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Why use multi-metallic joints and AM?

* Additive manufacturing (AM) is advancing component fabrication for
liquid rocket engines allowing for reduced cost, reduced lead time, and
performance opportunities over traditional manufacturing.

* Much of AM is focused on single alloys, where further opportunities
exist to optimize performance.
* Weight reduction (higher strength to weight).
* Use of materials as required locally based on various properties.
* Copper-based alloys, such as GRCop-42 and GRCop-84 are used for high
conductivity, such as regenerative-cooling for combustion chambers.

* Although have high strength, better metal alloys (superalloys) available to react
pressure, thermal, and thrust loads (" strength to weight).

There is a need to advance bimetallic and multi-alloy components
using additive manufacturing processes




Traditional Manufacturing...Forging to final assembly @ =%
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A rocket combustion chamber case study for AM

. 3

MACHINED JACKE

LINER
\
FWD MANIFOLD CASTING
NG /  WELDED
ACKET
ASSEMBLY

FINAL HIP BONDED
MCC ASSEMBLY

*Low volume production

AFT MANIFOLD CASTING

Manufacturing Approach

complete a final multi-alloy
chamber assembly

L-PBF GRCop-84 liner and EBW-
DED Inconel 625 jacket

Category Traditional Manufacturing Initial AM Development Evolving AM Development
Multiple forgings, Four-piece assembly using Three-piece assembly with AM
machining, slotting, and multiple AM processes; limited machine size restrictions
Design and joining operations to by AM machine size. Two-piece reduced and industrialized.

Multi-alloy processing; one-
piece L-PBF GRCop-42 liner and
Inconel 625 LP-DED jacket

Schedule (Reduction)

18 months

8 months (56%)

5 months (72%)

Cost (Reduction)

$310,000

$200,000 (35%)

$125,000 (60%)

As AM process technologies evolve using multi-materials and processes, additional design and

programmatic advantages are being discovered
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Bimetallic AM Process Overview

A variety of AM processes are used to build a base material and then
deposit/apply a secondary material to create a bimetallic component

W—————

Base . GRCop-42
Component Laser Powder Bed Fusion (L-PBF) GRCop-84

Laser Powder Bed

I | 625
Fusion (L-PBF) neone

Laser Powder Directed Inconel 625
Energy Deposition (LP-DED) | NASA HR-1

Electron Beam Wire Directed

Energy Deposition (EBW-DED) Inconel 625

Secondary AM Operation

Arc Wire Directed Energy

Deposition (AW-DED) Inconel 625

Gas Coldspray | NASA HR-1




Laser Powder Directed Energy Deposition

Arc Wire Directed Energy Deposition




AM bimetallic provides various joint options

 AM provides a variety of options for

bimetallic and multi-alloy joints. suild

* The type of joint design is highly dependent ™"
on the end use and component loads. T

* NASA is investigating several types of joints pssicomes Dt Coptins  Interfae
to mature the AM process technology. Mgy Travibion:  Gradfenty ~Materd]

 NASAHR-1

Inconel 625




Joint Characterization and Lessons learned

from bimetallic L-PBF AM

—@— Bimetallic L-PBF, UTS

* Residual stresses can be very high 2
and cause significant shrinkage o

* Material modeling to aid with
selection using CALPHAD

* High bond strength can be achieved
with proper thermal control from T e
deposition parameters

* Intermediate metal alloys may be
required to avoid deleterious phases

* Microtensile testing provides a

method to characterize joints directly
on hardware

Bimetallic L-PBF, Yield 2
L-PBF
GRCopt42

-++<de+=- GRCop-42 L-PBF, UTS
GRCop-42 L-PBF, Yield

Strength (ksi)




Bimetallic and Multi-metallic Additive

Manufacturing for Thrust Chambers

* Bimetallic and multi-metallic joints necessary to join various alloys to optimize strength-to-
weight materials by using materials locally based on component requirements
* Locations include for joining manifolds on the chamber and axial joint between chamber and
nozzle
* Eliminates bolted interfaces
* Nickel interface layers allow for material transition
* Evaluation various processes including Cold Spray, Laser Hot Wire, and Blown Powder DED

