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Abstract

Currently, when the Reynolds-averaged Navier-Stokes (RANS) equations are solved using
turbulence modeling, most often the one-equation model of Spalart and Allmaras is used.
Then, it is only necessary to solve the RANS equations in conjunction with a single transport
equation for modeling turbulence. For this model, considerable assessment and analysis has
been performed, allowing the possibility of a reliable solution method for an eddy viscosity
required to compute the Reynolds stresses in the RANS equations. Such evaluation along
with analysis has not been achieved to realize similar performance with two-equation models
of the k-ω type.

The primary objective of this paper is to present and discuss the components of an effec-
tive numerical algorithm for solving the RANS equations and the two transport equations
of k-ω type turbulence models. All the important details of the turbulence model as actu-
ally implemented are given, which is sometimes not done in various papers considering such
modeling. The viability and effectiveness of this solution algorithm are demonstrated by
solving both two-dimensional and three-dimensional aerodynamic flows. In all applications,
a linear rate of convergence without oscillations or other evidence of unstable behavior is
observed. This behavior is also particularly true when the proposed algorithm is applied
to systematically refined mesh sequences, which is generally not observed with algorithms
solving more than one transport equation. Thus, numerical integration errors are systemat-
ically reduced, allowing for a significantly more reliable assessment of the effectiveness of the
turbulence model. Additionally, in this paper, analysis of the solution algorithm, including
linear stability, is also performed for a particular flow problem.
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1 Introduction

In the field of Computational Fluid Dynamics (CFD) there has been a significant effort
to develop numerical algorithms for solving the Reynolds-averaged Navier-Stokes (RANS)
equations in conjunction with turbulence models. This effort has continued with the ob-
jective to extend the viability of CFD to perform a complete design of complex aircraft
configurations. Thus, the convergence and reliability of a solver must be verified. Extensive
data assessments of solution accuracy are clearly required. Prominent examples of these
data assessments are the numerous Drag Prediction Workshops (e.g., Refs. [1–4]) and High
Lift Prediction Workshops (see for example Refs. [5–7]), which are carried out regularly.

Assertions about uncertainties and errors from computed numerical data are clearly a
requirement to use data obtained by numerical simulations in the aerodynamic certification
processes. When designing new aircraft using numerical data, these data must be proven to
be reliable. Using past AIAA workshops as a guide, different CFD computer codes typically
yield a wide spread in results, even when ostensibly solving the same equations. Reasons for
the wide spread are difficult to determine. Considering the fact that all participants assume
that they solve the same equations with a consistent and convergent method, differences in
the results must disappear as the degrees of freedom increase. For some codes and some
test cases, this behavior can actually be observed. However, for simulations at the border of
the flight envelope or if two-equation turbulence models are used, there are often significant
deviations in the results shown at the workshops; even when statistical analyses are carried
out to quantify the uncertainties [2–4]. Since convergence histories are rarely shown for these
applications, this suggests that convergence may not be achieved; and hence, the results may
be severely modified by numerical errors.

Significant improvements have been achieved in the last several years for the Spalart-
Allmaras (SA) turbulence model [8, 9]. The improved solvability of the single transport
equation of the model using the SA negative form is a major factor for the subtantial in-
crease in using this turbulence model. Considering the results of the AIAA Drag Prediction
Workshop and High Lift Prediction Workshop series of the last few years, there are more
computer codes appearing using this model that can also converge several orders of magni-
tude. In some cases, even fully converged solutions (i.e., solutions in which the residuals are
reduced to near machine zero) are achieved. Perhaps, this is at least part of the reason for
the focus on introducing correction terms (e.g., streamline curvature and rotation effects)
in the SA model [10,11]. Such correction terms can provide improvement in representation
of the flow physics.

During roughly the same time period as for the SA model, a number of improvements
were also made for two-equation turbulence models of the k-ω type (i.e., Wilcox model
and Menter SST model). Also, there was some effort to improve the solver for the RANS
equations and the two-equation models. There remains a need for improvements in the
convergence behavior and reliability. Thus, solving the RANS equations with such models
is frequently avoided due to the high difficulty in achieving reliable convergence. Typically,
to converge the RANS equations in combination with k-ω type models is a much more
difficult task compared to a one-equation model.

Such two-equation turbulence models have been successfully applied to airfoil flows with
small to moderate separation (e.g., see Menter [12], Swanson [13]). However, the difficulty
of simulating a broad range of separated flows, including onset and extent of separation, still
remains with this class of two-equation models, as well as other eddy viscosity models. Due
to the demands on the data required for a certification process together with the observations
from the workshops, it is clear that there is still a great need for the development of solution
methods for the RANS equations, in particular for two-equation turbulence models.

From the perspective of the authors of this paper, to design such a numerical method
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providing both sufficiently accurate data together with a quantifiable bound on the error,
the following four points are a minimum standard one has to consider:

a) The full differential or integral formulation of the equations together with the turbu-
lence modeling equations is given.

b) Its exact implementation is documented.

c) A solution algorithm that is able to compute for a given number of degrees of freedom
a solution free of numerical integration errors.

d) The solution algorithm works for systematic mesh refinement, that is, one can obtain
mesh converged results.

As soon as one of these criteria is not satisfied, certain doubts about the assertions made
from approximate solutions computed with the considered numerical method emerge.

From the four criteria mentioned above, obviously the first two criteria are the simplest
to satisfy. Straightforwardly, one simply has to write down the actual implementation
of the equations. Nothing should be hidden such as cut-off values for certain variables.
This fact is mentioned here explicitly, though often not mentioned, because a significant
number of implementations use certain strategies to cut-off or to restrict several of the
variables. As examples, we refer to the technical documentions [14, 15]. A final solution is
generally not examined with respect to activity of such limiting processes. To assess the
impact corresponding to such limitings, there must be transparency of the solutions. Since
often authors do not discuss or do not even mention these intrusions into the equations,
only conjectures about the reasons for discrepancies between the approximate solution and
experimental data can be made. One conjecture of relevance is that c) mentioned above is
not independent of b).

The reason for this, which is possibly the major issue in constructing a reliable algorithm
to approximately solve the RANS equations and the two transport equations of k-ω type
turbulence models, is to ensure positivity of the turbulence kinetic energy k and the energy
dissipation rate ω. Perhaps, the most relevant publications dealing with this topic are
Refs. [16–19]. They apply an implicit algorithm to solve the RANS equations and the two
equations of a k-ω model in a loosely coupled manner. The advantage of this approach is
that only the Jacobian matrix for the turbulence equations is manipulated such that it is an
M-matrix for each time step. Hence, starting with a positive k and ω, all successive values
of these two dependent variables remain positive throughout the iteration process. Another
idea to ensure positivity of k and ω uses variable subtitution (logarithmic form), which
was suggested by Ilinca et al. [20]. A number of other finite element methods (FEMs), not
only Continuous Petrov-Galerkin methods but also Discontinuous Galerkin (DG) methods,
also employ this approach (e.g., Refs. [21–23]). In some FEMs, realizability conditions are
also imposed [21, 22]. As a consequence, it is not obvious if the transformed boundary-
value problem is still equivalent to the original one. Also, as discussed in Ref. [24], there are
possible effects due to smoothness of the solution as well as the modified boundary condition
that may have an impact on the resulting boundary-value problem. In this article, we suggest
a rather simple algorithm to deal with this positivity issue.

Given the wide range of applications for which solutions to the RANS equations are
required, it is desirable that a computer code should meet the following requirements:

• It works for a large variety of parameters defining the boundary-value problem to
solve, such as

– a variety of geometries,
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– a large number of inflow conditions, which includes a range from very low Mach
number to hypersonic flows,

– a broad range of Reynolds numbers,

– a large number of different boundary conditions;

• It works for a broad range of parameters determining the actual solution method, such
as

– variation in CFL number,

– inner linear solution methods,

– linear and nonlinear multigrid as well as cycling strategies;

• It always converges to a steady-state solution, if a steady-state solution exists;

• It does not show significant loss in convergence rates with systematic mesh refinement
studies, for example, an increase in the number of degrees of freedom are considered.

