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Derive dynamical equations of motion for a system of rigid
bodies attached to one another
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Possible Approaches

• momentum principles
• Newton-Euler method
• D’Alembert’s principle
• Lagrange’s equations
• Hamilton’s canonical equations
• Boltzmann-Hamel equations
• Gibbs’ equations
• Kane’s method

• Kane’s equations have the simplest form and are
derived with the least amount of labor1

1Kane, T. R., and Levinson, D. A., “Formulation of Equations of Motion
for Complex Spacecraft,” Journal of Guidance and Control, Vol. 3, No. 2,
1980, pp. 99–112.
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Kane’s Method, Single Particle
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Motion Variables, Partial Velocities
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The velocity of P in N
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.
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4
= u1n̂1 + u2n̂2 + u3n̂3 (2)

• Motion variables, ur , can be time derivatives of
generalized coordinates, qr

• Partial velocities are simply the vector coefficients of
the motion variables in the expression for Nv P ; that is,
Nv P

r = n̂r (r = 1,2,3)
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Kane’s Method, Rigid Body
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= 0

(r = 1, . . . ,6) (3)

• Contribution of B to r th generalized active force:

(Fr )B = Nv B?
r · FB + Nω B

r · TB

• Contribution of B to r th generalized inertia force:

(F ?
r )B = − Nv B?

r · mB
N a B? − Nω B

r ·
Nd NH B/B?

dt
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Partial Velocities, Partial Angular Velocities
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The velocity of B? in N

Nv B? 4= u1n̂1 + u2n̂2 + u3n̂3 (4)

The angular velocity of B in N

Nω B = ω1b̂1 + ω2b̂2 + ω3b̂3
4
= u4b̂1 + u5b̂2 + u6b̂3 (5)

• Motion variables, u4, u5, u6, can be linear combinations
of the time derivatives of generalized coordinates

• Partial angular velocities are simply the vector
coefficients of the motion variables in the expression for
Nω B; that is, Nω B

r = 0 (r = 1,2,3), Nω B
r = b̂r−3

(r = 4,5,6)
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Smooth Ball-and-Socket Joint
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r ·
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)
+ Nv C?

r ·
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)
+ Nω C

r ·
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TC − pC × R −
Nd NH C/C?
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)
= 0 (r = 1, . . . ,9)

It can be shown that the constraint force R does not
contribute to the equations of motion
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Advantages of Generalized Forces

• Generalized active forces
• Constraint forces do not appear in Kane’s equations of

motion
• Forces exerted on particles across smooth surfaces
• Contact forces exerted by two bodies rolling on each

other
• Constraint forces do appear when using Newton-Euler

or D’Alembert’s method; extra work to eliminate them
• If constraint forces are of interest, Kane shows how to

bring them into evidence

• Generalized inertia forces
• Forming Kane’s generalized inertia forces is much

easier than
• Forming the system kinetic energy and then

differentiating it (Lagrange’s Eqs.)
• Forming the Gibbs function and then differentiating it

(Gibbs’ method)
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Applications
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Space Station Attitude Motion

Space Station Multi Rigid Body Simulation (SSMRBS) at
JSC. Simulations for analysis of control moment gyroscope
momentum management, and reaction control system
propellant usage. Every configuration in the ISS assembly
sequence.
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Spacecraft with Magnetic Damper2

Simulations of attitude motion of gravity-gradient stabilized
spacecraft containing a passive magnetic damper (ball with
magnet inside spherical cavity, surrounded by viscous fluid).
Long Duration Exposure Facility, Space Station Freedom.

2
Roithmayr, C. M., Hu, A., and Chipman, R., “Motion of a Spacecraft with Magnetic Damper,” Journal of

Guidance, Control, and Dynamics, Vol. 19, No. 4, 1996, pp. 980–982.
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Combined Attitude Control and Energy Storage

Simulations of combined control of attitude motion,
momentum management, and energy storage on spacecraft
carrying control moment gyroscopes and flywheels for
energy storage.
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3
Roithmayr, C. M., Karlgaard, C. D., Kumar, R. R., and Bose, D. M., “Integrated Power and Attitude

Control with Spacecraft Flywheels and Control Moment Gyroscopes,” Journal of Guidance, Control, and
Dynamics, Vol. 27, No. 5, 2004, pp. 859–873.
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Gravity Tractor4

Dynamics and control of a tethered enhanced gravity tractor
performing asteroid deflection. Equations of motion and
simulation code for tether, modeled as particles connected
by springs and dampers.

4
Shen, H., Roithmayr, C. M., and Li, Y., “Dynamics and Control of a Tethered Enhanced Gravity Tractor

Performing Asteroid Deflection,” AAS Guidance and Control Conference, Breckenridge, CO, February 1–7,
2018.
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Two-Parachute System5

Analysis of scissor-mode motion of a two-parachute system
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5
Pei, J., Roithmayr, C. M., Barton, R. L., and Matz, D. A., “Modal Analysis of a Two-Parachute System,”

25th Aerodynamic Decelerator Conference, AIAA, 2019.
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Tilt-Rotor Aircraft6

Equations of motion for a generic multibody tilt-rotor aircraft.
(Many current simulations are based on single rigid body
model and ignore multibody dynamics.)

