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Chemical Thermodynamics and the Mathematical Integration of

Reaction Kinetics

Ayoub Gouasmi1 and Scott M. Murman2

1Oak Ridge Associated Universities
2NASA Ames Research Center, NASA Advanced Supercomputing Division

Abstract

Key advances in the development of numerical methods for non-reacting compressible flows have been
enabled by translating physical requirements into concrete numerical guidelines, such as the satisfaction
of entropy inequalities for shock-capturing techniques [Lax, Contributions to Nonlinear Functional Anal-
ysis (1971) 603-634]. In the present work, we present nonlinear numerical analysis tools that draw from
Chemical Thermodynamics, the branch of Nonequilibrium Thermodynamics that deals with chemical
reactions. Through Gibbs formalism, chemical thermodynamics provides a well-known theoretical ex-
pression for the chemical equilibrium constant of a reaction in terms of reduced chemical potentials. A
less-known, yet extremely valuable result, due to [Krambeck, Arch. Ration. Mech. Anal., 38 (1970)
317], states that when this expression is implemented, mass-action kinetic models are consistent with the
dynamical prescriptions of the 2nd law of thermodynamics. For fixed-temperature ordinary differential
equations modeling constant-volume reacting gas mixtures, this leads to a decreasing Helmholtz free
energy. If the temperature is allowed to vary in accordance with conservation of energy (1st law), this
leads to the statement of increasing entropy. These nonlinear prescriptions can, and should be, used to
further develop temporal integration techniques for reaction kinetics. We demonstrate that Krambeck’s
result holds even when the equilibrium constants are approximated from data. We prove this result
by constructing the implicit free energy and the implicit entropy inherent to a given approximation.
This is first done for a 5-species, 17-reaction model problem for air. With this structure established,
elements of discrete entropy-stability theory [ Tadmor, Acta Numer., 12 (2003) 451 ] are leveraged to
examine the consistency of time-integration schemes with these prescriptions. Using chemical potentials,
one can compute the respective contributions of the kinetics model and of the temporal scheme to free
energy/entropy variations. We introduce a nonlinear-stable version of the Discontinuous-Galerkin (DG)
scheme in time which shows robustness improvements over the standard linearly-stable version. Most
notably, the maximum timestep that can be resolved with the nonlinearly-stable variant tends to grow
with polynomial order, in contrast to the linearly-stable variant. We generalize our constructions to
arbitrary systems of reversible chemical reactions, ultimately showing that the compressible reacting Eu-
ler system admits the opposite of the implicitly constructed thermodynamic entropy as a mathematical
entropy. This lays important theoretical foundations towards robust scheme development [Harten, J.
Comput. Phys. 49 (1983) 151–164].
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1 Introduction

The robust and accurate simulation of chemical nonequilibrium processes is a major research item in
Computational Fluid Dynamics (CFD) [34, 33]. Chemical kinetics play an important role in a number of
engineering applications such as combustion engine design [33] and hypersonic flight [27, 26, 28]. The small
time scales involved make detailed simulations of these flows expensive, even with recent advances in comput-
ing power [33]. Within compressible flow models, the disparity in temporal scales cause the resulting system
of equations to be stiff [29], motivating a long-time effort on developing robust high-resolution methods both
in space and in time [34, 8, 32, 31, 30]. Another challenge lies in the chemical nonequilibrium model itself,
which needs to be both accurate and affordable. These requirements are typically met through extensive
data-driven modeling procedures [2] that generate nonequilibrium models that are difficult to analyze on
paper.

The successful development of numerical methods is underpinned by our understanding of the mathe-
matical structure of the physical model at hand, and by our ability to translate this knowledge into concrete
numerical guidelines. CFD simulations of compressible flows have greatly benefited from the development
of numerical schemes consistent with the notions of conservation [15], wave propagation [22], monotonicity
[21] and entropy-stability [15, 18, 17]. The latter concept in particular has driven a number of advances
in under-resolved simulations of compressible turbulent flows using high-order Discontinuous-Galerkin (DG)
schemes over the last decade[11, 12, 34, 41, 45]. A number of studies [41, 45] report that enforcing consis-
tency with the 2nd law of thermodynamics considerably improves stability. A less discussed, but equally
valuable, feature of these schemes is their modular construction [11] which provides an exact measure of
the amount of entropy produced at the discrete level and enables a better understanding of local behavior
[35, 36, 37, 40]. The present work continues our recent efforts on the development of entropy-stable schemes
for compressible multicomponent flow applications [38, 39]. Here we explore the integration of chemical
kinetics from a mathematical modeling standpoint, and discuss some encouraging preliminary numerical
results on a fixed-temperature kinetic system of Ordinary Differential Equations (ODEs) for air adapted
from Park [27].

