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• Summary
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Why use multi-metallic joints and AM?
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• Additive manufacturing (AM) is advancing component fabrication for 
liquid rocket engines allowing for reduced cost, reduced lead time, and 
performance opportunities over traditional manufacturing.

• Much of AM is focused on single alloys, where further opportunities 
exist to optimize performance. 
• Weight reduction (higher strength to weight).
• Use of materials as required locally based on various properties.

• Copper-based alloys, such as GRCop-42 and GRCop-84 are used for high 
conductivity, such as regenerative-cooling for combustion chambers.
• Although have high strength, better metal alloys (superalloys) available to react 

pressure, thermal, and thrust loads (↑ strength to weight).

There is a need to advance bimetallic and multi-alloy components 
using additive manufacturing processes



Traditional Manufacturing…Forging to final assembly
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A rocket combustion chamber case study for AM
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As AM process technologies evolve using multi-materials and processes, additional design and 
programmatic advantages are being discovered

Category Traditional Manufacturing Initial AM Development Evolving AM Development

Design and
Manufacturing Approach

Multiple forgings, 
machining, slotting, and 

joining operations to 
complete a final multi-alloy 

chamber assembly

Four-piece assembly using 
multiple AM processes; limited 
by AM machine size. Two-piece 
L-PBF GRCop-84 liner and EBW-

DED Inconel 625 jacket

Three-piece assembly with AM 
machine size restrictions 

reduced and industrialized. 
Multi-alloy processing; one-

piece L-PBF GRCop-42 liner and 
Inconel 625 LP-DED jacket 

Schedule (Reduction) 18 months 8 months (56%) 5 months (72%)

Cost (Reduction) $310,000 $200,000 (35%) $125,000 (60%)

*Low volume production



Bimetallic AM Process Overview

A variety of AM processes are used to build a base material and then 
deposit/apply a secondary material to create a bimetallic component
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AM Processes evaluated for bimetallic joints
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Laser Powder Bed Fusion Cold spray

Electron Beam Wire Directed Energy Deposition

Laser Powder Directed Energy Deposition

Arc Wire Directed Energy Deposition



AM bimetallic provides various joint options

• AM provides a variety of options for 
bimetallic and multi-alloy joints.

• The type of joint design is highly dependent 
on the end use and component loads.

• NASA is investigating several types of joints 
to mature the AM process technology.
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Joint Characterization and Lessons learned 
from bimetallic L-PBF AM

• Residual stresses can be very high 
and cause significant shrinkage

• Material modeling to aid with 
selection using CALPHAD

• High bond strength can be achieved 
with proper thermal control from 
deposition parameters

• Intermediate metal alloys may be 
required to avoid deleterious phases

• Microtensile testing provides a 
method to characterize joints directly 
on hardware
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Bimetallic and Multi-metallic Additive 
Manufacturing for Thrust Chambers

10

• Bimetallic and multi-metallic joints necessary to join various alloys to optimize strength-to-
weight materials by using materials locally based on component requirements
• Locations include for joining manifolds on the chamber and axial joint between chamber and 

nozzle
• Eliminates bolted interfaces
• Nickel interface layers allow for material transition

• Evaluation various processes including Cold Spray, Laser Hot Wire, and Blown Powder DED

Cold Spray Laser Hot Wire

Coldspray Chamber Demo

Microtensile testing of Bimetallic/Multi-metallic Joints

Inconel 625

GRCop-42



Examples of Component Fabrication
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40K-lbf LP-DED Chambers

L-PBF GRCop-42 to LP-DED Inconel 625

L-PBF GRCop-42 to LP-DED NASA HR-1

7K-lbf L-PBF GRCop-42 to NASA HR-1 Cold spray Chamber



Hot-fire Testing of Bimetallic AM Chambers
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Multi-metallic Additive Manufacturing under 
RAMPT Project
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• Develops commercial supply chain
• Optimizes weight based on selective 

material deposition
• Reduces costs
• Evaluating DED and solid-state AM 

processes

• Significantly reduces weight for 
high chamber pressure TCA’s

• Reduces distortions caused by 
bimetallic cladding

• Reduces overall cost and fabrication 
schedules

• Builds upon prior composite 
overwrap pressure vessel (COPV) 
technology

• Based on prior LCUSP development
• Proven Technology for GRCop alloys
• Expand to GRCop-42
• Advances and expands commercial 

supply chain

• Selected Laser Powder Directed 
Energy Deposition (LP-DED)

