National Aeronautics and Space Administration

Optimization of Rocket Engine Components using Multi-Metallic Additive Manufacturing

30 October 2023

Paul Gradl¹, Tyler Gibson¹, David Ellis², John Fikes¹, Marissa Garcia¹

¹NASA Marshall Space Flight Center ²NASA Glenn Research Center

Introduction

- Objectives and Project Overview
- Why bimetallic and multi-alloy AM?
- Process Development
- Hardware Development
- Hot-fire and Component Testing
- Summary

- Additive manufacturing (AM) is advancing component fabrication for liquid rocket engines allowing for reduced cost, reduced lead time, and performance opportunities over traditional manufacturing.
- Much of AM is focused on single alloys, where further opportunities exist to optimize performance.
 - Weight reduction (higher strength to weight).
 - Use of materials as required locally based on various properties.
- Copper-based alloys, such as GRCop-42 and GRCop-84 are used for high conductivity, such as regenerative-cooling for combustion chambers.
 - Although have high strength, better metal alloys (superalloys) available to react pressure, thermal, and thrust loads (个 strength to weight).

There is a need to advance bimetallic and multi-alloy components using additive manufacturing processes

Traditional Manufacturing...Forging to final assembly

A rocket combustion chamber case study for AM

FORMED LINER MACHINED AND SLOTTED LINER CASTING FORMED LINER MACHINED AND SLOTTED LINER FWD MANIFOLD CASTING FWD MANIFOLD CASTING				
Category	Traditional Manufacturing	Initial AM Development	Evolving AM Development	
Design and Manufacturing Approach	Multiple forgings, machining, slotting, and joining operations to complete a final multi-alloy chamber assembly	Four-piece assembly using multiple AM processes; limited by AM machine size. Two-piece L-PBF GRCop-84 liner and EBW- DED Inconel 625 jacket	Three-piece assembly with AM machine size restrictions reduced and industrialized. Multi-alloy processing; one- piece L-PBF GRCop-42 liner and Inconel 625 LP-DED jacket	
Schedule (Reduction) 18 months		8 months (56%)	5 months (72%)	
Cost (Reduction) \$310,000		\$200,000 (35%)	\$125,000 (60%)	

As AM process technologies evolve using multi-materials and processes, additional design and programmatic advantages are being discovered

6

A variety of AM processes are used to build a base material and then deposit/apply a secondary material to create a bimetallic component

AM Processes evaluated for bimetallic joints

Laser Powder Bed Fusion

Cold spray

Laser Powder Directed Energy Deposition

Electron Beam Wire Directed Energy Deposition

Arc Wire Directed Energy Deposition

B

C

A

Material

Gradient

AM bimetallic provides various joint options

- AM provides a variety of options for bimetallic and multi-alloy joints.
- The type of joint design is highly dependent on the end use and component loads.
- NASA is investigating several types of joints to mature the AM process technology.

Transition

Allov

Joint Characterization and Lessons learned from bimetallic L-PBF AM

- Residual stresses can be very high and cause significant shrinkage
- Material modeling to aid with selection using CALPHAD
- High bond strength can be achieved with proper thermal control from deposition parameters
- Intermediate metal alloys may be required to avoid deleterious phases
- Microtensile testing provides a method to characterize joints directly on hardware

Bimetallic and Multi-metallic Additive Manufacturing for Thrust Chambers

- Bimetallic and multi-metallic joints necessary to join various alloys to optimize strength-toweight materials by using materials locally based on component requirements
 - Locations include for joining manifolds on the chamber and axial joint between chamber and nozzle
 - Eliminates bolted interfaces
 - Nickel interface layers allow for material transition
- Evaluation various processes including Cold Spray, Laser Hot Wire, and Blown Powder DED

Examples of Component Fabrication

40K-lbf LP-DED Chambers

L-PBF GRCop-42 to LP-DED Inconel 625

L-PBF GRCop-42 to LP-DED NASA HR-1

Hot-fire Testing of Bimetallic AM Chambers

Multi-metallic Additive Manufacturing under RAMPT Project

Bimetallic Deposited Manifolds and Nozzle Interface

- Develops commercial supply chain
- Optimizes weight based on selective material deposition
- Reduces costs
- Evaluating DED and solid-state AM processes

Integrated Large Scale DED Freeform Manufacturing Deposition Regen-Cooled Nozzle

- Selected Laser Powder Directed Energy Deposition (LP-DED)
- Demonstrate integral channels using DED process
- Demonstrate coupled chamber and nozzle configuration to reduce weight
- Reduces complexity
- Significantly increases scale for AM processes for regen-cooled components