Image credit: https://rotorcraft.arc.nasa.gov/
Research/Programs/LCTR.html

6
Pei, J., and Roithmayr, C. M., “Equations of Motion for a Generic Multibody Tilt-rotor Aircraft,” AIAA

Aviation Forum, June 27, 2022.
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On-Orbit Refueling7

Attitude dynamics of on-orbit refueling configurations.
Correct application of the angular momentum principle
accounts for the change over time in the stack’s mass
distribution, position of the center of mass, and terms
associated with moving mass, in the attitude motion of two
docked spacecraft.

B★ b1^

b2^

C1★ C2★

B

L1 L2

C2C1

7
Pei, J., and Roithmayr, C. M., “Attitude Dynamics of On-orbit Refueling Configurations,” AAS 22-096,

Astrodynamics Specialist Conference, Charlotte, NC, August 7–11, 2022.
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Touchdown Stability8

Simulations of the effects of propellant slosh on the
touchdown stability of landing vehicles. Collision dynamics,
and equations of motion in between collisions.
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8
Roithmayr, C. M., and Pei, J., “Effects of Propellant Slosh on Touchdown Stability for Landing Vehicles,”

accepted for publication, Journal of Spacecraft and Rockets, 2023.
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Backup Charts

19 / 27



Noncontributing Force
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Nv C? = Nv B? + Nω B × pB + Nω C × (−pC)

Nv C?
r = Nv B?

r + Nω B
r × pB − Nω C

r × pC

Nv C?
r · (−R) = − Nv B?

r · R − Nω B
r × pB · R + Nω C

r × pC · R
= − Nv B?
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r · pB × R + Nω C
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cf. Eqs. (6)
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Newton’s Second Law

System S is made of ν particles Pi , each of mass mi
(i = 1, . . . , ν), moving in a Newtonian reference frame N.

F1 = m1
N a P1 (7)

F2 = m2
N a P2 (8)

. . .

Fν = mν
N a Pν (9)

or, a single vector equation
ν∑

i=1

(
Fi − mi

N a Pi
)
= 0 (10)

from which one can obtain a scalar equation
ν∑

i=1

(
Fi − mi

N a Pi
)

· v = 0 · v = 0 (11)

where v is any vector
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Basic Statement of Kane’s Method

For a holonomic system possessing n degrees of freedom
in frame N

ν∑
i=1

(
Fi − mi

N a Pi
)

· Nv Pi
r = 0 (r = 1, . . . ,n) (12)

where Nv Pi
r is called the r th holonomic partial velocity of

particle Pi in N. (More about how to find partial velocities
later.)
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Generalized Forces

Kane calls Fr the r th generalized active force for S in N, and
defines it as

Fr
4
=

ν∑
i=1

Fi · Nv Pi
r (r = 1, . . . ,n) (13)

F ?
r is the r th generalized inertia force for S in N, defined as

F ?
r
4
=

ν∑
i=1

−mi
N a Pi · Nv Pi

r (r = 1, . . . ,n) (14)

Kane’s Equations:

Fr + F ?
r = 0 (r = 1, . . . ,n) (15)
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Contribution of a Rigid Body to
Generalized Active Forces

Let the set of contact forces and distance forces acting on a
rigid body B be equivalent to a single force FB applied at the
mass center, B?, together with a couple whose torque is TB.

The contribution of B to Fr is given by

(Fr )B = Nv B?
r · FB + Nω B

r · TB (r = 1, . . . ,n) (16)

where Nv B?
r is the r th partial velocity of B? in N, and Nω B

r
is the r th partial angular velocity of B in N.
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Contribution of a Rigid Body to
Generalized Inertia Forces

The contribution of B to F ?
r is

(F ?
r )B = Nv B?

r · R? + Nω B
r · T? (r = 1, . . . ,n) (17)

Inertia force for B in N:

R? 4= −mB
N a B? (18)

where mB is the mass of B, and N a B? is the acceleration in
frame N of the mass center of B.
Inertia torque for B in N:

T? 4= −
(

I · NαB + Nω B × I · Nω B
)

(19)

where I is the inertia dyadic of B for B?, Nω B is the angular
velocity of B in N, and NαB is the angular acceleration of B
in N.
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Motion Variables

When the configuration in N of a system S can be
described with n generalized coordinates qr , one can define
n motion variables ur as linear combinations of the time
derivatives of qr ,

ur
4
=

n∑
s=1

Yrs
.
qs + Zr (r = 1, . . . ,n) (20)

where Yrs and Zr (r , s = 1, . . . ,n) are functions of q1, . . . ,qn
and the time t . Must be able to solve Eqs. (20) uniquely for.
q1, . . . ,

.
qn.

One of the chief disadvantages of using Lagrange’s
equations is that state variables cannot be u’s and must be.
q’s.
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Partial Velocities

The velocity in any reference frame A of a particle P
belonging to S can be expressed uniquely in terms of
motion variables and partial velocities Av P

r ,

Av P =
n∑

r=1

Av P
r ur +

Av P
t (21)

The angular velocity in any reference frame A of a rigid body
B belonging to S can be expressed uniquely in terms of
motion variables and partial angular velocities Aω B

r ,

Aω B =
n∑

r=1

Aω B
r ur +

Aω B
t (22)

where Av P
r , Aω B

r (r = 1, . . . ,n), Av P
t , and Aω B

t are
functions of q1, . . . ,qn and the time t .
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