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Abstract 

The DebriSat project is a collaboration effort with the NASA Orbital Debris Program Office, the U.S. 
Space Force Space Systems Command Center, The Aerospace Corporation, and the University of Florida. 
To date, over 200,000 fragments from this ground-based, hypervelocity impact experiment have been 
collected, and processing is underway to determine their physical characteristics, such as material, 
shape, color, characteristic length, and average cross-sectional area. The x-ray process is primarily used 
to identify the location of the fragments and estimated size for extraction, so that these physical 
characteristics can be assessed. This paper proposes a machine learning-based approach to characterize 
materials from x-ray images of debris fragments embedded in soft-catch foam used in the DebriSat 
project. The novel methodology discussed in this paper will highlight the use of x-ray imagery data to 
characterize these fragments without extraction or a human-in-the-loop. 

Both supervised and unsupervised machine learning techniques are utilized with this approach to infer 
the physical parameters of the fragments embedded in the soft-catch foam panels used in the impact 
experiment based on X-ray images of the foam panels. Additionally, 3D reconstructions of the extracted 
fragments are created with images taken from two different angles using the structure from motion 
(SfM) method. The characteristic lengths and shape from the 3D reconstruction, alongside the physical 
characteristics of the debris, are used in the inference of the material type. 

To develop and test the approach, a dataset of x-ray images of debris fragments of varying sizes and 
materials is collected. Supervised learning methods such as convolutional neural networks (CNNs), 
support vector machines (SVM), decision trees, and random forest classifiers are used due to the high-
dimensional feature spaces of the debris and nonlinear decision boundaries for material categorization. 
Given the limited pre-labeled data of embedded debris materials smaller than 10 mm, unsupervised 
machine learning techniques such as clustering algorithms and autoencoders are used, in addition to 
supervised learning methods. The clustering algorithms group similar fragments together based on their 
physical properties, and autoencoders reduce the dimensionality of the X-ray images and extract 
relevant features. 

The performance of the proposed approach's is analyzed using a range of statistical methods, including 
confusion matrices, receiver operating characteristic curves, and precision-recall curves. The results are 
compared with those obtained using a baseline approach that relies on manual identification and 
classification of debris fragments. To evaluate the effectiveness of different machine learning methods, 
statistical tests such as t-tests, ANOVA, and cross-validation are performed, comparing the performance 
of CNNs, SVMs, clustering algorithms, and autoencoders. Additional analysis needs to be conducted to 



 

 

identify any sources of bias or variability that may affect the results, such as variations in imaging 
conditions or fragmentation patterns. Other topics explored are limitations, refinements, and the 
potential use of semi-supervised learning techniques, such as self-training to label unlabeled datasets 
and co-training using X-ray images taken from two different angles as two different models.  

1 Introduction 

1.1 DebriSat Project 

Orbital debris in the millimeter-sized range cannot be tracked, yet it is a key source of risk for missions in 
low Earth orbit. The NASA Orbital Debris Program Office (ODPO) uses measurements from radar, optical, 
and in-situ to develop models of the debris environment. These data are incorporated with modeling of 
spacecraft breakup events, along with ground-test impact experiments, to model the orbital debris 
environment.  

DebriSat is a ground-test impact experiment performed in partnership between ODPO and the U.S. 
Space Force Space Systems Command, The Aerospace Corporation, and the University of Florida. This 
experiment has four goals: design and fabricate a 56-kg class spacecraft with modern materials 
representative of low Earth orbit (LEO) spacecraft, conduct a hypervelocity impact test to simulate a 
fragmentation event, collect and characterize fragments 2 mm and larger and use the data to improve 
orbital debris predictive models.  

1.2 Fragment Collection and Categorization 

All fragments produced from this 2014 experiment were sent to the University of Florida for 
characterization [1]. The NASA Standard Satellite Breakup Model (SSDM) predicted that 85,000 
fragments 2 mm and larger would be produced [2]. As of September 2023, over 207,000 fragments have 
been recorded. Characterization of fragment parameters require precision in both analytical 
assessments and computed measurements. The scale of this dataset, along with parameter 
requirements, has led to a need to minimize human-in-the-loop assessments. 

The characterization process initially uses an x-ray imager to scan the foam panels in the impact 
chamber, to detect and count the number of embedded fragments, and to determine size and position. 
Fragments ≥ 2 mm can be utilized for human-in-the-loop extraction. Post-extraction each fragment 
undergoes an analytical assessment to determine material type, shape, color, and whether it should be 
measured by a 2D or 3D imagers. 

