

NASA's Human Research Program Use of Extreme Environments

Human Research Program Research Operations & Integration Nichole Schwanbeck, Deputy Manager-Flight

Presenter Introduction

- Graduate of ERAU-Daytona Beach '97, BS Engineering Physics
 - ERAU Volleyball player
 - Limited internship opportunities
- Started career at NASA in the Mission Operations Directorate at JSC with United Space Alliance
 - ISS Electrical Power and Thermal Control Systems training division
 - ISS Increment Training Integrator (transitioned to Civil Servant)
 - Group Lead Management in the Training Division
 - Moved to Human Research Program's Research Operations & Integration element
 - Increment Manager
 - Deputy Manager, Flight & CIPHER Project Manager
 - Rotational Opportunities
 - ISS Payloads Office
 - Human Health and Performance Deputy Chief Health & Performance Officer, ISS
 - Branch Chief Management Biomedical Engineer Flight Controllers, Space Radiation Analysis, HRP's Research Operations and Integration element, ISS and Exploration Medical Operations Integration office
- Member of ERAU's College of Engineering Philanthropic Council and the Women's Giving Circle

What is HRP?

- HRP is NASA's Human Research Program, formally established in 2005.
- Investigates risks to human exploration beyond Earth's atmosphere to help inform understanding, management and mitigation of these risks to reduce threats posed to astronauts on exploration missions.
- HRP's current research portfolio is addressing 23 of the 30 NASA Human System Risks that are organized into 5 Hazard categories:

Hostile/Closed Environments

5 Hazards of Spaceflight - HRP Risk Investigation

- SANS
- Sensorimotor
- Cardiac Rhythm
- Host-microorganism
- Bone Fracture
- Aerobic Capacity
- Muscle Mass/Strength
- Orthostatic Intolerance

- Medical Conditions
- HSI Architecture Renal Stone
- EVA Injury
- Food/Nutrition
- Ineffective/Toxic Meds

- CO2 Exposure
- Dynamic Loads
- Hypoxia
- Sleep Loss
- Immune Response
- Decompression

Isolation & Confinement

Cognitive/Behavioral

Team Adaptation

Radiation

Cancer

HRP's Research Platforms - Flight & Ground based

PROGRAM

Research on ISS

- Research on ISS covers all 5 Hazards of Spaceflight. These are just a few of our studies:
 - B-Complex
 - Tests whether a daily B vitamin supplement can prevent or mitigate Spaceflight-Associated Neuro-ocular Syndrome (SANS) and also assesses how an individual's genetics may influence the response.
 - Blood collection, daily Vitamin B supplement, Optical coherence tomography (OCT) testing, Vascular function testing
 - Host Pathogen
 - Analyzes the relationship between the increased microbial virulence and reduced human immune function commonly observed during orbital spaceflight.
 - Blood/Saliva collection ambient only, poses logistical challenges

Research on ISS

- Research on ISS covers all 5 Hazards of Spaceflight. These are just a few of our studies:
 - Thigh Cuff
 - Looking at using cuffs tightened on the legs to change the way fluid moves around inside the body and, hopefully, help prevent health problems in astronauts.
 - Wearing Thigh Cuff through the day, measures of eye with OCT, Ultrasound, Pneumotonometer
 - Zero T2
 - Examines the effects on bone, muscle, aerobic, and sensorimotor health and performance when crew members do not use a treadmill during
 a mission. Results could help determine whether exercise regimens for future exploration missions are adequate to maintain physical health.
 - Sensorimotor testing pre/post flight, blood/urine data sharing, Muscle performance and IMTP test, VO2 Max test, DXA scans

Research on Artemis Missions

Constraints

- Limited Up mass
- Limited sample return
- Limited space
- Limited Crew time

HRP Focus

- Pre/Post measures
- Minimal mass/volume sample return
- Passive inflight measures
 - Dosimetry
 - Video recording
 - Actigraphy
- Computer based testing
- Surveys

Research in Spaceflight Analogs

- An ANALOG attempts to create an environment to replicate an aspect of spaceflight for the purposes of research.
- Human Research Program uses many different analogs for research and ROI manages HRP research in 3 main types of analogs.
 - ISOLATION AND CONFINEMENT
 - BED REST
 - PARABOLIC FLIGHT

