

An Enabling Platform for <u>NA</u> Achieving Multiscale Multiphysics Analysis of Multiphase Materials

Steven M. Arnold, Trent Ricks, Evan Pineda, Brett Bednarcyk Technical Lead: Multiscale Modeling Multiscale and Multiphysics Modeling Branch NASA Glenn Research Center

Member: SDMWG NAFEMS

nafems.org

Acknowledge funding by Transformational Tools and Technology project

THE INTERNATIONAL ASSOCIATION FOR THE ENGINEERING MODELLING, ANALYSIS, AND SIMULATION COMMUNITY.

Vision 2040: A Roadmap for Integrated, Multiscale Modeling and Simulation of Materials and Systems

Provides a public/private investment strategy for the design of fit-for-purpose materials and structures

2040 Vision State:

A cyber-physical-social ecosystem that impacts the supply chain to **accelerate** model-based concurrent design, development, and deployment of materials and systems throughout the product lifecycle for **affordable**, **producible** aerospace applications

Identified Critical Gaps & Possible Subset of Actions Required To Close Each Gap

Key Element	Critical Gap	Priority Action	Time Frame	End State Characteristics
1	Underdevelopment of physics-based models that link length and time scales for relevant material systems	Multiscale V&V methods (5.6) Integration of uncertainty across scales (1.13) ICME-based fast process models (1.21) Multiscale models for rare-events/nucleation (1.22) Information framework for 3D/4D model dev. (2.11) Models for key uncertainty sources (1.23)		
2	Inability to conduct real time characterization and measurement of structure and response at appropriate length and time scales	Real-time measurement methods (2.14) Real-time visualization for experiment modeling (6.15) Lifecycle data: automated ingestion and storage (6.23) Protocols: link characterization, test data, models (2.10)		
3	Lack of reliable optimization methods that bridge across scale	New optimization formulation methods (3.13) Education modules: data analytics tools/methods (8.2) Optimization methods with uncertainty incorporated (3.11) Coupled multiphysics and optimization methods (3.5) Surrogate models for large scale optimization (4.15)		**
4	Existing models and software codes are not designed to compute input sensitivities and propagate uncertainties to enable UQ	Benchmark characterization methods (2.3) Optimization methods with uncertainty incorporated (3.1) UQ: sensitivity analysis methods (4.19) Holistic test methods (2.16) Models for key uncertainty sources (1.23)		
5	Lack of guidelines and practitioner aids for multiscale/multiphysics (e.g., ICME) V&V	Best practices: data collection (5.7) Multiscale V&V standards and definitions (5.1) Student resources: industry V&V data (8.8) V&V training (5.2) Holistic test methods (2.16)		J •5
6	No widely accepted community standards or schema for materials information storage and communication methods	Workflow data modeling: automation, recognition, tagging (7.1) Training: informatics framework interpretation & integration (6.21) Best practices: data federation (6.1) Best practices: defining multidisciplinary ontologies (6.3)		2 3 3 3 3 3 3 3 3 3 3
7	Lack of open, community/industry standards defining inputs/outputs, needed functionality, data quality, model maturity levels, etc. for smooth operation in the envisioned ecosystem	Access-controlled example workflows (7.9) Best practices: multi-domain workflows (7.16) Data quality and model maturity standards (7.21) Access-controlled adaptive file formats (6.2)		3 ## •••
8	Education/training does not bridge the gap between "essential" or "fundamental" knowledge and industrially relevant skills	Education/Training: decision/UQ approaches (4.7) New computational certifications programs/tracks (8.14) Workforce transition training for students (8.5) V&V training (5.2) Student access to equipment/facilities (8.6)		3 •
9	Lack of support, or adequate business models, for code development and maintenance, particularly for software used in engineering applications	Modernize existing codes (9.6) Best practices: multi-domain workflows (7.16) Web platform for code benchmarking (5.3) Open-source/alternative code writing tools (8.3) Early-stage collaborative code development (9.4) Initiative: support key modeling software tools (9.8)		d ₩ Q

Relevance and Background

Integrated Computational Materials Engineering (ICME) Is The Future

Micromechanics: The Link Between Structures and **Materials**

σ

Aboudi, J., Arnold, S.M., and Bednarcyk, B.A. (2013) Micromechanics of Composite Materials: A Generalized Multiscale Analysis Approach, Elsevier, Oxford, UK., pp 1-984.