Direct mass and size [3] are measured and then used to compute volume, average cross-sectional area 
[4], and area-to-mass parameters. Each fragment is imaged in either the 2D or 3D Imager, based on the 
size of the fragment where larger fragments are imaged in 3D. The 3D imager uses photographs taken 
from multiple angles to reconstruct a 3D digital representation of the fragment as a triangular mesh [5]. 
The fragment information and measurements are then entered into the fragment database [6, 7]. 

Manual analysis of each debris fragment is time-intensive, so limiting manual extraction of fragments to 
those above a certain size threshold is necessary. An automated estimation process is needed to fill in 
the information gap below this size threshold. The following will highlight improvements in processing 
x-ray images of the foam panels using machine learning to minimize the extraction of individual 
fragments and provide preliminary data on all embedded fragments. 



 

 

1.3 Use of X-ray Imaging in Debris Analysis 

X-ray imaging enables accurate mapping of debris fragment locations within the foam panels prior to 
extraction. Early in the project, detection and identification of candidate fragments for extraction were 
performed using a medical x-ray machine at a single x-ray energy. In 2019, the machine failed, and a 
replacement part could not be obtained. A Transportation Security Administration Smiths Detection 
luggage scanner was obtained from federal government surplus, and a procedure was developed to 
accurately scan using the new machine [8]. 

Each panel is placed in a holder that keeps the panel at a known orientation within the scanner tunnel 
and ensures a repeatable image. Four scans of each panel are obtained at each of two panel 
orientations, labeled A and B. In the A view, the panel is oriented perpendicular to the direction of the 
x-ray beam. In the B view, the panel is rotated by 55 degrees around the long axis. Image-stacking the 
repeated scans and spline-fitting across pixels enables sub-millimeter detection of individual fragments 
within the foam. Cross-correlating detected fragments between the two views helps to reject spurious 
detections and improves the accuracy of size estimations for purposes of extraction prioritization. The 
luggage scanner also has an advantage over the previous x-ray device as it utilizes two different x-ray 
beams of different energies to create false color images that can be used to determine the material 
composition of individual fragments.  

The current x-ray image processing code can perform rudimentary size and material determination 
sufficient to locate and extract fragments from the foam for more accurate measurement. Manually 
extracting each detected fragment is infeasible, thus the project prioritizes the extraction of fragments 
larger than 10 mm. To accurately characterize smaller fragments an improved process is needed that 
can accurately estimate the size and material composition of fragments using only x-ray images. 

1.4 Proposed Approach 

This paper proposes applying machine learning techniques to the x-ray image processing for efficient 
and accurate characterization of sub-10 mm debris fragments. Machine learning models could be 
developed to better predict material type for fragments too small to extract based on features extracted 
from the available multi-view x-ray images and existing size and shape data. This could enable targeted 
extraction of a representative sample of tiny fragments. Attempts can also be made at creating a 
3D representation from the two x-ray views of each panel. 

2 Fragment Analysis Methodology 

In machine learning endeavors data processing is often time-consuming. This section explores the 
correlations inherent in the standard debris database for fragments both below and above 10 mm. It 
also delves into the procedures and challenges associated with accurately identifying the primary 
material of fragments smaller than 10 mm. Also discussed is the process of constructing a 
3D representation of the debris, using information from two distinct x-ray views. 

2.1 Standard Debris Database Insights 

The DebriSat Debris Categorization System is a database maintained by the University of Florida to 
carefully catalog all DebriSat fragments and the associated data [9]. It contains the latest cumulative 
data of all the debris extractions for each unique fragment with a corresponding identification number.   

Figure 1 shows a distribution of count and mass for each material category in the most recent DebriSat 
database. As depicted in the distribution, carbon fiber reinforced polymers (CFRP) represent the 



 

 

majority of the fragments by raw count but a small fraction of the total mass. CFRP tends to shatter into 
smaller, more needle-like fragments than other materials, presenting on average a smaller depth profile 
to the x-ray. Epoxy resin is close in density and molecular weight to the foam than most of the other 
materials [10], making it difficult to detect in the x-ray images, which likely is a bias in the automated 
data collection that must be addressed. 

 
Fig 1. Distribution of material types in fragment database. 

2.2 Correlations between Debris Characteristics 

Categorizing based on material type, a pair-plot was created to look at what variables are highly 
correlated in each material category (Fig. 2). This is used to determine which variables are most 
predictive of material category and which only provide redundant information or are not useful.  

Within the same material categories (denoted by same color), there is a high correlation between mass 
(m (g)) and dimension (x(mm), y(mm), and z(mm)). Since mass is a direct byproduct of material density 
(ρ (g/mm3)), this high correlation is caused by material density being different in each material class. 
Therefore, dimensions can be used as a predictor for material. There is also a high correlation between 
volume (V (mm³)) and dimensions, confirming that volume as a parameter does not add for material 
classification. 

