
Stephanie Booth, Rachel Dudukovich, Nadia Kortas, Ethan Schweinsberg,
Brian Tomko, Blake LaFuente, Evan Danish, Timothy Recker, and Prash Choksi
Glenn Research Center, Cleveland, Ohio

High-Rate Delay Tolerant Networking (HDTN)
User Guide Version 1.1.0

NASA/TM-20230000826/REV1

December 2023

This Revised Copy, numbered as NASA/TM-20230000826/REV1, December 2023, supersedes the

previous version, NASA/TM-20230000826, April 2023, in its entirety.

NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space science.
The NASA Scientifi c and Technical Information (STI)
Program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Offi cer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI Program provides access
to the NASA Technical Report Server—Registered
(NTRS Reg) and NASA Technical Report Server—
Public (NTRS) thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major signifi cant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of signifi cant
scientifi c and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers, but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM. Scientifi c

and technical fi ndings that are preliminary or of
specialized interest, e.g., “quick-release” reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientifi c and
technical fi ndings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientifi c and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientifi c,
technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientifi c and
technical material pertinent to NASA’s mission.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Fax your question to the NASA STI

Information Desk at 757-864-6500

• Telephone the NASA STI Information Desk at
 757-864-9658

• Write to:

NASA STI Program
 Mail Stop 148
 NASA Langley Research Center
 Hampton, VA 23681-2199

Stephanie Booth, Rachel Dudukovich, Nadia Kortas, Ethan Schweinsberg,
Brian Tomko, Blake LaFuente, Evan Danish, Timothy Recker, and Prash Choksi
Glenn Research Center, Cleveland, Ohio

High-Rate Delay Tolerant Networking (HDTN)
User Guide Version 1.1.0

NASA/TM-20230000826/REV1

December 2023

This Revised Copy, numbered as NASA/TM-20230000826/REV1, December 2023, supersedes the

previous version, NASA/TM-20230000826, April 2023, in its entirety.

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Acknowledgments

This work is funded by the programmatic SCaN offi ce in the SCaN Network Services. On behalf of the HDTN team, we would
like to thank the following who have contributed to the project since its infancy: Monty Andro, Aimee Bogner, Gilbert Clark,
Skylar Hoff ert, Alan Hylton, Dennis Iannicca, Katherine King, Blake LaFuente, Lisa Lambert, Gary Pease, Norman Prokkop,
Nick Tollis, and Dale Walter.

Level of Review: This material has been technically reviewed by technical management.

Revised Copy

This Revised Copy, numbered as NASA/TM-20230000826/REV1, December 2023, supersedes the previous version,
NASA/TM-20230000826, April 2023, in its entirety.

Extensive modifi cations have been made to the report title, author list, and text.

This report is available in electronic form at http://www.sti.nasa.gov/ and http://ntrs.nasa.gov/

Contents

1 HDTN Version 1.1 Description 1
1.1 HDTN Version 1.1 . 1
1.2 Changes from Version 1.0.0 to 1.1.0 . 1

1.2.1 Fixed . 1
1.2.2 Added . 1
1.2.3 Changed . 2
1.2.4 Removed . 2

2 High-rate Delay Tolerant Networking Overview 2

3 Architecture 3
3.1 Ingress . 3
3.2 Storage . 4
3.3 Router . 4
3.4 Egress . 4
3.5 Telemetry Command Interface . 4
3.6 Libraries . 4

4 Requirements 5
4.1 Tested Platforms . 5
4.2 Dependencies . 5

4.2.1 Linux Dependencies . 5
4.2.2 Windows Dependencies . 6

4.3 Known Issues . 6

5 Build HDTN 6
5.1 Notes on HDTN CMake . 6
5.2 Build HDTN on Linux . 6
5.3 Optional x86 Hardware Acceleration . 7
5.4 Storage Capacity Compilation Parameters . 8
5.5 Build HDTN on Windows with its Dependencies . 8

5.5.1 HDTN Developers . 9
5.5.2 Setup Instructions for Developers Using Installed HDTN Libraries within their own

Projects . 10
5.6 Build HDTN on ARM . 11

5.6.1 Debugging Errors/Problems . 11
5.7 Building for ARM on x86 . 11

5.7.1 Setting up ARM Chroot on x86 Desktop . 11
5.7.2 Setting up HDTN Dependencies in the Chroot Environment 12
5.7.3 Compiling HDTN . 12
5.7.4 Useful Commands . 12

6 Running HDTN 12
6.1 Directory Structure . 13
6.2 Unit Tests . 13
6.3 Integrated Tests . 13

7 Graphical User Interface 13
7.1 Running the Web Interface . 13
7.2 Statistics Page . 13
7.3 System View Page . 14
7.4 Con�g Page . 14
7.5 Statistics Logging . 14

NASA/TM-20230000826/REV1 iii

8 Getting Started with the API 16
8.1 API Calls . 16

8.1.1 HDTN Version . 16
8.1.2 HDTN Con�guration . 17
8.1.3 Storage . 17
8.1.4 Expiring Storage . 17
8.1.5 Inducts . 18
8.1.6 Outducts . 18
8.1.7 Maximum Send Rate for an Outduct . 18
8.1.8 BP Security Con�guration . 19
8.1.9 Upload Contact Plan . 19
8.1.10 Ping . 20

9 Simulations 21

10 HDTN Applications 21
10.1 BPGen . 21
10.2 BPSink . 21
10.3 BPSendFile . 22
10.4 BPReceiveFile . 22
10.5 BPing . 22
10.6 Fprime Applications . 22

