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Background

Recap: the relationship between 3CH & DBCP

Beyond DBPC: Lag-1 smoother residual estimation of system uncertainty

Can CH get system uncertainty using information from Lag-1 smoother?

Closing Remarks
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Atomic Timekeeping and the Statistics of
Precision Signal Generators

JAMES A. BARNES

If three oscillators are used, it is possible to indepen-
dently measure the three quantities o1z, 013, and ag5. Thus
there exist three independent equations:

012" = 01% + 02?)

|
13’ = 012 + ﬂ's’I‘

a3’ = 02> + 04

A METHOD FOR ESTIMATING THE
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Toward the true near-surface wind speed: Error modeling
and calibration using triple collocation

Ad Stoffelen
Royal Institute, de Bilt,
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The Three-Cornered Hat Method for Estimating Error Variances of Three or More Atmospheric
Datasets. Part I: Overview and Evaluation

JEREMIAH P. SIOBERG," RICHARD A. ANTHES," AND THERESE RIECKH"
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The idea in so-called Cornered Hat Methods is to use more than one
dataset of the same observable to try to estimate the uncertainty in
their estimates obtained from them by taking the truth out of the way.

1
gleov(x +¥) — cov(x —y)]

—{Elt© (e* +€¥)] + E(e* 0 e¥)}

Assuming the datasets have uncorrelated errors, an estimate of the
sought uncertainties can be shown to be:

cov(x) — %[cov(x +y) —cov(x—y)]
1
cov(y) — Z[cov(x +y) —cov(x—y)]
This is the gist of the so-called 2CH — which by neglecting the cross-
term between the truth and the errors turns out to have poor accuracy

(Sjoberg et al. 2021). Higher order Cornered-Hat Methods only require
there be no error correlation among the chosen datasets.
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Compare estlmates Of COSMIC-2 Bending Angle Normalised Std. Dev. and Uncertainty : Apr 2021
observation uncertainty for radio occultation ¥ 0 10
bending angle with the method of ] == D
o— Ssum uncertalnty
and the Three-Cornered Hat ( 3
method of . The Fig. is a

comparison.

Compare red |and black curves,

A back of the envelop calculation during the Glose but/not fuite!

review process (by the presenter) showed that,
when things are ideal, the observation error
standard deviation derived with 3CH should equal
that derived with DBCP.

Impact height [km]

A complete analysis of the problem showed that
with proper insight 3CH can be taken to recover

th e resu ItS Of D B C P Fig. 2: Estimated COSMIC-2 bending angle random error standard deviations (uncertainties)
from the Desroziers (black) and 3CH (red) methods for April 2021. The assumed ECMWF
uncertainty model is shown in blue. The standard deviations of the COSMIC-2 bending angles
are shown by the green profile. These estimates are for all COSMIC-2 latitudes (50 S-50 °N).
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Given three datasets {X, ), Z}, the 3CH method

uncertainty estimates are given by: Bending Angle Normalised Uncertainty

1 - — DBCP-0°
= > {cov(x —y) + cov(x — z) — cov(y — z)} ] DBCP-Z"
DBCP-o*
AX 3CH—a"o
3CH-o"
3CH-o*
Prescribed-o°

——

%{Cov(y —2) + cov(y —x) — cov(z —X)}
AY

el

——
—

= %{cov(z —x) +cov(z —y) —cov(x—y)}
4+ AZ

where cov(u,v) = E[(u — E(u))(v — E(v))T],
and with

—
R p——

Impact height [km]

L
,t_
-

AX = E(e®0€eY)+ E(ef ®€?) — E(eY © €?)
AY E(eY ©€?)+ E(eY © €®) — E(e® © €7)
AZ = E(EQOe®)+ E(ef0eY)—E(eE0eY)

being the unaccessible random terms.

Practical use of 3CH looks for three datasets
with independent errors, so the A terms can From Todling et al (2022)
be safely disregarded.
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Given that A is correlated with © & = errors, why
should {O,B,A} be a viable choice of corners?

