

Radiation Transport Models in Space: from Supernovae to Cells

Tony C. Slaba

NASA Langley Research Center, USA Durability, Damage Tolerance, and Reliability Branch

> MaThRad 2nd Clinical Workshop November 8, 2023

Outline

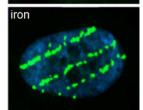
- Space radiation overview what, why, how?
- Radiation transport
 - Cosmic ray propagation in the galaxy (Fokker-Planck)
 - Radiation transport through shielding (Boltzmann)
 - Microscopic scale electron transport (Monte Carlo simulation)
- NASA cancer risk model projections for exploration missions
- Summary

• What → Space radiation is identified by NASA as one of the five hazards of human spaceflight



• Why → Space radiation is qualitatively different than any form of radiation on Earth

Radiation sources on Earth

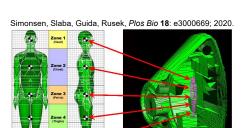

- Mainly gammas and x-rays
 - Waste, accidents, weapons
 - Occupational (medical and nuclear industries)
 - Natural terrestrial sources (e.g. radon)
- Epidemiological data exist to guide risk assessment and set conservative protection limits

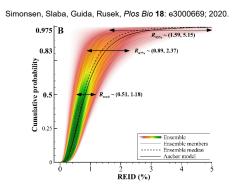
- Protection strategies guided by
 - Limiting exposure time
 - Increasing distance from source
 - Shielding

https://www.nasa.gov/stemcontent/modeling-radiation-damaged-dna/

gamma

Space Radiation

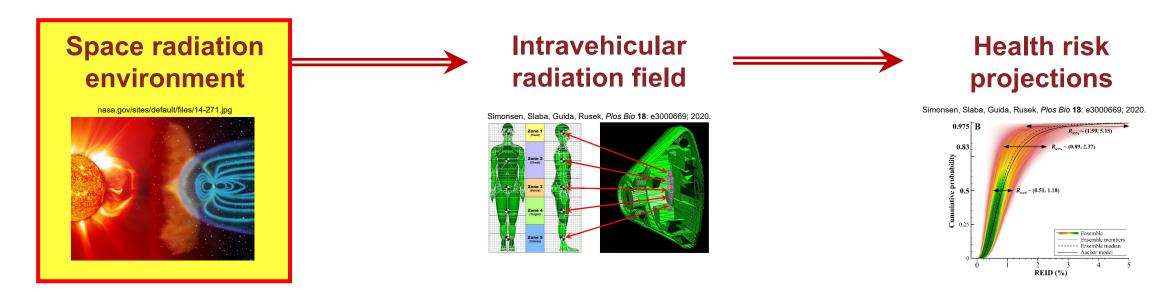

- Highly energetic particle radiation
 - Everything on the periodic table of elements
 - Able to penetrate shielding and tissue
- No direct means of assessing health risks
 - Limited human data
 - Lack of mechanistic knowledge
- Earth protection strategies do not work
 - Exposure time controlled by mission requirements
 - Space radiation is ubiquitous
 - Shielding strategies are limited


How -> Space radiation exposures and risks are estimated using integrated models and data

Space radiation environment nasa.gov/sites/default/files/14-271.jpg

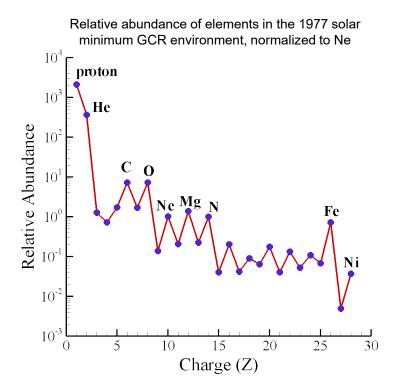
Intravehicular radiation field

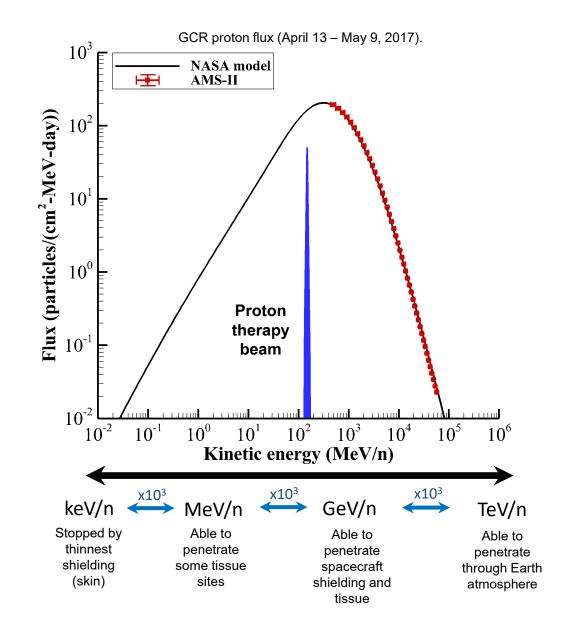
Health risk projections


- Models propagate cosmic rays outside the galaxy to near Earth
- Guided by available measurements