From the point of view of the authors, at this time, the design of a solution method for the
RANS equations satisfying all these conditions is an open problem. It can be assumed that
various interventions (using cutoff values or restriction of variables) into several solution
methods have been incorporated to be in a position to compute steady-state solutions, at
least for a small number of problems with a specific choice of parameters.

Considering this background, the primary objective of this paper is to propose a numer-
ical algorithm that efficiently solves the RANS equations in combination with two-equation
models of the k-ω type on structured and unstructured meshes. Numerical examples demon-
strate that the number of nonlinear iterations is comparable to state-of-the art methods for
one-equation models. In this regard, we refer to Refs. [25–31], where a similar number of
nonlinear iterations is required using similar methods for the one-equation model of Spalart
and Allmaras. We demonstrate that a reliable behavior of the solution algorithm that is
without oscillations or a deterioration in the final convergence rate is not only possible for
basic two-dimensional (2-D) test cases but also for three-dimensional (3-D) transonic test
cases at the design point and for a 3-D high lift configuration. Beyond the pure heuristics
and test cases, an analysis is performed in particular for the two-equation turbulence mod-
els, which reveals some of the special characteristics of these models and what one needs to
consider in order to implement them successfully.

In Sections 2 and 3 of the paper, the integral form of the RANS equations and the turbu-
lence modeling equations, respectively, are defined. This includes the boundary conditions
necessary for a well defined boundary-value problem. Section 4 considers the components
of the numerical algorithm, which are the focus of the paper. Then, in Section 5, analysis of
properties, including linear stability, of the solution algorithm is considered. Both 2-D and
3-D examples of applications of the numerical solution algorithm are shown and discussed
in Section 6. Concluding remarks of the paper are made in Section 7.

2 Governing Equations of Fluid Flow

To describe flow behavior we consider for the domain D ⊂ Rm, m = 2, 3, that is, an open
and connected set, and an interval [0, T ) ⊂ R, T > 0. The conservative form of the RANS
equations is expressed in integral form by

0 =
d

dt
VD (W ) (t) +R∂D (W ) (t) , t ∈ [0, T ) , (1a)
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where the integral operators VD and R∂D are given by

VD (W ) (t) :=

∫
D

W (x, t) dx (1b)

Rc,∂D (W ) (t) :=

∫
∂D

〈fc (W (y, t)) , n(y)〉 ds(y), (1c)

Rv,∂D (W ) (t) :=

∫
∂D

〈fv (W (y, t)) , n(y)〉 ds(y), (1d)

R∂D := Rc,∂D −Rv,∂D, (1e)

and W : D × [0, T )→ Rm+2,

W (x, t) := (ρ(x, t), ρ(x, t)u(x, t), ρ(x, t)E(x, t))
T
, (2)

denotes the vector field of conserved variables and n is the unit outward normal on ∂D.
The terms fc and fv describe the convective and viscous contributions

fc (W ) :=


ρu

ρu1u+ pe1

...
ρumu+ pem

ρHu

 , fv (W ) :=


0

τ1 (W )
...

τm (W )
θ (W )

 , m = 2, 3.

Here ei is the ith unit vector. The quantities ρ, u = (u1, . . . , um)
T

, E and

H := E + p/ρ (3)

are the density, the velocity, the specific total energy, and the enthalpy of the fluid. The
equation of state

p = (γ − 1)ρ

(
E − ‖u‖

2
2

2

)
(4)

defines the pressure p, and γ is the gas dependent ratio of specific heats, which is 1.4 for
air. Assuming that an effective viscosity

µeff := µeff (W ) = µeff (W (x, t))

is given and using Stokes hypothesis, the bulk viscosity vanishes and the second coefficient
of viscosity λ = −2/3 µeff . Then, the viscous stress tensor τ = τ (W ) = τ (W (x, t)) is given
by

τ (W ) := µeffS + λ div(u)Id = 2µeff

(
S − 1

3
div(u)Id

)
= 2µeffS, (5)

S := S − 1

3
div(u)Id, (6)

and S denotes the mean strain-rate tensor, which is given by the symmetric part of the total
derivative of flow velocity vector u,

S :=
1

2

(
du

dx
+

(
du

dx

)T)
, i.e., Sij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (7)
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Throughout the paper Id(x) = x denotes the identity operator. The viscous flux term for
the energy equation is given by

θ (W ) := τ (W )u+ q (W ) , (8a)

q (W ) := κeff grad T. (8b)

The effective viscosity µeff and effective conductivity κeff are computed by

µeff := µl + µt, κeff := κl + κt, (9)

and the laminar viscosity is given by Sutherland’s law

µl (W ) := µl,∞

(
T

T∞

)3/2
T∞ + T̄

T + T̄
, µl,∞ :=

ρ∞u∞L

Re
, (10)

κl (W ) :=
cpµl (W )

Prl
and cp := < γ

γ − 1
, (11)

where T∞ > 0, ρ∞ > 0 and u∞ > 0 denote some constant reference temperature, density
and velocity, L > 0 is some constant reference length scale, Re > 0 is the corresponding
Reynolds number, T̄ := 110.4K is Sutherland’s constant, < is the universal gas constant,
and the laminar Prandtl number is given by Prl := 0.72.

In this article, we restrict ourselves to linear, two-equation turbulence models of the k-ω
type, represented by the differential or integral equations stated in Section 3. The solutions
of these equations reveal additional quantities in the considered fluid. These occurring
variables extend the degrees of freedom given by the conservative variables W by a further
unknown function

Wt : D × [0, T )→ R2.

The additional variables are used to determine the eddy viscosity,

µt = µt (Wt (x, t) ,W (x, t)) ≥ 0 for all (x, t) ∈ D × [0, T ) ,

required for (9). Given the eddy viscosity µt, the turbulent thermal conductivity is described
by the algebraic relation

κt := cp
µt
Prt

, P rt := 0.9. (12)

The dependent variables of the turbulence models are the turbulence kinetic energy per
unit mass k and the dissipation rate ω of the turbulence kinetic energy. Before we state
the two transport equations for k and ω, we define t = (tij)1≤i,j≤m and the Reynolds stress

tensor τRS =
(
τRS
ij

)
1≤i,j≤m, using the strain-rate tensors S and S, given in (7) and (6), and

the mean molecular stress tensor, t = (tij)1≤i,j≤m. Then,

t = 2µeffS, ρτRS = 2µtS −
2

3
ρkId. (13)

Additionally, we define the mean rotation tensor Ω, which is the skew-symmetric part of
the total derivative of flow velocity u,

Ω :=
1

2

(
du

dx
−
(
du

dx

)T)
, i.e. Ωij =

1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
. (14)
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3 Two-Equation Turbulence Models of k-ω Type

The principal elements of the k-ω type turbulence models being considered are described
in this section. The emphasis is on the 1988 and 2006 Wilcox models and the 2003 Menter
Shear Stress Transport (SST) model. Presentation and extensive discussion of these models
is given in Refs. [32–34] and [12, 35–37]. An additional resource providing information
on these and other turbulence models is NASA’s Turbulence Modeling Resource (TMR)
website [38]. Important details of these models, such as parameters and closure coefficients,
can be found in the TMR or in the original publications. For convenience, these details are
also given in the appendices.