Numerical studies of chemical kinetics typically consider a homogeneous system evolving at fixed temper-
ature and volume through a system of ODEs, and investigate the performance of time-integration schemes
[2, 8, 32]. The stiffness of these systems is such that implicit schemes tend to perform better than explicit ones
[29, 30]. The literature on this topic is rich [29, 30, 32, 31]) and a number of concepts such as A-stability have
been introduced to support further developments. We note that the majority of these analysis techniques are
based on a model linear system or some quasi-linear representation of nonlinear dynamics [32]. In this work,
we demonstrate that nonlinear stability prescriptions can be drawn from chemical thermodynamics [3, 6, 4]
and can be enforced at the discrete level [11]. For the fixed-temperature and fixed-volume system, the second
law implies that the Helmholtz free energy is monotone decreasing [6, 23]. Entropy increase during chemical
nonequilibrium applies when the temperature varies in time as to ensure conservation of energy (isolated
system). In either configuration, an elegant proof by Krambeck [23, 1] establishes the consistency of the
mass action kinetics with these prescriptions.

Krambeck’s proof allows the forward and backward reaction rates of the kinetic model to take arbitrary
form as long as their ratio equals the reaction equilibrium constant. However, the proof does assume that the
chemical equilibrium constants are evaluated in terms of the reduced chemical potentials, which character-
ize their internal energy structure. In practice, the equilibrium constants are evaluated using interpolation
formulas that are fitted against either experimental data (through spectroscopic [10, 24] and calorimetric
measurements [6]) or against data obtained through advanced quantum chemistry calculations [25, 7]. We
show that these approximations of the equilibrium constants do not hamper nonlinear stability provided
the equilibrium constants remain strictly positive. We prove these results by constructing the implicit free
energy of the chemical models given their chemical equilibrium data. In the configuration where the gas
temperature is allowed to vary in accordance with conservation of energy, we show that if the internal energy
model satisfies the Van’t Hoff equations [3] one can construct an implicit thermodynamic entropy. This is
first demonstrated for a model 5-species reacting system for Earth’s atmosphere [27].

With this structure established, discrete entropy-stability theory [11] can be leveraged to examine the
consistency of time-integration schemes with the prescriptions of the 2nd law. We illustrate this with the
5-species model problem at fixed-temperature. Using chemical potentials, one can compute the respective
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contributions of the kinetics model and of the temporal scheme to free energy/entropy variations. We in-
troduce a nonlinearly-stable version of the DG scheme in time [14] which is more robust than its standard
linearly-stable version. Most notably, the maximum time-step that can be resolved with the nonlinearly-
stable variant tends to grow with polynomial order, in contrast to the linearly-stable variant. We also observe
larger time-steps compared to the popular Diagonally Implicit Runge-Kutta (DIRK) methods developed for
stiff ODEs [30, 31].

Following these preliminary results, we generalize our construction of the implicit free energy and im-
plicit entropy to arbitrary sets of reversible chemical reactions through a few theorems and lemmas that
detail straightforward linear algebra derivations, with compelling examples [27, 28]. An interesting result
obtained is that the implicit free energy and the implicit thermodynamic entropy are functions of the ratio
between the current and equilibrium compositions. Ultimately, we prove that for the compressible reactive
multicomponent Euler equations, the opposite of the implicit entropy qualifies as a convex extension (or
mathematical entropy) [17, 20, 1] of the associated system of conservation laws.