- Transport codes used to assess intravehicular radiation field
- Guided by inter-code comparisons and available measurements

- Risks evaluated probabilistically to account for significant uncertainties
- Guided by epidemiological data and radiobiology experiments


• How > Space radiation exposures and risks are estimated using integrated models and data



Galactic Cosmic Rays

- Galactic cosmic rays (GCR) are the main radiation hazard for long duration exploration missions
 - Broad spectrum of particle types
 - Ion velocities approach the speed of light (penetrating)
 - Fluctuate between solar minimum/maximum on 11-year cycle
 - Low dose-rate

GCR Models

- The NASA model for calculating the GCR field near Earth is the Badhwar-O'Neill (BON) model
 - Originally developed in the early 1990s
 - Assumes steady-state, radially symmetric transport through the heliosphere
 - Transport cosmic ray spectrum at edge of heliosphere to 1 astronomical unit
 - Utilizes numerical solution to the Fokker-Planck equation

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 V_{sw} U \right) - \left[\frac{1}{3r^2} \frac{\partial}{\partial r} \left(r^2 V_{sw} \right) \right] \left[\frac{\partial}{\partial T} \left(T U \frac{T + 2m}{T + m} \right) \right] - \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \kappa \frac{\partial U}{\partial r} \right) = 0$$

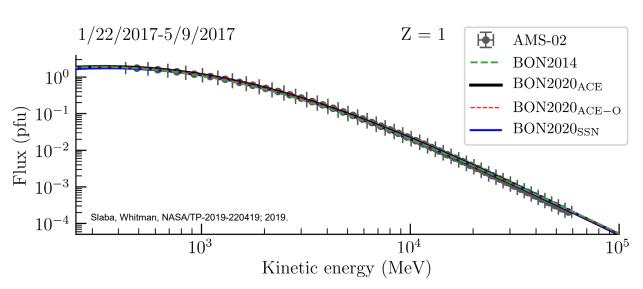
U(r,T) Omnidirectional particle density distribution

r distance from the Sun

T ion kinetic energy (MeV/n)

 κ diffusion coefficient

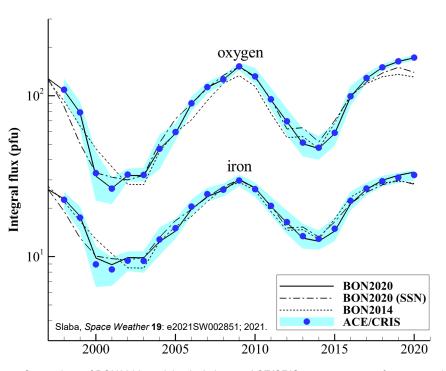
m ion rest mass


Further reading

- Detailed derivation of transport equation
 - Mertens, Meier, Brown, Norman, Xu, Space Weather 11: 603-605; 2013.
- Description of Crank-Nicholson numerical solution
 - Slaba, Whitman, NASA/TP-2019-220419; 2019.
- Current version BON2020
 - Slaba, Whitman, *Space Weather* **18**: e2020SW002456; 2020.

GCR Model Results

BON2020 model is accurate and computationally efficient



Comparison of model Z = 1 flux to AMS-02 measurements integrated over 1/22/2017-5/9/2017. For this plot, particle flux units (pfu) are defined as particles/(cm²-MeV-day).

SSN – Sunspot number
AMS-02 – Alpha Magnetic Spectrometer 02
ACE/CRIS - Advanced Composition Explorer/Cosmic Ray Isotope Spectrometer

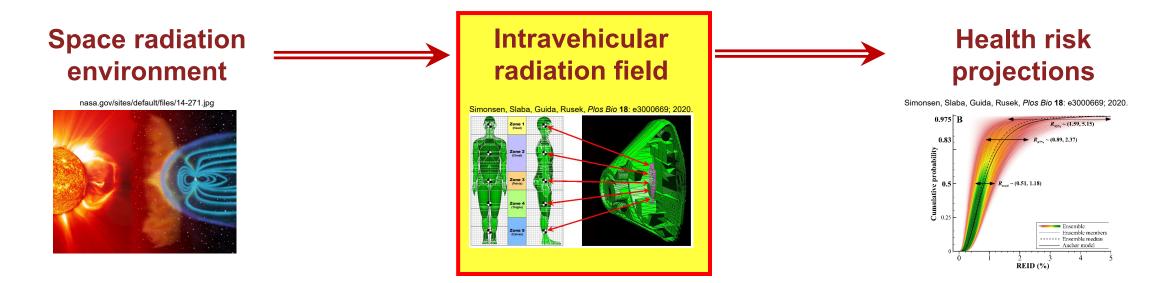
	Average absolute model error against all measurements (N=27,646)				
BON2014	12%				
BON2020	5%				

Slaba, Whitman, Space Weather 18: e2020SW002456; 2020.

