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Glenn Research Center 
Cleveland, Ohio 44135 

Summary 
The Glenn Research Center Communication Analysis Suite (GCAS) includes many analysis tools that 

can be used to support a wide range of scenarios. It includes a visualization tool that implements the 
three.js graphics library to display a three-dimensional (3D) representation of its results. This software 
will enable researchers, engineers, and mission planners to interact intuitively with and understand the 
results of their analyses, which might not be apparent from raw data. With NASA’s efforts to return 
humans to the Moon as a part of the Artemis missions, the GCAS has been used extensively for lunar 
terrain and landing system development analysis, which is vital to ensuring mission achievability and 
safety. This has created the need to add several significant features to the visualization tool, such as the 
ability to display the terrain of the lunar surface accurately and to provide information demonstrating how 
a given region might impact mission objectives.  

Many of the changes made to the visualization tool can be separated into one of three general 
advancements: code restructuring to adhere to modern coding standards and practices, new user camera 
controls for first-person and third-person perspective views, and a terrain generation feature to enable 
rendering highly accurate terrains based on any celestial body’s digital elevation model (DEM) in 
GeoTIFF format. These improvements notably elevate the visualization tool's functionality, accuracy, and 
user interaction while providing a robust foundation for future development. 

Nomenclature 
3D three-dimensional 
Blender open-source 3D computer graphics software tool set  
GCAS Glenn Research Center Communication Analysis Suite 
DEM digital elevation model 
ES5 Version 5 of the ECMAScript standard 
ES6 Version 6 of the ECMAScript standard 
ESLint® static code analysis tool for identifying problematic patterns found in JavaScript code 
GeoTIFF file format for storing georeference information 
NPM Node Package Manager 
three.js open-source JavaScript library used for displaying 3D graphics  
WebGL JavaScript application programming interface for rendering interactive 2D and 3D graphics in 

a web browser 
webpack® module bundler used to create program files intended for production 

 
*NASA Office of STEM Engagement (OSTEM) Spring 2023 intern, undergraduate at University of Nebraska. 
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Introduction 
The tools in the Glenn Research Center Communications Analysis Suite (GCAS) enable the analysis of 

an extremely wide range of scenarios. To provide a clear perspective on the data produced within GCAS, it 
includes a visualization tool that implements the three.js graphics library to provide a three-dimensional 
(3D) representation of its results. This program allows researchers, engineers, and mission planners to 
interact intuitively with and understand the results of their analyses that might not be made apparent by raw 
data. With NASA’s efforts to return humans to the Moon as a part of the upcoming Artemis missions, the 
GCAS has seen significant use for the analysis of the lunar terrain and landing system development, which 
are vital to ensuring mission achievability and safety. This has created the need to add several significant 
features to the visualization tool, such as the ability to display the terrain of the lunar surface accurately and 
information that demonstrates how a given region might impact mission objectives. 

As the types of analysis that the GCAS can support continue to diversify, the range of scenarios that 
can be displayed effectively within its visualization software will need to grow accordingly. This will 
require the program’s codebase to be conducive to new development, easily adaptable to modifications, 
and reliably maintained. This document discusses the primary capabilities added to the visualization tool, 
the challenges faced in their development, and the steps taken to aid in future development. 

Code Refactoring to Meet Modern Language Standards 
Reasoning 

ECMAScript (ES) is a standardized programming language specification developed and maintained by 
Ecma International. JavaScript is the most widely utilized implementation of this standard. Although the 
JavaScript name is a trademark of Oracle Corporation, the ECMAScript and JavaScript names have become 
synonymous in the field of software development and are often used interchangeably. Few significant changes 
were made to the ES standard from the release of the first version in 1997 through the release of ES5 in 2009. 
In the early 2010s, the rapid evolution of web development led to a dramatic upsurge in JavaScript’s 
popularity. This sudden growth brought about a significant overhaul of the ES standard in 2015. Although five 
additional versions have been released since then, none of them have included changes as drastic as those 
made with ES6. The magnitude of the changes introduced by ES6 and the impact it had on web development 
has effectively separated JavaScript programs into two eras: Pre-ES6 and Post-ES6. 