3.1 Wilcox k-ω model

In this article, we consider k-ω models of the form

∂ (ρk)

∂t
+ div (ρku) = div ((µl + σkµt) grad k) + ρQk,(k,ω), (15a)

∂ (ρω)

∂t
+ div (ρωu) = div ((µl + σωµt) grad ω) + ρQω,(k,ω). (15b)

The eddy viscosity in these models is computed by

µt = µt(W, k, ω) = ρk/z (W, k, ω) (16)

with a given function z. For example, in the 1988 and 2006 models of Wilcox, we have

z (W, k, ω) = ω, (1988 model), (17)

z (W, k, ω) = max

{
ω,Clim

√
2Ω : Ω

β∗

}
, (2006 model). (18)

The symbol : denotes a double dot tensor product. The source terms for the k and ω
equations include production (Pr) and destruction (De) terms. A cross-diffusion term (Di)
is also included in the source term (Ψ = 1) of the ω equation for the 2006 Wilcox model,
but it is not included (Ψ = 0) in the 1988 model.

Qk,(k,ω) := P̃ rk,(k,ω) −Dek,(k,ω), Qω,(k,ω) := Prω,(k,ω) −Deω,(k,ω) + ΨDiω,(k,ω), (19)

where

Prk,(k,ω) := τRS :
du

dx
, Dek,(k,ω) := β∗kω (20a)

Prω,(k,ω) := α
ω

k
τRS :

du

dx
, Deω,(k,ω) := βω2. (20b)

Diω,(k,ω) := σd
1

ω
〈grad k, grad ω〉 . (20c)

The symbols σk and σω represent fixed constants defined in Appendix A. In the 1988 Wilcox
model, the production term of the k equation is generally limited according to

P̃ rk,(k,ω) := min
{
Prk,(k,ω), 20Dek,(k,ω)

}
, (21)

so as to prevent very large Prk during the initial phases of a calculation. An example to
demonstrate the impact and influence of Eq.(21) on possible solutions is presented in Section
7 of Ref. [24]. This change is not included in the 2006 Wilcox model due to the introduction
of a stress limiter. This stress limiter can have a significant effect on a shock location. The
effect of varying the stress limiter on the shock location for the RAE 2822 airfoil (Case 10)
is shown in Swanson and Rossow [39].
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3.2 Menter k-ω model (SST model)

In the 2003 Menter SST model, the constants σk and σω in the two transport equations
(15a) and (15b) are replaced with blending functions Φk and Φω. These blending functions
that depend on the σk and σω in the k-ω and k-ε models. The source terms are also changed
due to blending functions for the k-ω and k-ε models.

The eddy viscosity is determined from Eq. (16) with z (W, k, ω) given by

z (W, k, ω) =
1

min
{

1
ω ,

a1
F2

√
2S:S

} = max

{
ω,
F2

√
2S : S

a1

}
. (22)

Here, F2 is a blending function defined by

F2 := tanh
(

(max {Γ1, 2Γ3})2
)

(23)

where

Γ1 :=
CΓ1

νl
d2ω

, Γ3 :=

√
k

β∗ωd
, β∗ := 0.09, (24)

d is the distance to the closest no-slip wall, and νl is the kinematic viscosity. According to
Ref. [12], the constants are a1 = 0.31 and CΓ1

= 500. The source terms, having the same
components as in Eq. (19), are given by

Qk,SST = Prk,SST −Dek,SST, Qω,SST = Prω,SST −Deω,SST +Diω,SST, (25)

where

Prk,SST := τRS :
du

dx
, Dek,SST := β∗kω, (26a)

Prω,SST := Φγ
1

νt
τRS :

du

dx
, Deω,SST := Φβω

2, (26b)

Diω,SST := 2 (1− F1)σω2

1

ω
〈grad k, grad ω〉 . (26c)

The blending of the SST model is controlled by a function Φ = Φ (x; ε1, ε2). This function is
designed to detect the edge of the boundary layer, such that the SST model behaves inside
the boundary layer like a k-ω model and outside like a k-ε model, exploiting the convex
combination Φ : [0, 1]→ [ε1, ε2],

Φ (F1; ε1, ε2) := F1ε1 + (1− F1) ε2. (27)

Details of the blending, blending functions, and coefficients of the SST model are given in
Appendix B.

3.3 Simplifications of k-ω Models

Although these models are formulated in their compressible form (15), their actual imple-
mentation and usage is often based on their incompressible version. In fact, this occurs even
when they are used with respect to compressible flow. Then, one assumes

div (u) = 0, (28)

yielding for the equation of mass conservation 0 = ∂ρ
∂t + 〈grad ρ, u〉, and hence

∂ (ρk)

∂t
+ div (ρku) = ρ

(
∂k

∂t
+ div (ku)

)
, (29)

∂ (ρω)

∂t
+ div (ρωu) = ρ

(
∂ω

∂t
+ div (ωu)

)
. (30)
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Inserting Eq. (29) and Eq. (30) into Eq. (15) gives

∂k

∂t
+ div (ku) =

1

ρ
div ((µl + σkµt) grad k) +Qk,(k,ω), (31a)

∂ω

∂t
+ div (ωu) =

1

ρ
div ((µl + σωµt) grad ω) +Qω,(k,ω), (31b)

and the independent variables Wt = (ρk, ρω) are replaced by Wt = (k, ω). To be consistent
using assumption given in Eq. (28), we have

ρτ = 2µtS. (32)

In a second step, assumption (28) can be integrated into (32). This yields S = S and finally

ρτ = 2µtS. (33)

Remark Often, it is not indicated if the assumption Eq. (28) is included into the formulation
of the turbulence model, that is, if Eq. (32) or Eq. (33) is used for the formulation of the
production terms. For the implementation considered here, we chose Eq. (32).

3.4 Integral Form of k-ω Models

When integrating the diffusive terms in Eq. (31) over a control volume, they cannot be
rewritten as a surface integral because of division with density ρ. Hence, a further approxi-
mation is introduced,

1

ρ
div ((µl + σkµt) grad k) ≈ div ((νl + σkνt) grad k) , (34a)

1

ρ
div ((µl + σωµt) grad ω) ≈ div ((νl + σωνt) grad ω) . (34b)

Integration of Eq. (31) using the approximation of Eq. (34) gives the integral equation

VD
(
Q(k,ω) (Wt,W )

)
(t) =

d

dt
VD (Wt) (t) +R∂D,(k,ω) (Wt,W ) (t) , (35)

where the integral operators are R∂D,(k,ω) := Rc,∂D,(k,ω) −Rv,∂D,(k,ω), and

Rc,∂D,(k,ω) (Wt,W ) (t) :=

∫
∂D

〈
fc,(k,ω) (Wt (y, t) ,W (y, t)) , n(y)

〉
ds(y),

Rv,∂D,(k,ω) (Wt,W ) (t) :=

∫
∂D

〈
fv,(k,ω) (Wt (y, t) ,W (y, t)) , n(y)

〉
ds(y).

Here, the convective fc,(k,ω) and viscous fv,(k,ω) contributions as well as the source termsQ(k,ω)

are summarized by

fc,(k,ω) (Wt,W ) :=

(
ku
ωu

)
, (36a)

fv,(k,ω) (Wt,W ) :=

(
(νl + σkνt) grad k
(νl + σωνt) grad w

)
, (36b)

Q(k,ω) (Wt,W ) :=

(
Prk,(k,ω) −Dek,(k,ω)

Prω,(k,ω) −Deω,(k,ω) +Diω,(k,ω)

)
. (36c)

10



3.5 Nondimensionalization

For a numerical implementation, a suited scaling and nondimensionalization is often crucial.
Due to the no-slip wall boundary condition (see Ref. [24] and Section 2) for ω,

lim
h→0+

ω (x− hn(x))h2 =
6νl
β
, x ∈ ∂Dno−slip, (37)

typically, the values for ω related to k and the other conservative variables Eq. (2) may
differ in orders of magnitude. For this reason, a scaling of ω is introduced.