Comparison of BON2020 model calculations to ACE/CRIS measurements of oxygen and iron integral flux. For this plot, particle flux units (pfu) are defined as particles/(cm²-day).

Other GCR Models

- Many other GCR models and solution methodologies exist
 - Applications of interest vary
 - Wide range of model fidelities and computational costs
 - Recent summary and comparison: Liu, Guo, Wang, Slaba, ApJ, submitted; 2023.


Empirical

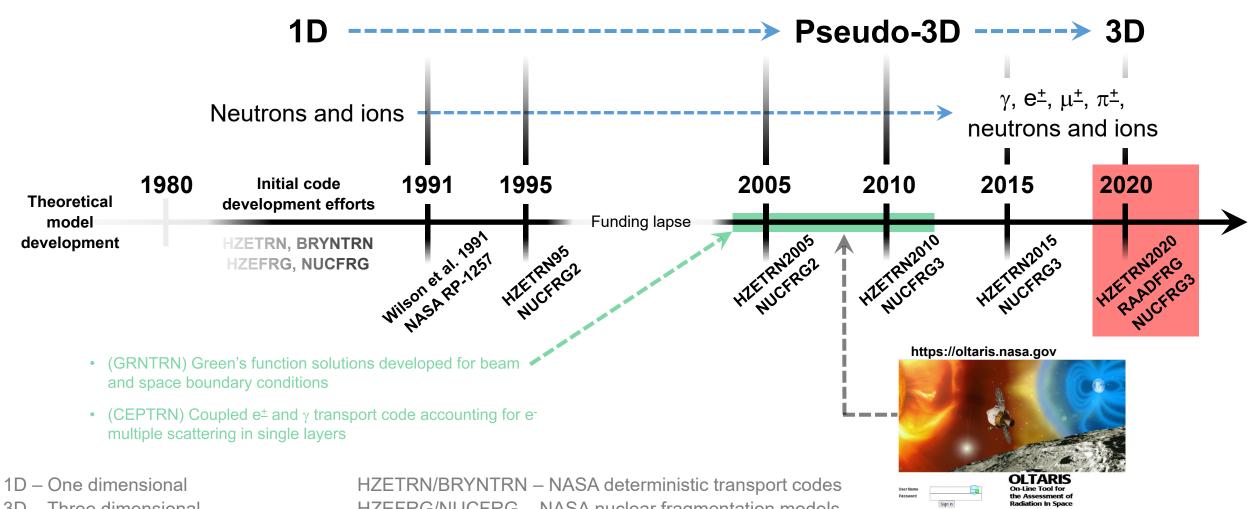
- CREME2009 (Cosmic Ray Effects on MicroElectronics)
 - Based on semi-empirical ISO 15390 model with low energy corrections of interest to electronics effects Adams, Barghouty, Mendenhall, IEEE Trans. Nuc. Sci. 59: 3141; 2012.
- ❖ DLR2013 (German Aerospace Center)
 - Based on semi-empirical ISO 15390 model with simplified time-dependent solar modulation Matthia, Berger, Mrigakshi, Reitz, Adv. Space Res. 51: 329; 2013.
- ❖ SINP2016 (Skobeltsyn Institute of Nuclear Physics)
 - Based on semi-empirical ISO 15390 model with radial corrections and SSN time lag Kuznetsov, Popova, Panasyuk, JGR Space Physics 122: 1463-1472; 2016.
- HelMod (Heliospheric Modulation)
 - Monte Carlo simulation to solve a set of stochastic differential equations accounting for heliospheric radius and latitude Boschini, Della Torre, Gervasi, La Vacca, Rancoita, Adv. Space Res. 64: 2459; 2019.
- SDEMMA (Space-Dependent Energetic cosmic ray Modulation using MAgnetic spectrometer)
 - Solves a set of stochastic differential equations accounting for heliospheric radius, latitude, and longitude Chen, Xu, Song, Huo, Luo, Space Weather 21: e2022SW003285; 2023.

Full-scale simulation

How → Space radiation exposures and risks are estimated using integrated models and data

Radiation Transport

- Overall problem description from a NASA perspective
 - Boundary condition is the free space GCR environment
 - Includes particles between Z=1 and Z=28 with energies spanning many orders of magnitude
 - Primary GCR ions interact with shielding and produce secondary particles over broad energies and angles
 - Need to <u>accurately and efficiently</u> calculate the radiation environment (GCR+secondaries) behind shielding
 - Vehicle/habitat shielding, atmosphere (Earth and Mars), terrestrial soil (moon and Mars)


Further reading

- Wilson et al. publications on this topic too numerous to list here
- General overviews:
 - Wilson, Townsend, Schimmerling, Khandelwal, Khan, Nealy, Cucinotta, Simonsen, Shinn, Norbury, NASA RP-1257; 1991.
 - Wilson, Miller, Konradi, Cucinotta, NASA CP 3360; 1993.
- Most recent NASA model:
 - Werneth, de Wet, Townsend, Maung, Norbury, Slaba, Norman, Blattnig, Ford, NIM B 502: 118-135; 2021.
 - Slaba, Wilson, Werneth, Whitman, Life Sci. Space Res. 27: 2020; 6-18.