Answer: lucky when it comes to first two corners:
» O & B errors are (assumed) uncorrelated.

» Analysis errors are orthogonal to O-B
residuals.

However, not so for the third corner:

» Random error add up to twice the analysis
error covariance.
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AX = E(®°©eb) + E[e® © (e — b))
AY = E(20 eb) — Ble® @(e2— eb)]
AZ = E[e®6 (°+ eP)] — E(e® © €P)

e Uncorrelated O & B errors: E(e°®€e?) =0
e Orthogonality: E[e®® (e° —e?)] =0

Therefore,

AX = 0
AY 0
AZ = 2E[e*®ed)]
' QA <— innovation covariance consistency

2A <« optimal
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Why do these results follow?
With the association: {X,),Z} — {0, B, A}:

Full 3CH In addition to the fact that observation and
Suboptimal case: background errors are assumed uncorrelated ...

- B

(I-K)B(I-K)” + KRK” When it comes to the first two corners of 3CH:
for K=Bi"", i.e., Z arrives at Joseph's formula for the
actual analysis error covariance (filter performance).
Under Optimality: 3CH = DBCP. » Random errors cancel out due to the
Practical 3CH: neglect of cross—terms orthogonality between the analysis error and the
innovation vector.

1

Under Innovation Covariance Consistency:
ice
iC

When it comes to the third corner of 3CH:

Under Optimality:

» Gets the negative of the analysis error. With this
insight 3CH can be used to recover DBCP.
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Use of Lag-1 (e.g., 6-hr) Smoother to get Q.

Residuals formed using forecasts © from
sequential lag-1 smoother analyses, either v or

have been shown to provide an estimate of
system uncertainty (©).

Cycling filter

- ] Non-feedback
O 09> |ag-1 smoother
tea e

Sk1 = @1 + Gd  =>lag-1smoother (retrospective) analysis Simple model applications provide illustration for
f=M Sk1 => Lag-1 smoother (retrospective) forecast approach .

cov(v.d)=Q+R

coviwd)=Q Mimic of procedure in IFS (6- and 12-h) 4DVar
Note: for simplicity of exposition, w/o loss, notation here assumes H=I. haS provided eariy estimate Of uncertainty
standard deviations compared to other DBCP
error estimates (work done with Yannick
Tremolet ca. 2009).

Results from Todling (2015).
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Simulation of Lag-1 approach in IFS

IFS configured to run a particular
configuration of a combined 6- cycling
4DVar with a 12-hour non-cycling 4DVar.

» N : Examination of residuals from 6-h 4DVar
i : P strategies provide DBCP estimates for
e R diag(R), diag(B) and diag(A).

Examination of residuals from 12-h 4DVar
provide estimate of errors from “lag-1"
analyses ( ).

With Yannick Tremolet ca. 2009 (unpublished). Results here are for NHE Radiosondes.
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Simulation of Lag-1 approach in IFS

» Further use of residual information from
particular implementation of 12-h 4DVar
strategy also provides information of
diag(Q).

2 04 06 08 1
Tv errors (K)

A The specific of the 6- and 12-h 4DVars

i are such that diag(Q) should be
interpreted as system uncertainty (not
model error).

» Results here are for NHE Radiosondes.
With Yannick Tremolet ca. 2009 (unpublished).

Global Modeling and Assimilation Office
gmao.gsfc.nasa.gov




National Aeronautics and Space Administration

Two possible routes

cov(v,c) involves 3 datasets: leading us
to think of 3CH as possible candidate to
estimate Q with CH method.

Cycling filter

cov(w,d) involves 4 datasets: leading
us to think of 4CH as possible candidate to
Sk1 = A T G d =>Llag-1smoother (retrospective) analysis estimate Q Wlth CH methOd.

f=M Sk1 => Lag-1 smoother (retrospective) forecast

cov(v,d)=Q+R _
But CH methods are about getting error
(co)variances of the datasets in question.

