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Abstract  

Estimates of ground level ozone concentrations have been improved through data fusion of observations 

and atmospheric models, but global estimates have been limited by model bias corrections that are linear 

and homogeneous within continents, including those we created for the Global Burden of Disease study.  

Here we use the Regionalized Air Quality Model Performance (RAMP) framework to correct model bias, 

accounting for the spatial inhomogeneity of bias and nonlinearity as a function of modeled ozone.  RAMP 

bias correction is applied to a composite of nine global chemistry-climate models.  Then estimates are 

fused with observations using the Bayesian Maximum Entropy (BME) framework, which matches 

observations at measurement stations and the influence of those observations declines with distance in 

space and time.  We create global ozone maps for each year from 1990 to 2017 at fine spatial resolution.  

RAMP is shown to create unrealistic discontinuities due to the spatial clustering of ozone monitors, which 

we overcome by applying a weighting for RAMP based on the number of monitors nearby.  While in 

BME the spatial influence of monitors is limited to a few degrees based on the spatial covariance, RAMP 

corrects biases over a much larger area.  Incorporating RAMP before BME has little effect on model 

performance near stations, but strongly increases R2 by 0.15 at locations without stations, shown through 

a checkerboard cross-validation.  Corrections to estimates differ based on location in space and time, 

confirming heterogeneity.  We use BME estimates of error variance to quantify the likelihood of 

exceeding selected ozone levels, finding that the western US, southern Europe, central Africa, the Middle 

East, India, and northern China are most likely to exceed 45 and 55 ppb in 2017.  Our annual fine-

resolution ozone estimates may be useful for several applications including epidemiology and 

assessments of impacts on health, agriculture and ecosystems.   
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1.  Introduction 

Ground level ozone is a pervasive air pollutant that detrimentally affects human health and plants.  Ozone 

can cause a wide range of health problems in humans, and has been shown to cause premature mortality 

from daily exposures (Bell et al., 2004; Di et al., 2017; US EPA, 2020) and is likely to cause mortality 

from long-term chronic exposure (Jerrett et al., 2009; Turner et al., 2016; US EPA, 2020).  Ozone 

concentrations above roughly 35 parts per billion (ppb) are associated with higher respiratory and 

cardiovascular mortality, with every 10 ppb increase increasing all-cause mortality by 2% (Turner et al., 

2016).  Ambient ozone is estimated to have caused about 365,000 deaths globally in 2019, or 0.65% of all 

global deaths (Murray et al., 2020). Unlike other air pollutants, ozone is purely secondary, created 

through photochemical reactions involving nitrogen oxides (NOx), volatile organic compounds (VOCs), 

carbon monoxide, and methane in the atmosphere, in the presence of sunlight.  Ozone concentrations are 

typically higher in the daytime and during summer months (NARSTO, 1999).  

Understanding of ozone impacts on human health and plants has traditionally been limited in part by our 

understanding of ground level ozone distributions in space and time.  Estimates of surface ozone 

distributions rely on monitoring station observations and chemical transport models, but both have 

limitations.  While the US, Europe, and Japan have dense station networks that began prior to 1990 and 

China recently created a large network, station observations of ozone elsewhere are extremely limited 

(Schultz et al., 2017; Fleming et al., 2018; Lu et al., 2018). Models can help fill in these gaps in space and 

time, but have biases and overall are less accurate than observations (Cooper et al., 2014; Young et al., 

2018).   

In our previous work, we conducted a data fusion of ozone observations and multiple global atmospheric 

models, in two phases, to estimate global ground level ozone concentrations at fine spatial resolution 

(Chang et al., 2019; DeLang et al., 2021).  These estimates of ozone were used to estimate global 

premature deaths from exposure to ambient ozone in the Global Burden of Diseases, Injuries, and Risk 

Factors (GBD) 2017 and 2019 Studies (Stanaway et al., 2018; Murray et al., 2020).  GBD conducts a 

comparative risk assessment to estimate the global health burden caused by various risk factors from 1990 

to the present.  

Prior to GBD 2017, ozone in previous GBD studies was estimated solely by a single model with no 

observational bias correction (Brauer et al., 2016).  The first global study to combine information from 

ozone observations and models developed and applied the M3Fusion method to correct model bias, 
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improving global ozone estimates from purely observation or model based approaches (Chang et al., 

2019), in support of GBD 2017.  M3Fusion bias corrects and combines multiple chemical transport 

models by finding an optimal linear combination of models for each world region, using weighting based 

on performance when compared to available observations. The multimodel composite created was then 

corrected within two degrees of a monitoring station using a spatial interpolation of observations, creating 

fine resolution output.  

We then improved on this using a novel combination of Bayesian Maximum Entropy (BME) along with 

M3Fusion (DeLang et al., 2021), to support GBD 2019.  BME is a framework for nonlinear geostatistics 

that performs the fusion of data from multiple sources (Serre and Christakos, 1999; Christakos et al., 

2001; Christakos et al., 2004).  BME used observations to correct the M3Fusion multi-model composite 

smoothly in both space and time, so that ozone estimates match the observations at station locations.  The 

influence each station exerts diminishes over time and space based on a calculated spatiotemporal 

covariance function.  Before our study, BME had been used on smaller scales to fuse ozone observations 

and models (Christakos et al., 2004; de Nazelle et al., 2010; Xu et al., 2016), but not previously globally.  

The ability of observations in BME to influence estimates across time was also shown to be useful in 

informing earlier years before new stations were added (DeLang et al., 2021).  

DeLang et al. (2021) showed that ozone estimates improved markedly over purely model- or observation-

based estimates, and produced a global fine resolution (0.1°) dataset for each year from 1990 to 2017.  

However, like Chang et al. (2019), DeLang et al. (2021) rely on linear model bias corrections that are 

homogeneous across continents by M3Fusion, where it does not correct based on a nearby observation.  

Previous research has shown that air pollution model performance and biases are non-homogenous (vary 

by location) and non-linear (vary as a non-linear function of the model estimate) (Reyes et al., 2017). For 

example, chemical transport models generally overpredict PM2.5 when predicting high (>25 µg/m3) values 

and underpredict elsewhere (Reyes et al., 2017).  