Throughout this subsection, we denote dimensional variables using the sign ,̂ for example
dimensional density is denote by ρ̂. To nondimensionalize k̂ and ω̂, we choose as reference
values

kref = u2
ref and ωref =

uref

Lref
. (38)

Then the nondimensional variables are given by

k =
k̂

u2
ref

and ω =
ω̂

ωscωref
, ωsc =

Re
√
γM∞L

, (39)

where ωsc denotes the additional scaling for ω. Such scaling may be motivated by the
following argumentation. Boundary condition Eq. (37) is realized by

ωno−slip (pi,bdry) =
60νl (W (pi,bdry))

β ‖pi,bdry − pi,n‖22
, pi,bdry ∈ ∂Dno−slip, (40)

where pi,bdry denotes the point on the no-slip wall and pi,n the closest, next discrete point
in direction −n (pi,bdry). Obviously, with respect to possible mesh refinements the distance
to the closest wall satisfies

dh,i ≈ ‖pi,bdry − ph,i,n‖2 → 0, h→ 0,

and hence possibly numerical instabilities emerge due to a significant increase in the bound-
ary values ωno−slip. To resolve the flow inside the boundary layer, meshes are in general
generated such that this distance scales with the Reynolds number, di = di(Re) ∼ C/Re.
As a consequence, the choice of ωsc is some normalization

ωno−slip ∼ C̃
1

ωsc

√
γM∞L

Re(
C
Re

)2 ∼ C,
and the largest values for ω are in a range of the other variables.

This scaling parameter needs to be correctly incorporated in all terms and equations.
For a detailed study, we refer to Refs. [40,41], here we just report the results. For example,
to obtain the scaled, nondimensional version of the eddy viscosity Eq. (16) together with
Eq. (22) for the SST model, we have

µt =
1

ωsc
ρkmin

{
1

ω
,

ωsca1

F2

√
2Ω : Ω

}
.

Then, introducing Eq. (38) into Eq. (36a), Eq. (36b) and Eq. (36c), we compute

fc,(k,ω)

(
Ŵt, Ŵ

)
= uref

(
kref 0
0 ωrefωsc

)
fc,(k,ω) (Wt,W ) , (41)

fv,(k,ω)

(
Ŵt, Ŵ

)
= uref

(
kref
ωsc

0

0 ωref

)
f̃v,(k,ω) (Wt,W ) , (42)
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where

f̃v,(k,ω) (Wt,W ) :=

(
(Γ(T ) + σkνt) grad k
(Γ(T ) + σωνt) grad ω

)
, Γ(T ) = T 3/2

(
1 + Csuth

T + Csuth

)
,

and Csuth denotes Sutherland’s constant. For the source terms of Eq. (36c), we obtain

Prk,(k,ω)

(
Ŵt, Ŵ

)
=

u3
ref

Lrefωsc
Prk,(k,ω) (Wt,W ) , (43a)

Dek,(k,ω)

(
Ŵt, Ŵ

)
=

u3
refωsc
Lref

Dek,(k,ω) (Wt,W ) , (43b)

Prω,(k,ω)

(
Ŵt, Ŵ

)
= =

u2
ref

L2
ref

Prω,(k,ω) (Wt,W ) , (43c)

Deω,(k,ω)

(
Ŵt, Ŵ

)
=

u2
refω

2
sc

L2
ref

Deω,(k,ω) (Wt,W ) , (43d)

Diω,(k,ω)

(
Ŵt, Ŵ

)
=

u2
ref

L2
ref

Diω,(k,ω) (Wt,W ) . (43e)

Introducing the mapping g : D → D̂, x 7→ Lrefx, which maps the computational domain D
to its physical domain D̂, and application of substitution formulae∫

D̂

v(x)dx = Lmref

∫
D

v(g(y))dy, (44a)∫
∂D̂

〈v(y), n(y)〉 ds(y) = Lm−1
ref

∫
∂D

〈v(g(y)), n(y)〉 ds(y). (44b)

Using Eqs. (41), (42) and Eqs. (43a)–(43e), the integral Eq. (35) can be converted to:(
L2

refu
3
ref

ωsc

∫
D
Prk,(k,ω)dy − L2

refu
3
refωsc

∫
D
Dek,(k,ω)dy

Lrefu
2
ref

∫
D
Prω,(k,ω)dy − Lrefu

2
refω

2
sc

∫
D
Deω,(k,ω)dy + Lrefu

2
ref

∫
D
Diω,(k,ω)dy

)

=

(
L2

refu
3
ref 0

0 ωscLrefu
2
ref

){
d

dt
VD(Wt)(t) +Rc,∂D,(k,ω) (Wt,W ) (t)

}
−

(
1
ωsc

L2
refu

3
ref 0

0 Lrefu
2
ref

)∫
∂D

〈
f̃v,(k,ω) (Wt,W ) , n

〉
ds(y).

Multiplication of the whole system with the diagonal matrix diag
(

1
L2

refu
3
ref
, 1
ωsc

1
Lrefu2

ref

)
gives

the mathematically equivalent system of equations(
ω−1
sc

∫
D
Prk,(k,ω)dy − ωsc

∫
D
Dek,(k,ω)dy

ω−1
sc

∫
D
Prω,(k,ω)dy − ωsc

∫
D
Deω,(k,ω)dy + ω−1

sc

∫
D
Diω,(k,ω)dy

)
=

d

dt
VD(Wt)(t) +Rc,∂D,(k,ω) (Wt,W ) (t)

−
(
ω−1
sc 0
0 ω−1

sc

)∫
∂D

〈
f̃v,(k,ω) (Wt,W ) , n

〉
ds(y). (45)

The system of equations Eq. (45) is the actual system of equations which is implemented
and solved. Naturally, the choice ωsc = 1 or any other reasonable choice is also possible.
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3.6 Boundary-Value Problem

Following the presentation in Ref. [24], a suitable formulation of the complete boundary-
value problem is required. Defining the hyperplane

E := {(x1, x2, x3) : a1x1 + a2x2 + a3x3 + Cω = 0} ⊂ R3,

and according to E

V − := {(x1, x2, x3) : a1x1 + a2x2 + a3x3 + Cω < 0} ⊂ R3,

V + := {(x1, x2, x3) : a1x1 + a2x2 + a3x3 + Cω > 0} ⊂ R3,

we formulate the following boundary-value problem:

Exterior turbulent flow problem, formulation:

Find a function W † that satisfies the steady RANS equations in V + \D, that is

d

dt
W † (x, t) = 0 for all x ∈ V + \D, t ≥ T † > 0,

and satisfies the (adiabatic) no-slip wall boundary conditions and

lim
h→∞

W (x+ hy, t) = W∞, x ∈ E, 〈a, y〉 > −Cω,

lim
h→0

W (x+ hy, t) = W∞, x ∈ E, 〈a, y〉 > −Cω.

Additionally, find a function Wt that satisfies the k-ω turbulence model in V + \ D, and
satisfies the boundary conditions

(k, ω) = (0,∞) on ∂D

and

lim
h→∞

(k(x+ hy), ω(x+ hy)) = (0, 0), x ∈ E, 〈a, y〉 > 0,

lim
h→0

(k(x+ hy), ω(x+ hy)) = (∞,∞), x ∈ E, 〈a, y〉 > 0.

The boundary conditions are realized following the presentation in [24].

4 Solution Algorithm

4.1 Multigrid and Implicit Smoother

The discretization strategy followed is based on a finite-volume formulation. The inviscid
terms are discretized using a central difference scheme with an added matrix-valued artificial
viscosity [29]. A first-order upwind scheme is applied to the convective part of the turbulent
flow equations. Gradients required for the viscous terms and for the source terms are
computed using a Green-Gauss formulation (see [42]). For a detailed description of the
discretization strategy and boundary conditions applied, we refer to [29,30,40].