The visualization tool contained within GCAS was initially created in 2019. Although the ES6 
standard was released in 2015, many browser engines and existing JavaScript libraries had not yet 
migrated their code to support and/or make use of the new features. One of those was three.js, a cross-
browser JavaScript library and application programming interface (API) used to create and display 
animated 3D computer graphics in a web browser using WebGL. At the time, three.js had not yet 
completed its own transition to ES6, which meant the documentation and examples referenced in initial 
development followed pre-ES6 standards (Ref. 1). Several additional features had been successfully 
added to the visualization tool following its creation, all adhering to the same standards that were used in 
its initial development. Most browser engines and JavaScript libraries, including three.js, have now fully 
adopted post-ES6 standards (Ref. 2), and many even require their use. These requirements meant that any 
attempts made to update dependencies or the introduction of any feature that required more than a 
moderate amount of refactoring consistently led to bugs being created or the program breaking elsewhere. 
As a result, the decision was made to rewrite and restructure most of the existing codebase to increase the 
readability and maintainability of the code, as well as ensure that the program would not become 
deprecated as pre-ES6 code libraries and features continue to lose support. 
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Development Tools 

Three major development tools—Node Package Manager (NPM), webpack® module bundler, and 
ESLint® static analysis tool (both OpenJS Foundation)—were used in support of the code restructuring to 
adhere to modern coding standards and practices, the new user camera controls for first-person and third-
person perspective views, and a terrain generation feature to enable rendering highly accurate terrains 
based on any celestial body’s digital elevation model (DEM) in GeoTIFF format.  

NPM is a package manager for the Node.js runtime environment that allows adding, removing, or 
updating external libraries or tools within a project in a simple and unified manner. The webpack® 
module bundler is used to create program files intended for production. The separation of the source code 
files from the distribution files allows development and testing of the source code to occur without 
threatening the integrity of the production builds. The bundling process only includes dependencies that 
are explicitly defined in a configuration file or directly called within the code, eliminating unused code to 
minimize file sizes and preventing any unneeded complexity from being added to the distributed program. 
ESLint® is a linting tool implemented to enforce the uniform use of post-ES6 standards and configured 
styling rules, greatly improving the readability of code and reducing the likelihood that bugs or errors will 
be introduced into the program. These tools, in combination with several features that were introduced 
with ES6, have allowed for radical simplification of the file structure. 

Refactoring for Modularity 

Figure 1 shows the contents of the directories necessary to run a distribution-ready build of the 
visualization tool before and after migration. The webpack® module bundler integrates all the necessary 
JavaScript files into one bundle. The ‘assets’ and ‘css’ directories, as well as the HTML file used as the 
root of the program, are updated every time a new build is created, eliminating the risk of missing or 
unreachable dependencies being called within the program.  

 

 
Figure 1.—Directories required to run a distribution-ready build of visualization tool. 

(a) Old distribution before migration to ES6. (b) New distribution after migration to 
ES6. 
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Figure 2.—Expanded source directory trees. (a) Old source code. (b) New source code. 

 
A similar reduction can be seen in the expanded source directory trees in Figure 2. In addition to 

simplifying dependency management, NPM manages the storage of any external libraries within its own 
‘Node Modules’ directory. The webpack® module bundler will resolve the path of, and include in the 
bundle, any dependencies contained within this directory that are referenced within the program. This 
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allows for the JavaScript files specific to the visualization to be separated and organized into smaller 
sections, according to the specific purpose of their contents.  