11 Runscript 22
11.1 Path Variables . 23
11.2 BpSink . 23
11.3 BpReceiveFile . 23
11.4 Egress . 23
11.5 Router . 24
11.6 Ingress . 24
11.7 Storage . 24
11.8 HDTN One Process . 24
11.9 BpGen . 24
11.10BpSendFile . 25
11.11Bping . 25
11.12BpSendPacket . 25
11.13BpReceivePacket . 25
11.14CleanUp . 26

12 Con�g Files 26
12.1 hdtn con�g . 26
12.2 sink con�g . 29
12.3 gencon�g . 29
12.4 bpseccon�g . 30
12.5 distributed con�g . 32

13 Contact Plans 34
13.1 JSON Fields . 34

14 Convergence Layers and Routing Protocols 34
14.1 Overview of Compatible Convergence Layers . 34
14.2 Additions to Con�g Files . 35

14.2.1 TCPCLv3 . 35
14.2.2 TCPCLv4 . 36
14.2.3 UDPCL . 37

NASA/TM-20230000826/REV1 iv

14.2.4 LTP . 37
14.2.5 STCP . 38

15 Test Con�gurations and Instructions 39
15.1 TCP Loopback Test . 39
15.2 Two Node LTP Test . 39
15.3 Four Nodes STCP Test . 39
15.4 File Transfer Test . 40
15.5 Integrated Tests . 41

16 Containerization 41
16.1 Docker Instructions . 41
16.2 Docker Compose Instructions . 42
16.3 Kubernetes Instructions . 42

17 Troubleshooting 43
17.1 Logging . 43
17.2 LTP Tuning Recommendations . 43

18 Notes 44
18.1 TLS Support for TCPCL Version 4 . 44
18.2 BP Version 6 and Version 7 . 45

18.2.1 Bundle Protocol Version 6 . 45
18.2.2 Bundle Protocol Version 7 . 48

NASA/TM-20230000826/REV1 v

High-Rate Delay Tolerant Networking (HDTN) User Guide
Version 1.1.0

Stephanie Booth, Rachel Dudukovich, Nadia Kortas, Ethan Schweinsberg, Brian Tomko, Blake LaFuente,
Evan Danish, Timothy Recker, and Prash Choksi
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

1 HDTN Version 1.1 Description

1.1 HDTN Version 1.1

HDTN Version 1.1.0 is a minor release with several features promoted out of the HDTN development branch
to the master branch. The most notable additions are BPSec, consolidation of the scheduler and router
modules, and beginning work on the HDTN API. At the time of the HDTN v1.1.0 minor release, the
software and engineering processes are undergoing improvements to reach NASA Procedural Requirements
7150.2D Class B compliance. HDTN is currently Class D. Full Class B compliance is planned for HDTN
v2.0.0 in the �rst half of 2024. New features added to the master branch are considered stable, however
additional testing will be conducted prior to the release of HDTN v2.0.0.

1.2 Changes from Version 1.0.0 to 1.1.0

1.2.1 Fixed

ˆ All \volatile" variables, especially \volatile bool", have been replaced with \std::atomic" with proper
memory-ordering semantics.

ˆ All convergence layer telemetry variables/counters use \std::atomic" with proper memory-ordering
semantics.

ˆ Routing library now uses reloaded contact plans from the telemetry API.

ˆ Fixed bug where router link state information would become out of sync with actual link state.

ˆ Addressed minor custody transfer bug that was found during testing.

1.2.2 Added

ˆ Bundle Protocol security (BPSec) support. \{bpsec-con�g-�le" command-line argument was added to
bpgen, bpsink, bpsend�le, bpreceive�le, and hdtn-one-process. This argument is used to specify BPSec
con�g �le location.

ˆ Added \slip over uart" convergence layer, allowing bidirectional communication and framing of bundles
over a COM/Serial port.

ˆ Added \{cla-rate" command-line argument to bpgen. This argument, defaulting to zero for unlimited,
can be used to set the rate for LTP and UDP connections.

ˆ Added con�g option \neighborDepletedStorageDelaySeconds" allowing for optional rerouting around
neighboring nodes with depleted storage. Zero disables; otherwise, the value is interpreted as the
amount of time to wait before forwarding to the neighbor after a depleted storage message is received.
Requires that custody be enabled.

ˆ Added functionality to support API calls for retrieving con�guration and statistics information of
HDTN (refer to section 8)

ˆ Added FPrime support by adding BpSendPacket and BpReceivePacket tools which can convert Fprime
data to bundles and vice versa.

NASA/TM-20230000826/REV1 1

1.2.3 Changed

ˆ All bundle data types use \padded vector uint8 t" instead of \std::vector < uint8 t > " to remain uniform
across both inducts, outducts, and BundleView. This results in API changes for:

{ \LtpClientServiceDataToSend"

{ the outduct \Forward" calls

{ the internal bu�ers of \BundleViewV6" and \BundleViewV7"

ˆ Added support for \BundleViewV6" and \BundleViewV7" to recycle their canonical block header
objects whenever the bundle view object is reused in the creation or loading of bundles.

ˆ Combined router and scheduler into one module.

ˆ Updated routing logic. Minor bug �xes and improved handling of interrupted/failed contacts. Upon a
failed contact, HDTN will attempt to calculate a new route avoiding the failed node.

ˆ Changed \-bundle-rate" argument to
oating point type to allow for rates slower than one bundle-per-
second.

ˆ Enabling BP version 6 style priority is optional in BP version 7.

1.2.4 Removed

ˆ Removed \�nalDestinationEidUris", \udpRateBps", and \ltpMaxSendRateBitsPerSecOrZeroToDis-
able" �elds from the HDTN con�guration. These values now come from the contact plan or command-
line arguments.