The discretization of the mean flow Eqs. (1) together with the turbulent flow Eqs. (35)
yields the system of ordinary differential equations

d

dt

(
W(t)
Wt(t)

)
=

(
−M−1

meanRmean (W(t),Wt(t))
−M−1

turbRturb (W(t),Wt(t))

)
, (46)
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where

Mmean := diag (diag (vol (Ωi))) ∈ R5Nelem×5Nelem

Mturb := diag (diag (vol(Ωi))) ∈ R2·Nelem×2·Nelem

denote the mass matrix for mean and turbulent flow equations. To approximately solve
Eq. (46), we assume that the mean flow equations depend only on W, and Wt acts only as
a parameter here, whereas the turbulent flow equations depend only on Wt, and W acts as
a parameter. Hence, we rewrite system (46) as

d

dt
W(t) = −M−1

meanRmean (W(t); Wt(t)) (47a)

d

dt
Wt(t) = −M−1

turbRturb (Wt(t); W(t)) . (47b)

Equations (47a) and (47b) are then solved sequentially in a loosely coupled manner (see
loosely and fully coupled methods Ref. [43]).

To approximate a steady-state solution, we apply a nonlinear multigrid method (see
Ref. [44]), which is called the Full Approximation Scheme (FAS), to the mean flow equa-
tion (47a). The turbulent flow equation (47b) is solved in a single grid mode, only. A
multistage diagonally implicit Runge-Kutta method is used as a smoother (see Ref. [40])

W(0) := Wn

W(j) = W(0) − αj+1,jPj

(
W(j−1)

)−1

R
(
W(j−1)

)
, j = 1, . . . , s (48)

Wn+1 = W(s),

Pj

(
W(j−1)

)
:= (∆T )

−1
M +

dR

dW

[
W(j−1)

]
, ∆T := diag (diag (∆ti)) , (49)

where we have negelected the subindices mean and turb, and ∆ti denotes the local time
step. To apply Eq. (48), the linear equation

Prec−1
j Pjx = αj+1,jPrec−1

j R(W(j−1)). (50)

needs to be solved. Here, Precj denotes some preconditioner, which is the major ingredient
of the algorithm. To find an approximation of Eq. (50), we apply a (left) preconditioned
GMRES method (see for example Ref. [45]) with initial guess x(0) = 0:

• Solve (approximately) Precjr0 = αj+1,jR
(
W(j−1)

)
• Compute β := ‖r0‖2,v1 := 1

β r0

• for k = 1, . . . ,m

– Solve (approximately) Precjw = Pjvk

– for i = 1, . . . k

∗ hi,k := 〈w,vi〉
∗ w := w − hi,kvi

– hk+1,k = ‖w‖2,vk+1 = 1
hk+1,k

w

• V = (v1, . . . ,vm) , Hm = (hi,k)1≤i≤k+1,1≤k≤m

• Solve ym := argminy‖βe1 −Hmy‖2 by Given’s-rotations
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• x(m) := x(0) + Vmym

In the GMRES method, the matrix-vector multiplication of the operator given in (50)
applied to a vector is approximated by a finite-difference of the residual operator,

dR

dW
(W) h ≈ 1

2ε
(R (W + εh)−R (W − εh)) .

The choice of a suitable ε > 0 is not trivial, as cancellation and approximation errors need
to be balanced. A possible method can be found in [42, Chapter 6.2.5].

4.2 Construction of Preconditioner

The preconditioner has two contributions:

a) the linear operator Precj itself,

b) an iterative solution method for approximately solving the linear systems

Precjw = Pjvk. (51)

For the construction of the linear operators we follow the approach presented in [29,40]:

Precj,mean := (∆T )
−1

Mmean + εαjj
dR̃comp

mean

dW
, (52)

Precj,turb := (∆T )
−1

Mturb + εαjj
dR̃

comp,(k,ω)
turb

dWt
. (53)

Here, dR̃comp
prec /dW is a linearization of a residual based on a compact discretization scheme.

The parameter ε is introduced to allow for over and under relaxation.

The focus in this article is the presentation of the preconditioning technique for the
k-ω equations. To realize this preconditioner, the derivatives of the source terms to con-
struct Precj,turb do not include the destruction terms

∂Dek,(k,ω)

∂ki
and

∂Deω,(k,ω)

∂ωi
. (54)

The necessity for this modification is discussed in Section 5.1.

4.3 Solving Linear Systems and Truncation Criteria

To realize the preconditioned GMRES method approximately solving (50), we need to define
appropriate truncation criteria. To this end, we distinguish two principal implementations
of Eq. (48):

M1) When the number of GMRES steps is 0 and only the preconditioning step is evaluated,

M2) When the number of GMRES steps is 6= 0.

To approximately solve (50) for the mean flow equations we follow both strategies M1 and
M2:

• When choosing M1, we apply either at most 250 symmetric Gauss-Seidel sweeps or
iterate until

‖Precjr0 − αj+1,jR
(
W(j−1)

)
‖2

‖αj+1,jR
(
W(j−1)

)
‖2

< 10−2.
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• When choosing M2, we truncate the GMRES iteration either after at most 20 steps
or if

‖Pjx
(m) − αj+1,jR(W(j−1))‖2
‖αj+1,jR(W(j−1))‖2

< 10−2.

For approximately solving the linear systems (51), we apply five symmetric Gauss-
Seidel sweeps.

4.4 Choice of Time Step

To compute the local time steps ∆ti in (49) for both the mean flow equations and for
the turbulence modeling equations, we use an approximation to the spectral radius of the
diagonal blocks of dR

dW , that is,

∆ti := CFL · vol (Di)

 ∑
j∈N (i)

svol(eij)

(
ρ

(
∂H1st,Roe

∂Wi

)

+Cvρ

(
∂
〈
fv (Wi,Wj) , neij

〉
∂Wi

)TSL,µ=const
−1

, Cv := 8.

The CFL number is chosen according to

CFL = min {CFLinit · f(n),CFLmax} , (55a)

f(n) =

{
1, n < 10,

αn−10, n ≥ 10,
α > 1. (55b)

Typical values are CFLinit = 3 and CFLmax = 1000. For more details, we refer to Refs. [29,
40,46].

4.5 Positivity of k and ω

To deal with the problem of positivity of k and ω, we simply introduced a damping of the
updates. For example, Algorithm Eq. (48) gives for the variables ki and ωi, i = 1, . . . , Nelem,
the updates

k
(j)
i = k

(0)
i −∆ki, (56a)

ω
(j)
i = ω

(0)
i −∆ωi, (56b)

where (∆ki,∆ωi) denotes the symbol for ith entry of the solution vector that one obtains
by evaluating

αj+1,jP
−1
j R

(
W(j−1)

)
.

Direct application of Eq. (56) often yields negative values, in particular for k. Most often
this is observed for high-lift test cases, but for almost all test cases, negative values show
up for k and ω at least during the starting phase of the iteration. Therefore, we replaced
the update of Eq. (56) by an application of Algorithm 1.

Algorithm 1 represents a kind of damped Newton method introducing a further effect of
regularization. Expressed in formulae, Algorithm 1 realizes the following condition:

s
(k)
n,i = min

n∈N0

{
1

2n

}
such that k

(j)
i > 0,

s
(ω)
n,i = min

n∈N0

{
1

2n

}
such that ω

(j)
i > 0.
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Algorithm 1 Update for k-ω model

1: procedure Loop over all mesh points to update k and ω
2: for i = 1, . . . , Nelem do
3: sn = 1
4: for n = 1, 2, . . . do

5: knew
i = k

(0)
i − sn∆ki

6: if knew
i > 0 then

7: k
(j)
i = knew

i

8: break
9: else

10: sn+1 = sn
2

11: for i = 1, . . . , Nelem do
12: sn = 1
13: for n = 1, 2, . . . do

14: ωnew
i = ω

(0)
i − sn∆ωi

15: if ωnew
i > 0 then

16: ω
(j)
i = ωnew

i

17: break
18: else
19: sn+1 = sn

2

A side effect of this approach is the fact that the updates may become arbitrarily small,
yielding an overall convergence corruption. However, so far, none of the considered cases
have been observed to have a stalled convergence. Compared with many other methods
tried to ensure positivity of k and ω, Algorithm 1 was found to be superior with the present
implementation. The simplicity of Algorithm 1 is another argument for its use. Nevertheless,
Algorithm 1 cannot guarantee convergence. Hence, future work may require focus on other
mechanisms to ensure positivity of k and ω without reformulating the k-ω model itself. On
the other hand, the damping of updates

knew
i = k

(0)
i − sn∆ki

ωnew
i = ω

(0)
i − sn∆ωi

is not a severe restriction and is justified in the following sense. Using in general (48) to
compute the updates, we have

(∆ki,∆ωi) = αj+1,j

[(
(∆t)

−1
M + αjj

dR

dW

(
W(j−1)

))−1,app

R(W(j−1))

]
i

.