• Demonstrate integral channels 
using DED process

• Demonstrate coupled chamber 
and nozzle configuration to 
reduce weight

• Reduces complexity
• Significantly increases scale for 

AM processes for regen-cooled 
components

Integrated Large Scale DED 
Freeform Manufacturing Deposition 

Regen-Cooled Nozzle

L-PBF AM Copper 
Chamber 

Bimetallic Deposited Manifolds 
and Nozzle Interface

Composite Overwrap



Technology Overview of RAMPT
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Combining key technologies into an integrated thrust chamber assembly using:

1. GRCop-42 L-PBF chamber as central component and “build plate”

2. Large scale laser powder directed energy deposition

3. Bimetallic and multi-alloys for joints

4. Composite overwrap jacket

L-PBF GRCop-42 
Chamber Liner

Manifolds applied using 
bimetallic AM DED

Laser Powder DED of Regen-
nozzle directly on chamber

Composite Overwrap of TCA



RAMPT Hardware Overview

152k-lbf Coupled Chamber 7k-lbf Coupled Chamber 40k-lbf Coupled Chamber

• Decoupled versions built and tested 
during development

• Technology improvements made 
continuously throughout project
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RAMPT Multi-alloy Radial and Axial Hardware
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L-PBF Chamber Manifold Prep LP-DED Setup

Radial LP-DED Manifold EB Welded

Axial LP-DED Nozzle Final Machining



RAMPT Coupled Hardware Hot-fire Testing
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Multi-metallic and multi-process hardware development
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L-PBF Liner / LP-DED Jacket

L-PBF Liner / Coldspray Jacket

Direct deposit LP-DED nozzle
(Radial and Axial Bimetallic)

L-PBF Liner / EBW-DED Jacket

L-PBF GRCop-42 to Inco 625

Credit: RPMI



Hot-fire Testing of Bimetallic Chambers
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• Completed various test programs from 2k to 40k-lbf in 
LOX/H2, LOX/RP-1, and LOX/CH4

• Hot-fire tested using various bimetallic AM processes

Project Propellants
Thrust 

(lbf)
Metal Alloys

Multi-
Alloy 

Process
Starts Seconds

PF086 LOX/LH2 30,000 GRCop-84 / Inconel 625 EB-DED 9 147

PJ024 LOX/RP-1 2,400 GRCop-84 / Inconel 625 LP-DED 11 475

PJ024 LOX/RP-1 2,000 C-18150 / Inconel 625 LP-DED 9 405

PI043 LOX/LCH4 2,200 GRCop-84 / Inconel 625 LP-DED 6 76

PK076 LOX/LCH4 7,000 GRCop-42 / NASA HR-1 Coldspray 6 356

PJ051 LOX/LH2 35,000
GRCop-42 / Inconel 625
GRCop-42 / NASA HR-1

LP-DED 12 404

PJ129 LOX/LH2 2,000 GRCop-42 / NASA HR-1 LP-DED 9 321

PK165 LOX/LH2 40,000 GRCop-42 / NASA HR-1 LP-DED 11 328

TOTAL 73 2,512



Conclusions / Summary

• NASA has advanced state-of-the-art bimetallic and multi-alloy GRCop-alloy to superalloy AM 
for liquid rocket engine components.

• Advancements were made through evaluations of various multi-alloy AM processes, material 
characterization, and successful component manufacturing and hot-fire testing for various 
combustion devices.

• Manufactured 2K-lbf through 40K-lbf bimetallic chambers and have hot-fire tested various 
configurations using both radial and axial multi-metallic joints
• Accumulated 73 starts and 2,512 seconds of hot-fire time across multi-alloy AM chambers

• NASA continuing to develop the bimetallic AM techniques
• Investigating modeling, characterization, and improvements for bimetallic joints
• Mechanical and hot-fire data available to industry partners
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