Model errors for ozone stem from uncertainties in inputs, especially emissions of ozone precursors (NOx 

and VOCs) from anthropogenic and natural sources, and in model processes including chemistry, model 

resolution, transport, and deposition (Young et al., 2018). Previous model evaluations have found that 

models have errors that vary by season and latitude (von Kuhlman et al., 2003), reflecting uncertainties in 

emissions inputs and in physical and chemical processes within the models.  In short, we have imperfect 

knowledge of sources and sinks of ozone precursors.  These errors could lead to overestimates in some 

locations and underestimates in others, indicating that model performance may be heterogenous (Liang 

and Jacobson, 2003).  Ozone itself is also known to change non-linearly with emissions (NARSTO, 1999; 
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Cohan et al., 2005), and ozone model performance has also been shown to be non-linear with respect to 

ozone observations.  The Community Multiscale Air Quality (CMAQ) model, for example, has been 

shown to overestimate maximum 8 hour average ozone levels where observations are below 35 ppb and 

underestimate where observations are above 85 ppb (Appel et al., 2007). 

The goal of this work is to improve on the work of DeLang et al. (2021) to map global surface ozone 

concentrations each year from 1990 to 2017 at fine spatial resolution by adding a non-linear and 

heterogeneous bias correction using the Constant Air Quality Model Performance (CAMP) and 

Regionalized Air Quality Model Performance (RAMP) methods (Reyes et al, 2017), and evaluate the 

improvement in performance. CAMP and RAMP corrections are applied to the M3Fusion multi-model 

composite prior to BME data fusion.  While BME is not restricted spatially, ozone’s steep covariance 

curve means that observations have little influence beyond one degree from an observation station 

(DeLang et al., 2021), while CAMP and RAMP corrections are not restricted by covariance.  Specifically, 

we aim to use regional trends in model under/over estimation to correct the M3Fusion results regionally 

and increase the fidelity of our estimation in areas with sparse or no ozone observation stations.  

Both CAMP and RAMP bias correct models by comparing observed and modeled values at collocated 

points in space and time, and applying a non-homogenous, non-linear correction as a function of the 

modeled ozone concentration. CAMP assumes that model performance is constant across the study 

region, while RAMP improves on this by giving each model grid cell its own model bias correction based 

on nearby observations. Here, the RAMP method (Reyes et al., 2017) is applied globally for the first time, 

with each model grid cell being corrected based on a unique area that includes the nearest points in 

space/time. These areas are much smaller than the continental regions used in M3Fusion, allowing us to 

better correct biases in the M3Fusion multi-model composite at points far away from observations, while 

BME then applies corrections near them.  In applying RAMP at a global scale, we also make a novel 

modification of the RAMP method because station observations are sparse in some regions and clustered 

in others. This modification prevents sharp spatial changes in corrections when transitioning between two 

different regions with dense observation stations.  The CAMP and RAMP corrected estimates are then 

each used as global background ozone levels (the global offset) for BME data fusion with observations, as 

was done by DeLang et al. (2021) with the uncorrected M3Fusion multimodel composite. 

 

2.  Methods 

2.1  Ozone observations and model estimates 
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We use the ozone season daily maximum 8-hour mixing ratio (OSDMA8) as the annual ozone metric, as 

it is used for calculating health outcomes from ozone pollution by GBD (Murray et al., 2020) using 

concentration-mortality relationships from Turner et al. (2016).  OSDMA8 is the maximum six-month 

running mean of monthly averages of the daily 8-hour maximum mixing ratios. Each defined year 

includes up to March of the following year to capture the Southern Hemisphere summer, as ozone is 

usually highest in the summer. All reported ozone values here, including observations, modeled values, 

and estimates are OSDMA8 values.  

Ground level ozone measurements are taken from the Tropospheric Ozone Assessment Report (TOAR) 

and Chinese National Environmental Monitoring Center (CNEMC) (Schultz et al., 2017; Lu et al, 2018). 

The TOAR database is the largest collection of global hourly surface ozone concentrations and spans 

1970-2015.  To support this project, some national datasets were extended for 2015-2017 (DeLang et al., 

2021).  While observations are dense in North America, Europe, Japan, and South Korea, they are sparse 

to non-existent elsewhere (Figure 1). CNEMC provides 2013–2017 surface ozone observations in China 

(Lu et al., 2018). Both datasets were quality-controlled with the same algorithm developed for the TOAR 

database. The number of observation locations in the combined dataset is least in 1990 (with 1,190) while 

2015 has the most (4,999).  

We used surface concentration output from nine atmospheric chemistry model to create our M3Fusion 

multi-model composite (Table S1). Models include four models from the Chemistry-Climate Model 

Initiative (CCMI; Morgenstern et al., 2017) that simulate 1990-2010, two additional CCMI models that 

extend the simulation beyond 2010, two CMIP6 models which cover years after 2010 (Collins et al., 

2017), and MERRA2-GMI, which covers 1990-2017 (DeLang et al., 2021).  The compilations of 

observations and models used here are the same as used by DeLang et al. (2021).    

2.2.  Data fusion methods 

 M3Fusion was used to evaluate model performance and create a bias-corrected multi-model composite 

for each year 1990-2017 (Chang et al., 2019). This is the same composite used by DeLang et al. (2021). 

This method find a linear combination of the 9 models in each year and continental domain that 

minimizes the mean square error compared to interpolated observations, creating a single bias-corrected 

global composite for each year.  However, M3Fusion does not capture the non-linearity of model 

performance with respect to model value, nor how model performance varies within a continental domain 

(heterogeneity), both of which we address using RAMP. 
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The Constant Air Quality Model Performance (CAMP) method (de Nazelle et al., 2010) is a precursor 

to RAMP that bias corrects for non-linear model performance, but does not account for non-homogeneity 

as a single correction applies globally. It matches each observation point with the model estimate at that 

location. These matched pairs are then binned by the model estimate, and an average of model estimates 

and observations is set for each bin. The M3Fusion composite is then corrected by interpolating between 

these values. Since CAMP is closely related to RAMP, we describe the method in depth in the next 

paragraphs. While CAMP works well for local applications in a single year, RAMP allows us to account 

for the heterogeneity in model performance we see at a global scale, by performing the model correction 

based on the nearest observations only.  

