14 (2017): 39-48

[6] Pribe, J.D. et al., "A Process-Structure-Property Simulation Framework for Quantifying Uncertainty in Additive Manufacturing: Application to Fatigue in Ti-6AI-4V," *Integrating Materials and Manufacturing Innovation* (2023): 1-20.

[7] Lebensohn, R.A. et al., "An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials," *International Journal of Plasticity* 32.33 (2012): 59-69

[8] Gordon, J.V., "Defect structure process maps for laser powder bed fusion additive manufacturing," *Additive Manufacturing* 36 (2020): 101552

Brodan Richter, brodan.m.richter@nasa.gov

Ed Glaessgen, <u>e.h.glaessgen@nasa.gov</u>

J.D. Pribe et al., 2023 [6]

Structure-property: Crystal plasticity

- Elasto-Viscoplastic Fast Fourier Transform (EVP-FFT) [7]
- Advantages
 - Speed improvements over crystal plasticity finite element methods
 - Shares voxel-based microstructure representation with SPPARKS

Flow rule:
$$\dot{\boldsymbol{\varepsilon}}^p = \dot{\gamma}_0 \sum_{s=1}^{N_s} \boldsymbol{m}^s \left(\frac{|\boldsymbol{m}^s:\boldsymbol{\sigma}|}{\tau^s}\right)^n \operatorname{sgn}(\boldsymbol{m}^s:\boldsymbol{\sigma})$$

Voce
hardening:
$$\tau^{s} = \tau_{0} + (\tau_{1} + \theta_{1}\Gamma) \left[1 - \exp\left(-\frac{\theta_{0}}{\tau_{1}}\Gamma\right) \right]$$
$$\Gamma = \sum_{s=1}^{N_{s}} \int \dot{\gamma}^{s} dt$$

Implicit time discretization: $\boldsymbol{\sigma} = \mathbf{C} : \left(\boldsymbol{\varepsilon}_{t+\Delta t} - \boldsymbol{\varepsilon}_{t}^{p} - \dot{\boldsymbol{\varepsilon}}_{t+\Delta t}^{p} \Delta t \right)$

 $\dot{\gamma}_0$: reference strain rate *n*: viscoplastic exponent $\dot{\boldsymbol{\varepsilon}}^p$: plastic strain rate tensor σ : stress tensor m^s : Schmid tensor for slip system s τ^{s} : critical resolved shear stress for slip system s $\dot{\gamma}^{s}$: plastic shear strain on slip system s $\tau_0, \tau_1, \theta_0, \theta_1$: Voce hardening law parameters Γ : accumulated slip on all slip systems t, Δt : time, time step **C**: stiffness tensor $\boldsymbol{\varepsilon}$: total strain tensor ε^p : plastic strain tensor

[7] R.A. Lebensohn et al., 2012

32

Structure-property: Validation

<u>Challenge problem</u>: Given the stress strain curve, serial-sectioned and reconstructed 3D microstructure, predict grain-average elastic strain tensor for 28 "challenge" grains at six different macroscopic load states, S1 through S6

Yeratapally, S. et al., "Effect of process-specific defects on the tensile and constant-amplitude fatigue behavior of as-built Ti-6AI-4V alloy produced by laser powder bed fusion process", Additive Manufacturing Benchmarks (AM-Bench), August 15-18, 2022, Bethesda, Maryland.