L-PBF GRCop-84/L-PBF IN625/BP-DED JBK-75

EHT = 3.00 kV Signal A = SESI
WD = 54 mm Sample ID = interface

Microtensile testing of Bimetallic/Multi-metallic Joints 10



L-PBF GRCOp-42 to LP-DED NASA HR-1

Post-Build

Final Machining,
Weld, Flow Test

Cold Spray
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Multi-metallic Additive Manufacturing under o

Bimetallic Deposited Manifolds)

RAMPT Project

and Nozzle Interface

* Develops commercial supply chain

*  Optimizes weight based on selective
material deposition

* Reduces costs

* Evaluating DED and solid-state AM
processes

Integrated Large Scale DED
Freeform Manufacturing Deposition
Regen-Cooled Nozzle

* Selected Laser Powder Directed
Energy Deposition (LP-DED)

* Demonstrate integral channels
using DED process

* Demonstrate coupled chamber
and nozzle configuration to
reduce weight

*  Reduces complexity

* Significantly increases scale for
AM processes for regen-cooled
components

L-PBF AM Copper
Chamber

Based on prior LCUSP development
Proven Technology for GRCop alloys
Expand to GRCop-42

Advances and expands commercial

supply chain

Composite Overwrap }

* Significantly reduces weight for
high chamber pressure TCA’s

* Reduces distortions caused by
bimetallic cladding

* Reduces overall cost and fabrication
schedules

e Builds upon prior composite
overwrap pressure vessel (COPV)
technology

13



Technology Overview of RAMPT

Combining key technologies into an integrated thrust chamber assembly using:
1. GRCop-42 L-PBF chamber as central component and “build plate”

2. Large scale laser powder directed energy dep05|t|on
3. Bimetallic and multi-alloys for joints
4. Composite overwrap jacket

L-PBF GRCop-42 Manifolds applied using Laser Powder DED of Regen-

: Composite Overwrap of TCA
Chamber Liner bimetallic AM DED nozzle directly on chamber P P



RAMPT Hardware Overview

* Decoupled versions built and tested
during development

* Technology improvements made
continuously throughout project

10 inches
* *

3 *hsq_u;kihﬁ;jﬂﬁ>‘
2k-Ib; Coupled Chamber 7k-Ib; Coupled Chamber 40k-lb; Coupled Chamber
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Multi-metallic and multi-process hardware development @ 5
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L-PBF GRCop-42 to Inco 625



* Completed various test programs from 2k to 40k-1bf in

LOX/H2, LOX/RP-1, and LOX/CH4

* Hot-fire tested using various bimetallic AM processes

Thrust Multi-
Project | Propellants (Ib,) Metal Alloys Alloy Starts Seconds
f Process
PF086 LOX/LH2 30,000 GRCop-84 / Inconel 625 EB-DED 9 147
PJO24 LOX/RP-1 2,400 GRCop-84 / Inconel 625 LP-DED 11 475
PJ024 LOX/RP-1 2,000 C-18150 / Inconel 625 LP-DED 9 405
P1043 LOX/LCH4 2,200 GRCop-84 / Inconel 625 LP-DED 6 76
PKO76 LOX/LCH4 7,000 GRCop-42 / NASA HR-1 Coldspray 6 356
GRCop-42 / Inconel 625
PJO51 LOX/LH2 35,000 GRCop-42 / NASA HR-1 LP-DED 12 404
PJ129 LOX/LH2 2,000 GRCop-42 / NASA HR-1 LP-DED 9 321
PK165 LOX/LH2 40,000 GRCop-42 / NASA HR-1 LP-DED 11 328
TOTAL 73 2,512
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Conclusions / Summary
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* NASA has advanced state-of-the-art bimetallic and multi-alloy GRCop-alloy to superalloy AM
for liquid rocket engine components.

* Advancements were made through evaluations of various multi-alloy AM processes, material
characterization, and successful component manufacturing and hot-fire testing for various
combustion devices.

* Manufactured 2K-Ibf through 40K-Ibf bimetallic chambers and have hot-fire tested various
configurations using both radial and axial multi-metallic joints

* Accumulated 73 starts and 2,512 seconds of hot-fire time across multi-alloy AM chambers

* NASA continuing to develop the bimetallic AM techniques

* Investigating modeling, characterization, and improvements for bimetallic joints
* Mechanical and hot-fire data available to industry partners
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