Regionalized Air Quality Model Performance (RAMP) is a method to visualize and evaluate model 

performance, and can be used to bias correct models (Reyes et al., 2017). The correction accounts for 

non-linear and non-homogenous model performance (de Nazelle et al., 2010), in which the RAMP 

correction is not limited to a linear function with respect to model value, and it may correct differently in 

different geographic regions. Here we apply RAMP to the M3Fusion composites so that we address 

residual non-linear and non-homogeneous biases. While previous studies have used RAMP to bias correct 

model estimates of air pollutants (de Nazelle et al., 2010; Xu et al., 2016; Reyes et al., 2017), none has 

done so at a global scale.  

Let 𝑦𝑦�(𝒑𝒑) be the M3Fusion multimodel composite prediction of ozone at space/time coordinate 𝒑𝒑 = (𝒔𝒔, 𝑡𝑡), 

where 𝒔𝒔 is the spatial location in longitude/latitude degrees, and 𝑡𝑡 is time in years. Let 𝑦𝑦�𝑖𝑖 = 𝑦𝑦�(𝒑𝒑𝑖𝑖) be the 

ozone CENMC or TOAR observation at space/time monitoring points 𝒑𝒑𝑖𝑖.  M3Fusion predictions are 

available throughout our entire global study domain, whereas observations are only available at certain 

locations. We pair each observation 𝑦𝑦�𝑖𝑖 with the underlying model prediction 𝑦𝑦�𝑖𝑖 = 𝑦𝑦�(𝒑𝒑𝑖𝑖), so that (𝑦𝑦�𝑖𝑖, 𝑦𝑦�𝑖𝑖) 

are the paired observation-model values. We let ℛ(𝒑𝒑) be the space/time region around 𝒑𝒑 containing the 

𝑁𝑁=250 spatially closest stations in years t, t-1 and t+1 (1990 does not use t-1, and 2017 does not use t+1).  

We chose 250 after trying other numbers as it was enough stations to maintain consistent patterns and 

prevent outliers from having significant effects, while giving a narrow enough spatial range to correlate 

with local trends. As we use three years, ℛ(𝒑𝒑) contains up to 750 collocated (𝑦𝑦�𝑖𝑖, 𝑦𝑦�𝑖𝑖) pairs.  We sort these 

pairs by increasing model value and stratify them in 10 bins corresponding to increasing model decile 

values 𝑦𝑦�𝑘𝑘, 𝑘𝑘 = 1, … 10.  Then, we calculate the average observed value 𝜆𝜆1 for model decile value 𝑦𝑦�𝑘𝑘 in 

region ℛ(𝒑𝒑) as 

 𝜆𝜆1(𝑦𝑦�𝑘𝑘,ℛ(𝒑𝒑)) = 1
𝑛𝑛(𝑦𝑦�𝑘𝑘,ℛ(𝒑𝒑))

∑ 𝑦𝑦�𝑗𝑗
𝑛𝑛(𝑦𝑦�𝑘𝑘,ℛ(𝒑𝒑))
𝑗𝑗=1  
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where 𝑛𝑛(𝑦𝑦�𝑘𝑘, ℛ(𝒑𝒑)) is the number of paired observed/modeled values (𝑦𝑦�𝑖𝑖, 𝑦𝑦�𝑖𝑖) for which 𝑦𝑦�𝑖𝑖 is in the k-th 

decile of modeled values, and 𝑦𝑦�𝑗𝑗 is the j-th observation in these pairs.  

The above steps follow those outlined by Reyes et al. (2017); in this paper we further improve RAMP by 

ensuring that the slope between 𝜆𝜆1s does not become negative, or in other words, ensure the 𝜆𝜆1 RAMP 

curve for any ℛ(𝒑𝒑) is monotonically increasing.   To do this, we define the mean value of all observed 

values 𝑦𝑦�𝑖𝑖 in ℛ(𝒑𝒑) as 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.  We compare 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 with 𝜆𝜆1�𝑦𝑦�5, ℛ(𝒑𝒑)�, the 𝜆𝜆1in the 5th decile bin.  If 

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 < 𝜆𝜆1�𝑦𝑦�5,ℛ(𝒑𝒑)�, we set 𝜆𝜆1�𝑦𝑦�5,ℛ(𝒑𝒑)� = 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. We then compare the 5th and 4th bin in the same 

way, and so on, ensuring that 𝜆𝜆1�𝑦𝑦�𝑘𝑘,ℛ(𝒑𝒑)� ≥ 𝜆𝜆1�𝑦𝑦�𝑘𝑘−1,ℛ(𝒑𝒑)�, by setting them as equal when necessary. 

We do the same for bins k=6 through 10, first comparing bin 6 to 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and setting the value of 

𝜆𝜆1�𝑦𝑦�6,ℛ(𝒑𝒑)� equal to  𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 𝜆𝜆𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 > 𝜆𝜆1�𝑦𝑦�6, ℛ(𝒑𝒑)�.  This is a novel improvement to Reyes et al. 

(2017) as it maintains the ordinality of estimates from the original model with the same ℛ(𝒑𝒑). 

By plotting 𝜆𝜆1(𝑦𝑦�𝑘𝑘,ℛ(𝒑𝒑)) with respect to 𝑦𝑦�𝑘𝑘, we obtain the RAMP curve at location 𝒑𝒑 showing how the 

average observation changes with respect to model value.  Figure 2 visualizes the non-linear performance 

of the M3Fusion composite, and by changing location 𝒑𝒑, we can see how that performance varies across 

space and where it is non-linear. This visualization can, for example, be used to detect regions where the 

M3Fusion prediction over-predicts high ozone values and under-predicts low ozone values.  These plots 

also allow us to correct the model value by interpolating along 𝜆𝜆1(𝑦𝑦�𝑘𝑘,ℛ(𝒑𝒑)) and selecting a new model 

values based on the value of 𝜆𝜆1 evaluated at the original 𝑦𝑦�𝑘𝑘 = M3Fusion value.  Therefore, the RAMP 

corrected model value is 𝜆𝜆1(𝑦𝑦�(𝒑𝒑𝑖𝑖),ℛ(𝒑𝒑𝒊𝒊)). 

