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Introduction

• LP-DED for heat exchangers

• Evaluation of thin-walls and features

•Channel characterization

• Surface enhancements

•Hot-fire and component testing

• Summary
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Laser Powder Directed Energy Deposition (LP-DED)
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AM process selection balances design requirements, process 
limitations, and programmatic considerations.

NASA HR-1 alloy LP-DED Nozzle 
1.52 m dia. x 1.78 m height 

NASA HR-1 alloy LP-DED Chamber

Gradl, P., Cervone, A., Colonna, P., 2022. Integral Channel Nozzles and Heat Exchangers using Additive Manufacturing Directed 
Energy Deposition NASA HR-1 Alloy. 73rd International Astronautical Congress. Paris, France, IAC-22,C4,2,x73690.



Example of LP-DED with small features



LP-DED Large Scale Nozzle Development
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60” (1.52 m) diameter and 70” (1.78 m) 
height with integral channels

90 day deposition 

95” (2.41 m) dia and 111” (2.82 m) height
Near Net Shape Forging Replacement

Reference: P.R. Gradl, T.W. Teasley, C.S. Protz, C. Katsarelis, P. Chen, Process Development and Hot-fire Testing of Additively Manufactured NASA HR-1 for Liquid 
Rocket Engine Applications, in: AIAA Propuls. Energy 2021, 2021: pp. 1–23. https://doi.org/10.2514/6.2021-3236.

JBK-75
NASA HR-1

DM3D

RPMI



NASA HR-1 for high pressure hydrogen applications

NASA HR-1 (Fe-Ni-Cr) is a high strength super alloy developed for high 
pressure hydrogen environments (ie. HR = Hydrogen Resistant)
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Factors that impact geometry built using LP-DED
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AM process limitations consider several aspects that 
constitute the as-built geometry (ie. no processing) 

for heat exchanger applications.

Various channel geometries using LP-DED

Various channel sizes LP-DED



Initial Study to Optimize Parameters
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Gradl, P.R., Cervone, A., Gill, E., 2022. Surface texture characterization for thin-wall NASA HR-1 Fe – Ni – Cr alloy using laser powder directed energy deposition ( 
LP-DED ). Advances in Industrial and Manufacturing Engineering 4, 100084. https://doi.org/10.1016/j.aime.2022.100084



LP-DED Channel Geometry
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• Various channels built on an RPMI 557 
machine targeting 1 mm wall thickness.

• Channels built with fine (10 – 45 µm) and 
coarse (45 – 105 µm) powder sizes.

• Successfully deposited channels down to 
2.54 mm; smaller channels resulted in 
increased powder packing (ie. clogged 
channels).

• All channel samples are smaller cross-
sectional than as-designed areas due to 
powder adherence and melt pool 
irregularities.



Surface Texture of LP-DED Process
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• Surface texture is a critical aspect of design due to impacts to heat transfer, friction factors 

resulting in pressure losses, and fatigue life.

• Areal surface roughness (Sa) is higher in coarse powder samples compared to coarse powder.

• There are minor differences in channel samples between internal and outside surfaces.



Geometric Build Limitations – Angles
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Build Direction
• Coarse Powder 

(45 – 105 µm)
• 350W Power

Gradl, P., Cervone, A., Colonna, P., 2023. Influence of build angles on thin-wall geometry and surface texture in laser powder directed energy deposition. Materials & Design 234, 112352. https://doi.org/10.1016/j.matdes.2023.112352



Geometric Build Limitations – Surface Orientation
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500 µm50x

500 µm50x

Upskin (Exterior) Upskin (Internal)

Gradl, P., Cervone, A., Colonna, P., 2023. Influence of build angles on thin-wall geometry and surface texture in laser 
powder directed energy deposition. Materials & Design 234, 112352. https://doi.org/10.1016/j.matdes.2023.112352



Geometric Build Limitations – Wall Thickness
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Material droop on downskin and excess deposition on upskin caused 
increases in thickness with increased angle

Gradl, P., Cervone, A., Colonna, P., 2023. Influence of build angles on thin-wall geometry and surface texture in laser powder 
directed energy deposition. Materials & Design 234, 112352. https://doi.org/10.1016/j.matdes.2023.112352



Development of Surface Enhancements (Polishing)
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The Design Intent Reality



Surface Enhancements and Impact on Flow
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• Surface enhancements had a significant impact 
on discharge coefficient (Cd)

• A minimum of the average powder particle size 
(70 µm) must be removed to reduce texture



Hot-fire Testing Summary of LP-DED Nozzles

• Tested nozzles from 2K to 35K-lbf thrust class.

• All major propellants tested (LOX/H2, LOX/CH4, LOX/RP-1).

• Accumulated over 16,289 sec and 488 starts on various nozzles.

• Single nozzle accumulated 207 starts and 6,756 seconds.

• Nozzles all tested successfully and met performance expectations.

162,000 lbf LOX/GH2 7,000 lbf LOX/GH2 35,000 lbf LOX/LH2





Summary and Future Work

• LP-DED process demonstrated small channels with repeatable 
geometry and ability to deposit thin-walls for channel wall 
nozzles up to 60”+ (1.5 m) diameter.

• Manufacturing demonstration components and samples 
completed to understand the LP-DED process capabilities.

• Various geometric limitations for channel sizes, angles, and 
surface texture were evaluated and characterized.

• Improvements being evaluated for internal channels including 
surface enhancements (polishing) and characterization of with 
the ability to tune the surface texture.

• Hot-fire testing accumulated 16,289 sec and 488 starts.

• Future experiments and analysis will evaluate flow testing with 
various types of polishing processes.
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Surface modification of internal channels
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