L-PBF AM Copper Chamber

- Based on prior LCUSP development
- Proven Technology for GRCop alloys
- Expand to GRCop-42
- Advances and expands commercial supply chain

Composite Overwrap

- Significantly reduces weight for high chamber pressure TCA's
- Reduces distortions caused by bimetallic cladding
- Reduces overall cost and fabrication schedules
- Builds upon prior composite overwrap pressure vessel (COPV) technology

Combining key technologies into an integrated thrust chamber assembly using:

- 1. GRCop-42 L-PBF chamber as central component and "build plate"
- 2. Large scale laser powder directed energy deposition
- 3. Bimetallic and multi-alloys for joints
- 4. Composite overwrap jacket

L-PBF GRCop-42 Chamber Liner

Manifolds applied using bimetallic AM DED Laser Powder DED of Regennozzle directly on chamber

Composite Overwrap of TCA

RAMPT Hardware Overview

- Decoupled versions built and tested during development
- Technology improvements made continuously throughout project

RAMPT Multi-alloy Radial and Axial Hardware

Multi-metallic and multi-process hardware development

L-PBF Liner / LP-DED Jacket

L-PBF GRCop-42 to Inco 625

- Completed various test programs from 2k to 40k-lbf in LOX/H2, LOX/RP-1, and LOX/CH4
- Hot-fire tested using various bimetallic AM processes

Project	Propellants	Thrust (lb _f)	Metal Alloys	Multi- Alloy Process	Starts	Seconds
PF086	LOX/LH2	30,000	GRCop-84 / Inconel 625	EB-DED	9	147
PJ024	LOX/RP-1	2,400	GRCop-84 / Inconel 625	LP-DED	11	475
PJ024	LOX/RP-1	2,000	C-18150 / Inconel 625	LP-DED	9	405
PI043	LOX/LCH4	2,200	GRCop-84 / Inconel 625	LP-DED	6	76
РК076	LOX/LCH4	7,000	GRCop-42 / NASA HR-1	Coldspray	6	356
PJ051	LOX/LH2	35,000	GRCop-42 / Inconel 625 GRCop-42 / NASA HR-1	LP-DED	12	404
PJ129	LOX/LH2	2,000	GRCop-42 / NASA HR-1	LP-DED	9	321
PK165	LOX/LH2	40,000	GRCop-42 / NASA HR-1	LP-DED	11	328
TOTAL					73	2,512

Conclusions / Summary

- NASA has advanced state-of-the-art bimetallic and multi-alloy GRCop-alloy to superalloy AM for liquid rocket engine components.
- Advancements were made through evaluations of various multi-alloy AM processes, material characterization, and successful component manufacturing and hot-fire testing for various combustion devices.
- Manufactured 2K-lbf through 40K-lbf bimetallic chambers and have hot-fire tested various configurations using both radial and axial multi-metallic joints
 - Accumulated 73 starts and 2,512 seconds of hot-fire time across multi-alloy AM chambers
- NASA continuing to develop the bimetallic AM techniques
 - Investigating modeling, characterization, and improvements for bimetallic joints
 - Mechanical and hot-fire data available to industry partners

<u>Contact:</u> Paul Gradl NASA MSFC Paul.R.Gradl@nasa.gov NASA

NSV

Acknowledgements

Funding from NASA Space Technology Mission Directorate (STMD)

- PM John Fikes
- Lynn Machamer
- David Ellis
- Po Chen
- NASA GRC Team
- NASA MSFC Team
- NASA Langley Team
- NASA Ames Team
- Auburn University NCAME
- SLS Liquid Engines Office
- Allison Clark
- Colton Katsarelis

- Ryan Wall
- Jonah Burgin
- Scott Chartier
- Tal Wammen
- Lynne Ellet
- Bob Gower
- Sandi Miller
- Cheol Park
- Kevin Wheeler
- RPM Innovations
- Tyler Blumenthal
- MSFC TS115 crew

- MSFC TS116 crew
- Gabe Demeneghi
- Agustin Diaz/REM Surface
- Elementum 3D
- Solar Atmospheres
- ProCAM
- PTR Precision
- Pressure Technology
- PAC
- DM3D
- Keselowski Advanced Manufacturing
- Kord Technologies
- Quadrus