Transport Model Development Timeline

NASA has been developing deterministic transport and nuclear physics models for many decades

3D – Three dimensional
GRNTRN – Green's function transport

HZETRN/BRYNTRN – NASA deterministic transport codes HZEFRG/NUCFRG – NASA nuclear fragmentation models RAADFRG – Most recent NASA nuclear fragmentation model

The Boltzmann transport equation within the continuous slowing down approximation may be written as

$$\mathbf{B}[\phi_j(\mathbf{x}, \mathbf{\Omega}, E)] = \sum_k \int_E^{\infty} \int_{4\pi} \sigma_{jk}(E, E', \mathbf{\Omega}, \mathbf{\Omega}') \phi_k(\mathbf{x}, \mathbf{\Omega}', E') d\mathbf{\Omega}' dE' - \sigma_j(E) \phi_j(\mathbf{x}, \mathbf{\Omega}, E)$$

$$\mathbf{B}[\phi_j(\boldsymbol{x},\boldsymbol{\Omega},E)] \equiv \boldsymbol{\Omega} \bullet \nabla \phi_j(\boldsymbol{x},\boldsymbol{\Omega},E) - \frac{1}{A_j} \frac{\partial}{\partial E} \left[S_j(E) \phi_j(\boldsymbol{x},\boldsymbol{\Omega},E) \right]$$

The Boltzmann transport equation within the continuous slowing down approximation may be written as

$$\mathbf{B}[\phi_j(\mathbf{x}, \mathbf{\Omega}, E)] = \sum_k \int_E^{\infty} \int_{4\pi} \sigma_{jk}(E, E', \mathbf{\Omega}, \mathbf{\Omega}') \phi_k(\mathbf{x}, \mathbf{\Omega}', E') d\mathbf{\Omega}' dE' - \sigma_j(E) \phi_j(\mathbf{x}, \mathbf{\Omega}, E)$$

$$\mathbf{B}[\phi_j(\boldsymbol{x},\boldsymbol{\Omega},E)] \equiv \boldsymbol{\Omega} \bullet \nabla \phi_j(\boldsymbol{x},\boldsymbol{\Omega},E) - \frac{1}{A_j} \frac{\partial}{\partial E} \left[S_j(E) \phi_j(\boldsymbol{x},\boldsymbol{\Omega},E) \right]$$

$$\phi_j(\boldsymbol{x}, \boldsymbol{\Omega}, E) \left\{ \begin{array}{l} \text{Flux/fluence of type j particles at position } \boldsymbol{x} \text{ moving in the direction } \\ \boldsymbol{\Omega} \text{ with kinetic energy, E} \end{array} \right.$$

The Boltzmann transport equation within the continuous slowing down approximation may be written as

$$\mathbf{B}[\phi_j(\mathbf{x}, \mathbf{\Omega}, E)] = \sum_k \int_E^{\infty} \int_{4\pi} \sigma_{jk}(E, E', \mathbf{\Omega}, \mathbf{\Omega}') \phi_k(\mathbf{x}, \mathbf{\Omega}', E') d\mathbf{\Omega}' dE' - \sigma_j(E) \phi_j(\mathbf{x}, \mathbf{\Omega}, E)$$

$$\mathbf{B}[\phi_j(\mathbf{x}, \mathbf{\Omega}, E)] \equiv \mathbf{\Omega} \bullet \nabla \phi_j(\mathbf{x}, \mathbf{\Omega}, E) - \frac{1}{A_j} \frac{\partial}{\partial E} \left[S_j(E) \phi_j(\mathbf{x}, \mathbf{\Omega}, E) \right]$$

$$\phi_j(\boldsymbol{x}, \boldsymbol{\Omega}, E) \left\{ \begin{array}{l} \text{Flux/fluence of type j particles at position } \boldsymbol{x} \text{ moving in the direction } \\ \boldsymbol{\Omega} \text{ with kinetic energy, E} \end{array} \right.$$

$$S_j(E) \left\{ \begin{array}{l} \text{Stopping power of type j ions at} \\ \text{with kinetic energy, E} \end{array} \right.$$