NASA Multiscale Analysis Tool (NASMAT)

- Clean-sheet development based on legacy MAC/GMC and FEAMAC tools (~30 years of tool development)
- A framework designed to support massively multiscale modeling (M³) on high-performance computing (HPC) systems
 - Solves real, large-scale, non-linear, thermo-mechanical problems
- Modular design to support "plug-and-play" capabilities
 - Operational components categorized into NASMAT procedures
 - Each procedure has access to a library of modules
- Developed for enhanced interoperability
 - Integrates with 3rd party structural analysis codes (e.g., FEA)
 - Arbitrary number of length scales
 - Arbitrary micromechanics theories (including user-defined)
 - Library of constitutive laws/damage models (including user-defined)
 - Data output in HDF5 file format
- ASCII input, pre/post-processor under development

NASMAT Workflow

Comparison of Different Modeling Approaches

	Mori-Tanaka	GMC	HFGMC	FEA
General Global Accuracy	Good	Very Good	Excellent	Excellent
Computational Efficiency	Superior	Excellent	Fair	Fair
Local Field Accuracy	Poor	Good	Excellent	Excellent
Normal/Shear Coupling	No	No	Yes	Yes
Admits Local Inelasticity	Yes*	Yes	Yes	Yes
Suitable for Inclusion in Structural Models	Excellent	Excellent	Good	Fair
Multi-Axiality	Yes	Yes	Yes	Yes
Ability to Model Debonding	Yes*	Yes	Yes	Yes
Ability to Model Disordered Microstructures	n/a	Fair	Excellent	Excellent
Local Fields Insensitive to Refinements in Mesh	Yes	Yes	No	No

*Features not in NASMAT

Multiscale Recursive Micromechanics (MsRM)

- Efficient, semi-analytical micromechanics theories
- Call each other (or themselves, recursively)
- Captures microstructure on <u>arbitrary</u> number of scales

No limit on depth of scales

ocalization

Any micromechanics theory

can be used at any level!

Development of a 3D Woven Repeating Unit Cell (RUC)

Failure Prediction of a 3D Woven Composite

Warp-direction strength predicted

- Failure mode predicted disbonding of binder tows
- Use of quasi-brittle damage model improved overall prediction of stress-strain curve
- Crack band model results in more shear nonlinearity

Sensitivity Analysis of 3D Woven Composites

• Able to estimate output sensitivities to input variables

Multifidelity Integration with Abaqus

- Utilizes Abaqus user subroutines
- NASMAT acts as an Abaqus material ٠
- Arbitrary number of RUCs may be deployed as user materials
- NASMAT libraries linked using an Abagus environment file

Fix All

Disp.

Application to a Realistic Industrial Sized Problem

- Multiscale simulation of a realistic SiC/SiC CMC turbine vane subjected to thermal and internal pressure loading
 - Fully integrated nonlinear analysis

 Nodal displacement monitored as cavity bursts

- FE Mesh ~0.5M C3D10 quadratic tets
- GMC3D SiC/SiC CMC RUC

• Failure invoked at the microscale in the constituents

Failure progression monitored in constituent

Physics Governed by Vector Constitutive Laws

Heat conduction (Fourier's Law)	$\mathbf{q} = -\mathbf{\kappa} \nabla T$	\mathbf{q} = heat flux vector $\mathbf{\kappa}$ = 2nd order thermal conductivity tensor T = temperature		
Electrical conduction	$\mathbf{J}=-\mathbf{\sigma} abla\phi$	$J = electic \ current \ density \ vector$ $\sigma = 2nd \ order \ electric \ conductivity \ tensor$ $\phi = electical \ potential$	Electric field: $\mathbf{E} = -\nabla \phi$	
Diffusion (Fick's Law) $\mathbf{j} = -\mathbf{d} \nabla C$		\mathbf{j} = permeant flux vector \mathbf{d} = 2nd order diffusivity tensor C = concentration		
Magnetic permeability	$\mathbf{B} = -\mathbf{\mu} \nabla \boldsymbol{\xi}$	$J = magnetic \ flux \ density \ vector$ $\sigma = 2nd \ order \ magnetic \ permeability \ tensor$ $\xi = magnetic \ potential$	Magnetic field : $\mathbf{H} = -\nabla \boldsymbol{\xi}$	
Electrical permittivity	$\mathbf{D} = -\mathbf{\epsilon} abla \phi$	$\mathbf{D} = electric \ displacement \ vector$ $\mathbf{\varepsilon} = 2nd \ order \ electric \ permittivity \ tensor$ $\phi = electric \ potential$	Electric field : $\mathbf{E} = -\nabla \phi$	
In General	$\mathbf{Y} = -\mathbf{Z}\nabla\psi = \mathbf{Z}\mathbf{X}$	Governing Equation: $ abla \cdot \mathbf{Y} = 0$		