A novel challenge posed by the implementation of the RAMP method at the global scale is that station 

locations are clustered in some countries or continents (e.g. the US, China, Japan, Europe), and are sparse 

in large areas in between.  Previous applications of RAMP had more uniform distributions of 

observations (Reyes et al., 2017).  As a result, globally the region ℛ(𝒑𝒑) containing the 𝑁𝑁=250 stations 

closest to 𝒑𝒑 can change dramatically over a short distance, for example when shifting from a domain 

dominated by European observations to one dominated by China.  This abrupt change in ℛ(𝒑𝒑) can result 

in a discontinuity in the RAMP corrected value 𝜆𝜆1(𝒑𝒑).  To reduce this discontinuity, we introduce the 

RAMP-M3Fusion weighted average 𝜆𝜆1∗(𝒑𝒑) calculated as  

𝜆𝜆1∗(𝒑𝒑) = 𝑤𝑤(𝒑𝒑) ∗ 𝜆𝜆1(𝒑𝒑) + (1 − 𝑤𝑤(𝒑𝒑)) ∗ 𝑦𝑦�(𝒑𝒑) 

where 𝜆𝜆1(𝒑𝒑) and 𝑦𝑦�(𝒑𝒑) are the RAMP and M3Fusion values, respectively, and 𝑤𝑤(𝒑𝒑) is the weight for 

RAMP at location 𝒑𝒑.  We want a weight that is high when a large fraction of the 𝑁𝑁 stations used to 
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construct the RAMP curve are close to 𝒑𝒑 and low when this fraction is low. We therefore set the weight 

using the equation 

𝑤𝑤(𝒑𝒑) =
𝑁𝑁𝑞𝑞(𝒑𝒑)
𝑁𝑁(𝒑𝒑)  

where 𝑁𝑁(𝒑𝒑) is the number of stations used to calculate the RAMP curve at location 𝒑𝒑 (250), 𝑁𝑁𝑞𝑞(𝒑𝒑) is the 

number of these stations that are within a radius 𝑞𝑞 of 𝒑𝒑, and 𝑤𝑤(𝒑𝒑) is the fraction of RAMP stations 

(between 0 and 1) that are within 𝑞𝑞 degrees of 𝒑𝒑 (Figure 3).  We choose a radius 𝑞𝑞=25 degrees, so that the 

RAMP weight 𝑤𝑤(𝒑𝒑) allows RAMP to exert influence beyond the range of BME without extending into 

areas without representative observations. Areas that are more than 25 degrees away from these station 

clusters, like the area at the midpoint between China and Europe, will have a RAMP weight close to zero 

and a 𝜆𝜆1∗(𝒑𝒑) ≈ 𝑦𝑦�(𝒑𝒑), thereby mitigating any RAMP discontinuity.  We call the global output of 𝜆𝜆1∗  values 

weighted RAMP, or wRAMP. 

Bayesian Maximum Entropy (BME) data fusion is then applied after RAMP correction to fuse model 

prediction and observations, using the approach described by DeLang et al. (2021).  Each BME estimate 

uses a different background assumption for global ozone levels at every grid cell, which we call the global 

offset, based on either the M3Fusion composite, CAMP corrected M3Fusion, or wRAMP corrected 

M3Fusion.  This global offset is corrected using BME so the final BME estimate matches observed values 

at each station location.  Each station exerts an influence based on the difference between the station 

estimate and the global offset, which decreases as the space/time distance from observations increases, 

eventually matching the offset prediction away from observations.  The rate at which this influence falls 

is based on a derived covariance function.  BME has been used previously for the fusion of ozone 

observations and models (Christakos, 2000; Christakos et al., 2004; de Nazelle et al., 2010), though only 

once before at global scale (DeLang et al., 2021).   While these papers provide the details of BME, we 

give here the main BME steps.  

The fundamental step in BME data fusion is the definition of an offset function 𝑜𝑜(𝒑𝒑) at all points 𝒑𝒑 across 

the study space/time domain. Here, we set 𝑜𝑜(𝒑𝒑) equal to either 𝑦𝑦�(𝒑𝒑) (M3Fusion),  𝜆𝜆1(𝒑𝒑) (RAMP), or 

𝜆𝜆1∗(𝒑𝒑) (weighted-RAMP). We calculate the offset-removed observations 𝑥𝑥�𝑖𝑖 as 

𝑥𝑥�𝑖𝑖 = 𝑦𝑦�𝑖𝑖 − 𝑜𝑜(𝒑𝒑𝑖𝑖), 𝑖𝑖 = 1, … , 𝑛𝑛 

where 𝑦𝑦�𝑖𝑖 = 𝑦𝑦�(𝒑𝒑𝑖𝑖) are the CENMC or TOAR observations at point  𝒑𝒑𝑖𝑖, 𝑖𝑖 = 1, … , 𝑛𝑛. We define 𝑋𝑋(𝒑𝒑) as a 

homogeneous/stationary Space/Time Random Field (S/TRF) with realizations 𝑥𝑥�𝑖𝑖, 𝑖𝑖 = 1, … , 𝑛𝑛.  𝑋𝑋(𝒑𝒑) is a 

S/TRF representing the residual uncertainty and variability that is left in the offset-removed observations, 
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and therefore its covariance function changes with the offset considered (either M3Fusion, RAMP or 

weighted-RAMP).  Finally, we define the S/TRF 𝑌𝑌(𝒑𝒑) representing the ozone concentration as the sum of 

the residual field and the offset, i.e. 

𝑌𝑌(𝒑𝒑) = 𝑋𝑋(𝒑𝒑) + 𝑜𝑜(𝒑𝒑). 