The Boltzmann transport equation within the continuous slowing down approximation may be written as

$$\mathbf{B}[\phi_j(\mathbf{x}, \mathbf{\Omega}, E)] = \sum_k \int_E^{\infty} \int_{4\pi} \sigma_{jk}(E, E', \mathbf{\Omega}, \mathbf{\Omega}') \phi_k(\mathbf{x}, \mathbf{\Omega}', E') d\mathbf{\Omega}' dE' - \sigma_j(E) \phi_j(\mathbf{x}, \mathbf{\Omega}, E)$$

where the operator, **B**, is defined as

$$\mathbf{B}[\phi_j(\mathbf{x}, \mathbf{\Omega}, E)] \equiv \mathbf{\Omega} \bullet \nabla \phi_j(\mathbf{x}, \mathbf{\Omega}, E) - \frac{1}{A_j} \frac{\partial}{\partial E} \left[S_j(E) \phi_j(\mathbf{x}, \mathbf{\Omega}, E) \right]$$

$$\phi_j(\boldsymbol{x}, \boldsymbol{\Omega}, E) \left\{ \begin{array}{l} \text{Flux/fluence of type j particles at} \\ \text{position } \boldsymbol{x} \text{ moving in the direction} \\ \boldsymbol{\Omega} \text{ with kinetic energy, E} \end{array} \right.$$

$$\sigma_j(E) \left\{ \begin{array}{l} \text{Total nuclear cross section for} \\ \text{type j particles with kinetic} \\ \text{energy, E} \end{array} \right.$$

 $S_j(E)$ $\left\{ egin{array}{l} {
m Stopping \ power \ of \ type \ j \ ions \ at \ with \ kinetic \ energy, \ E \ \end{array}
ight.$

The Boltzmann transport equation within the continuous slowing down approximation may be written as

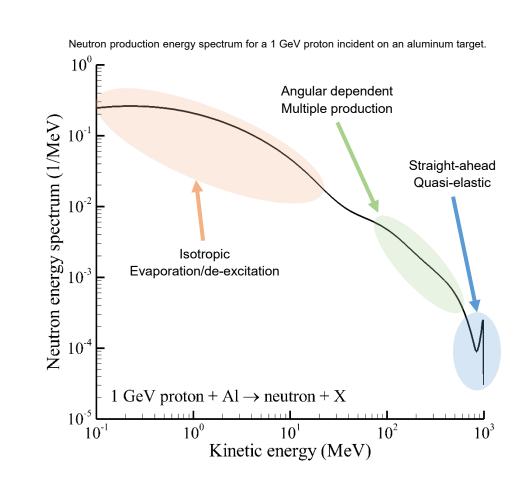
$$\mathbf{B}[\phi_j(\mathbf{x}, \mathbf{\Omega}, E)] = \sum_k \int_E^{\infty} \int_{4\pi} \sigma_{jk}(\mathbf{E}, \mathbf{E'}, \mathbf{\Omega}, \mathbf{\Omega'}) \phi_k(\mathbf{x}, \mathbf{\Omega'}, E') d\mathbf{\Omega'} dE' - \sigma_j(E) \phi_j(\mathbf{x}, \mathbf{\Omega}, E)$$

$$\mathbf{B}[\phi_j(\mathbf{x}, \mathbf{\Omega}, E)] \equiv \mathbf{\Omega} \bullet \nabla \phi_j(\mathbf{x}, \mathbf{\Omega}, E) - \frac{1}{A_j} \frac{\partial}{\partial E} \left[S_j(E) \phi_j(\mathbf{x}, \mathbf{\Omega}, E) \right]$$

$$\phi_j(\boldsymbol{x}, \boldsymbol{\Omega}, E) \left\{ \begin{array}{l} \text{Flux/fluence of type j particles at} \\ \text{position } \boldsymbol{x} \text{ moving in the direction} \\ \boldsymbol{\Omega} \text{ with kinetic energy, E} \end{array} \right.$$

$$S_j(E) \left\{ \begin{array}{l} \text{Stopping power of type j ions at} \\ \text{with kinetic energy, E} \end{array} \right.$$

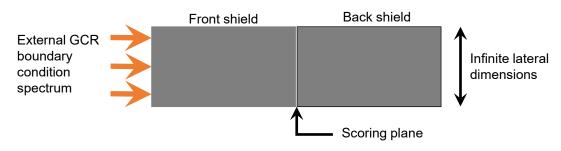
$$\sigma_j(E) \left\{ \begin{array}{l} \text{Total nuclear cross section for} \\ \text{type j particles with kinetic} \\ \text{energy, E} \end{array} \right.$$

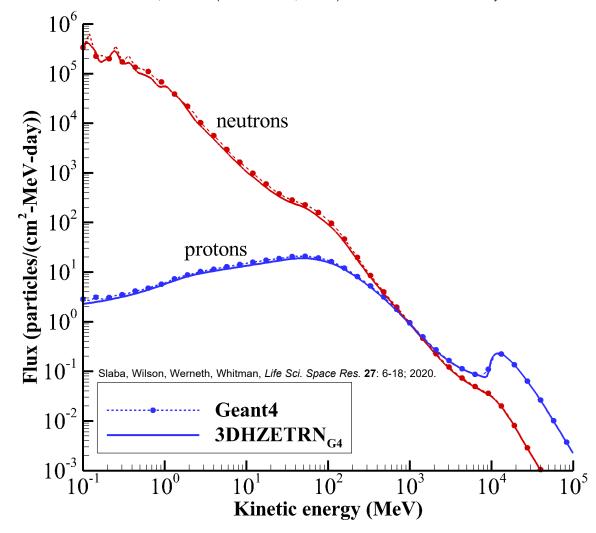

$$\sigma_{jk}(E,E',\mathbf{\Omega},\mathbf{\Omega'}) \left\{ \begin{array}{l} \text{Double-differential cross section} \\ \text{for all interactions in which type j} \\ \text{particles } (\mathbf{\Omega},\mathbf{E}) \text{ are produced by} \\ \text{type k particles } (\mathbf{\Omega'},\mathbf{E'}) \end{array} \right.$$