And many others across NASA and industry for various involvements in RAMPT

References

- Gradl, P. "Rapid Fabrication Techniques for Liquid Rocket Channel Wall Nozzles". AIAA. (2016) p.4771, https://doi.org/10.2514/6.2016-4771
- Gradl, P., Mireles, O. (2021). Additive Manufacturing (AM) for Propulsion Component and System Applications. Team Redstone Additive Manufacturing IPT Meeting, May 21, 2021. NASA.gov https://ntrs.nasa.gov/citations/20210016065
- Minneci, R. P., Lass, E. A., Bunn, J. R., Choo, H., & Rawn, C. J. (2020). Copper-based alloys for structural high-heat-flux applications: a review of development, properties, and performance of Cu-rich Cu–Cr–Nb alloys. International Materials Reviews. https://doi.org/10.1080/09506608.2020.1821485
- Anderson, R., Terrell, J., Schneider, J., Thompson, S., & Gradl, P. (2019). Characteristics of bi-metallic interfaces formed during direct energy deposition additive manufacturing processing. Metallurgical and Materials Transactions B, 50(4), 1921-1930.
- Gradl, P. R., Greene, S. E., & Wammen, T. (2019). Bimetallic channel wall nozzle development and hot-fire testing using additively manufactured laser wire direct closeout technology. AIAA Propulsion and Energy Forum and Exposition, 2019. https://doi.org/10.2514/6.2019-4361
- Onuike, B., Heer, B., & Bandyopadhyay, A. (2018). Additive manufacturing of Inconel 718—Copper alloy bimetallic structure using laser engineered net shaping (LENS™). Additive Manufacturing, 21, 133-140.
- Karnati, S., Sparks, T. E., Liou, F., Newkirk, J. W., Taminger, K. M. B., & Seufzer, W. J. (2015, August). Laser metal deposition of functionally gradient materials from elemental copper and nickel powders. In Proceedings of the 26th Solid Freeform Fabrication Symposium, Austin, TX, USA (pp. 10-12).
- Pan, T., Zhang, X., Yamazaki, T., Sutton, A., Cui, W., Li, L., & Liou, F. (2020). Characteristics of Inconel 625—copper bimetallic structure fabricated by directed energy deposition. The International Journal of Advanced Manufacturing Technology, 109(5), 1261-1274.
- Articek, U., Milfelner, M., & Anzel, I. (2013). Synthesis of functionally graded material H13/Cu by LENS technology. Advances in Production Engineering & Management, 8(3).
- Shang C, Xu G, Wang C, Yang G, You J (2019) Laser deposition manufacturing of bimetallic structure from TA15 to Inconel 718 via copper interlayer. Mater Lett 252:342– 344. <u>https://doi.org/10.1016/j.matlet.2019.06.030</u>
- Gradl, P. R., Protz, C., Fikes, J., Ellis, D., Evans, L., Clark, A., & Hudson, T. (2020). Lightweight Thrust Chamber Assemblies using Multi-Alloy Additive Manufacturing and Composite Overwrap. In AIAA Propulsion and Energy 2020 Forum (p. 3787).
- Bremen, S., Meiners, W. and Diatlov, A., Selective Laser Melting. Laser Technik Journal, 9(2), pp.33-38. (2012).
- Sames, W.J., List, F.A., Pannala, S., Dehoff, R.R. and Babu, S.S., The metallurgy and processing science of metal additive manufacturing. International Materials Reviews, 61(5), pp.315-360. (2016).
- Aerosint. (2021). Aerosint Selective Powder Deposition for AM. Retrieved June 28, 2021, from Aerosint: https://aerosint.com/
- Gradl, P. R., Protz, C., Cooper, K., Garcia, C., Ellis, D., & Evans, L. (2019). GRCop-42 development and hot-fire testing using additive manufacturing powder bed fusion for channel-cooled combustion chambers. AIAA Propulsion and Energy Forum and Exposition, 2019. https://doi.org/10.2514/6.2019-4228
- ASTM E8 / E8M-21, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2021, <u>www.astm.org</u>. DOI:10.1520/E0008_E0008M-21
- Karthikeyan, J. (2004). Cold spray technology: International status and USA efforts. Report from ASB Industries Inc., Barbeton, OH, 44203, 1-14.
- Singer F, Deisenroth DC, Hymas DM, Ohadi MM (2017) Additively manufactured copper components and composite structures for thermal management applications. In: Proc. 16th Intersoc. Conf. Therm. Thermomechanical Phenom. Electron. Syst. ITherm 2017. Institute of Electrical and Electronics Engineers Inc, pp 174–183
- Haynes, J., & Karthikeyan, J. (2003). Cold Spray Copper Application for Upper Stage Rocket Engine Design. Thermal Spray 2003: Advancing the Science and Applying the Technology. May 5-8, 2003 (Orlando, FL), ASM International, 2003, Vol. 1, p 79-83.
- Souther, M. (2019). Microstructural Transformation of Cold-Sprayed GRCop-42 for Rocket Engine Combustion Chamber Liners. California Polytechnic State University. https://digitalcommons.calpoly.edu/matesp/204