Human Exploration Research Analog (HERA)

RESEARCH PARTICIPATION

6 Campaigns * 4 missions * 4 crew members = 96

1 mission * 4 crew members = 4

OF STUDIES PER CAMPAIGN

Human Exploration Research Analog (HERA)

Human Exploration Research Analog (HERA)

Split crew crew operations with simulated rover

High mission tempo

Antarctica

Isolation & Confinement and Extreme Environment

WINTER-OVER 2023			Amundsen-Scott South Pole Station	
PALMER	AMUNDSON-SCOTT South Pole	POSSIBLE FUTURE STUDIES		
Pl: Crucian Year 2: Immune Countermeasures	PI: Stankovik Year 2: VR Sensory Stimulation Countermeasure Modeling Individual and Mult-Agent Team Problem Solving	In discussion with Australian Antarctic Division about potentially conducting HRP studies at Australian stations Possibly in 2025 Smaller winter-over populations with greater autonomy Some more remote Some with tighter constrained water/power usage		
Palmer Sta	ation		McMurdo Station	

High altitude, small population

Larger population, more services

Coastal, small population

:envihab @ DLR (German Space Agency)

- SANS = Spaceflight Associated Neuroocular Syndrome
 - Physiological changes to eye in astronauts and bedrest subjects
- -6 deg head down tilt, 30-days
- Countermeasures:
 - Lower Body Negative Pressure
 - Upright Seated Posture
 - Thigh Cuff + Exercise
- Physiological Measures to Evaluate Countermeasure Effects:
 - Assessments of sensorimotor function
 - Somatosensory feedback
 - Musculoskeletal function
 - Muscle structure via MRI, ultrasound guided muscle thickness and echo intensity (EI)
 - Electrical impedance myography (EIM)
 - DXA bone scans
 - Serological measurements, neuromuscular biomarker, and circulating miRNAs

COMPLETED SANS Countermeasures study July 2023

Campaign 1 & 2

- Subjects divided into two groups of six subjects
 - Strict HDT +LBNP (6 hours per day)
 - Strict HDT + 6 hours seated CM (6 hours per day)

Campaign 3 & 4

- Subjects divided into two groups of six subjects
 - Strict HDT Control
 - Strict HDT + Exercise (1 hour/6 days per week) + Thigh Cuff CM (6 hours/6 days per week)

Parabolic Flight through CNES (French Space Agency)

GRAVITY different from Earth

Parabolic Flight through CNES (French Space Agency)

Flight Day 1	Flight Day 2	Flight Day 3	Flight Day 4
0g	0.25g, 0.5g, 0.75g	0.25g, 0.5g, 0.75g	0.25g, 0.5g, 0.75g
2 flights, 16 parabolas each	Across 31 parabolas	Across 31 parabolas	Across 31 parabolas

- Collected data to model responses across gravity levels
 - Functional task testing
 - Fluid shift measurements
 - Ocular Alignment
 - Operational Performance Effects and Neurophysiology
- Enabled interpolation (to lunar and Martian gravity levels)
- Extrapolation (to hyper-gravity environments during dynamic spaceflight phases, landing and launch)

Other Extreme Environment Analogs

NASA uses other analogs to study various aspects of extreme environments

- Underwater analogs to simulate different levels of gravity + constraints of spacesuit on physical operations (moving cargo, construction and maintenance tasks)
- Desert analogs to test hardware and operations in harsh environments (extreme heat, dust, remote surface operations)
- Polar (arctic and antarctica) analogs to test hardware and operations in extreme cold and remote surface operations
- Pressure chambers to test humans and hardware in different atmospheric conditions (atmosphere composition, pressure)

Informative Links

- https://www.nasa.gov/hhp/human-system-risks/
- https://humanresearchroadmap.nasa.gov/
- https://www.nasa.gov/mission/cipher/
- https://www.nasa.gov/mission/station/research-explorer/
- https://www.nasa.gov/humans-in-space/the-human-body-in-space/
- https://www.nasa.gov/hrp/