Solution Methodology

- Solution methodology based on perturbation theory
 - Solve simple equation with dominant physical terms
 - Substitute simple solution back into Boltzmann equation
 - Repeat or approximate remainder terms
 - Fast and accurate stepping procedure with linear spline expansion of integrals when necessary
 - Solutions do not use finite difference or finite element methods

- 1D and 3D solutions
 - Both used in specific applications depending on fidelity and accuracy requirements

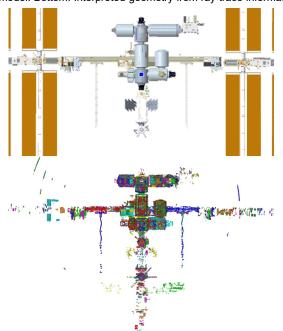



Verification

 HZETRN2020 able to reproduce Monte Carlo simulations if same cross sections are used

Geometry used for comparison between 3DHZETRN and Monte Carlo simulation.

Comparison of HZETRN2020 to Geant4 for 60 g/cm² aluminum shielding using the proton component of the November 16-25, 2013 LEO (51.6° inclination, 450 km) GCR environment as a boundary condition.

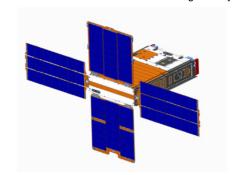


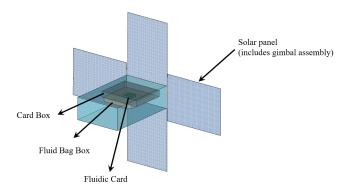
Validation

Combined models in good agreement with ISS and BioSentinel measurements

- Combined models → GCR, geometry, transport, nuclear physics and magnetic field model for low Earth orbit ISS trajectory
- Larger errors seen along portions of ISS flight path where absorbed dose is small
- Moderate compensating errors between underlying models in some cases

ISS geometry analyzed by HZETRN2020. Top: fully detailed CAD model. Bottom: Interpreted geometry from ray-trace information.

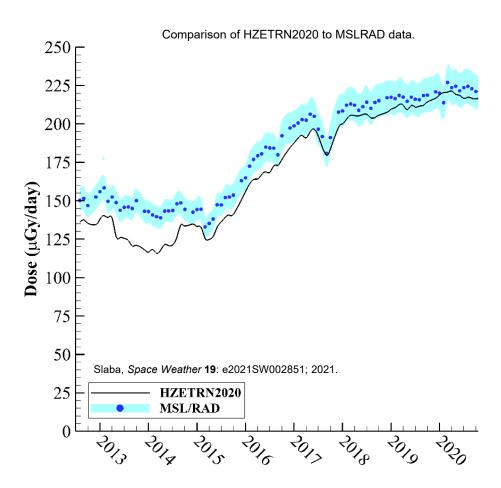



Comparison of modeled and measured absorbed dose in silicon (mGy/day). ISS comparison is for November 16-25, 2013 in the US lab. BioSentinel comparison is for November 16, 2022 – May 16, 2023.

	ISS	BioSentinel
Measurement	0.108	0.247
HZETRN2020	0.106	0.250
Error	(-1%)	(1%)

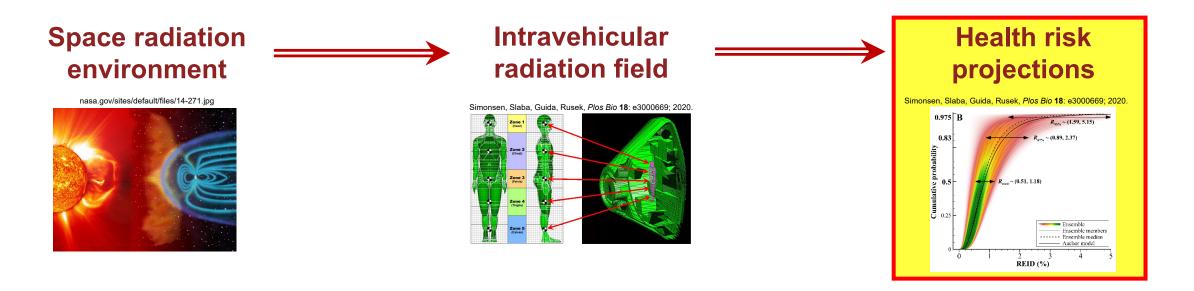
ISS: Slaba, Wilson, Werneth, Whitman, *Life Sci. Space Res.* **27**: 6-18; 2020. BioSentinel: Rahmanian, Slaba, Braby, Santa Maria, Bhattacharya, Straume, *Life Sci. Space Res.* **38**: 19-28; 2023.