This ability to separate these files lead to another significant benefit of the migration, by allowing for 
the use of the ‘Import’ and ‘Export’ module statements, which were introduced with ES6 (Ref. 3). These 
statements allow for related functions, objects, and variables to be accessed between files without 
requiring them to be globally accessible and/or mutable. For example, each file within the ‘data’ directory 
of the source code encapsulates all the code needed to read and store the simulation data and any objects 
that will be displayed. The entry point then imports these files, where the functions they contain are used 
to load and read the data into storage to be accessed in the visualization. With the data already loaded and 
handled, all code needed to run the simulation can be imported and called inside of ‘main.js’. 
Encapsulating relevant functions into these modules greatly improves the code’s readability and 
maintainability. In the old structure, ‘main.js’ contained 1,603 lines of code; in the new structure, it has 
been reduced to just 277. A developer can now simply follow along with the flow of the program and 
identify where some bit of code is executed; this greatly reduces the time required to debug, modify, or 
further develop the program’s features and capabilities. 

Specialized Camera Configurations 
GCAS is designed for analysis of a diverse range of scenarios. The ability to view all relevant aspects of a 

visualization precisely and intuitively is critical to the software’s ability to serve this purpose successfully. The 
most important aspect of this is ensuring that users have absolute control of a camera to adjust their view and 
how that view can adapt to best fit the needs of their analysis. In prior versions of the visualization package, the 
only controls available were traditional orbit controls, which allowed users to adjust the camera in three ways: 

 
• Orbiting: Adjusting the azimuthal angle and polar angle of the camera with respect to the object 

in focus (i.e., rotating the camera about the object’s vertical and horizontal axes, respectively)  
• Panning: Translating the camera’s position about its own vertical and/or horizontal axes 
• Zoom: Increasing or decreasing the Euclidean distance between the camera and the object in focus 

 
Although adjusting the distance and direction from the camera to the object in focus manually may be 

suitable, or even preferred, in many scenarios, feedback from GCAS users highlighted a need to 
implement finer camera control options.  

Orbit Tracking 

The effectiveness of specific camera options will vary greatly depending on the specific use case, with 
the most significant variable often being the type of object that is in focus. Figure 3 demonstrates one such 
scenario, in which the traditional orbit controls are less than ideal. In both Figure 3 and Figure 4, the camera 
is focused on CubeSat 3 as it orbits the Moon. The orbit controls are shown in Figure 3. The user has 
manipulated the camera’s position and distance relative to the satellite, where it will remain fixed, always 
looking in the direction of the satellite. The user is forced to maneuver the camera manually to prevent the 
Moon from obstructing the camera’s view of the satellite. To address this problem, an orbit tracking mode 
was developed, which allows a user to specify an object, separate from the object currently in focus, to be 
used as a reference point. When this mode is enabled, rather than waiting for a user to manipulate the 
camera’s position manually relative to the object in focus, the program will calculate a unit vector based on 
the position of the object in focus relative to the selected target. The calculated unit vector is then scaled by 
the camera’s current distance and added to the camera’s current position. Figure 4 demonstrates how the 
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orbit tracking mode prevents the Moon from obstructing the camera’s view of CubeSat 3. This same process 
can be used to position the camera using the node’s velocity vector to place it behind the node, by setting the 
location used as a reference to a point in space further along the node’s current orbit. 

The orbit tracking mode can also be used to create a first-person perspective of the selected object. 
Whenever the camera is focused on a node, the node’s 3D model will be hidden if the camera intersects 
its bounding box. When orbit tracking is enabled, the camera stays pointed in the direction of the selected 
reference object, providing the first-person perspective of the selected object from that node’s 
perspective. This use case is only particularly useful to view objects in orbit around a body. If the same 
method were used to follow an object on the surface of a body, the camera would be stuck in a bird’s-eye 
point of view, always looking down at the object, and the camera would frequently experience odd 
rotations as that object (or the body it is positioned on) moved through the world space, which is the 
WebGL terminology for the scene being rendered. 

 

 
Figure 3.—User-defined offset direction using traditional orbit controls, with no manual adjustments made to camera 

between images. (a) Unobstructed view of CubeSat 3, taken at the first time step of the visualization. (b) Obstructed 
view of CubeSat 3, taken after 100 time steps.  