The present work is organized as follows. Section 2 provides a brief review of classical thermodynamics.
Section 3 introduces Chemical Thermodynamics, the branch of nonequilibrium thermodynamics that deals
with chemical processes, together with Krambeck’s proof. Section 4 introduces our model problem and de-
tails how to construct its implicit free energy and implicit thermodynamic entropy. In section 5, we show
how to translate these concepts into a nonlinear discrete analysis framework. In section 6, we generalize
the results of section 4 to arbitrary chemically reacting systems. In section 7, we consider compressible
reacting flow and show that the opposite of the implicit thermodynamic entropy is a convex extension for
the associated system of conservation laws.

2 Classical Thermodynamics

Classical thermodynamics is concerned with the evolution of systems in equilibrium through processes
of exchange of matter and energy. While it will not provide the dynamical prescriptions we desire for the
numerical study of chemical nonequilibrium, it does lay some of the foundations (formulation of entropy) of
the formalism (Nonequilibrium Thermodynamics - Section 3) that will.

2.1 Equilibrium, system and process classifications

Classical thermodynamics assumes that systems can be described in terms of macroscopic or state vari-
ables. For gas mixtures, which we focus on, this requires some equilibrium to hold within the internal
structure of the component species and between the gas as a whole and its surroundings. One can distin-
guish between three kinds of equilibrium [3]:

• mechanical equilibrium: there are no unbalanced forces within the system and between the system and
its surroundings. A pressure p can be assigned to the system.

• thermal equilibrium: all internal degrees of freedom of the gas can be described by a (single) temperature
which is the same as that of the system’s surroundings.

• chemical equilibrium: the gas mixture is not subject to spontaneous changes in its chemical composition.
For a system that is homogenous in space, the chemical composition can be described by the number
of moles of each species

(
Nk
)

1≤k≤Ns
.

Thermodynamic equilibrium is obtained when all three equilibrium conditions above are met. We refer to
such states simply as equilibrium states from here onwards.

Systems are also classified in terms of the exchange processes they allow with their surroundings. A
closed system does not exchange matter, an open system can exchange matter and energy, and an isolated
system does not exchange matter nor energy.

A physical process that causes a system in equilibrium to transition to another state of equilibrium is
said to be reversible if it can be described through a continuous succession of equilibrium states. The process
is said to be irreversible otherwise.
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2.2 Equation of State

The pressure, volume V , temperature T and molar composition
(
Nk
)

1≤k≤Ns
of a gas mixture in equilib-

rium are assumed to be dependent of each other through an equation of state of the form:

p = p
(
V, T, N1, . . . , NNs

)
.

Throughout this work, we assume the ideal gas law to hold:

pV = N R̂ T, N :=

Ns∑
k=1

Nk,

with R̂ = 8.314 J.mol−1.K−1. For a mixture of gases, this can be expressed as Dalton’s law of partial
pressures:

p =

Ns∑
k=1

pk, pk :=
Nk
V
R̂T

Later in this work, we will work with molar concentration variables
[
Xk

]
:= Nk/V . We have:

pk =
[
Xk

]
R̂T. (1)

2.3 Energy and Entropy

The first and second law of classical thermodynamics introduce two additional state variables that help
study thermodynamic processes.

1st law: There exists a state variable E called internal energy. For a closed system undergoing a reversible
process, the infinitesimal change in internal energy is given by :

dE = δQ − pdV,

where δQ is the heat received from the system’s surroundings. In terms of the enthalpy H := E + pV ,
this relation writes:

dH = δQ − V dp.

2nd law: There exists a state variable called entropy such that, for a closed system, we have:

1. For a reversible process between equilibrium states 1 and 2, the change in entropy is given by :

S1 − S0 =

∫ T 1

T 0

(
δQ

T

)
rev

.

2. If the transition from equilibrium state 1 to equilibrium state 2 occurs through irreversible processes,
the change in entropy satisfies the inequality :

S1 − S0 >

∫ T 1

T 0

(
δQ

T

)
rev

.