We implement BME on the residual S/TRF 𝑋𝑋(𝒑𝒑) to obtain the BME estimate of 𝑋𝑋(𝒑𝒑𝑘𝑘) at estimation 

points 𝒑𝒑𝑘𝑘 across a global estimation grid.  The general knowledge base characterizing 𝑋𝑋(𝒑𝒑) consists of a 

mean assumed zero within the estimation neighborhood, and a covariance function obtained from a 

variogram analysis (see supplementary information for details on the covariance model and its 

parameters). The site-specific knowledge consists in the offset-removed observations treated as hard data 

(data with no assumed uncertainty). We numerically implement BME using the BMElib library written in 

the MATLAB programming language (Serre and Christakos, 1999; Christakos et al., 2001), and as shown 

by DeLang et al. (2021), in this case the BME posterior pdf of 𝑋𝑋(𝒑𝒑𝑘𝑘) is Gaussian with a mean 𝑥𝑥�𝑘𝑘 equal to 

the simple kriging mean.  Finally, the BME estimate 𝑦𝑦�𝑘𝑘 of 𝑌𝑌(𝒑𝒑𝑘𝑘), representing ozone at the estimation 

point, is obtained as 

𝑦𝑦�𝑘𝑘 = 𝑥𝑥�𝑘𝑘 + 𝑜𝑜(𝒑𝒑𝑘𝑘), 

where 𝑜𝑜(𝒑𝒑𝑘𝑘) is the (M3Fusion, RAMP or weighted-RAMP) offset at the estimation point. Estimation 

points are set on a 0.5 degree grid, giving a final BME estimation at 0.5 degree resolution. 

2.3.  Cross Validation 

Leave One Out Cross Validation (LOOCV) was done by removing each observation one at a time and 

using various estimation methods to evaluate our ability to predict this observation based on the 

remaining data.  LOOCV was performed by predicting ozone at each 0.5 degree grid cell containing an 

observation point, and comparing it with the observations (𝑦𝑦�(𝒑𝒑𝑖𝑖)) in the grid cell.  This was done for 

M3Fusion, CAMP, and wRAMP both before and after data fusion with BME.  For LOOCV of BME, 

BME was used to estimate each removed point in turn, and the aggregated errors were used to calculate 

R2 and mean square error (MSE).  For LOOCV on the offsets, the difference between the offset and 

observation point at each station location was used. We followed the same protocols for LOOCV as 

DeLang et al. (2021). 

Whereas LOOCV tests the ability to predict based on nearby clustered observations, we use 

Checkerboard Cross Validation (CBCV) to better test each estimation method especially farther from 

nearby observations.  This method is based on the radius-based validation methods of Xu et al. (2016) and 
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Cleland et al. (2020).  In CBCV we create a “checkerboard” of boxes over the world with each box 

having a side length s latitude and side length 2*s longitude.  For each box, we remove all observed 

values 𝑦𝑦�(𝒑𝒑𝑖𝑖)  within the box and use BME to re-estimate the ozone values at the location y*(𝒑𝒑𝑖𝑖) of the 

removed observations within the box, using only observations outside of it.  The validation error is 

defined as 𝑒𝑒ℎ = 𝑦𝑦�(𝒑𝒑𝑖𝑖)  − 𝑦𝑦∗(𝒑𝒑𝑖𝑖), which is then used to calculate R2 values to quantify error for each 

observation in every box. We test CBCV with s ranging from 0.5 to 50 degrees.  BME relies on 

observations to make corrections within the covariance range (1-2 degrees for ozone), so as s increases, 

observed values will have a smaller influence on correction.  CBCV simulates the effect of sparse 

observations, while still having observations to validate the estimate.  As most of the world does not have 

dense observation networks, the ability to correct away from observations is valuable to global 

estimations of air pollution.  

 

3.  Results 

The M3Fusion multimodel composite (Chang et al., 2019; DeLang et al. 2021) is used here as the basis 

for RAMP and CAMP corrections (Figure 4).  We then bias correct the M3Fusion composite with the 

RAMP method using TOAR and CNEMC observations (Figure 2). Using RAMP, we confirm that 

M3Fusion bias varies at a finer scale than the continental regions used in M3Fusion, supporting the value 

of RAMP’s localized (non-homogenous) bias correction.  While specific biases vary by region, some 

biases are more prevalent.  M3Fusion tends to overpredict ozone where it estimates high values and 

slightly underpredict low values, which is confirmed by CAMP (Figure S2).  This has been demonstrated 

for individual models in previous studies of surface ozone (de Nazelle et al., 2010), but we are not aware 

that it has been demonstrated previously at a global level.  We also find that model performance is not 

linear and tends to be better around the midrange of predicted values, again supporting the use of RAMP 

or CAMP for a non-linear approach to model correction. 

We apply a RAMP bias correction to each model grid point, which results in a non-homogenous, non-

linear correction.  Corrections vary each year and at each location, but the largest changes generally occur 

where the M3Fusion estimate is above about 55 ppb or below 35 ppb.  While overall the M3Fusion 

composite overestimates when it predicts high ozone, and underestimate where it predicts low, this is not 

true for all regions. Model bias was found to be non-homogenous and change based on space/time 

location. Figure 5a shows an area where the model consistently underpredicts ozone, and the RAMP 

correction has a steeper slope at high values. Figure 5b shows a nearby region in the same year where 

M3Fusion overpredicts ozone at all but the lowest levels, and the ozone estimate at the specific point is 



 12 

lowered by the RAMP correction. Both Figures 5a and 5b are in the same correction region, showing that 

the M3Fusion bias varies at finer spatial scales than continental. Figure 6 shows the heterogeneity in 

model performance and bias correction globally. While some areas like the Americas see primarily a 

RAMP correction in a single direction, others like northern Africa and eastern Europe have regions which 

are corrected upwards bordering regions corrected downward. 

Figure 5b also shows a region where model performance is non-linear with respect to estimations, where 

the model overpredicts high values and underpredicts low values.  Non-linearity is identifiable by an s-

shaped λ1 curve.  In these areas, the M3Fusion bias does not vary linearly with respect to the M3Fusion 

estimate, and therefore our correction is not a linear function. This shows the value of the RAMP 

correction over a linear bias correction, as a linear correction could not replicate these non-linear curves.  