BioSentinel geometry analyzed by HZETRN2020. Top: fully detailed CAD model. Bottom: Combinatorial geometry.

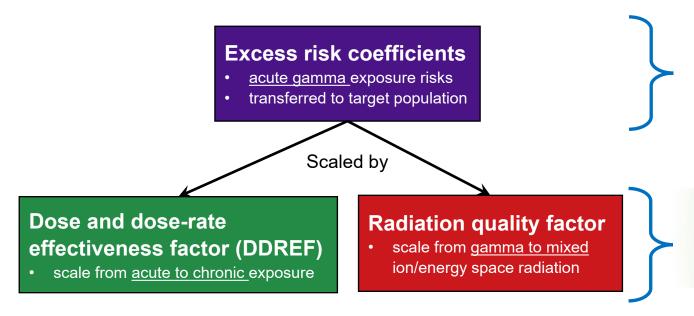


Validation

Combined models in good agreement with dose-rate measurements on the surface of Mars

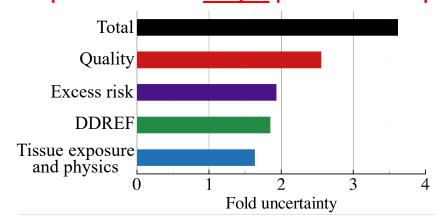

- Combined models → GCR, transport, nuclear physics, Mars atmosphere model

- Average error: 7%
- Bounding errors: -19% and 3%
- Errors during ~2014 solar maximum attributed to GCR model


• How -> Space radiation exposures and risks are estimated using integrated models and data

NASA Cancer Risk Model

Projecting space radiation risks from available terrestrial data


Derived mainly from external epidemiological studies

- Analysis of A-bomb survivors (Life Span Study cohort)
- New data from Million Worker Study (MWS) and International Nuclear Workers Study (INWORKS) being analyzed

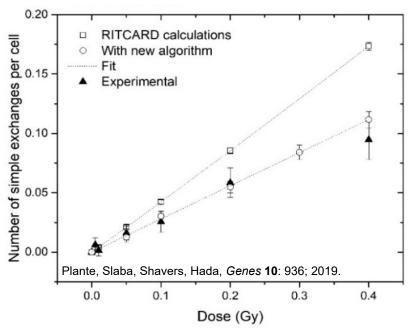
Main focus of cancer experimental and modeling efforts

- GCR simulator studies for mixed field and dose-rate effects
- Colorado State University neutron facility for dose-rate effects
- Tumorigenesis and chromosome aberration data and models

Uncertainties <u>currently</u> quantified in risk projections Multiple uncertainties <u>not</u> <u>yet</u> quantified in risk projections

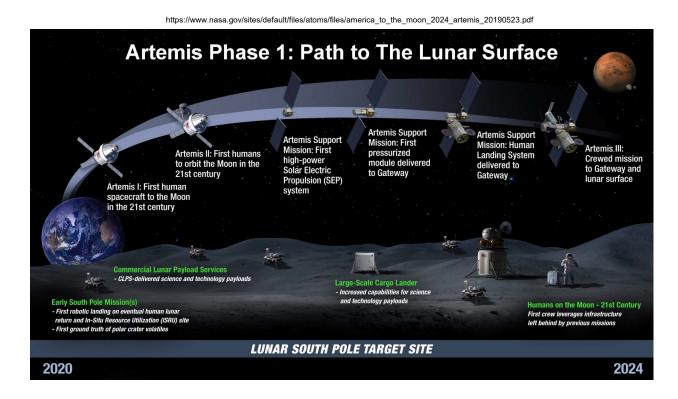
Further reading

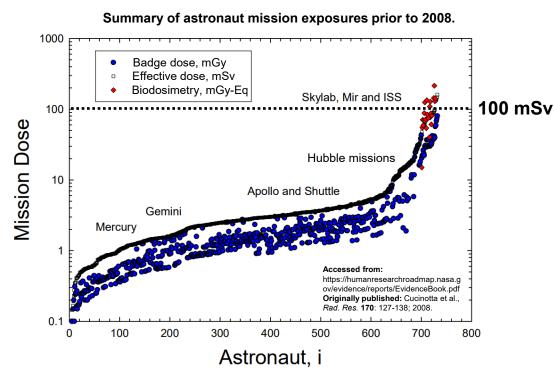
- NASA model
 - Cucinotta, Kim, Chappell, NASA TP 2013-207375; 2013.
- Current NASA model within ensemble framework
 - Simonsen, Slaba, Life Sci. Space Res. 31: 14-28; 2021.