Figure 2 also shows that the z-dimension is heavily correlated with the x and y dimensions, 
demonstrating there are more debris fragments of uniform shape; therefore, similar information can be 
conveyed using the x and y dimensions alone. This may be useful later in choosing the appropriate 
characteristics of the data for training the machine learning model. 
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Fig 2. Pair-plot showing correlation between all the variables per material category. 

2.3 X-ray Processing  

The x-ray processing code is used to extract location and relevant shape descriptions of the debris from 
the panel x-ray images. Currently only used to determine which detected fragments are large enough for 
manual extraction, this new processing generates for each fragment 3D location in the foam panel, 
approximate length, width, and thickness, and cropped and masked x-ray images of the fragment from 
both the A and B views of the panel. These views are distinct x-ray images taken at two orientations 
55 degrees apart and include both spatial coordinates and the false color representation of the multi-
beam x-ray scan (r, g, b). As shown in Table 1, the Smiths Detection user guide provides an approximate 



 

 

correlation between the false color image and the molecular weight of detected materials. The false 
color information in x-ray images provides insights into the material composition, while the dual-view 
setup aids in capturing the three-dimensional nature of the debris. 

Table 1. Color Gradient on X-ray Image Depending on Atomic Number [10] 

 
Figure 3 depicts a fragment scan in both the A and B view, where the color gradient of the image is 
detailed by Table 1. The results of this scan suggest that the debris likely consists of a dense material 
with a high effective atomic number, typical of heavy materials.  

 
Fig. 3. X-ray images of a sample debris fragment from the "A" view (left) and "B" view (right) scans. 

Subsequent extraction confirmed the debris as copper, underscoring the potential of color analysis in 
debris images as a valuable tool for material identification and to improve the accuracy of a 3D 
representation of the debris based on the two views. 

 
Fig. 4. Image of debris (left) and 3D model of debris (right) after extraction from foam panel. 



 

 

Figure 4 is a projection of the real 3D scanned file. Rotating this image produces different projections. 
Such projections are denoted in polar co-ordinates as 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃,𝜙𝜙) , where (𝜃𝜃,𝜙𝜙) are angles with respect 
to mutually orthogonal axes and are subject to change. The A view and B view images can be denoted as 
𝑋𝑋𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝜃𝜃𝑐𝑐1 ,𝜙𝜙𝑐𝑐1),𝑋𝑋𝐵𝐵_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣( 𝜃𝜃𝑐𝑐2 ,𝜙𝜙𝑐𝑐2)  where 𝜃𝜃𝑐𝑐1, …𝜙𝜙𝑐𝑐2 are constant angles since the views are of a 
stationary image. Mean squared error (MSE) between a cross-sectional view of real 3D scans of the 
debris and A view can be written as in Eq. 1, where (𝑖𝑖, 𝑗𝑗) are pixel locations and (𝑀𝑀,𝑁𝑁) are dimensions 
of the photos. MSE is computed for each possible ( 𝜃𝜃,𝜙𝜙) value, then the angles with the least MSEs are 
stored. 
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The image 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑀𝑀𝑀𝑀𝑀𝑀 ,𝜙𝜙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑀𝑀𝑀𝑀𝑀𝑀)  corresponds to the best possible projection of the 3D scan of 
the debris from the A view image of the debris. This process is repeated for B view as well. The x-ray 
images and their closest projections are shown in Fig. 5. The two projections of the 3D scan are 
approximately 55° apart, matching the angle between the views captured in the x-ray.  

 
Fig. 5. Side-by-side comparison of x-ray debris images and their closest true projection. 

From the comparison in Fig. 5, the x-ray views give a good representation of the shape and size of the 
imaged fragment. The color lightness values in the image also show a good correlation with the 
projected thickness of the real fragment. 

3 Machine Learning – Predictive Model Development  

3.1 Random Forest Classifier 

The Random Forest Classifier was selected for modeling, due to a limitation in fully processed fragments 
with the x-ray image locations. Random Forest's ensemble nature, which combines multiple decision 
trees, captures complex non-linear relationships. Hyperparameter tuning was performed for 
performance optimization, focusing on parameters such as the number of trees, maximum depth, and 
minimum samples per leaf. The tuning aimed to balance model complexity and generalization, avoiding 
overfitting, while maintaining the ability to capture intricate patterns in the data. 



 

 

3.2 Feature Selection 

Since random forests have a set number of feature inputs, tailoring them is how to increase 
performance. In this case, the features are extracted from the x-ray debris images only, due to the 
unavailability of real dimensional and color data for debris under 10 mm. 