 

 
Figure 4.—Unit vector offset direction, with no manual adjustments made to camera between images. 

(a) Unobstructed view of CubeSat 3, taken at the first time step of the visualization. (b) Unobstructed view of 
CubeSat 3, taken after 100 time steps. 
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Surface Object Perspectives 

Although both the original orbit controls and the orbit tracking options allow users to focus the 
camera on an object located on the surface of a body, neither can accurately represent that object’s own 
perspective, as explained previously. An entirely separate camera system was developed to meet this 
need. This alternate camera works much like the character controllers used in video games. This camera 
presents the user with two primary methods that could prove extremely useful in communications 
analysis. 

The first of these methods automatically adjusts the camera position within the animation to mimic 
the movement of an object as it travels across a surface. This method requires a surface object with 
position data to be present in the visualization. The camera can be configured always to look in the 
direction of travel, preventing users from manipulating its position or the direction it is looking. In first-
person perspective, this effectively allows users to view the visualization from the perspective of that 
object or any equipment, such as a camera or communications array, that could be carried by the object. 
Users can also choose to take control of the direction the camera is pointing while its position remains 
updated automatically. 

The second method provides users with absolute control of the position and orientation of the camera, 
eliminating the requirement for a surface object to be defined in the visualization data. This includes a 
first-person and third-person perspective on the surface. In the first-person perspective, the camera can be 
moved forward, backward, left, or right, using the W, S, A, and D keys, respectively, and the cursor can 
be locked to the window, allowing mouse inputs to control the camera’s rotation. The third-person 
perspective is similar, except the movement keys will move the location of the chosen 3D model, and the 
camera’s position will automatically be updated to maintain a set distance between itself and the model. 
The camera orientation remains controlled via mouse input, but any rotations will be made about the axes 
of the model, rather than the camera’s own axes. 

Terrain Generation 
A new 3D model with displacement data applied was created using the Blender open-source 3D 

computer graphics software tool set to take the place of the current Moon model. This model more 
accurately represents the entire lunar surface, although memory constraints prevent loading the highest 
quality model created into the visualization; a lower resolution export of that model is used instead. To 
compensate for this lower quality terrain and provide additional terrain views, the visualization software 
can now process a DEM in GeoTIFF format to generate a 3D mesh that accurately represents the data it 
contains. 

Reading a GeoTIFF File 

The geotiff.js library is used to load a DEM file, interpret its metadata, and read the elevation values 
into an array buffer (Ref. 4). Once the entirety of a file’s data has been read, it is passed to a function that 
removes any unnecessary information and returns an object containing the array elevation values and the 
properties needed to create the terrain accurately. If more than one DEM is provided to be displayed, the 
program will need to complete the entire reading, processing, and geometry creation processes for each 
file individually before it will move on to the next. The process implemented in this feature can be used to 
generate isolated terrain from nearly any standard DEM in GeoTIFF format, although any provided  
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GeoTIFF files must meet some requirements to be displayed correctly in relation to any other geospatial 
data used in a scene.  

 
1. If the pixels in the file represent any area other than 1 m, the ‘fileDirectory’ attribute must contain a 

value for the ‘ModelPixelScale’ property with the correct pixel area. 
2. If the terrain represented by the data is centered anywhere other than (0,0,0) in its corresponding 

body’s cartesian coordinates, the ‘fileDirectory’ attribute must contain a value for the 
‘ModelTiePoints’ property containing the coordinates of the first pixel’s location. 

3. If the displacement values are represented in any units other than 1 m, the ‘fileDirectory’ attribute 
must contain the proper scale factor within the ‘GDAL_METADATA’ property. 

4. The ‘geoKeys’ attribute must contain a value for either the ‘GeogSemiMajorAxisKey’ or 
‘GeogSemiMinorAxisKey’ properties storing the radius of the represented body in meters.  