Multiphysics Governed by Vector Constitutive Laws

- New HFGMC formulation can solve any physics governed by vector constitutive law
- Predicts:

•

- Effective properties (given constituent properties and arrangement)
- Local fields (given global field loading)
- Second order potential or (temperature, etc.) expansion:

$$\begin{split} \psi^{(\alpha\beta\gamma)} &= \overline{X}_{j} x_{j} + \theta_{(000)}^{(\alpha\beta\gamma)} + \overline{y}_{1}^{(\alpha)} \theta_{(100)}^{(\alpha\beta\gamma)} + \overline{y}_{2}^{(\beta)} \theta_{(010)}^{(\alpha\beta\gamma)} + \overline{y}_{3}^{(\gamma)} \theta_{(001)}^{(\alpha\beta\gamma)} \\ &+ \frac{1}{2} \left(3\overline{y}_{1}^{(\alpha)2} - \frac{d_{\alpha}^{2}}{4} \right) \theta_{(200)}^{(\alpha\beta\gamma)} + \frac{1}{2} \left(3\overline{y}_{2}^{(\beta)2} - \frac{h_{\beta}^{2}}{4} \right) \theta_{(020)}^{(\alpha\beta\gamma)} + \frac{1}{2} \left(3\overline{y}_{3}^{(\gamma)2} - \frac{l_{\gamma}^{2}}{4} \right) \theta_{(002)}^{(\alpha\beta\gamma)} \end{split}$$

- System of $3N_{\alpha}N_{\beta}N_{\gamma}$ algebraic equations:
- Concentration equation:

 $\mathbf{X}^{(\alpha\beta\gamma)} = \mathbf{A}^{(\alpha\beta\gamma)}\,\overline{\mathbf{X}}$

 $\mathbf{K} \boldsymbol{\Omega} = \mathbf{f}$

- Global (effective) constitutive equation:
- Where, effective property tensor is:

$$\overline{\mathbf{Y}} = \mathbf{Z}^* \overline{\mathbf{X}}$$

$$\mathbf{Z}^* = \frac{1}{DHL} \sum_{\alpha=1}^{N_{\alpha}} \sum_{\beta=1}^{N_{\beta}} \sum_{\gamma=1}^{N_{\gamma}} d_{\alpha} h_{\beta} l_{\gamma} \mathbf{Z}^{(\alpha\beta\gamma)} \mathbf{A}^{(\alpha\beta\gamma)}$$

Multiscale Thermal Conductivity – C/Phenolic TPS Material 🐼

Three scales (woven composite/tows/voids)

-4

-6

-8

0

-0.5

2

1.5

0.5

Anisotropic effective thermal conductivity as a function of tow and void representation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 Effective Thermal Conductivity (W/mK)

Coupling NASMAT with Machine Learning Tools

- Surrogate model interface to NASMAT developed
 - Couples Tensorflow to NASMAT
- Machine learning models developed to accurately replace physics-based models
- Currently validating approach for large-scale problems

ACCOMPLISHMENT

- Laminate model with embedded ML surrogate was able to calculate the composite laminate response 145 times faster while maintaining an accuracy of 98% compared to the original physics-based model
 - Industrial required speed with research level of accuracy

Stuckner, J., Graeber, S., Weborg, B., Ricks, T. M., & Arnold, S. M. (2021). Tractable Multiscale Modeling with An Embedded Microscale Surrogate. In AIAA Scitech 2021 Forum (p. 1963). Sorini, A., Pineda, E. J., Stuckner, J., & Gustafson, P. A. (2021). A Convolutional Neural Network for Multiscale Modeling of Composite Materials. In AIAA Scitech 2021 Forum (p. 0310).

POC: J. Stuckner

NASA GRC Database Schema for ICME

POC: B. Hearley

ICME Optimization of Advanced Composite Components of the Aurora D8 Aircraft: Digital Twin/Digital Thread

Multi Org. Collaboration: Univ Mass Lowell, Univ Michigan Tech, NASA, Aurora, Collier

- NRA Objective is to develop an **integrated approach** to design and optimize the composite Y-joints and composite acreage panels used in the Aurora D8 aircraft
- Approach link material models, structural models, and experiments at multiple length scales
- Benchmark problem will serve to demonstrate the <u>benefits of the ICME</u> (compared to traditional approach)
 - •Digital Twins at each scale
 - Input/output from each scale will constitute the digital thread of this ICME framework
- Use case within AIAA Digital Twin Implementation paper (Multiscale ICME Schema)

