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Introduction
• Feedstock enables AM

• Powder, Wire, and others

• Responsibilities of the 
“mill” are passed onto the 
user

• Chemistry
• Cleanliness
• Pedigree
• Conformance to other 

standards



Supply Chain – Standard Feedstock
• Powder supplied by AM machine manufacturers

• Common Alloys (Ti-6Al-4V, Al-Si-10Mg, Inconel 
625, Inconel 718, CoCr, 316L Stainless Steel)

• Always developing parameters for new alloys 
(e.g. NASA’s GRCop42)

• Flowability, chemistry, and even material 
properties are solved by AM machine 
manufacturers, given parts are printed with 
standard material set.

• Typically bottled, relabeled powder from powder 
manufacturing OEMs, with company specific 
requirements and often price markups.

EOS CoCr powder



Supply Chain – Non-Standard Feedstock
• Go to powder OEMs directly

• Large number of alloys available off-the-shelf, 
many for AM specifically.

• PSD and flowability often not ideal for specific AM 
machines

• EOS M100 flowability struggles 

• Ambiguous specifications require focused 
requirements and back-and-forth with OEM to 
ensure powder quality

• Often cheaper if purchased at scale

Inconel 718 off-the-shelf



Supply Chain – Custom Feedstock
• Large powder OEMs or boutique feedstock manufacturers.
• User provides comprehensive powder spec.

• Manufacturing Method 
• Chemistry
• PSD
• Flowability Requirements

• Small batches can be quite expensive, often up to 3x the cost 
of a commercial lot.

• Lead times can extend notably (months)
• Feasible batch size very vendor specific

• 30lb atomizers, vs 500lb atomizers

• Non-standard manufacturing methods:
• ball milling, chemical reduction, etc. “custom” NiCr powder



Powder



Powder
• Most popular feedstock for metal AM

• Laser Powder Bed Fusion 
• Electron Beam Powder Bed Fusion
• Laser Powder Directed Energy Deposition
• Cold Spray 
• Binder Jet

• Powder Production
• Powder Specifications
• Characterization



Powder Manufacturing: Inert Gas Atomization

Crucible Gas Atomization [9]
Nozzle Schematic [10]



Powder Manufacturing: Inert Gas Atomization

Electrode Induction Gas Atomization (EIGA) [11]

100 µm

Gas Atomized Powder



Powder Manufacturing: Inert Gas Atomization
• Used for nearly every standard alloy (e.g. Fe, Ni, Cu, Ti, Al, etc.)
• Nozzle design essential to yield

• Amount of powder atomized in e.g. LPBF size range (10-45 µm) is 
proprietary, but often <50%

• Spherical powder is formed due to the surface tension of the 
liquid drops

• Improves flowability but can also lead to trapped gas porosity

• Powder is sieved and blended with other heats to form a lot



Powder Manufacturing: Other Atomization Types
Water Atomization: 
• Less expensive, but less spherical powder and 

moisture considerations. 

• More common for ferrous alloys in traditional 
PM

50 µm

Plasma Atomization: 
• Starting stock wire/bar. 

• Plasma melts and atomizes powder

• Highly spherical

• Higher melting temperature alloys

Water Atomized Powder [29] Wire Plasma Atomization [16]



Powder Manufacturing: Other
Plasma Spheroidization: 
• Non-spherical (e.g. milled) powder poured through a plasma to melt and spheroidize. 

• Thermal arc, radio-frequency, microwave plasmas

• Powder rejuvenation, and flowability improvements.

High Temperature Remelting Solidification (HRS):
• Powder falls through vertical furnace and melts spheroidizes.

• Lower processing temperature and reducing atmospheres possible.

Rotary Atomization:
• Liquid stream impacts a rotating disk and spreads out forming droplets. 

• Lower melting point alloys

Plasma Rotating Electrode Process (PREP):
• Bar stock used to form a plasma arc, which is rotated to release liquid droplets that solidify.

• Highly Spherical



Powder Manufacturing: Other cont.
Not necessarily for AM, but can be used in combination with a 
spheroidization or remelting process
Ball Milling:
• Mechanical deformation of the powder leads to flattening, shattering, and welding to form 

new particles. Contamination, oxygen, and flowability major concerns. 

Hydride-dehydride:
• Metal is reacted with hydrogen to form a brittle hydride which can be milled

• Dehydridization returns the metal to pure state

• Has been used in metal AM without spheroidization

Electrolytic Methods:
• Galvanic process reduces metal ions into powder/sponge 

Chemical Methods:
• Oxide reduction, precipitation, and thermal decomposition



Hydride-Dehydride Gas Atomization

Plasma Atomization PREP

Powder Manufacturing: Summary

Representative Images of Powder [4]



Powder Requirements: Powder Size Distribution
AM machines have ideal size range for powder. Can be specified in a few ways:

• “cut” based on mesh sizes is the simplest way but lacks some specificity
• 10-45 µm
• -53 µm (-270 mesh)
• -270/+500 mesh (25-63 µm)

• d values require actual knowledge of the PSD and report standard percentiles, 
specified by e.g. ASTM B822

• e.g. d10 = 20µm, d50 = 30µm, d90 = 50µm



Powder Requirements: PSD
• Binder jet powder carried in liquid 

so flowability a lower concern

• Fines in LPBF cuts can greatly 
impact flowability. Removing fines 
(e.g. 635 mesh) is borderline 
impossible

• Air-based techniques (e.g. cyclone 
separation) can remove fines more 
efficiently. 