 
If any of these are not present in the metadata, but the correct values are known, they can be 

implemented without needing to modify the source file by passing them as arguments to the 
‘createGeometry’ function. 

Creating the three.js Geometry 

Upon reading a DEM and storing all the requisite data, the object holding that data is passed to the 
function responsible for creating the three.js geometry. The arguments must include the object containing 
the terrain data, a resolution scale factor, and any properties listed previously that were absent from the 
file’s metadata.  

The dimensions of the displacement array are multiplied by the pixel scale value to determine the 
dimensions of the geometry in meters, and the pixel scale is multiplied by the provided scale factor to 
determine the distance between vertices. For instance, if a 5-meters-per-pixel (mpp) DEM with a 1,000 by 
1,000 pixel image were to be provided with a scale factor of 2, the resulting geometry would be a plane 
measuring 5,000 by 5,000 m, containing a vertex every 10 m. 

Next, the newly created geometry will be translated along its local horizontal and lateral axes 
according to the distances contained by the ‘ModelTiePoints’ property. The function will then iterate 
through each vertex of the geometry. Each vertex is first displaced along the plane’s vertical axis by the 
value contained in the respective index of the displacement array, followed by a calculation to set the x, y, 
and z coordinates to their respective locations on a sphere with the specified radius. 

Much like the models generated in Blender, this method can quickly become restricted by the 
memory constraints of JavaScript running in the browser when rendering terrain at higher resolutions. All 
source files currently used to create the lunar terrain displayed in the program store the displacement data 
in single-precision floating-point format, which requires 32 bits (4 bytes) for every value stored. This 
means that the positions array of the geometry alone will require nearly 3 times the amount of memory 
occupied by the source file. The three.js geometries store additional attributes for each vertex (Ref. 5), 
which further increases the total memory needed to store each terrain mesh. The benefit to rendering these 
heightmaps individually is that, for such small regions, a significantly higher resolution terrain can be 
used while staying within the memory limits. Although the need for scale factors could eventually be 
eliminated entirely with the implementation of geometry shading (Ref. 6), WebGL does not yet natively 
support them. Depending on the number of terrain geometries that need to be loaded into a scene, the 
ideal scale factor seems to be around 3 to 4 for DEM files of approximately 150 MB or smaller, and 
anywhere from 5 to 10 for files larger than 250 MB. Figure 5 shows how increasing the scale factor can 
drastically reduce the number of vertices that need to be stored, with the total memory required to display 
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Figure 5.—Wireframe views of terrain depicting rim of Shackleton Crater, all derived from same 5-mpp source DEM. 

Each camera is positioned at an altitude of 2,500 m directly over lunar south pole, facing approximately 180° E. 
(a) Generated with scale factor of 2 and effective resolution of 10 mpp. (b) Generated with scale factor of 10 and 
effective resolution of 50 mpp. (c) Generated with scale factor of 20 and effective resolution of 100 mmp. 

 
each mesh coming out to 190, 52.9, and 48.5 MB, respectively. As the scale factor increases, the more 
intricate details of the terrain can become obscured. Any scale factor required to generate terrain that 
stays within the program’s memory limits will have very little effect on how the larger, more important 
features of a landscape are portrayed. 

Concluding Remarks 
Overall, the enhancements made to the Glenn Research Center Communication Analysis Suite GCAS 

software have significantly improved the functionality and accuracy of its visualization tool, particularly 
with regard to the lunar surface, and have successfully implemented the features and modifications its users 
requested. The restructuring and adherence to modern coding standards provide a solid base for the future 
development and maintenance of the software. The new user camera controls provide users with a more 
intuitive experience, while also providing finer control of the visualization. The terrain generation feature, 
which now supports data from any celestial body that contains the metadata described previously, can create 
highly accurate terrain views. These advancements are expected to be critical in achieving user-oriented 
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analysis and visualization tools to further the capabilities of the GCAS and contribute to future applications 
in space research and exploration. 
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