A necessary criterion for convergence is ‖R(W(j−1)‖ → 0, that is in particular(
R(W(j−1)

)
i
→ 0.

If the solution of the turbulence modeling equations converges, then at some iterate the
updates ∆ki and ∆ωi are so small that additional damping is not necessary, and at the
same time, positivity of k and ω is ensured. In this sense, Algorithm 1 is not a severe
restriction. In the case that this algorithm is active all over the iteration, the solution of the
turbulence modeling equations does not converge. Then, one either needs to question the
application to the considered test case or the numerical method being applied. In particular,
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if this is the case, it can be assumed that with the implemented solution method no positive
function k and/or ω can be computed.

To illustrate the mode of operation of Algorithm 1, a plot of the number of k limitations
and ω limitations is given in Figs. 1 and 2 for the Wilcox model of 1988 and for the SST
model, respectively. To approximate a solution, we performed for each multigrid cycle on the
mean flow equations 20 subiterations on the turbulence modeling equations. The number
of multigrid cycles is plotted on the upper x-axis, and the total number of subiterations
on the lower x-axis. From Fig. 1 (left), we can observe that not only the total number of
limitations for k goes to zero, but also within each subiteration the number of limitations
is significantly reduced. For the Wilcox model of 1988, no limitation of the ω variable is
required, which is clearly seen in Fig. 1 (right).

Figure 1: Number of limitations for the 1988 Wilcox k-ω model.

Figure 2: Number of limitations for the Menter SST model.

For the considered example, the number of limitations required for the SST-model is
significantly smaller. Moreover, Fig. 2 (right) shows that for the SST-model, limitations for ω
are also performed. As expected from considerations above, at some level in convergence,
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the number of limitations for both the k and ω variables is 0. This means, that discrete,
positive solutions for k and ω are obtained. This confirms numerically that the suggested
limitation given by Algorithm 1 yields discrete solutions satisfying positivity for k and ω
if convergence of the equations is observed. However, as long as one of the functions for k
or ω is locally negative, the algorithm cannot converge.

5 Considerations for the k-ω Model

In this section, at least for some of the heuristics and arguments previously given, we are
going to present both an analysis for the linear and nonlinear parts of the solution algorithm.

5.1 Analysis of Linear Part

In Section 4.1, it is stated that the derivatives of the the destruction terms of Eq. (54) are
neglected for the construction of the preconditioner. To illustrate this necessity, we use the
fact that the splitting method

xm+1 = Mxm +Nb

converges if and only if ρ(M) < 1 (e.g., see Ref. [47]). For the Jacobi and Gauss-Seidel
methods, the iteration matrix M is given by

MJac = D−1 (D −A) and MGS = − (D + L)
−1
R.

Using Arnoldi’s method, as in the inner part of the GMRES method Refs. [29, 31], we can
aproximate the spectrum of these operators for the preconditioner Eq. (53), including and
neglecting Eq. (54). Figures 3 and 4 show the approximated eigenvalue distributions at the
beginning and end of a nonlinear iteration, respectively. For each figure, Eq. (54) is included
on the left and excluded on the right. In particular, at the beginning of the iteration, an
inclusion of Eq. (54) changes the spectrum of the iteration matrices such that convergence of
both the Gauss-Seidel and the Jacobi methods is not possible, whereas exclusion of Eq. (54)
gives a converging method. For the final state, the situation improves, but as one can
observe in Fig. 4 (left), there are still a few approximate eigenvalues outside the range of
stability. Hence, for the overall nonlinear iteration process, it is necessary and beneficial to
neglect Eq. (54). Moreover, when comparing the spectra of the Jacobi and the Gauss-Seidel
methods, we observe a more equally distributed one for the latter one.

5.2 Analysis of Nonlinear Part

To understand if we can expect convergence of the solution for the turbulence modeling
equations for the outer nonlinear iteration, at least in a small neighborhood of a solution(
W†,W†

t

)
, for example,

Rturb

(
W†

t ,W
†
)

= 0.

We assume a small perturbation, that is, ‖Wt‖ < ε of W†
t . Using a Taylor series expansion

and neglecting terms of higher order, we approximate

dW(t)

dt
=

d
(
W† + W(t)

)
dt

= −M−1R
(
W† + W

)
≈ −M−1

(
R
(
W†)+

dR

dW

(
W†)W

)
= −M−1AW(t), A :=

dR

dW

(
W†) .
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Figure 3: Eigenvalue distribution of Jacobi and Gauss-Seidel method in the beginning of
nonlinear iteration.

Figure 4: Eigenvalue distribution of Jacobi and Gauss-Seidel method for the final nonlinear
iteration.

Then, the update of the multistage Runge-Kutta scheme Eq. (48) can be expressed by
a polynomial expression,

Wn+1 = qs
(
Prec−1,appA

)
Wn,

qs(z) = 1 +

s∑
j=1

(−1)jzjΠs
i=s−j+1αi+1,i. (57)

Thus, the multistage Runge-Kutta scheme (48) is stable, that is, it defines a contracting
operator in a linear sense for all z ∈ C, if |qs(z)| < 1.

To compute approximations to the eigenvalues of P−1,appA, we again exploit the GMRES
method and its connection to the Arnoldi process (se Refs. [29, 31]). As a test case, we
consider Case 9 from the experiments of Cook, McDonald and Firmin [48] and a 320×64 C-
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Linear stability range for one−stage scheme
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Linear stability range for three−stage scheme
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Figure 5: Range of stability for multistage schemes and approximate spectrum for two
equation k-ω model of CASE 9.

type mesh. This mesh is a member of a family of meshes used later in Section 6 on Numerical
Examples. To transform the spectrum, we restrict ourselves to the one-stage scheme with
coefficients α21 = 1.0, the three-stage scheme with coefficients α21 = 0.15, α32 = 0.4, α43 = 1
and the five-stage scheme with coefficients α21 = 0.0695, α32 = 0.1602, α43 = 0.2898, α54 =
0.5060 and α65 = 1.0 (see Ref. [25]). Figure 5 shows the range of stability of these multistage
schemes together with the approximate spectrum. For this test case and for both the three-
stage and the five-stage schemes, we can expect a stable method, whereas the one stage
scheme is expected to diverge.
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6 Numerical Examples

To demonstrate the applicability of the suggested algorithms, we consider some standard
2-D and challenging 3-D test cases, which have been computed frequently in the literature.
The 2-D cases are transonic flows over an airfoil. The 3-D cases include relatively low-speed
flow over a wing-body geometry and transonic flow over a wing-body configuration at a high
angle of attack. For the 2-D cases, we consider both the Wilcox and SST k-ω models. The
SST model is used in the 3-D computations. The density residual is evaluated by

density residual(n) :=

√√√√Nelem∑
j=1

(Rj,mean,ρ (WTn))
2

(vol(Ωj))2
/

√√√√Nelem∑
j=1

(Rj,mean,ρ (W∞))
2

(vol(Ωj))2
,

for k-ω model we evaluate both corresponding residuals

k − residual(n) :=

√√√√Nelem∑
j=1

(Rj,turb,k (kTn , ωTn))
2

(vol(Ωj))2
/

√√√√Nelem∑
j=1

(Rj,turb,k (k∞, ω∞))
2

(vol(Ωj))2
,

ω − residual(n) :=

√√√√Nelem∑
j=1

(Rj,turb,ω (kTn , ωTn))
2

(vol(Ωj))2
/

√√√√Nelem∑
j=1

(Rj,turb,ω (k∞, ω∞))
2

(vol(Ωj))2
.