AIMAOS Orchestrates ICME Process

Fit-for-Purpose Material Design

• Re-evaluate the requirements locally with periodic global (structural – PLM/SDM) updates

- NASMAT is an efficient and accurate nonlinear deformation and damage framework for the design and analysis of composite materials and structures (laminated and woven)
- NASMAT is an enabling tool to realize Vision 2040
- Suitable for modeling various materials (composite, fabrics, metallics)
- Able to capture relevant mechanisms at multiple scales
- Variable fidelity models available to balance computational efficiency and accuracy
- Has multi-physics modeling capability (including sequentially coupled)
- Can be coupled to external third-party software (e.g., FEA)
- Ongoing work focused on parallelizing multiscale recursive models within NASMAT

Thanks for Your Attention

Questions

Contact: Steven.M.Arnold@nasa.gov

Key References

Aboudi, J., Arnold, S.M., and Bednarcyk, B.A. (2013) *Micromechanics of Composite Materials: A Generalized Multiscale Analysis Approach*, Elsevier, Oxford, UK., pp 1-984.

Outline

- 1) Introduction
- 2) Constituent Material Modeling
- 3) Fundamentals of the Mechanics of Multiphase Materials
- 4) The Method of Cells Micromechanics
- 5) The Generalized Method of Cells Micromechanics
- 6) The High Fidelity Generalized Method of Cells Micromechanics
- 7) Multiscale Modeling of Composites
- 8) Fully Coupled Thermomechanical Analysis of Multiphase Composites
- 9) Finite Strain Micromechanical Modeling of Multiphase Composites

National Aeronautics and Space Administration

"Written with both *students and practitioners* in mind and is coupled with a fully functional MATLAB code to enable solution of technologically relevant micromechanics problems. The many illustrative example problems and exercises highlight key concepts and rely heavily on the MATLAB code"

Table of Contents

- 1. Introduction
- 2. Lamination Theory Using Macromechanics
- 3. Closed Form Micromechanics
- 4. Failure Criteria and Margins of Safety
- 5. The Generalized Method of Cells (GMC) Micromechanics Theory
- 6. The High-Fidelity Generalized Method of Cells (HFGMC) Micromechanics Theory
- 7. Progressive Damage and Failure

Features:

- Thermoelastic Material Behavior
- Emphasis on Local fields via Strain and Stress Concentration Tensors;
- General MATLAB open-source code provided
 - four micromechanics theories MT, MOC, GMC, HFGMC
 - four failure criteria, along with consistent treatment of Margins of Safety (MoS)
 - Emphasis on PMC & CMC, order and disorder microstructures
 - <u>https://github.com/nasa/Practical-Micromechanics</u>
- Extensive Practical Examples; ~ 15 Exercises /Chapter (Solution Manual available to professors)

How to Get

- NASA Software Catalog
- Format: Windows/Linux standalone executable and Abaqus compiled libraries
- Prerequisites: Intel OneAPI Base and HPC toolkits, HDF5 (1.10.6)
- Contact: <u>nasmat@lists.nasa.gov</u>

Materials And Processes NASA Multiscale Analysis Tool (NASMAT) (LEW-20244-1)

Overview

The NASA Multiscale Analysis Tool (NASMAT) serves as a state-of-the-art, plug and play, software package which utilizes multiscale recursive micromechanics as a platform for massively multiscale modeling of hierarchical materials and structures subjected to thermomechanical loads on high performance computing systems.

Request Software

Software Details

Category	Materials and Processes
Reference Number	LEW-20244-1
Release Type	U.S. and Foreign Release
Operating System	Windows, Linux

Contact Us About This Technology

Glenn Research Center grc-sra-team@mail.nasa.gov

Acknowledgements

- NASA GRC co-workers (P. Gustafson, B. Hearley, I. Kaleel, S. Mital, P. Murthy, P. Naghipour, J. Stuckner)
- NASMAT primarily developed with support from the NASA ARMD Transformational Tools & Technologies Project (T³)
- Support also obtained from multiple other sources:
 - NASA STMD Composite Technologies for Exploration
 - NASA STMD Entry Systems Modeling
 - NASA STMD Thermoplastics Development for Exploration Activities
 - Office of Naval Research
- Special thanks to collaborators:
 - NASA Langley Research Center, Ames Research Center
 - NASA OSTEM and NASA Postdoctoral Program
 - Air Force Research Laboratory
 - Many university partners (especially interns and fellows)