Note: for simplicity of exposition, w/o loss, notation here assumes H=I.

That it is, with 3CH we’d at best get 2, =, - and
with 4CH we’d at best get the same plus
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If a CH method is to get F, the retrospective
forecast error covariance, it would get

opt

F = A+Qr'q
forT =B+ R.

Given estimates of A = cov(f) — cov(a) and
cov(o — b) from sample data, an estimate of
system uncertainty can be derived as solution
of the equation above:

cov(q) = cov(d)[cov(d)~1A] 1/2

but this is an entwined way to estimate Q,
unlike the lag-1 residual approach.
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Note in passing that

The filter analyses are BLUE, that is, no other
estimate has smaller errors: lag-1 retrospective
forecasts have larger errors than filter analyses by
a measure proportional to system errors.

Note

Sure, the solution here should be symmetrized.

So




National Aeronautics and Space Administration

The fundamental assumption for CH methods to work is that of independence among its chosen datasets.

The 3CH choice of is odd in the sense that not all of its datasets are independent.

AIthou%h observation and background errors are uncorrelated, errors in the analysis are not uncorrelated to
u

those, but ...

Luckily, it turns out that to get I and & all that is needed is for the errors in the analysis to be orthogonal to
the innovations. And this is exactly what happens in an optimal system.

3CH fails to get /. It gets its negative instead!

From the items above, it would seem a stretch to replace the third corner with retrospective forecasts,
}, and expect to get anything useful, but ...
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Have 3CH choose {O,B,F} for its {X,), Z}
datasets:

;{Cov(o —b) + cov(o — ) — cov(b — )}

;{Cov(b — £) 4 cov(b — 0) — cov(f — 0)}

%{Cov(f —0) + cov(f — b) — cov(o — b)}

Interestingly, it can be shown that the 3CH es-
timates for observation, background and ret-
rospective forecast errors are:

opt

£ R+Q

t
Z B_Q
opt

= Qrlq-a

1

E{RF_IQ +Qr—'r
—_ RrlB_Brlr

- Br'Qq-qr—m}
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When 3CH choses {o,b,f}, none of the ne-
glected terms in 3CH vanish. That is,

AX = E(° ) + Elef © (e — )]
AY = E(°0eb) — Elef ® (e° — €b)]
AZ = E[ef 0 (24 )] - E(e°0ed)

e Uncorrelated O & B errors: E(e° ®e?) =0
e But E[ef ©(e2—€?)]=-Q#0

Therefore,
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When establishing the relationship between 3CH and DBPC we discovered that, under
optimality, both procedures obtain the same estimates of observation and background errors.

Although in that context we find 3CH to fail to get DBPC analysis error estimate, the 3CH
estimate can be made useful by simply recognize that it gets the negative of the analysis
error as opposed to DBCP.

Similarly, although none of 3CH estimates are correct when the corners corresponding to
observation, background and retrospective forecast. An estimate of system uncertainty can
still be recovered by apply 3CH to the two sets {o0,b,a} and {0,b,f} separately. Use of the
estimates for R or B from the first set can be used to infer Q from two of the estimates of the
second set, without having to solve a quadratic equation to infer Q.

This two-shot 3CH should be equivalent to applying 4CH to {0,b,a,f} but in this case, it is
likely that we’d need to solve a quadratic equation to infer Q ... to be done.
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Following a recently established relationship between and , this work tries to apply
similar rationale to establish the relationship between CH methods and a residual-based
approach to a lag-1 smoother procedure to estimate system uncertainty (©).

It is found that, unlike the residual-based lag-1 smoother approach, CH methods cannot get a
direct estimates of

However, with the newly established relationship it is possible to get an estimate for © by
using a two-tiered 3CH approach:

o Use to get an estimate of = from the first corner, followed by
o Use of to getting an estimate of from the first corner, and thus derive

» Obviously, the tricky part if getting retrospective forecasts f, but that is true of both
approaches.
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