2 High-rate Delay Tolerant Networking Overview

Delay Tolerant Networking (DTN) has been identi�ed as a key technology to enable and facilitate the
development and growth of future space networks. Classically, space communications networks are collections
of disparate links that are manually managed either point-to-point or use space relays. The accelerating
accessibility of space enables a new scaling of space nodes, yet both the manual management of con�gurations
and scheduling and the lack of structure connecting links precisely prohibit scaling. This challenge gives rise
to newer and larger classes of communications needs that are met by DTN, which must overcome the
disconnection, disruption, latency, and mobility featured in space communications systems.

DTN joins the underlying links as an overlay, and can be made to communicate over any protocol stack.
The core actions of DTN are store, carry, and forward, where data are stored instead of dropped if there
is no immediately available outduct. It does this by taking the DTN unit of data, bundles, and providing
necessary layers to adapt these bundles to the underlying transport protocols of choice; these are called
convergence layers. DTN's Bundle Protocol (BP) can then be used on top of terrestrial protocol stacks,
such as TCP/IP, as well as protocols for space, such as LTP/AOS, all in the same network. For emphasis it
is noted that bundles can be of essentially any size, and hence this convergence to lower layers of choice is
necessary.

Existing DTN implementations have operated in constrained environments with limited resources, result-
ing in low data speeds. However, as various technologies have advanced, data transfer rates and e�ciency
have advanced, which has pushed the need for a DTN implementation for ground systems and for spacecraft
that is performance-oriented in order to not impose an unnecessary bottleneck.

High-rate Delay Tolerant Networking (HDTN) takes advantage of modern hardware platforms to sub-
stantially reduce latency and improve throughput compared to today's DTN operations. The HDTN imple-
mentation maintains interoperability with existing deployments of DTN that conform to IETF RFCs 4838,
5050, and 9171. At the same time, HDTN de�nes a new data format better suited to higher-rate operation.
It de�nes and adopts a massively parallel pipelined and message-oriented architecture, allowing the system
to scale gracefully as its resources increase. HDTN's architecture also supports hooks to replace various

NASA/TM-20230000826/REV1 2

processing pipeline elements with specialized hardware accelerators. This o�ers improved Size, Weight, and
Power (SWaP) characteristics while reducing development complexity and cost.

For questions and comments on this project, feel free to reach out to the contributors found on the Github
page at https://github.com/nasa/HDTN .

3 Architecture

HDTN is written in C++, and is designed to be modular. These modules include:

ˆ Ingress - Processes incoming bundles.

ˆ Storage - Stores bundles to disk.

ˆ Router - Calculates routes for bundles and determines when bundles may be forwarded.

ˆ Egress - Forwards bundles to the proper outduct and next hop.

ˆ Telemetry Command Interface - Displays the operations and data for HDTN.

ˆ Libraries - implement common algorithms and functions needed by the HDTN core modules such as
Routing and BPSec libraries

Figure 1 shows the HDTN modules and their interactions:

3.1 Ingress

The Ingress module intakes bundles and decodes the header �elds to determine the source and destination of
the bundles. If the link is available, Ingress will send the bundles in a cut-through mode straight to Egress,
and if the link is down or custody transfer is enabled it sends the bundles to the Storage module. Even if an
immediate forwarding opportunity exists, Storage is always required when custody transfer is enabled. The
bundle layer must be prepared to re-transmit the bundle if it does not receive an acknowledgment within
the time-to-acknowledge that the subsequent custodian has received and accepted the bundle.

Figure 1.|HDTN architecture.

NASA/TM-20230000826/REV1 3

3.2 Storage

Storage is a multi-threaded implementation distributed across multiple disks that also handles custody
transfer. It receives messages from the Router to determine when stored bundles can be released and
forwarded to Egress.

3.3 Router

The router calculates routes and tracks link (outduct) state. It is responsible for determining whether
neighboring nodes are \up" or \down", recomputing routes as necessary, and providing that information to
the other modules. The router sendsLinkUp and LinkDown messages to indicate when bundles may be
forwarded on a given link. The Router also sendsRouteUpdate messages to Egress to update the route
and next hop. The Router uses contact plans in JavaScript Object Notation (JSON) to determine when
contacts start and end, and to calculate routes. The Router reloads the contact plan upon receipt of a
NEWCONTACTPLANrequest. The Router dynamically handles changes in network state including physical
link changes and (optionally) depleted storage on neighboring nodes. If a link unexpectedly goes down, the
Router will attempt to reroute around that node. The Router module gets the next hop and best route to
the �nal destination using one of the algorithms in the routing library. HDTN currently supports Contact
Graph Routing (CGR), Dijkstra's algorithm (default algorithm used), and also Contact Multigraph routing
(CMR).

3.4 Egress

The Egress module is responsible for forwarding bundles received from Storage or Ingress to the correct
outduct and next hop based on the optimal route computed by the Router. HDTN uses an event-driven
approach based on ZeroMQ pub-sub sockets for sending unexpected link updates and contact plan changes
from Egress to Router. When the connection is lost unexpectedly, Egress will send aLinkStatus change
message to the Router, which triggers the Router to sendLinkUp or LinkDown events to Ingress and
Storage. In addition, the Router will recompute routes and send aRouteUpdate message to Egress.

3.5 Telemetry Command Interface

The Telemetry Command Interface module exchanges messages with the Graphical User Interface (GUI)
which has a page that displays a live system view of HDTN node with bundles
owing in real time, and
pages that display the current con�guration settings, data rates graph and bundles statistics for network
troubleshooting. The GUI is also used for updating con�guration, routes, and contact plans. Telemetry
Command Interface module will also be able to communicate with External APIs to display stats and
con�guration via a command Line Interface (CLI).