Simulations to Inform Quality and Dose-Rate

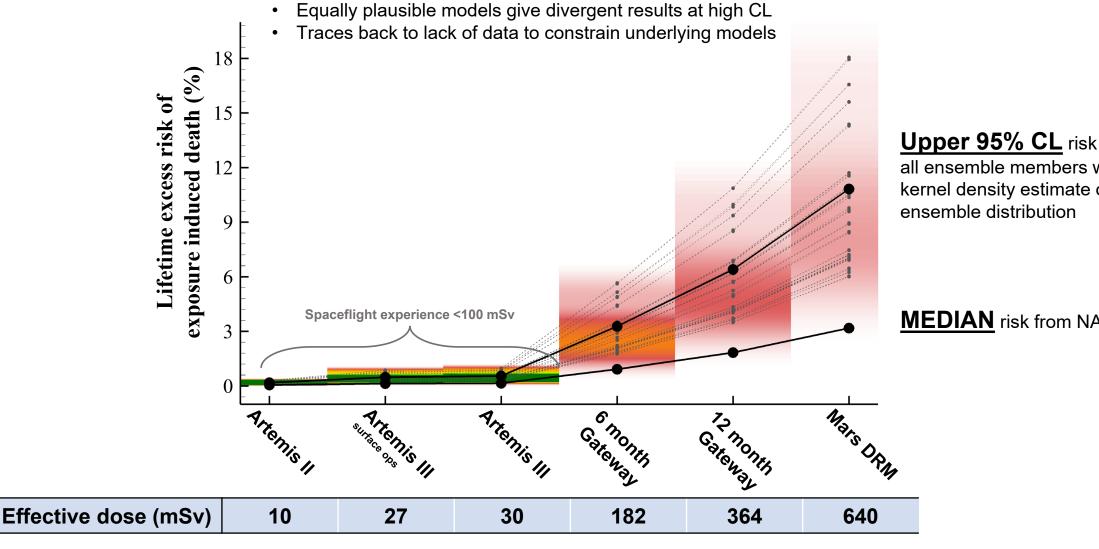
- GCR ions deposit energy to sensitive biological along localized tracks
 - Low energy electrons (δ -rays) are liberated from the target
 - Monte Carlo simulation required to transport δ -rays and study energy deposition at micron scale
- NASA has developed a simulation code to study track-structure effects
 - Developed with GCR induced biological outcomes in mind
 - Includes radiation chemistry along with physics of δ -ray transport
 - Plante, Cucinotta, Book chapter, In Tech: Rijeka, Croatia; 2011.
- Applications of RITRACKS
 - Coupled to chromosome aberration model RITCARD
 - Plante, Ponomarev, Patel, Slaba, Hada, Rad. Res. 192: 282-298; 2019.
 - Multi-scale simulations with Geant4
 - Slaba, Plante, Ponomarev, Patel, Hada, Rad. Res. 194: 246-258; 2020.
 - Ongoing study of nuclear target geometry effects
 - Poignant, Plante, Patel, Huff, Slaba, Int. J. Mol. Sci. 23: 8636; 2022.
 - Informing microdosimetric dose-response models form multiple biological endpoints of interest to cancer risk assessment

Track structure visualization from RITRACKS for 25 MeV/n carbon ions




Comparison of model to experiment for chromosome aberrations (simple exchanges) for 300 MeV/n Ti incident on human fibroblast cells

Projections for Deep Space Missions


	Artemis II	Artemis III surface ops	Artemis III	6 months Gateway	12 months Gateway	Mars DRM
Duration (days)	10	23.5 + 6.5 surface	30	183	365	621 + 40 surface
Effective dose (mSv)	10	27	30	182	364	640

DRM – Design Reference Mission

Projections for Deep Space Missions

Wide range of upper 95% confidence level (CL) ensemble values

Upper 95% CL risk from all ensemble members with kernel density estimate of

MEDIAN risk from NASA model

Summary

- Radiation exposure is one of the main hazards for human spaceflight
 - Space radiation environment is characteristically different than anything on Earth
 - Need to accurately describe the radiation fields encountered by astronauts to project health risks
- Radiation transport plays a key role in multiple applications
 - Propagating cosmic rays to the vicinity of Earth in GCR models
 - Radiation transport through shielding and tissue
 - Track structure simulations
- Outstanding space radiation transport challenges
 - Application of Monte Carlo simulation to fully detailed vehicle geometry and GCR (has never been accomplished)
 - Track-structure simulations are computationally expensive, making them difficult to incorporate with other biological models
 - Uncertainties in nuclear interaction (cross section) models that underly all transport codes
- Risk-to-dose relationships for future missions (>100 mSv) remain uncertain
 - Exposures are beyond spaceflight experience (lifetime astronaut surveillance provides limited information)
 - Epidemiological models may be improved with large-scale radiation worker studies
 - Ground-based radiobiology data needed to reduce uncertainties for radiation quality and dose-rate effects
 - Several "unknown" uncertainties remain individual susceptibility, multiple stressors, animal/human translation