For a single-component thermally perfect gas, the internal energy and enthalpy are written as:

E1 = N
∫ T 1

T 0

ĉv(τ)dτ + E0, H1 =

∫ T 1

T 0

ĉp(τ)dτ + H0.

with constant volume heat per unit mole ĉv(T ) and constant pressure heat per unit mole ĉp(T ) = ĉv(T ) +

N R̂. The second law gives, for a reversible process:

S1 = N
∫ T 1

T 0

ĉp(τ)

τ
dτ − N R̂ ln

(
p1

p0

)
+ S0.
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For a mixture of thermally perfect gases satisfying Dalton’s law of partial pressures, Gibbs’ theorem gives
the energy and enthalpy as the sum over species:

E :=

Ns∑
k=1

Nkêk =

Ns∑
k=1

Nk
(∫ T

T 0

ĉvk(τ)dτ + ê0
k

)
, H =

Ns∑
k=1

Nkĥk =

Ns∑
k=1

Nk
(∫ T

T 0

ĉpk(τ)dτ + ĥ0
k

)
, (2)

with specific molar quantities (êk, ĥk) and
(
ĉvk, ĉpk

)
, and similarly, the entropy :

S :=

Ns∑
k=1

Nkŝk =

Ns∑
k=1

Nk
(∫ T

T 0

ĉpk
τ
dτ − R̂ ln

pk
p0

+ ŝ0
k

)
. (3)

3 Chemical Thermodynamics

3.1 Nonequilibrium Thermodynamics

Classical thermodynamics provides a means of calculating entropy changes within a closed system due to
reversible processes only. This limitation motivated the development of Nonequilibrium Thermodynamics by
De Donder, Prigogine, and co-workers [4]. Nonequilibrium thermodynamics assumes that the states variables
and equations of state used in the classical treatment can be used to describe systems out of equilibrium. It
comprises the first law (conservation of energy) as given in the previous section, but uses a different version
of the second law:

2nd law (Nonequilibrium Thermodynamics): The entropy change dS within any system undergoing
any process writes as the following combination:

dS = dSe + dSi,

where dSe is the flow of entropy into the system and dSi ≥ 0 is the production of entropy due to irreversible
processes occuring within the system (dSi = 0 for a reversible process). For a closed system, the entropy
exchange term writes

dSe =
δQ

T
.

This version of the second law is more general as it is not limited to closed systems. Its effective use requires
explicit formulas for the entropy generation term dSi. For chemical nonequilibrium, an expression for dSi
was derived by Gibbs and gave birth to the specialized branch of Chemical Thermodynamics [3, 4, 5].

3.2 Derivation of the Law of Mass Action

Chemical reactions between Ns species can be represented through:

Ns∑
k=1

αr,kXk �
Ns∑
k=1

βr,kXk, (4)

where
(
Xk

)
1≤k≤Ns

denotes the set of species symbols, and
(
αr,k

)
1≤k≤Ns

and
(
βr,k

)
1≤k≤Ns

denote the sets

of stoichiometric coefficients for the reactants and products, respectively, and r is the reaction index. The
law of mass action gives the equilibrium molar concentrations

[
Xk

]∗
as:

Ns∏
k=1

( [
Xk

]∗ )νr,k = Keq,r(T ), (5)

where Keq,r is the equilibrium constant associated with reaction r and νr,k = βr,k − αr,k.
Chemical thermodynamics provides a derivation of Keq,r through the second law. Introduce the Gibbs
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function G := H − TS. With the mixture’s enthalpy and entropy given by equations (2) and (3), G can be
expanded as:

G =

Ns∑
k=1

Nkµ̂k, µ̂k := ĥk − T ŝk =

∫ T

T 0

cpk(τ)

(
1− T

τ

)
dτ + R̂T ln

(
pk
p0

)
+

(
ĥ0
k − T ŝ0

k

)
,

where
(
µ̂k
)

1≤k≤Ns
is the set of molar chemical potentials. Gibbs formula for the entropy production due

to chemical reactions [3, 4, 5] is:

dSi = − 1

T

Ns∑
k=1

µ̂kdNk. (6)

The system is in chemical equilibrium when dSi = 0 and when for each reaction r the forward and backward
reaction occur at the same frequency. This implies that the variations in number of moles satisfy a relation
involving the degree of advancement dξr of the reaction:

dN1

νr,1
= . . . =

dNNk

νr,Ns

= dξr, (7)

where the proportionality constant dξr is the degree of advancement of the reaction. Combining these two
relations leads to the affinity equation [4, 5]:

Ns∑
k=1

µ̂kνr,kdξr = 0 ⇐⇒
Ns∑
k=1

µ̂kνr,k = 0. (8)

Introducing the reduced molar chemical potential µ̂0
k :

µ̂0
k(T ) := µ̂k − R̂T ln

(
pk
p0

)
=

∫ T

T 0

cpk(τ)

(
1− T

τ

)
dτ +

(
ĥ0
k − T ŝ0

k

)
, (9)

the affinity equation (8) can be rewritten as:

Ns∑
k=1

νr,k ln

(
pk
p0

)
= − 1

R̂T

Ns∑
k=1

νr,kµ̂
0
k

⇐⇒
Ns∏
k=1

(
pk
p0

)νr,k
= exp

(
− 1

R̂T

Ns∑
k=1

νr,kµ̂
0
k

)

⇐⇒
Ns∏
k=1

p
νr,k
k =

(
p0
)∑Ns

k=1 νr,k exp

(
− 1

R̂T

Ns∑
k=1

νr,kµ̂
0
k

)

⇐⇒
Ns∏
k=1

[
Xk

]νr,k =

(
p0

R̂T

)∑Ns
k=1 νr,k

exp

(
− 1

R̂T

Ns∑
k=1

νr,kµ̂
0
k

)
.

By definition (5), this gives the equilibrium constant as a function of temperature and the reduced molar
chemical potentials:

Keq,r(T ) =

(
p0

R̂T

)∑Ns
k=1 νr,k

exp

(
− 1

R̂T

Ns∑
k=1

νr,kµ̂
0
k

)
. (10)

For convenience, we will use a slightly different definition of the reduced molar chemical potential. We set:

µ̂0
k(T ) := µ̂k − R̂T ln

[
Xk

]
. (11)

With this definition, formula (10) simplifies to:

Keq,r(T ) = exp

(
− 1

R̂T

Ns∑
k=1

νr,kµ̂
0
k

)
. (12)
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3.3 Dynamical Prescriptions for Chemical Kinetics

Consider standard mass action kinetics modeled through an ODE system involving Ns species through
NR reactions (4):

d
[
Xk

]
dt

= Ωk, Ωk :=

NR∑
r=1

νr,kωr, ωr := Kf
r

Ns∏
k=1

[
Xk

]αr,k − Kb
r

Ns∏
k=1

[
Xk

]βr,k , (13)

where Kf
r = Kf

r (T ) and Kb
r = Kb

r(T ) are the forward and backward rates of reaction r. The volume of
the gas mixture is assumed to be constant.

Through an elegant procedure, Krambeck [23] proved that if the forward and backward rates are related
through equation (12)

Kf
r

Kb
r

= Keq,r = exp

(
− 1

R̂T

Ns∑
k=1

νr,kµ̂
0
k

)
, (14)

then the chemical nonequilibrium model (13) is consistent with the second law in that:

dSi = − 1

T

Ns∑
k=1

µ̂kdNk = − V

T

Ns∑
k=1

µ̂kΩkdt > 0.

We recall his proof here, as it will be used in our work. Through νr,k = βr,k − αr,k, equation (14) can be
rewritten as:

Kf
r

Kb
r

= exp

(
− 1

R̂T

Ns∑
k=1

βr,kµ̂
0
k

) /
exp

(
− 1

R̂T

Ns∑
k=1

αr,kµ̂
0
k

)
. (15)

Using this relation, the chemical nonequilibrium model (13) can be rewritten in terms of the molar chemical
potentials. The equilibrium relation (15) establishes the existence of an auxiliary rate constant KS

r defined
as:

KS
r := Kf

r exp

(
− 1

R̂T

Ns∑
k=1

αr,kµ̂
0
k

)
= Kb

r exp

(
− 1

R̂T

Ns∑
k=1

βr,kµ̂
0
k

)
. (16)

Using equation (11), the concentration products in equation (13) can be rewritten as:

Ns∏
k=1

[
Xk

]αr,k = exp

(
1

R̂T

Ns∑
k=1

αr,k
(
µ̂k − µ̂0

k

) )
,

Ns∏
k=1

[
Xk

]βr,k = exp

(
1

R̂T

Ns∑
k=1

βr,k
(
µ̂k − µ̂0

k

) )
(17)

Combining equations (16) and (17) leads to a remarkable formulation of mass action kinetics in terms of
molar chemical potentials [1]:

ωr = KS
r

[
exp

(
1

R̂T

Ns∑
k=1

αr,kµ̂k

)
− exp

(
1

R̂T

Ns∑
k=1

βr,kµ̂k

) ]
(18)
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Ultimately:

dSi = − 1

T

Ns∑
k=1

µ̂k

Nr∑
r=1

νr,kωr dt

= − 1

T

Nr∑
r=1

KS
r

Ns∑
k=1

νr,kµ̂k

[
exp

(
1

R̂T

Ns∑
k′=1

αr,k′ µ̂k′

)
− exp

(
1

R̂T

Ns∑
k′=1

βr,k′ µ̂k′

)]
dt

=
1

T

Nr∑
r=1

KS
r

[ Ns∑
k=1

αr,kµ̂k −
Ns∑
k=1

βr,kµ̂k

][
exp

(
1

R̂T

Ns∑
k′=1

αr,k′ µ̂k′

)
− exp

(
1

R̂T

Ns∑
k′=1

βr,k′ µ̂k′

)]
dt

= R̂

Nr∑
r=1

KS
r

[(
1

R̂T

Ns∑
k=1

αr,kµ̂k

)
−
(

1

R̂T

Ns∑
k=1

βr,kµ̂k

)]

×
[

exp

(
1

R̂T

Ns∑
k=1

αr,kµ̂k

)
− exp

(
1

R̂T

Ns∑
k=1

βr,kµ̂k

)]
dt > 0.

At this juncture, an important question arises: Does dSi > 0 imply that the thermodynamic entropy of a
chemically reacting system evolving through mass action kinetics always increases? The answer depends on
the kind of system defined by the reacting gas mixture.

The chemical reactions conserve mass, therefore the system is at least closed. Studies of time-integration
schemes for chemical ODEs typically fix the temperature. For a constant volume system, this is only possible
through heat exchanges with a reservoir/heat bath system (first law). The system is therefore not isolated
and the second law does not support the prescription of increasing entropy as dSe 6= 0. However, a dynamical
prescription still exists. Following Zemansky [6] (section 16-8), one can consider the ’universe’ system defined
by the reservoir and gas mixture. This system is isolated and the second law gives:

dSuniverse = dSreservoir + dS > 0. (19)

The reservoir’s entropy changes can be modeled through heat transfer:

dSreservoir = −δQ
T
, (20)

where δQ is the heat received by the reacting system (hence the minus sign). The first law applied to the
gas mixture gives dE = δQ. Inequality (19) becomes:

dSuniverse =
dE

T
− dS > 0 ⇐⇒ dF < 0, F := E − TS. (21)

F is commonly known as the Helmholtz free energy. This prescription can also be found mathematically
through: (

∂F

∂Nk

)
Nk′ ,V,T

= µ̂k.

If instead of temperature, the pressure is set to a constant, the same reasoning leads to the prescription of
decreasing Gibbs free energy: (

∂G

∂Nk

)
Nk′ ,V,p

= µ̂k.

The requirement of entropy increase is a valid prescription when the system is isolated, i.e. dSe = 0.
This corresponds to the configuration where temperature evolves in time in such a manner that the internal
energy of the system is conserved. Mathematically, we have:(

∂S

∂Nk

)
Nk′ ,V,E

= − 1

T
µ̂k.
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4 Implicit Chemical Thermodynamics

4.1 Working with Practical Models

Chemical kinetics models are defined by the forward & backward rates of each reaction, together with the
corresponding chemical equilibrium constant. In practice, the model coefficients are designed in an ad-hoc
manner through interpolation formulas fitted against experimental data relevant to the target application.
In this section, we begin examining the extent to which this degree of empiricism may conflict with the
dynamical prescriptions implied by chemical thermodynamics.