3.6 Libraries

ˆ The Routing Library implements the routing algorithms in C++ that currently supports Contact
Graph Routing (CGR), Dijkstra's algorithm (the default algorithm used), and Contact Multigraph
Routing (CMR), which is a modi�ed version of Dijkstra's algorithm using a multigraph structure
instead of a contact graph and providing a signi�cant performance improvement.

ˆ BPCodec is a stand-alone library designed to support encoding and decoding the Bundle Protocol
format. Both version 6 and version 7 of the bundle protocol are supported

ˆ Bundle Protocol Security (BPSec) Library includes the implementation of the cryptographic functions
using OpenSSL APIs and it requires OpenSSL FIPS module to comply with NASA cybersecurity
requirements. BPSec is enabled by default with Bundle Protocol Version 7 with Open SSL support.
BPSec has the methods for adding and processing BCB con�dentiality and BIB integrity blocks based
on the security policy Rules. It also de�nes the methods for searching and processing security policy
rules and handling of security events failures. BPSec Library has a dependency BPCodec library as
it is using the corresponding class BundleViewV7 to add and remove security blocks. This is a helper

NASA/TM-20230000826/REV1 4

class for reading/parsing/validating all blocks within Bundle Protocol Version 7 bundles and it makes
it easy to modify speci�c blocks and rewrite bundles to new memory. Bundles may be rendered in-place
if the bundle is decreasing in size or if there is enough padding available if the bundle is growing in
size.

4 Requirements

In this section, the run environments, including tested platforms, architectures, and dependencies are de-
tailed.

4.1 Tested Platforms

ˆ Linux

{ Ubuntu Desktop 18.04, 18.10, 20.04.2, 20.10
{ Ubuntu Server 20.04, 20.10
{ Debian 10
{ RHEL (Red Hat Enterprise Linux) 8
{ Fedora 38

ˆ Windows

{ Windows 10 (64-bit)
{ Windows Server 2022 (64-bit)
{ Windows Server 2019 (64-bit)

ˆ Raspbian

ˆ ARM on x86

4.2 Dependencies

4.2.1 Linux Dependencies

The HDTN build environment requires:

ˆ CMake version 3.16.3

ˆ Boost library version 1.66.0 minimum, version 1.69.0 for TCPCLv4 TLS version 1.3 support, version
1.70 is required for the Web User Interface to support HTTPS/WSS.

ˆ ZeroMQ version 4.34

ˆ gcc version 9.3.0 (Debian 8.3.0-6)

ˆ OpenSSL version 1.1.1f (Optional - needed to support BPSec)

These can be installed using the following command(s):
On Debian/Ubuntu
sudo apt-get install cmake build-essential libzmq3-dev
sudo apt-get install libboost-dev libboost-all-dev openssl libssl-dev
On RHEL
sudo dnf install epel-release
sudo yum install cmake boost-devel zeromq zeromq-devel
On Debian
sudo apt-get install cmake build-essential openssl libssl-dev
sudo apt-get install libboost-dev libboost-all-dev libzmq3-dev python3-zmq
On Fedora sudo dnf install gcc gcc-c++ kernel-devel make cmake boost boost-devel
zeromq-devel openssl-devel

NASA/TM-20230000826/REV1 5

4.2.2 Windows Dependencies

HDTN supports 9 permutations of the Visual Studio compilers on Windows:

ˆ Versions: 2022, 2019, and 2017 (note: for 2017, only versions 15.7 and 15.9 have been tested)

ˆ Editions: Enterprise, Professional, and Community

HDTN build environment on Windows requires:

ˆ One of the supported Visual Studio compilers listed in the Overview section. Visual Studio must be
installed for C++ Development during setup.

ˆ PowerShell (recommended Visual Studio Code with the PowerShell extension installed)

ˆ 7-Zip

ˆ Perl (needed for building OpenSSL) with perl.exe in the Path environmental variable (Strawberry Perl
for Windows has been tested)

4.3 Known Issues

ˆ Ubuntu distributions have been known to install older non-compatible versions of -CMake.

ˆ Some processors do not support hardware acceleration or theRDSEEDinstruction. (Note: In the
CMake �le, both are set to \ON" by default.) This support will be auto-detected by CMake if not
cross-compiling.

ˆ Mac OS may not support recvmmsg and sendmmsg functions, recvmsg and sendmsg could be used
instead.

5 Build HDTN

5.1 Notes on HDTN CMake

All of HDTN's directories of modules/libraries contain their own CMakeLists.txt �le. The root
CMakeLists.txt adds all those modules/libraries to the HDTN project using the CMake add subdirectory
command. It should be noted that the HDTN CMake �les are written using modern CMake paradigms, such
as \dependencies as targets" which makes it much easier and cleaner to manage a multi-platform library like
HDTN. In addition, package con�g information gets exported to the installation (install root/lib/cmake)
whenever a user wants to do a \make install". There is an example intests/unit tests import instal
lation/CMakeLists.txt which is a copy of the regulartests/unit tests/CMakeLists.txt except
that the former uses the find package package con�g information from the install root/lib/cmake
directory. The package con�g information is great for users that may want to write custom software projects
that only use portions of the HDTN codebase such as a library of a particular convergence layer. The
HDTN CMake tries to optimize the build as much as possible; it will test the compiler for more recent
C++ standards, and it will test the compiler and the CPU for speci�c x86 hardware instructions and utilize
those if available. Finally, the HDTN CMake supports building its libraries as either static or shared using
CMake's GENERATEEXPORTHEADERwhich is required for building or using .dll �les on Windows and for
using GCC's new C++ visibility support.

5.2 Build HDTN on Linux

To build HDTN in \Release mode", perform the following steps. (Note: If the -DCMAKEBUILD TYPE is
not speci�ed, HDTN is built in \Release mode" by default).