635 mesh = 20µm



Powder Requirements: Other
Chemistry
• Target elements and amounts

• Min/Max limits on elements

• Specific impurity elements (e.g. S, P)

Cleanliness

• Oxygen and Moisture control

• Sealing powder in Ar gas

• Limited interaction with plastic

• Inclusions from powder manufacturing (e.g. crucible liner, foreign contamination)

Safety

• Respirators and fume hoods often necessary for powder handling

• PPE, ESD boots/mats

• Waste management

• Condensate (especially for Al, Ti, Nb)



Powder Characterization: PSD
For d10, d50, and d90, the actual PSD must be measured.

• Laser scattering particle analysis: 
• powder falling through laser causes scattering
• angle of scattering depending on size of particle
• Powder size distribution can be calculated without measuring individual particles
• On the order of minutes

• Direct powder measurement:
• Using an automated optical/electron microscope hundreds/thousands of individual 

particles are imaged (slow)
• Wider range of distributions available (shape features)

• Silhouette measurement:
• Light source casts a shadow of particles which can be imaged. 
• Balance of speed and descriptiveness



Powder Characterization: PSD
Number vs Volume (Mass) weighted

• Most physical measurements (e.g. 
sieving) are dependent on the mass 
of powder, but certain properties 
(e.g. flowability) rely on the number 
of particles. 

• Specification of fines (d10) is based 
on weight/volume 



Powder Characterization: Chemistry
• Chemistry must be specified, e.g. for IN718 in AMS 5832

• Atomized powder and printed parts can have different 
compositions due to preferential evaporation of certain 
elements (e.g. Ti-6Al-4V)

• Inductively-Coupled Plasma (ICP) ionizes metal ions 
which can be measured using atomic emission 
spectroscopy (AES) or mass spectroscopy (MS)

• Accuracy can vary based on element and amount, but often 
accurate within 1%.

• Combustion-based techniques used for measuring O, N, 
S, and C, and are accurate in the ppm-ppb range.

• XRD can measure phases and phase amounts, which 
can inform composition

• Chemical extraction can be used to dissolve certain 
phases, to measure undissolved phases

• Moisture can affect oxidation and flowability; measured 
separately



Powder Characterization: Morphology
Particle shape descriptors 
are not necessarily part of 
the powder spec. or 
purchasing process, as 
they are mostly based on 
manufacturing method (e.g. 
ASTM E1877).

• Aspect Ratio

• Elongation 

• Equivalent Circular 
Diameter

• Feret Diameter

• Form Factor

• Particle Breadth

• Particle Length

• Roundness
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Powder Characterization: Morphology
• Satellites more common in gas 

atomized particles

• Reuse can lead to the 
accumulation of non-spherical 
powder

Images of reused powder for various alloys [47]



Powder Characterization: Rheology
• Powder flowability is an essential 

characteristic for AM

• Each machine has different flow 
requirements (e.g. hopper vs cylinder)

• Hall Flow ASTM B213 or Carney Flow 
(ASTM F1877) is the simplest method

• Rotating drum techniques produce 
many flow properties.

• Packing density is mostly a heritage PM 
property

• Powder spreading and spread density 
are not easily measured



Powder Characterization: Reuse
• Powder recycling is an essential aspect to the 

sustainability and material savings promised by AM

• Most protocols involved blending sieved reused 
powder with virgin powder.

• Oxygen pickup is the most observed change in 
reused powder

• Flowability can often be improved with reuse

Recycling Flow Chart [47]



Powder Characterization: Other
• Powder coating: Coating one powder with an oxide/metal/carbide. Allows 

for micro editions and alloy development.
• Chemical deposition
• Plasma Spray
• Mechanical Mixing

• Elemental mixing: Useful for alloying, but inhomogeneous. Especially 
common in DED where a large melt pool allows for more mixing.

• Printing non-standard powder: milled, HDH powder



Wire



Wire Feedstock
• High Deposition Rates



Wire Supply Chain And Safety
Supply Chain:

• Ti, Ni, Fe alloys all commonly exist in wire form

• Cost/weight can be significantly lower than powder

• Custom batches of wire can be more expensive

• Solid or cored wire possible

Safety:

• Not an inhalation risk

• Simplified handling

• Ideal for in-space or repair

• Reactive metals still require some caution



Wire Manufacturing
• Wire drawing uses progressively smaller dies to reach the desired 

diameter.

• Descaling: Often accomplished by high-angle bends that release scale

• Annealing often necessary to optimize the hardness of the wire at 
different steps, or to avoid breaking 

• Dies often made from hard materials (carbides, tool steels), and 
reduce the material by ~20%

• Solid Lubricants can be used to preserve die life



Wire Specifications
• American Welding Society (AWS) sets standards for wire (and rod)

• Designations, e.g. ER316L
• ER = “electrode or rod”
• 316 = composition (300 series stainless)
• L = “low carbon (max 0.03 wt.%)

• Diameter, Length, Spool Size, etc.

• For welded materials, properties of deposited material may be 
supplied. 



Other Feedstocks
• Ultrasonic Additive Manufacturing

• Foil feedstock highly custom 
• Typically rolled into foil using traditional methods
• Al, Cu, Mg, Ni, Ti are used

• Additive Friction Stir Deposition
• Bar/Rod Stock
• Manufactured using traditional methods. 
• Most common for Al alloys



Summary
• Powder feedstock specifications and essential characteristics are 

necessary for the proper operation of the AM process
• Chemistry
• Size Distribution
• Flowability
• Morphology
• Safety
• Reuse

• Atomization plays the primary role in powder manufacturing, but has 
many variations and many competitors

• Wire has fewer critical characteristics but still emerging

• Non-standard (foil, bar) and recycled feedstock of growing interest.
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