As model problem, we consider a 5-species {N2, O2, N, O, NO} (Ns = 5) kinetic model for air, adapted
from Park [27]. The model consists of a set of 17 reactions (dissociation and exchange) represented as:

N2 + M ↼−−⇁ N + N + M (22)

O2 + M ↼−−⇁ O + O + M (23)

NO + M ↼−−⇁ N + O + M (24)

NO + O ↼−−⇁ O2 + N (25)

N2 + O ↼−−⇁ NO + N (26)

where M ∈ {N2, O2, N, O, NO} denotes the collision partner. The chemical equilibrium composition is
determined by three independent chemical equilibrium relations

Keq,1(T ) :=

[
N
]∗[
N
]∗[

N2

]∗ , Keq,2(T ) :=

[
O
]∗[
O
]∗[

O2

]∗ , Keq,3(T ) :=

[
O
]∗[
N
]∗[

NO
]∗ . (27)

coupled with two element conservation relations:

2
[
N2

]∗
+
[
N
]∗

+
[
NO

]∗
= C(N), , (28)

2
[
O2

]∗
+
[
O
]∗

+
[
NO

]∗
= C(O), (29)

where C(N) and C(O) denote the molar concentrations of N elements and O elements, respectively. The
equilibrium relations for exchange reactions (25) and (26), given by

Keq,4 :=

[
O2

]∗[
N
]∗[

O
]∗[
NO

]∗ , Keq,5 :=

[
N
]∗[
NO

]∗[
N2

]∗[
O
]∗ ,

can be inferred from the first three. We have:

Keq,4(T ) =
Keq,3(T )

Keq,2(T )
, Keq,5(T ) =

Keq,1(T )

Keq,3(T )
.

The forward reaction rates are of Arrhenius form:

Kf = CTn exp

(
− Td
T

)
.

The Arrhenius parameters (C, n, Td) are taken from [27] (thermal equilibrium). The equilibrium constants
are represented using analytical fits from [7]:

Keq(T ) = exp

[
A1

(
T

10000

)
+ A2 + A3 ln

(
10000

T

)
+ A4

(
10000

T

)
+ A5

(
10000

T

)2 ]
,

and are used to evaluate the backward rate coefficients.
Krambeck’s proof allows the kinetic model’s forward and backward reaction rates to have any form as long

as their ratio equals the reaction’s equilibrium constant. It does assume however that the chemical equilib-
rium constants are evaluated in terms of the reduced chemical potentials, which require a detailed knowledge
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of their internal energy structure. In practice, the equilibrium constants are evaluated using interpolation
formulas that are fitted against either experimental data (through spectroscopic [10, 24] and calorimetric
measurements [6, 9]) or against data obtained through advanced quantum chemistry calculations [25, 7]. In
the following sections, we demonstrate how the dynamical prescriptions of chemical thermodynamics hold
with thermodynamic free energies and entropy implicitly defined by the data.

4.2 Implicit Free Energy

For the fixed-temperature system, the chemical equilibrium solution can be described as the solution of
a constrained minimization problem. Define the free energy Lagrangian F̃ :

F̃ (
[
Xk

]
λN , λO) := F − λN

(
2
[
N2

]
+
[
N
]

+
[
NO

]
− C(N)

)
− λO

(
2
[
O2

]
+
[
O
]

+
[
NO

]
− C(O)

)
,

where λN and λO are Lagrange multipliers. The gradient equations with respect to the Lagrange multipliers
give the element conservation constraints:(

∂F̃

∂λN

)∗
= 0,

(
∂F̃

∂λO

)∗
= 0 ⇐⇒

{
2
[
N2

]∗
+
[
N
]∗

+
[
NO

]∗
= C(N),

2
[
O2

]∗
+
[
O
]∗

+
[
NO

]∗
= C(O)

The gradient equations with respect to the concentrations give:

(
∂F̃

∂
[
Xk

])∗ = 0 ⇐⇒



µ̂∗N2
− 2λ∗N = 0,

µ̂∗O2
− 2λ∗O = 0,

µ̂∗N − λ∗N = 0,

µ̂∗O − λ∗O = 0,

µ̂∗NO − λ∗N − λO = 0.