ˆ git clone https://github.com/nasa/HDTN.git

ˆ export HDTN SOURCEROOT=/home/username/HDTN (set to filepath containing HDTN)

NASA/TM-20230000826/REV1 6

ˆ cd $HDTN SOURCEROOT

ˆ mkdir build

ˆ cd build

ˆ cmake ..

ˆ make

{ Adding -j8 (i.e. make -j8) to the make will speed up the processing time but requires a system
with at least 8 cores.

Note: By Default, BUILD SHAREDLIBS is OFF and HDTN is built as static. To use shared libs,
edit CMakeCache.txt, set BUILD SHAREDLIBS:BOOL=ON and add fPIC to the CMakeCache variable:
CMAKECXXFLAGSRELEASE:STRING=-03 -DNDEBUG -fPIC

5.3 Optional x86 Hardware Acceleration

HDTN build environment sets the following CMakeCache variables to \On" by default:
USEX86 HARDWAREACCELERATIONand LTP RNGUSERDSEED.
Notes:

ˆ If building natively (i.e. not cross-compiling), the HDTN CMake build environment will check the
processor's CPU instruction set and the compiler to determine which HDTN hardware accelerated
functions will build and run on the native host. CMake automatically sets various compiler de�nitions
to enable supported HDTN hardware accelerated features.

ˆ If cross-compiling, the HDTN CMake build environment will check the compiler to determine if the
HDTN hardware accelerated functions will build. It is up to the user to determine if the target processor
can support/run those instructions. CMake will automatically set various compiler de�nitions to enable
supported HDTN hardware accelerated features only if they compile.

ˆ Hardware accelerated functions can be turned o� by setting
USEX86 HARDWAREACCELERATIONand/or LTP RNGUSERDSEEDto \O�" in the
CMakeCache.txt .

ˆ If building for ARM or any non X86-64 platform,
USEX86 HARDWAREACCELERATIONand LTP RNGUSERDSEEDmust be set to \O�".

If USEX86 HARDWAREACCELERATIONis turned \On" some or all of the following features will be
enabled if CMake �nds support for these CPU instructions:

ˆ Fast SDNV encode/decode (BPv6, TCPCLv3, and LTP) requires SSE, SSE2, SSE3, SSSE3, SSE4.1,
POPCNT, BMI1, and BMI2.

ˆ Fast batch 32-byte SDNV decode (not yet implemented into HDTN but available in the common/u-
til/Sdnv library) requires AVX, AVX2, and the above \Fast SDNV" support.

ˆ Fast CBOR encode/decode (BPv7) requires SSE and SSE2.

ˆ Some optimized loads and stores for TCPCLv4 requires SSE and SSE2.

ˆ Fast CRC32C (BPv7 and a storage hash function) requires SSE4.2.

ˆ The HDTN storage controller will use BITTEST if available. If BITTEST is unavailable, it will use
ANDN if BMI1 is available.

If LTP RNGUSERDSEEDis turned \On", this feature will be enabled if CMake �nds support for this
CPU instruction:

ˆ An additional randomness source for LTP's random number generator requires RDSEED. This feature
can be disabled for potentially faster LTP performance.

NASA/TM-20230000826/REV1 7

5.4 Storage Capacity Compilation Parameters

HDTN build environment sets two CMake cache variables by default: STORAGESEGMENTID SIZE BITS
and STORAGESEGMENTSIZE MULTIPLE OF 4KB.

ˆ The STORAGESEGMENTID SIZE BITS
ag must be set to the recommended default, 32 or 64. It
determines the size/type of the storage module'ssegment id t . Setting the
ag to 32-bit signi�cantly
decreases memory usage because we don't need to use the RAM.

{ If this value is 32, the formula for the max segments (S) is given by

S = min (UINT 32 MAX; 646) � 4:3 billion

segments since segmentid t is a uint32 t. A segment allocator using 4.3 Billion segments uses
about 533 MByte RAM), and multiplying by the minimum 4KB block size gives 17TB bundle
storage capacity. Make sure to appropriately set thetotalStorageCapacityBytes variable
in the HDTN JSON con�g so that only the required amount of memory is used for the segment
allocator.

{ If this value is 64, the formula for the max segments (S) is given by

S = min (UINT 64 MAX; 646) � 68:7 billion

segments since segmentid t is a uint64 t. Using a segment allocator with 68.7 Billion segments,
when multiplying by the minimum 4KB block size gives � 281TB bundle storage capacity.

ˆ The
ag STORAGESEGMENTSIZE MULTIPLE OF 4KB must be set to an integer of 1 or greater. It
determines the minimum increment of bundle storage based on the standard block size of 4096 bytes.
(Note: One is the default and recommended.) Example:

{ If STORAGESEGMENTSIZE MULTIPLE OF 4KB=1 , a 4KB* 1=4KB block size is used. A bundle
size of 1KB would require 4KB of storage. A bundle size of 6KB would require 8KB of storage.

{ If STORAGESEGMENTSIZE MULTIPLE OF 4KB=2, a 4KB* 2=8KB block size is used. A bundle
size of 1KB would require 8KB of storage. A bundle size of 6KB would require 8KB of storage.
A bundle size of 9KB would require 16KB of storage. If

STORAGESEGMENTID SIZE BITS=32

then bundle storage capacity could potentially double from� 17TB to � 34TB.

For information on how the Storage works, seemodule/storage/doc/storage.pptx in the HDTN
main repository.