Figure 5c shows an example region where M3Fusion consistently overestimates ozone. These RAMP 

curves show the trends in model performance in the region, as a function of modeled concentration, as 

well as correcting the individual points (the pink star) based on this evaluation.  

At a global scale, RAMP creates “streaks” where the observations used to correct the model change from 

being dominated by one region (eastern Europe) to another far away region (Japan and South Korea) over 

a short spatial distance (Figure 7).  This happens as there are no/few local observations for the RAMP 

correction in this area.  Because of this, we weight RAMP (Figure 3) to allow a smooth transition 

between regions, using weights for RAMP and M3Fusion that vary spatially and temporally (Figure 8). 

Weighted RAMP (wRAMP) heavily favors RAMP over M3Fusion in areas with high density of 

observations stations, and RAMP maintains some influence up to 25 degrees from any station. This 

distance is long enough to give RAMP an influence in areas not reached by the BME correction, but short 

enough that it creates smooth transitions between regions and lessens the discontinuities seen in pure 

RAMP.  

Using weighted RAMP as our global offset and station observations as hard data for BME, we obtain 

yearly estimates of global ozone and variance at 0.5-degree resolution (Figure 9). The ozone estimates 

match observations at any space/time location with an observation. The influence of observations 

decreases as a function space/time distance as the estimate moves further from an observation, based on 

the derived covariance (see supplemental equations). Temporally the influence of an observation over 

multiple years in BME is valuable in correcting areas with inconsistent observations. DeLang et al. (2021) 

explore the significance of the temporal factor in more detail.  Variance is strongly influenced by 

proximity to observation stations, which are the only source of hard data in the BME estimate. Variance 

drops to 0 at stations and quickly rises as distance from stations increases. Therefore, variance is low in 
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Europe, North America, Japan, South Korea, and in some years parts of China, and high elsewhere. As 

variance approaches 60 ppb2, the BME estimation approaches wRAMP. 

Figure 10 shows the difference between our BME estimate using the weighted RAMP corrected model as 

our global offset and the BME estimate from DeLang et al. (2021) which uses the M3Fusion composite as 

the global offset. The two methods differ most at distances more than 0.5 degrees from stations, but 

within the 25 degree bounds of wRAMP’s influence. Whether RAMP increases or decreases estimates 

varies in time and space, and even nearby areas can have different signs of the correction.  Changes in 

specific regions also vary year to year. General trends include decreases in the Korean peninsula, large 

changes in China once local data becomes available in 2014, overall increases in eastern China prior to 

2014, increases in the northeastern United States in most years, slight increases in south eastern Europe, 

and overall better model performance in inland US and EU than on the coasts indicated by smaller 

corrections in those regions. The changes only extend 25 degrees from the nearest observation station, 

and are small in regions with few observation stations.  

Evaluation and Cross Validation: We evaluate our results using leave one out cross validation 

(LOOCV) and checkerboard cross validation (CBCV). We test 7 scenarios using LOOCV: 

• Simple Model Mean: an average of all models used in M3Fusion where each is given equal 

weight 

• M3Fusion: multimodel composite of nine models using the M3Fusion method 

• CAMP: CAMP corrected M3Fusion composite 

• wRAMP: RAMP corrected M3Fusion composite, weighted based on proximity to observations 

• BME using M3Fusion as Offset: BME data fusion using the M3Fusion multimodel composite as 

the global offset, matching the results of DeLang et al. (2021)  

• BME using CAMP as Offset: BME data fusion using CAMP as the global offset 

• BME using wRAMP as Offset: BME data fusion using wRAMP as the global offset 

Each scenario shows improved performance over the prior, with BME methods showing the same 

prediction capability in LOOCV (Table 1). CAMP and wRAMP provide clear improvements to M3Fusion 

in estimating global ozone. The lack of a difference between BME methods is because most observations 

are clustered, and BME predicts accurately when observations are close together, similar to kriging on the 

observations.  

We use CBCV to test each method’s ability to estimate ozone where there is not a dense network of 

observations (Figure 11).  At small boxes sizes, CBCV approximates LOOCV and all BME methods have 
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similar R2 (though a smaller R2 than in LOOCV since CBCV removes observations in all years). As the 

box size increases, R2 for wRAMP decreases less than the other cases, maintaining a minimum of 0.45. It 

also does not experience the dramatic performance drop-off that CAMP and M3Fusion have at 4 degrees. 

CAMP also has consistently higher R2 than M3Fusion at box sizes greater than 4 degrees.  BME with 

wRAMP shows great improvement in estimating where observations have been removed compared to the 

base M3Fusion BME estimates. This indicates that it effectively captures local trends in model bias in 

regions where it has observations.  

Using BME variance and estimations, we evaluate the likelihood that ozone values exceed specific 

thresholds. Specifically, using our best estimates using BME with wRAMP as the global offset, we 

analyze the likelihood to surpass 35, 45, 55, and 65 ppb (Figure 12).  For reference, Turner et al. (2016) 

found that that for every 10 ppb increase over about 35 ppb, the risk of all-cause mortality increases by 

2%, circulatory mortality by 3%, and respiratory mortality by 12%. Note that we do not estimate the 

likelihood of exceeding health-based standards, which are typically expressed for daily 8-hr. maximum 

ozone rather than OSDMA8.  Areas with ozone estimates near the threshold and areas with high variance 

(few observations) are most likely to fall in the uncertain range. Certainty in exceeding or not exceeding a 

given value comes from extreme estimates and/or dense observations. For example, very few parts of the 

world are definitively below 45 ppb in 2017, but only areas with high estimations (central Africa, India, 

the Middle East and parts of China) and areas with dense sensor networks (EU and western US) are 

definitively above it.  Similarly, comparing the likelihood of exceedance with our ozone estimates, we see 

some areas which have the same level of estimated ozone but have different likelihood of exceeding 

thresholds due to the difference in nearby observations (and therefore variance). For example, the 

hotspots in southern Africa are estimated to be above 65 ppb, but we are less than 90% certain that this 

area exceeds 55 ppb. Meanwhile the hotspot centered around Beijing, which has nearby observations, is 

above 55ppb with near certainty, and even above 65 ppb with 90% certainty in some areas. 

