Numerical Investigation of Occupant Injury Risks during a Realistic Transport Aircraft Crash Conditions

Nate Jones, Costin Untaroiu, Jacob Putnam

Vehicle Specifications: 33,306 lb, 3+2 Seating, 85p capacity Test Conditions: 32 ft/s Vertical & 65 ft/s Horizontal Velocity

V∕∕∕∕∕∕∕∕∕∕∕ Why it was done?

•Non-traditional aircraft development is expanding

- -Novel commercial aircraft designs Composites
- -Novel aerospace vehicles and transportation markets Advanced Air Mobility

•Limitations in airframe level crashworthiness requirements

- -Current occupant protection certification relies on airframe similarity to traditional aircraft design (14 CFR 2X.562)
- -Novel design will necessitate vehicle testing
- -Goldilocks regulation: safe without being too restrictive

V// **Previous Evaluations**

- Component crash analysis
- Full scale crash analysis

 Finite element (FE) models of anthropomorphic test device (ATD) developed and evaluated

$\sqrt[8]{2}$ Limitations of Previous Evaluations

- Limited Biofidelity of ATD
- Expensive

• Time Consuming

Assess the current quality of injury prediction from the two leading human body models

Evaluate and improve analytical tools used to predict aircraft crashworthiness

V⁷ | Introduction- Model Comparisons

Global Human Body Model Consortium (GHBMC)

Male 50th percentile Occupant Detailed model Version 6.0

Units: Kg, mm, msec

Features: -Included more advanced Instrumentation -Included Shoes

Total Human Model for Safety (THUMS)

Male 50th percentile Occupant model Version 6.1

Units: Ton, mm, sec

Features: -Free Access -Limited Instrumentation

Methods - **Model Positioning**

Translation/Rotation in LS-prepost

Marionette repositioning of the appendages

Settling Simulation

Methods - Model Positioning

W⁷/⁷ Methods - Model Positioning

Overlay of Final Positioning

$\sqrt[N]{2}$ | Methods: Model Modification - GHBMC

-Erosions Added: Part IDs: 1400040 (mouth flesh) 1400020 (nose flesh) 4000001 (Anterior Fat Pad) 4000108 (Posterior Fat Pad) 2000402 (NK_CA_Anterior-Tissue) 1400024 (Head Skin) Toggled: Nose Failure Disk Avulsion off Hourglass Update: Hgid: 1500003 qm 1.2-> 0.20 R3D: 550000 and 5500011 (Hand Ero)

Methods: Model Modification - THUMS

-Erosions Added: Part IDs: 89100300 -Required significant timestep reduction -Implementation of Shoes -Implementation of detailed Instrumentation

W^T Model Comparison THUMS Instrumentation

GHBMC Instrumentation

Head center of gravity (CG)

Neck Cross Section

Lumbar Spine Cross Section at L5 Vertebra

THUMS Instrumentation

Head CG node constrained to the entire brain structure

Developed cross sections of spine and neck to match GHBMC

Methods: Injury Measures

Body Component	Injury Equation
Head [1]	$P(AIS 3+) = \Phi\left(\frac{\ln(HIC_{15}) - 7.45231}{0.73998}\right)$
Brain [2]	$P(AIS 3+) = 1 - e^{-\left(\frac{BrIC - 0.523}{0.531}\right)^{1.8}}$
Neck [3]	$P(AIS 3+) = \frac{1}{1+e^{(3.227-1.969*N_{ij})}}$
Lumbar Vertebra [4]	$P(Single \ Fracture) = 1 - e^{-\left(\frac{F}{0.16}\right)^{2.52}}$

♥ℤ Results: Average Injury Risk

Body Component	GHBMC	THUMS	ATD
Head	33.94%	3.41%	24.51%
Brain	83.54%	60%	Not Calculated
Neck	21.85%	6.66%	36.88%
Lumbar 100% Vertebra		100%	100%

Average Injury risk across all 7 crash conditions

V⁷ | Results: Impact comparison - R3D

GHBMC

Impact comparison - R3D Neck/Head comparison

GHBMC

THUMS

Head CG node at t = 70 ms

V// **R3D Data Comparison**

Body Component	GHBMC	THUMS	Included THUMS CG Node	Head Acceleration Data GHBMC — THUMS Developed CG Node — THUMS Original CG 1500
Head	17.30%	0.46%	100%	
Brain	82.62%	51.46%	47.07%	
Neck	24%	6.37%		-500
Lumbar Vertebra	100%	100%	0 50 100 150 200 Time (ms)	

Injury risk calculated for simulation R3D with included THUMS CG node Compared to developed CG Node

V⁷ **R3D** Data Comparison - Continued

-THUMS Model showed lower peak values for all 3 primary outputs

-The THUMS developed Head CG node showed significantly more similar reactions than the original node

-Neck force reaches local maximums at similar points

- THUMS Neck and head kinematics were validated utilizing the original head CG node
- GHBMC neck and head kinematics were validated utilizing the included instrumentation used in this study
- Both models predicted 100% spinal injury risk concurrent with previous studies utilizing ATD models
- THUMS models predicted injury risk significantly lower than both GHBMC and ATD models
- THUMS model required significantly longer computational time to run simulations (approximately 12 hours for GHBMC and 80 hours for THUMS)

- GHBMC model is currently a more intuitive model for the high loading environments of aircraft modeling simulations due to:
 - Lower computational time
 - More validated Instrumentation
 - THUMS model provides significant benefits in:
 - Free access
 - Similar kinematics to GHBMC
 - Less modifications required
- Further development and validation of THUMS model instrumentation is needed for these high loading environments

Questions?