3.2.1 Feature Selection - Colors 
Each debris x-ray image has a unique color distribution. As seen in Table 1, the false-color 
representation used by the scanner software is a great predictor of material type as different densities 
tend to have distinct color profiles.  

 
Fig. 6. Color histogram values for debris made of aluminum (left) and copper (right). 

As seen in Fig. 6, blue and green color values throughout the debris image tend to concentrate on two 
specific values, while the red color for aluminum approaches zero. This occurs due to x-ray attenuation 
while imaging; therefore, 256 different values are divided into 32 bins with a range of 8 values each. The 
32 bins include red, green, and blue values as a feature vector to the Random Forest Classifier.  

3.2.2 Feature Selection - Shape 
Shape is also an indicator of the debris type. From DebriSat related alone, it can be inferred that copper 
debris appears like wires since this was most of the mock satellite’s copper. Table 2 lists the types of 
shape characteristics calculated and considered in the features vector. 

Table 2. Description of Features of the X-ray Image Considered in the Classifier 

Height and Width Dimensions of the fragment image in pixels 

Area Area of the contour in pixels. Denoted by 𝐴𝐴. 
Perimeter Perimeter of the contour in pixels. Denoted by 𝑃𝑃. 

Aspect Ratio =
𝑊𝑊
𝐻𝐻

 Measures the elongation of the debris and is defined as the ratio of the width 
to the height of the debris’ bounding rectangle. 

Extent =
𝐴𝐴

𝑊𝑊 × 𝐻𝐻
 Quantifies the compactness of the debris shape and is given by the ratio of 

the contour area to the area of the bounding rectangle. 

Solidity =
𝐴𝐴
𝐴𝐴hull

 Provides insight into the concavity of the debris shape. It is defined as the 
ratio of the debris contour area to the convex hull area. 

Circularity =
4𝜋𝜋𝜋𝜋
𝑃𝑃2

 Quantifies how close the shape is to a circle, value 1 indicates perfect circle. 

Eccentricity = �
𝜆𝜆1
𝜆𝜆2

 
Quantifies deviation from being circular, computed from the eigenvalues 
(λ1, λ2) of the centralized second-moment matrix. 



 

 

4 Material Classification - Results 

The Random Forest Classifier is trained by dedicating 80% of the randomized debris data to model 
training with the remaining 20% for testing. Figure 7 represents the predictions for each material and 
represents counts of predicted and associated real material. The diagonals represent correct guesses.  

 
Fig. 7. Confusion matrix representing Random Forest Model predictions. 

The confusion matrix shows model performance is best at identifying titanium with 100% accuracy for 
14 instances. Reference [11] suggests all fragments labeled titanium in the database are actually 
stainless steel, and titanium was applied based on a biased calculation of fragment density. Given this, 
high accuracy of this algorithm in identifying titanium fragments is expected, since these fragments were 
previously mislabeled due to their irregular shape. 

Table 3 shows overall accuracy of the algorithm. Precision here refers to the ratio of correct prediction 
to total prediction for each material, indicating model accuracy. Recall is the ability of the classifier to 
identify all instances of a material, defined as the ratio of true positives to the sum of true positives and 
false negatives. The F1-Score is the harmonic mean of precision and recall, providing a balanced single 
score taking both false positives and false negatives into account. Accuracy is a general overview of the 
model performance, representing the ratio of all correct predictions to the total number of instances.  

It is evident that contour features play the most significant role when it comes to classifying the debris 
material type. Fig. 8 shows the relative importance of each feature in the classification. Additionally, 
some color ranges occurring in the images played a key role in determining material type and the 
perimeter as the highest contributing feature is of interest in patterns based on material. 

Table 3. Model Accuracy Statistics 

 Precision Recall F1-Score Support (test debris count) 
macro avg 0.95 0.85 0.88 53 

weighted avg 0.91 0.91 0.90 53 
Accuracy = 90.56 % 



 

 

 
Fig. 8. The top features contributing towards the prediction algorithm. 

5 Conclusions 

In conclusion, this study demonstrates promising results in utilizing machine learning techniques to 
automate the characterization of small orbital debris fragments. The high accuracy achieved by the 
random forest model in categorizing material types from dual view x-ray images shows the feasibility of 
relying less on manual extraction and measurement. While challenges remain in reconstructing accurate 
3D debris shapes due to imaging distortions, material predictions provide valuable data to supplement 
physical debris analysis. Applying these methods to infer material properties for the sub-10 mm DebriSat 
fragments will significantly augment the fundamental debris measurement dataset. Further work can 
build on this approach to optimize feature extraction and model performance. Overall, this represents 
an important step toward scalable integration of automated image analytics into orbital debris analysis 
pipelines.  
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