Finally, following DeLang et al. (2021) we use global population data from GBD 2019 to analyze annual 

population weighted ozone in different regions (Figure S3).  We use 2019 population data for all years, so 

all changes are due purely to ozone changes, not population changes. Trends in regions and years with 

sparse observations are less certain. Although there are small differences in individual years and regions, 

trends overall follow the same pattern as for DeLang et al. (2021). While results here differ from those of 

DeLang et al. (2021) far from monitors, they do not differ exactly at a monitoring location (Figure 10). 

Asia has a large upward trend, which along with a large increase in Africa drives an overall upward 

global trend in population weighted ozone. North America and Europe trend downward, though the 

European trend is much weaker. Russia begins to trend down in 2010, while South America and Oceania 
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fluctuate but have no clear time trend.  TOAR observational studies support the downward trend in North 

America 2000-2014 (Chang et al., 2017), and a study of CNEMC observations supports the increase in 

East Asia based on observational trends in China (Lu et al., 2018).   

 

4.  Analysis and Discussion 

Here we improve upon the global ozone estimates of Chang et al. (2019) and DeLang et al. (2021) by 

providing an additional bias correction step to the M3Fusion model composite before BME data fusion.  

This RAMP correction provides a local, non-linear, non-homogenous model bias correction, in which 

each point receives a different bias correction based on the M3Fusion composite performance at the 

nearest stations, which leads to more accurate predictions of ozone when there are not nearby ozone 

stations. Using this corrected model as the basis for BME data fusion leads to improvements when 

simulating sparse observation station coverage, which are the areas BME provides the least certainty for. 

We found that performance of M3Fusion varies by space/time location and is often nonlinear, making 

RAMP the ideal tool to further improve this composite. This method also takes full advantage of TOAR 

and CNEMC observations, as it allows them to both directly correct estimates locally through time with 

BME data fusion and inform model corrections at a larger regional scale through M3Fusion and RAMP.  

Our final estimates provide yearly fine resolution global ozone estimates for 1990-2017, involving a data 

fusion of surface observations from global monitoring stations and nine chemistry-climate models.  

The RAMP method demonstrates that model performance and biases have local variations, even after a 

uniform continental bias correction is applied in the M3Fusion multi-model composite.  RAMP therefore 

improves estimates over M3Fusion or the global CAMP in accounting for heterogeneous model 

performance. RAMP also shows that model performance is non-linear with respect to observations in 

many areas, which often manifests as an overprediction at one extreme and an underprediction at the 

other. Overall, the multi-model composite is better at estimating ozone values near the average (often 40-

55 ppb) and poorer at the extremes. RAMP’s ability to account for non-linear model performance allows 

greater corrections where M3Fusion predictions are worse. 

As this is the first application of RAMP at a global scale, we find that RAMP alone creates “streaks” 

where the observations being used to inform the correction change over a short distance, showing the 

difficulty of using a single method over areas both rich and sparse in data.  RAMP could potentially 

encounter this issue for any dataset where there are two or more heavily clustered regions of observations 

separated by areas with sparse observations. Therefore, we chose to weigh RAMP to create smooth 
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transitions between regions, giving a much greater weight to the multi-model composite when corrections 

far from observations, while close to observations corrections are incorporated by BME data fusion. In 

areas with a more uniform distribution of observations, such as those from previous studies using RAMP 

(Xu et al., 2016; Reyes et al., 2017), weighing RAMP would not be necessary. Weighing RAMP by 

distance from observations preserves the correction and avoids such streaks. It also allows a smooth 

transition between RAMP, where observations support a regional model correction, and M3Fusion, which 

bias corrects within each continent.  

Overall, RAMP is more accurate than CAMP and M3Fusion at estimating global ozone.  When used in 

conjunction with BME, RAMP does not appreciably improve estimates in LOOCV and within one degree 

of another station. BME alone can correct the model within the range where observations co-vary with 

each other, especially if it can draw on observations at the same location in other years. The advantage of 

RAMP is seen in the CBCV, where there are few nearby observations. The improvements CAMP gives 

over M3Fusion shows the value of a non-linear model correction alone, while RAMP’s improvements 

over CAMP show the value of accounting for regional heterogeneity in model performance.  

Because BME method provides both ozone estimates and the associated variance, we can evaluate the 

confidence that ozone is above or below selected values.  We find that most of the world’s population 

lives in areas very likely above 35 ppb in OSDMA8, and even above 45 ppb. Some regions estimated to 

have the highest ozone, including much of India, are very likely above 55 ppb.  In the case of India, 

model estimates suggest high ozone that may be above 65 ppb, but the lack of ground observations 

decreases confidence in these regions.  Regions with high modeled ozone but low confidence in results 

because of the distance from observations can be among those prioritized for increased monitoring.  

While RAMP improves estimation far from monitors, additional monitoring capacity in regions currently 

lacking monitors would be valuable for improving ozone estimates, and for better evaluation of 

chemistry-climate models, particularly the emission inventories input to global models.  Currently much 

of the world’s population lives far from ozone monitors in low- and middle-income nations, and the likely 

severity of ozone in these regions, the large populations exposed, and the fact that ozone is often growing 

fastest in these regions increases the urgency for expanding observations in these regions. 
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the authors upon request.   

 

  

http://blogs.reading.ac.uk/ccmi/
https://mserre.sph.unc.edu/BMElib_web/index.htm
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Figure 1. TOAR and CNEMC ozone observations.   Ozone observations are shown for selected years 

2000 and 2017. 
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Figure 2. A visualization of the RAMP correction at a single point in North America for 2015.   

Three years of data (2014, 2015, and 2016) from the 250 nearest observation locations are used. Paired 

M3Fusion/observation points are divided into deciles by the model value, and the M3Fusion estimate at 

this gridpoint (x-axis) is corrected with RAMP to a new value (y-axis) using the 𝝀𝝀𝟏𝟏 line. 
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Figure 3.  An example of RAMP weight at a model point.  In this case 𝑵𝑵𝒒𝒒(𝒑𝒑) = 𝟔𝟔, as 6 observations 

are within radius q.  The weighted RAMP estimate at this location would be 6/250 times the RAMP-

corrected composite value plus 244/250 times the M3Fusion composite value without RAMP correction. 