To satisfy near machine zero, a computation is truncated, and the result is accepted as soon
as density residual(n) < 10−14. The computations on unstructured grids were performed in
parallel using MPI and either the C2A2S2E2 or CARA cluster of DLR.

6.1 RAE 2822 Airfoil

The first examples considered correspond to the RAE 2822 airfoil. These examples have
been chosen because they are frequently considered when attempting to validate turbulence
models. There are two cases, Case 9 and Case 10, for transonic flow over the RAE 2822
airfoil [48]. The flow conditions for these cases are given in Table 1. In Case 9, there is a
fairly strong shock wave occurring on the upper surface of the airfoil; where as in Case 10,
there is a sufficiently strong shock on the upper surface to cause significant separation of
the flow behind the shock.

We perform the computations on a sequence of C-type structured meshes described in
Table 2. The meshes have a C-type topology. The finest mesh consists of 1280 cells around
the airfoil (1024 cells on the airfoil) and 256 cells in normal direction. The normal mesh
spacing at the surface of the finest mesh is approximately 3 × 10−6, and the maximum
surface cell aspect ratio is about 560.

Table 1: Flow Conditions for RAE 2822 airfoil

Cases M∞ AoA Re
Case 9 0.73 2.79° 6.5 · 106

Case 10 0.75 2.81° 6.2 · 106
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Table 2: Mesh data for RAE 2822 airfoil

Coarse Medium Fine
Mesh size 320× 64 640× 128 1280× 256

No. of quadrilaterals 20480 81920 327680
No. of cells on the airfoil 256 512 1024

Table 3: Case 9: Computed lift and drag coefficients with 1988 k-ω model

Model Grid CL CD (CD)p (CD)v
kω-1988 320× 64 0.792254 0.0195732 0.0120721 0.0075010
kω-1988 640× 128 0.804623 0.0191719 0.0122047 0.0069673
kω-1988 1280× 256 0.806221 0.0189818 0.0121783 0.0068035

Table 4: Case 9: Computed lift and drag coefficients with SST model

Model Grid CL CD (CD)p (CD)v
SST 320× 64 0.742041 0.0163938 0.0103164 0.0060774
SST 640× 128 0.761013 0.0164595 0.0106297 0.0058298
SST 1280× 256 0.766296 0.0164743 0.0107338 0.0057406

Table 5: Case 10: Computed lift and drag coefficients with 1988 k-ω model

Model Grid CL CD (CD)p (CD)v
kω-1988 320× 64 0.800997 0.0309963 0.0236907 0.0073056
kω-1988 640× 128 0.814742 0.0300047 0.0232394 0.0068074
kω-1988 1280× 256 0.815570 0.0298718 0.0232158 0.0066560

Table 6: Case 10: Computed lift and drag coefficients with SST model

Model Grid CL CD (CD)p (CD)v
SST 320× 64 0.722263 0.0241748 0.0187140 0.0054608
SST 640× 128 0.742187 0.0246749 0.0194276 0.0052473
SST 1280× 256 0.743644 0.0248062 0.0194821 0.0053241

The initial numerical calculations for the two RAE 2822 cases were performed with the
complete solution algorithm of this paper, which includes agglomerative multigrid and GM-
RES, in the framework of an unstructured grid computer code. Tables 3–6 include the
predicted lift and total drag coefficients, including the pressure and skin-friction contribu-
tions. In Figs. 6–9, convergence histories using the 1988 version of the Wilcox k-ω and the
2003 Menter SST turbulence models are presented. The final plots, which are included in
Fig. 14, show the computed surface pressure distributions for the two RAE cases compared
with the experimental data of Cook, McDonald and Firman [48].

In the second set of results for Cases 9 and 10, the numerical computations were per-
formed using the core of the solution algorithm described previously in the framework of
a structured grid computer code. Results are for both the 2006 version of the Wilcox k-ω
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and the 2003 Menter SST turbulence models. The convergence history results from these
calculations are displayed in Figs. 10 to 13. As shown in these figures, the residuals for
both the RANS equations and the transport equations of the turbulence models indicate
a consistent, reliable linear convergence rate, and solutions are attained in only 125 to 150
multigrid cycles. Additional discussion of applications of the structured grid code are given
in Ref. [13].
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(a) (b)

Figure 6: Convergence histories for Case 9 and the k-ω model: (a) mean flow equations, (b)
k-ω equations.

(a) (b)

Figure 7: Convergence histories for Case 10 and the k-ω model: (a) mean flow equations,
(b) k-ω equations.
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(a) (b)

Figure 8: Convergence histories for Case 9 and the SST model: (a) mean flow equations,
(b) k-ω equations.

(a) (b)

Figure 9: Convergence histories for Case 10 and the SST model: (a) mean flow equations,
(b) k-ω equations.
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Figure 10: Convergence histories of the solution computed for turbulent flow over RAE
2822 airfoil (Case 9). The effects of turbulence are represented with the Wilcox k-ω model
(2006). A family of grids is considered: 320× 64, 640× 128, and 1280× 256 cells; (a) mean
flow equations, (b) k-ω equations.

Cycles

Lo
g(

||R
es

||
2)

C
L

0 50 100 150 200 250 300
-16

-14

-12

-10

-8

-6

-4

-2

0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

320 x 64
640 x 128
1280 x 256

RAE 2822 Airfoil,  Case 10,  k-  Model (2006)

(a)

Cycles

Lo
g(

||R
es

k||
2)

Lo
g(

||R
es

||
2)

0 50 100 150 200 250 300

-18

-16

-14

-12

-10

-8

-6

-4

-2

-18

-16

-14

-12

-10

-8

-6

-4

-2

k, 320 x 64

k, 640 x 128

k, 1280 x 256

RAE 2822 Airfoil,  Case 10,  k-  Model (2006)

(b)

Figure 11: Convergence histories of the solution computed for turbulent flow over RAE
2822 airfoil (Case 10). The effects of turbulence are represented with the Wilcox k-ω model
(2006). A family of grids is considered: 320× 64, 640× 128, and 1280× 256 cells; (a) mean
flow equations, (b) k-ω equations.
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Figure 12: Convergence histories of the solution computed for turbulent flow over RAE
2822 airfoil (Case 9). The effects of turbulence are represented with the Menter SST model
(2003). A family of grids is considered: 320× 64, 640× 128, and 1280× 256 cells; (a) mean
flow equations, (b) k-ω equations.
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Figure 13: Convergence histories of the solution computed for turbulent flow over RAE
2822 airfoil (Case 10). The effects of turbulence are represented with the Menter SST
model (2003). A family of grids is considered: 320× 64, 640× 128, and 1280× 256 cells; (a)
mean flow equations, (b) k-ω equations.
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Figure 14: Surface pressure coefficient (Cp) distributions for Case 9 (top) and Case 10
(bottom) with comparisons to experimental data.
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6.2 Transonic Turbulent Flow over a Common Research Model

The next test case is the first of the two 3-D flow computations in this paper. This first case is
turbulent flow over the Common Research Model (CRM). It was considered at the fifth AIAA
Drag Prediction Workshop. The meshes provided by the workshop are block-structured. A
sequence of hybrid meshes was generated from the pure hexahedral meshes. Table 7 provides
information about the grids used in the computations. The relevant physical conditions for
this case are also given. The computed lift and drag coefficients for both mesh sequences
are given in Table 8. There is a detailed description of the meshes given in Ref. [49].

Table 7: Mesh data for DPW5 CRM.