5.5 Build HDTN on Windows with its Dependencies

To build HDTN and its dependencies in Release mode and as shared libraries (shared .dll �les for both
HDTN and its dependencies), simply run the PowerShell script in building on windows nhdtn wind
ows cicd unit test.ps1 from any working directory. The working directory does not matter. Once
�nished, HDTN and its dependencies will be installed to C: nhdtn build x64 release vs2022 (su�x
will be 2019 or 2017 if that's the Visual Studio compiler installed). The script will also run HDTN's unit
tests after the build. Once completed, you will see the following message:
"Remember, HDTN was built as a shared library, so you must prepend the following to
your Path so that Windows can find the DLL's of HDTN and its dependencies:"
It will print four directory locations to be added to your Path environmental variable to facilitate use of
HDTN outside this PowerShell script.

ˆ From the Windows Start Menu, type env .

ˆ Open Edit environmental variables for your account

NASA/TM-20230000826/REV1 8

ˆ double click Path

ˆ Add the four directories. (Omit the directory containing hdtn install nlib if modifying HDTN
source code within Visual Studio. You will later build and install your HDTN binaries within Visual
Studio.)

ˆ If you are a user of HDTN and you are NOT going to modify HDTN source code within Visual Studio,
also add this directory to your Path: C: nhdtn build x64 release vs2022 nhdtn install nbin

ˆ Click OK

ˆ Click New

ˆ Add the following new variable: HDTNSOURCEROOT

ˆ Set the variable value to your source root (the folder that contains README.md).

Example C: npath nto nhdtn

ˆ Click OK

ˆ Click OK

If you are a user of HDTN and you are NOT going to modify HDTN source code within Visual Studio,
you can reference any of the .bat �le example tests located inHDTNSOURCEROOTntests ntest script
s windows . Note that these scripts were intended for developers, so you will have to modify the scripts,
�xing any lines that reference HDTNBUILD ROOT, so, for example, if you see%HDTNBUILD ROOT%ncomm
onnbpcodec napps nbpgen-async.exe , replace it with bpgen-async.exe . Also note that these .bat
�les reference con�g �les located in HDTNSOURCEROOTnconfig files , so feel free to modify those .json
con�gs to meet your needs.

5.5.1 HDTN Developers

If you are a developer and you are going to modify HDTN source code within Visual Studio, you may delete
the directory C: nhdtn build x64 release vs2022 nhdtn install and continue on with the next set
of instructions.

Launch Visual Studio 2022 and open HDTN as a project with these steps:

ˆ File >> open >> cmake

ˆ Open HDTN root CMakeLists.txt

ˆ Make sure drop down con�guration at the top is set to x64-Release. You may need to go toManage
Configurations if not.

Then click Project >> view CMakeCache.txt Add these lines (change vs2022 directory su�x if
di�erent):

ˆ BOOSTINCLUDEDIR:PATH=C: nhdtn build x64 release vs2022 nboost 1 78 0 install

ˆ BOOSTLIBRARYDIR:PATH=C: nhdtn build x64 release vs2022 nboost 1 78 0 install n
lib64

ˆ BOOSTROOT:PATH=C:nhdtn build x64 release vs2022 nboost 1 78 0 install

ˆ OPENSSLINCLUDE DIR:PATH=C: nhdtn build x64 release vs2022 nopenssl-1.1.1s
install ninclude

ˆ OPENSSLROOTDIR:PATH=C: nhdtn build x64 release vs2022 nopenssl-1.1.1s install

ˆ libzmq INCLUDE:PATH=C:nhdtn build x64 release vs2022 nlibzmq v4.3.4 install n
include

NASA/TM-20230000826/REV1 9

ˆ libzmq LIB:FILEPATH=C: nhdtn build x64 release vs2022 nlibzmq v4.3.4 install nli
bnlibzmq-v143-mt-4 3 4.lib (note: may be v141 or v142)

ˆ BUILD SHAREDLIBS:BOOL=ON

Then click Project >> configure cache
It is now time to set up additional environmental variables in order to be able to run the .bat �le tests

located in HDTNSOURCEROOTntests ntest scripts windows :

ˆ Right click on the open tab within Visual Studio titled CMakeCache.txt and then click "Open
Containing Folder"

ˆ Copy the path at the top of the Windows Explorer window

ˆ From the Windows Start Menu, type "env" , open "Edit environmental variables for your
account"

ˆ Click New

ˆ Add the following new variable: HDTNBUILD ROOT. The variable value will look something like C:
nUsers nusername nCMakeBuilds n17e7ec0d-5e2f-4956-8a91-1b32467252b0 nbuild nx64-
Release

ˆ Click OK

ˆ Click New

ˆ Add the following new variable: HDTNINSTALL ROOT; the value will look similar to HDTNBUILD ROOT
except change \build" to \install".

something like C: nUsers nusername nCMakeBuilds n17e7ec0d-5e2f-4956-8a91-1b3246725
2b0ninstall nx64-Release

ˆ Click OK

ˆ Double click the Path variable, add the HDTNINSTALL ROOTnlib folder to your Path, something like
C: nUsers nusername nCMakeBuilds n17e7ec0d-5e2f-4956-8a91-1b32467252b0 ninstall n
x64-Release nlib. This step is needed because HDTN is built as a shared library with multiple
.dll �les, so this step allows Windows to �nd those .dll �les when running any HDTN binaries.

Relaunch Visual studio so that it get's loaded with the updated environmental variables. Now build HDTN:

ˆ Build >> Build All

ˆ Build >> Install HDTN

ˆ Run unit tests.bat located in HDTNSOURCEROOTntests ntest scripts windows

ˆ For a Web GUI example, run test tcpcl fast cutthrough oneprocess.bat and then navigate
to http://localhost:8086 (note: to exit cleanly, do a ctrl-c in each cmd window before closing)

NOTE: Since CMake is currently con�gured to build HDTN as a shared library (because the CMake cache
variable BUILD SHAREDLIBS is set to ON), any time you make a source code change to HDTN, for it to be
re
ected in the binaries, don't forget to Build >> Install HDTN after the Build >> Build All step.