 

 

  

= Model point at p, to be corrected 
by RAMP 
 
= Spatial Radius q 
 
 
= Closest observations used in 
RAMP correction (region ℛ(p)) 
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Figure 4.  M3Fusion multi-model composites expressed as OSDMA8.  Composites are shown for 2000 

(A) and 2017 (B). The 9 global models in Table S1 are linearly combined to minimize the difference with 

interpolated observations in each continental region. These composites are used as input to RAMP and 

BME here and are the same used by DeLang et al. (2021).  
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Figure 5.  Examples of RAMP correction at three specific locations and years. The RAMP curve 

shows paired M3Fusion composite values 𝒚𝒚�(𝒑𝒑) and observations 𝒚𝒚�𝒊𝒊, and the locations of the selected 

points the nearest 250 observation locations is also shown.  The RAMP corrected value 𝝀𝝀𝟏𝟏(𝒑𝒑), the star, is 

estimated by replacing the M3Fusion prediction 𝒚𝒚�(𝒑𝒑) with its RAMP corrected value, i.e. 

𝝀𝝀𝟏𝟏(𝒑𝒑) = 𝝀𝝀𝟏𝟏(𝒚𝒚�(𝒑𝒑) ,𝓡𝓡(𝒑𝒑)) Each colored circle is a paired model/observation value (𝒚𝒚�𝒊𝒊,) with the colors 

denoting which bin it falls into.  If 𝝀𝝀𝟏𝟏(𝒑𝒑) is below the 1:1 line, it indicates that M3Fusion overpredicts 

ozone.  Panel a shows an increase in estimation due to RAMP, b shows a non-linear correction and c 

shows a decrease in estimation. 
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Figure 6.  Fraction of 𝝀𝝀𝟏𝟏 points above the one to one line in 2017. A higher number indicates a higher 

likelihood that a model point in this location would be increased with a RAMP correction, while a 

number less than 0.5 indicates a greater chance that RAMP lowers the M3Fusion estimate. Results vary 

geographically, showing that the performance of the M3Fusion composite is heterogeneous spatially, in 

some places varying strongly over a short distance.   
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Figure 7.  RAMP corrected estimate of OSDMA8 ozone for 2005 with a streak in central Asia.  

Applying a RAMP correction to the M3Fusion multimodel composite produces discontinuities that appear 

as streaks in central Asia (a).  Examination of which observations are used for RAMP correction (𝒚𝒚�𝒊𝒊 in 

𝓡𝓡(𝒑𝒑)) at two nearby model points (𝒚𝒚�(𝒑𝒑)) (b and c) shows a  large shift in points comprising 𝓡𝓡(𝒑𝒑), which 

causes these large changes over short spatial ranges. Weighting RAMP prevents this from occurring, as 

areas far from the stations used for RAMP corrections will default to the M3Fusion composite. 
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Figure 8.  Weights applied in weighted RAMP and weighted RAMP ozone estimates. The weighs 

applied in weighted RAMP, 𝒘𝒘(𝒑𝒑), for 2000 (A) and 2017 (B) corresponds to the percent of the estimate 

at that location that is based on RAMP, with 𝟏𝟏 − 𝒘𝒘(𝒑𝒑) being the weight applied to the M3Fusion 

composite. Weighted RAMP ozone estimates, for 2000 (C) and 2017 (D) show that the streaks such as 

those shown in Figure 7 are eliminated, as those areas have little or no RAMP weight. 
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Figure 9.  Final BME estimates of OSDMA8 ozone and variance in 2000 and 2017. BME estimates 

for 2000 (A) and 2017 (B) are obtained using the multimodel composite bias corrected with weighted 

RAMP (Figure 8) as the global offset in BME data fusion.  Ozone values match observations (Figure 1) at 

each station location, with an observational influence that decreases as space/time distance from the 

observations increases.  The variance of BME estimates for 2000 (C) and 2017 (D) is obtained as a 

function of spatial/temporal distance from observation locations. Variance is zero at any observation 

location. 
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Figure 10.  Differences in final BME estimates caused by applying weighted RAMP.  Results show 

the difference as BME with weighted RAMP as the global offset minus BME with the M3Fusion 

composite as the offset (the results of DeLang et al., 2021), for 2000 and 2017. Red indicates that RAMP 

corrected the M3Fusion composite value up, while blue indicates that RAMP lowered the M3Fusion value. 
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Figure 11.  Checkerboard Cross Validation Results. Results are for BME predictions with box latitude 

length (s) indicated on the x-axis (longitude length is 2s), which indicates the size of the area devoid of 

observation stations while performing BME. Results are shown for BME data fusion using the M3Fusion 

composite, and that composite corrected with CAMP and weighted RAMP (wRAMP) as the global 

offsets pooling results over all years. While the differences between M3Fusion and wRAMP are small at 

small box sizes (similar to LOOCV), RAMP greatly outperforms M3Fusion and CAMP at large box sizes, 

where BME has less influence as there are fewer nearby observations to aid estimation. 
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Figure 12. Likelihood of exceedance of four ozone levels in 2017.  Results are shown for BME with 

wRAMP as the global offset, relative to four ozone levels: 35 (a), 45 (b), 55 (c), and 65 (d). Also show are 

ozone estimates for 2017 (e).  Areas with low variance (near station observations) have more certainty, as 

do areas where BME estimates are very high or low compared to the levels selected.  
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Table 1.  Leave one out cross validation results 

Scenario MSE(ppb2) R2 

Simple multi-model mean 189.23 0.28 

M3Fusion  61.14 0.30 

CAMP 53.54 0.35 

wRAMP 46.79 0.43 

BME using M3Fusion as offset 

(DeLang et al., 2021) 

14.5 0.83 

BME using CAMP as offset 14.5 0.83 

BME using wRAMP as offset 14.5 0.83 
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