- Ding, D., Pan, Z., Cuiuri, D., Li, H., Duin, S. V., & Larkin, N. (2016). Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing. Robotics and Computer-Integrated Manufacturing, 39, 32-42. doi:10.1016/j.rcim.2015.12.004
- Special Metals Corporation. (2013, Aug 03). Retrieved Jul 08, 2021, from https://www.specialmetals.com/documents/technical-bulletins/inconel/inconel-alloy-625.pdf
- Ellis, D. L., & Keller, D. J. (2000). Thermophysical Properties of GRCop-84. Cleveland, OH: NASA Glenn Research Center. Retrieved from https://ntrs.nasa.gov/api/citations/20000064095/downloads/20000064095.pdf
- Ellis, D. L., Taminger, K. M., Protz, C. S., & Fikes, J. C. (2021). Low Cost Upper Stage-Class Propulsion (LCUSP): Final Report. National Aeronautics and Space Administration (NASA). Huntsville, AL: NASA Marshall Space Flight Center.
- Kerstens, F., Cervone, A., & Gradl, P. (2021). End to end process evaluation for additively manufactured liquid rocket engine thrust chambers. Acta Astronautica, 182, 454–465. https://doi.org/10.1016/j.actaastro.2021.02.034
- Gradl, P. R., Protz, C., Zagorski, K., Doshi, V., & McCallum, H. (2019). Additive manufacturing and hot-fire testing of bimetallic grcop-84 and C18150 channel-cooled combustion chambers using powder bed fusion and Inconel 625 hybrid directed energy deposition. AIAA Propulsion and Energy Forum and Exposition, 2019. https://doi.org/10.2514/6.2019-4390
- Sporie, S., Schneider, J.A., Osborne, R., "Using hybrid manufacturing in the freeform fabrication of bi-metallic components". IAC-17-C2.9.7.x41117. 68th International Astronautical Congress (IAC), Adelaide, Australia, 25-29 September 2017.
- Anderson, R., Terrell, J., Schneider, J., Thompson, S., & Gradl, P. (2019). Characteristics of bi-metallic interfaces formed during direct energy deposition additive manufacturing processing. Metallurgical and Materials Transactions B, 50(4), 1921-1930.
- Pan, T., Zhang, X., Yamazaki, T., Sutton, A., Cui, W., Li, L., & Liou, F. (2020). Characteristics of Inconel 625—copper bimetallic structure fabricated by directed energy deposition. The International Journal of Advanced Manufacturing Technology, 109(5), 1261-1274.
- Gradl, P., Greene, S., Protz, C., Bullard, B., Buzzell, J., Garcia, C., Wood, J., Osborne, R., Hulka, J. Cooper, K. Additive Manufacturing of Liquid Rocket Engine Combustion Devices: A Summary of Process Developments and Hot-Fire Testing Results. 54th AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum, (AIAA 2018-4625). July 9-12, 2018. Cincinnati, OH. <u>https://doi.org/10.2514/6.2018-4625</u>.
- NASA. (2021). NASA 3D-Printed Engine Hardware Passes Cold Spray, Hot Fire Tests.. https://www.nasa.gov/centers/marshall/news/releases/2021/nasa-additively-manufactured-rocket-engine-hardware-passes-cold-sprayhot-fire-tests.html
- Gradl, P. R., Elam Greene, S., Protz, C. S., Ellis, D. L., & Lerch, B. A. (2017). Development and Hot-fire Testing of Additively Manufactured Copper Combustion Chambers for Liquid Rocket Engine Applications. 53rd AIAA/SAE/ASEE Joint Propulsion Conference, 1–27. https://doi.org/10.2514/6.2017-4670
- C. S. Protz, W. C. Brandsmeier, K. G. Cooper, J. Fikes, P. R. Gradl, Z. C. Jones, and C. R. Medina, D. L. Ellis,; and K. M. Taminger. Thrust Chamber Assembly using GRCop-84 Bimetallic Additive Manufacturing and Integrated Nozzle Film Coolant Ring Supporting Low Cost Upper Stage Propulsion, Paper presented at 65th JANNAF Propulsion Meeting/10th Liquid Propulsion Subcommittee, May 21-24, 2018. Long Beach, CA.
- Zagorski, K., Doshi, V., Duggleby, A., Gradl, P.R. Hybrid Additive Manufacturing Deposition and Selective Laser Melting Techniques Applied to Copper-alloy Liquid Rocket Engine Combustion Chambers, Paper presented at 65th JANNAF Propulsion Meeting/10th Liquid Propulsion Subcommittee, May 21-24, 2018. Long Beach, CA.