5.5.2 Setup Instructions for Developers Using Installed HDTN Libraries within their own
Projects

HDTN utilizes modern CMake. When HDTN is installed, it installs the appropriate CMake Packages that
can be imported. For an example of this use case, seeHDTNSOURCEROOTntests nunit tests import
installation nCMakeLists.txt for a project that imports the libraries and headers from an HDTN

installation and builds HDTN's unit tests from that installation.

NASA/TM-20230000826/REV1 10

5.6 Build HDTN on ARM

HDTN is compiled with x86 hardware optimizations by defaults. To compile for ARM, these optimizations
must be disabled. To build HDTN on ARM running Ubuntu (follow Ubuntu dependencies in Section 4.2):

1. cd HDTN

2. mkdir build && cd build

3. cmake .. -DCMAKE SYSTEMPROCESSOR=arm

4. make -j

5. sudo make install -j

These commands should work for any ARM platform running Ubuntu such as Raspberry Pi 4 or NVidia
Jetson Nano. Compiling on a Raspberry Pi 4 takes anywhere from 30 minutes to an hour. It is recommended
to compile with only one or two cores (make -j2) on memory constrained devices to ensuregcc does not
consume all RAM.

5.6.1 Debugging Errors/Problems

ˆ For errors reporting similar to: cpuid.h is not found for �le HDTN/common/util/src/CpuFlagDe-
tection.cpp

- Double check CMakeList.txt edits

ˆ For errors reporting similar to: recompile with -fPIC

- Double check CMakeCache.txt edits

ˆ For errors reporting ./runscript.sh not found

- Run: export HDTN SOURCEROOT=/home/user/HDTN

ˆ For errors reporting similar to: no tcpdump

- Run: sudo apt install tcpdump

ˆ For runtime errors:

- Check the log �les under HDTN/logs. These are not created by default but can be created
following the instructions in Section 17.1.

5.7 Building for ARM on x86

5.7.1 Setting up ARM Chroot on x86 Desktop

Run the following commands:

ˆ sudo apt install qemu-user-static

ˆ sudo apt install debootstrap

ˆ sudoqemu-debootstrap--variant=buildd--archarm64focal/var/chroot/http://por
ts.ubuntu.com/

- focal in the above command is the name of the Ubuntu Release and may need to be changed.

- This �nal command creates an armhf operating system located at/var/chroot . Users can
move it elsewhere, but it is recommended to keep it out of the/home/ and user directories.

ˆ To get into chroot, use the command: sudo chroot /var/chroot

At this point, users are now in an ARM environment. Users should run the commands in the following
sections AFTER they enter the ARM environment.

NASA/TM-20230000826/REV1 11

5.7.2 Setting up HDTN Dependencies in the Chroot Environment

Note: Sudo does not exist in chroot.

ˆ apt install make cmake build-essential software-properties-common

ˆ add-apt-repository universe

ˆ apt update

ˆ apt install libboost-dev libboost-all-dev libzmq3-dev openssl libssl-dev

5.7.3 Compiling HDTN

ˆ Download the latest HDTN from Github.

ˆ Unzip the �le in your home directory.

- Note: Users cannot write directly to ARM emulator directories in Windows Subsystem for Linux.

ˆ sudo mv HDTN /var/chroot/home

ˆ sudo chroot /var/chroot

ˆ cd home/HDTN

ˆ mkdir build

ˆ cd build

ˆ cmake .. -DCMAKE SYSTEMPROCESSOR=arm

ˆ make -j 1

- Multiple threads will cause a race condition.

5.7.4 Useful Commands

ˆ readelf -h executable

- Read executable header.

ˆ apt install cmake-curses-gui

- Installs CMakeCache.txt editor install for static builds.

ˆ ccmake ..

- Runs the CMakeCache.txt editor.

6 Running HDTN

Note: Ensure your con�g �les are correct, e.g., check that the outduct remotePort is the same as the
induct boundPort , a consistant convergenceLayer , and the outduct's remoteHostname is pointed to
the correct IP adress. tcpdump can be used to test the HDTN ingress storage and egress. The generated pcap
�le can be read using wireshark: sudo tcpdump -i lo -vv -s0 port 4558 -w hdtn-traffic.pcap
In another terminal, run: ./runscript.sh

Note: The Contact Plan, which lists future contacts for each node, is located undermodule/router/-
contact plans/contactPlan.json and includes the source and destination nodes, the start and end
times, and the data rates. Based on the schedule in the Contact Plan the router sends events on link availabil-
ity to Ingress and Storage. When the Ingress receives theLink Available event for a given destination,

NASA/TM-20230000826/REV1 12

it sends the bundles directly to egress. When the Link is Unavailable it sends the bundles to storage. Upon
receiving Link Available event, Storage releases the bundle(s) for the corresponding destination. When
a Link Down event is received, Storage stops releasing the bundles.

There are additional test scripts located under the directoriestest scripts linux and test scrip
ts windows that can be used to test di�erent scenarios for all convergence layers.