Hybrid meshes Hexahedral meshes
Level No. of Tetrahedra No. of Prisms No. of Hexahedrons No. of points

L1 2555904 425984 638976 660177
L2 8626176 1437696 2156544 2204089
L3 20766720 3301376 5111808 5196193
L4 69728256 11261952 17252352 17441905

Table 8: lift and drag coefficient for CRM and SST model.

Hexahedral meshes Hybrid meshes
CL CD CL CD

L1 0.48636 0.02783 0.50094 0.03012
L2 0.46915 0.02505 0.47431 0.02589
L3 0.46985 0.02470 0.47168 0.02494
L4 0.47426 0.02467 0.47633 0.02488

• Geometry: Wing-body configuration, fifth AIAA Drag Prediction Workshop

• Reynolds number: Re = 5.0 · 106

• Inflow Mach number: M∞ = 0.85

• Angle of attack 2.15°

It should be pointed out that it is difficult to find reports in the literature in which sys-
tematic mesh refinement studies together with two-equation turbulence models (e.g., the
SST-model) are shown for 3-D flows, and the solution algorithm shows a consistent and
reliable convergence behavior. In this paper, the objective is not to perform extensive mesh
refinement studies and attempt to evaluate accuracy, but rather to demonstrate that the
algorithm presented is effective in reducing residuals well below the truncation error of the
numerical algorithm. Again, a necessary requirement to make a determination of accuracy
with any turbulence model is to remove the integration error for a succession of meshes.
Note, detailed information about accuracy for the 3-D flow examples considered herein can
be found in Ref. [29] and [31].

Figure 15 shows the convergence histories for the sequence of meshes for the considered
test case. Application of the algorithm presented in Section 4 made it possible to reach
similar consistent convergence behavior for both the hexahedral and hybrid sequence of
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meshes, and the stopping criterion was realized in only a few hundred multigrid cycles. In
Fig. 16, the surface Cp distribution for the Common Research Model when using hybrid and
hexahedral meshes is displayed.

6.3 NASA TRAP Wing

As a final example, to investigate the behavior of the proposed solution algorithm towards
the incompressible limit, we examine the NASA Trap Wing considered at the first AIAA
High-Lift prediction workshop [5]. For this test case, the importance of an adequate low-
speed preconditioner for the governing flow equations must be emphasized, as there are
low-speed regions as well as regions in which the flow is significantly accelerated. The low-
speed preconditioner applied in this algorithm has a numerical dissipation that is a function
of the local Mach number (see Ref. [50] for details).

For the numerical computations, we used two meshes. The meshes were generated using
VGrid and are marked as UH6 in Table 2 of Ref. [5]. Characteristics of these meshes are
given in Table 9. Figure 17 provides a sense of the gridpoint distribution on the wing-body
surface and symmetry plane for Grid 2. In addition, this figure shows the eddy viscosity
contours corresponding to this grid on the symmetry plane.

Table 9: NASA TRAP Wing: Mesh data.

Mesh No. of points No. of elements
Grid 1 3727008 10169092
Grid 2 11047965 38017477

The flow conditions for this 3-D example are given by

• Geometry: NASA TRAP Wing

• Reynolds number: Re = 4.3 · 106

• Inflow Mach number: M∞ = 0.2

• Angle of attack 28°

The high angle of attack (α) is an especially important flow condition, due to the nu-
merical challenge that it represents in achieving a fully converged solution, as evident in
the literature. In addition, high α aerodynamics can introduce numerous complexities into
the flow field, including recirculation, vortical flow regions and various strong viscous types
of interactions. Convergence histories for these computations with the SST model are dis-
played in Figs. 18. As in the results for the previous examples, these histories also exhibit
near machine zero convergence.
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Figure 15: Convergence histories for DPW5 CRM using SST model: hex mesh (top) and
hybrid mesh (bottom).
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Figure 16: Surface Cp distribution for DPW5 CRM using SST model (computation on
hexahedral mesh (top) and hybrid mesh (bottom)).
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(a)

(b)

Figure 17: (a) Grid of NASA Trap Wing; (b) Computed eddy viscosity in the symmetry
plane with the SST model.
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                residual

Figure 18: Convergence histories of mean flow and turbulent flow equations for the NASA
Trap Wing using the SST model.
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7 Concluding Remarks

In this paper an effective numerical algorithm for solving the RANS equations and the two
transport equations of k-ω type turbulence models has been presented. The integral form of
the RANS and k-ω equations along with the corresponding boundary conditions for a well
defined boundary-value problem have been presented and described. Details of the k-ω type
two-equation models, which include all elements exactly as implemented, have been given.

It is important to emphasize that the two-equation models considered in the paper have
been implemented according to the original papers of Wilcox [32,34] and Menter [37]. Con-
sequently, there are no additional limiters on the dependent variables, which are often used
in the application of the models and not discussed. Furthermore, there are no realizability
conditions being imposed, as seen in some finite-element methods (e.g., [21, 22]), which use
a logarithmic variable substitution. While one can certainly argue that changing the tur-
bulence model for the purpose of what one can call numerical compatibility is appropriate,
from the viewpoint of this paper, this should only be acceptable if the integrity of the model
is not compromised.

To demonstrate the effectiveness and capability of the numerical solution algorithm,
several examples of aerodynamic applications have been presented. Both 2-D and 3-D
flows have been considered with varying degrees of difficulties due to the complexity of the
turbulent flows being considered. In all cases, the convergence histories have been shown.
The computed lift and drag coefficients have also been given.

An analysis of the numerical algorithm is addressed, which reflects some of the properties
and stability of the solution algorithm. An approximate eigenspectrum of the preconditioner
for the inner part of the GMRES method has been determined using Arnoldi’s method. The
impact of the destruction terms, which are part of the source terms of a two-equation turbu-
lence model, using Jacobi and Gauss-Seidel methods has been presented. Neglecting these
terms in the Jacobian of the implicit preconditioner is necessary, in general, and highly ben-
eficial. The distribution of the eigenvalues of the amplification matrix has been obtained for
two-stage, three-stage and five-stage Runge-Kutta schemes with the implicit preconditioner.
The advantage of the present technique with respect to local mode analysis [51] is that the
stability is determined for a specific problem being solved.

As a final remark, in Sections 3.3 and 3.4 the incompressible version of the considered
models was introduced and finally implemeneted. When comparing with results from other
codes using the original compressible version of the models for subsonic and transonic flow
cases, no major differences between the results were observed. However, at the outset there
seem to be no obvious obstacles to apply the methods proposed in this article also directly to
the compressible version of the models. Future work will address how the methods proposed
here can be directly applied to these compressible versions.
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Appendix A

Wilcox k-ω Models

A.1 1988 Wilcox model

The constants of the 1988 model are

σk =
1

2
, σω =

1

2
, α =

5

9
, β =

3

40
, β∗ =

9

100
. (A1)

A.2 2006 Wilcox model

The closure coefficients for the 2006 k-ω model are as follows:

α =
13

25
, β = βofβ , β∗ =

9

100
, σk =

3

5
, σω =

1

2
, σdo =

1

8
, βo = 0.0708, (A2)

Prt =
8

9
, fβ =

1 + 85χω
1 + 100χω

, χω ≡

∣∣∣∣∣ΩijΩjkŜki(β∗ω)3

∣∣∣∣∣ , Ŝki = Ski −
1

2

∂ũm
∂xm

δki,

σd =


0, ∂k

∂xj

∂ω
∂xj
≤ 0

σdo,
∂k
∂xj

∂ω
∂xj

> 0

where Prt is the turbulent Prandtl number. As indicated in the NASA Turbulence Modeling
Resource [38],

α =
βo
β∗
− σωκ

2

√
β∗

, (A3)

where κ is the von Kàrmàn constant (0.4).
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Appendix B

Menter SST Turbulence Model

To realize smooth blending, the function F1 : [0,∞) → [0, 1] is modeled using the
hyperbolic tangent,

F1 = F1(ΓF1
) = tanh

(
Γ4
F1

)
, (B1)
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