6.1 Directory Structure

common/ Common Libraries and Utils
module/ HDTN Core Modules

j{ egress CL adapter(s) that forwards bundle tra�c
j{ ingress CL adapter(s) that accepts tra�c in bundle format
j{ storage Stores bundles
j{ router Sends link state and routes to other modules
j{ hdtn one process Combines the main processes into one HDTN process
j{ udp delay sim Proxy that simulates long delays
j{ telem cmd interface Web interface for stats display and con�guration

con�g �les/ HDTN con�g �les
tests/ Example Test cases and experiments

6.2 Unit Tests

After building HDTN (see Section 5), unit tests can be run using the following command within the build
directory:
./tests/unit tests/unit-tests

6.3 Integrated Tests

After building HDTN (see Section 5), integrated tests can be run using the following command within the
build directory:
./tests/integrated tests/integrated-tests

7 Graphical User Interface

7.1 Running the Web Interface

This repository comes equiped with code to launch a web-based user interface to display statistics for the
HDTN engine. It relies on a dependency called Boost Beast which is packaged as a header-only library
that comes with a standard Boost installation. The web interface requires OpenSSL since the web interface
supports both http as well as https, and hence both ws (WebSocket) and wss (WebSocket Secure). The web
interface is compiled by default. Anytime that HDTNOneProcess runs, the web page will be accessible at
http://localhost:8086

To prevent the web interface from running, follow the normal build instructions for Linux. The only
di�erence will be in the cmake command will now be: cmake -DUSE WEBINTERFACE:BOOL=OFF ..

7.2 Statistics Page

This page, displayed in Figure 2, displays real-time telemetry of HDTN. At the top are three boxes displaying
the current Data Rate in Mega-Bits Per Second, the Average Data Rate, and the Maximum Data Rate
reached. All of these are measured in the Ingress module.

Beneath are three graphs. The �rst two display the data rate of the Ingress and Egress Modules in
Mega-bits Per Second. The third graph is a pie chart displaying the location of data bundles received by
Ingress - either sent to the Storage module or directly to Egress. If a bundle is sent from Storage to Egress,
it will be measured on the pie chart as having gone to Egress.

NASA/TM-20230000826/REV1 13

Figure 2.|Statistics Page of the Web Interface.

Beneath the graphs, cards display statistics for di�erent parts of HDTN. At this time only Ingress and
Egress are displayed.

7.3 System View Page

This page can be accessed by clickingSystem View GUI in the top left-hand corner of the Statistics page.
As shown in Figure 3, this page displays a graphic of the di�erent modules of HDTN as well as information
on where the bundled data is coming from and where it is going. In the top row are adjustable settings for
users to make the information more legible. On the left of the page are the IP addresses and IPN numbers
from which data is being received. On the right is displayed the Nodes and IPN numbers to which data
is being sent from this HDTN node. The graphic displays the data rate as data comes into into Ingress,
between the di�erent modules of HDTN (Ingress, Storage, and Egress), and the rate as it leaves Egress. The
Storage graphic displays the percentage and amount of storage space being used.

Users can also hover over each HDTN module and a pop-up graphic will appear displaying data for that
module. An example is shown in Figure 4 which shows this information for the Storage module.

7.4 Con�g Page

This page is not con�gured yet.

7.5 Statistics Logging

HDTN telemetry can be automatically logged to CSV �les by compiling HDTN with the DOSTATSLOGGING
CMake option. The command for enabling this is: cmake -DDO STATSLOGGING:BOOL=ON. Files will be
created in the /stats directory of the source code root. Statistics are logged on a 1 second interval. The
following statistics are currently supported:

ˆ ingress data rate mbps

ˆ ingress total bytes sent

ˆ ingress bytes sent egress

NASA/TM-20230000826/REV1 14

	HDTN Version 1.1 Description
	HDTN Version 1.1
	Changes from Version 1.0.0 to 1.1.0
	Fixed
	Added
	Changed
	Removed

	High-rate Delay Tolerant Networking Overview
	Architecture
	Ingress
	Storage
	Router
	Egress
	Telemetry Command Interface
	Libraries

	Requirements
	Tested Platforms
	Dependencies
	Linux Dependencies
	Windows Dependencies

	 Known Issues

	Build HDTN
	Notes on HDTN CMake
	Build HDTN on Linux
	Optional x86 Hardware Acceleration
	 Storage Capacity Compilation Parameters
	Build HDTN on Windows with its Dependencies
	HDTN Developers
	Setup Instructions for Developers Using Installed HDTN Libraries within their own Projects

	Build HDTN on ARM
	Debugging Errors/Problems

	Building for ARM on x86
	Setting up ARM Chroot on x86 Desktop
	Setting up HDTN Dependencies in the Chroot Environment
	Compiling HDTN
	Useful Commands

	Running HDTN
	Directory Structure
	Unit Tests
	Integrated Tests

	Graphical User Interface
	Running the Web Interface
	Statistics Page
	System View Page
	Config Page
	Statistics Logging

	Getting Started with the API
	API Calls
	HDTN Version
	HDTN Configuration
	Storage
	Expiring Storage
	Inducts
	Outducts
	Maximum Send Rate for an Outduct
	BP Security Configuration
	Upload Contact Plan
	Ping

	Simulations
	HDTN Applications
	BPGen
	BPSink
	BPSendFile
	BPReceiveFile
	BPing
	Fprime Applications

	Runscript
	Path Variables
	BpSink
	BpReceiveFile
	Egress
	Router
	Ingress
	Storage
	HDTN One Process
	BpGen
	BpSendFile
	Bping
	BpSendPacket
	BpReceivePacket
	CleanUp

	Config Files
	hdtn_config
	sink_config
	gen_config
	bpsec_config
	distributed_config

	Contact Plans
	JSON Fields

	Convergence Layers and Routing Protocols
	Overview of Compatible Convergence Layers
	Additions to Config Files
	TCPCLv3
	TCPCLv4
	UDPCL
	LTP
	STCP

	Test Configurations and Instructions
	TCP Loopback Test
	Two Node LTP Test
	Four Nodes STCP Test
	File Transfer Test
	Integrated Tests

	Containerization
	Docker Instructions
	Docker Compose Instructions
	Kubernetes Instructions

	Troubleshooting
	Logging
	LTP Tuning Recommendations

	Notes
	TLS Support for TCPCL Version 4
	BP Version 6 and Version 7
	Bundle Protocol Version 6
	Bundle Protocol Version 7