This is equivalent to:

µ̂∗N2
− 2µ̂∗N = 0, µ̂∗O2

− 2µ̂∗O = 0, µ̂∗NO − µ̂∗N − µ̂∗O = 0, (30)

which is exactly the set of chemical equilibrium relations (27), if the equilibrium constants are computed
through equation (12).

For equilibrium constants approximated through curve-fits, the Lagrangian formalism can be used infer
an equivalent Helmholtz Free Energy. The chemical equilibrium relations (27) can be rewritten as:

2R̂T ln
[
N
]∗ − R̂T ln

[
N2

]∗
= R̂T ln

(
Keq,1

)
, (31)

2R̂T ln
[
O
]∗ − R̂T ln

[
O2

]∗
= R̂T ln

(
Keq,2

)
, (32)

R̂T ln
[
N
]∗

+ R̂T ln
[
O
]∗ − R̂T ln

[
NO

]∗
= R̂T ln

(
Keq,3

)
. (33)

We introduce a family of chemical potentials µ̂bk parametrized by two functions of temperature b̂N and b̂O

µ̂bk
([
Xk

]
, T
)

:= µ̂0,b
k (T ) + R̂T ln

[
Xk

]
with



µ̂0,b
N := b̂N ,

µ̂0,b
O := b̂O,

µ̂0,b
N2

:= 2b̂O + R̂T ln
(
Keq,1

)
,

µ̂0,b
O2

:= 2b̂O + R̂T ln
(
Keq,2

)
,

µ̂0,b
NO := b̂N + b̂O + R̂T ln

(
Keq,3

)
.

(34)

This representation satisfies the relations (31) - (33). From there it follows that the function F b defined by:

F b
([
Xk

]
, T
)

:=

Ns∑
k=1

[
Xk

]
f̂ bk , f

b
k := µ̂bk − R̂T = µ̂0,b

k + R̂T
(

ln
[
Xk

]
− 1

)
, (35)
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is an equivalent free energy for the reacting ODE with equilibrium constants (Keq,1,Keq,2,Keq,3). Expanding
expression (35), we get:

F b = R̂T

[ Ns∑
k=1

[
Xk

](
ln
[
Xk

]
− 1

)
+

([
N2

]
ln
(
Keq,1

)
+
[
O2

]
ln
(
Keq,2

)
+
[
NO

]
ln
(
Keq,3

)) ]
+

(
C(N)b̂N + C(O)b̂O

)
(36)

One can verify that the chemical equilibrium solution minimizes the corresponding Lagrangian
F̃ b(
[
Xk

]
, λN , λO):

(
∂F̃ b

∂
[
Xk

])∗ = 0 ⇐⇒



ln
[
N2

]∗
+ ln

(
Keq,1

)
− 2λ∗N = 0,

ln
[
O2

]∗
+ ln

(
Keq,2

)
− 2λ∗O = 0,

ln
[
N
]∗ − λ∗N = 0,

ln
[
O
]∗ − λ∗O = 0,

ln
[
NO

]∗
+ ln

(
Keq,3

)
− λ∗N − λ∗O = 0,

and that F b is monotone decreasing for the kinetic system (see section 5.1):

dF b

dt
=

Ns∑
k=1

µ̂bkΩk < 0.

At this stage, the only requirement on the equilibrium constants is that they are strictly positive. The
characterization of (b̂N , b̂O) arises when the temperature-varying case is considered.

4.3 Implicit Entropy

For an isolated reacting system, the temperature evolves according to conservation of energy:

dT

dt
= − 1∑Ns

k=1 ĉvk
[
Xk

] Ns∑
k=1

êkΩk. (37)

The equilibrium composition and temperature satisfy conservation of energy in addition to chemical equi-
librium and element conservation. It can be described as the solution of a maximization problem. Consider
the entropy Lagrangian:

S̃

([
Xk

]
, T, λN , λO, λE

)
:= S − λN

(
2
[
N2

]
+
[
N
]

+
[
NO

]
− C(N)

)
− λO

(
2
[
O2

]
+
[
O
]

+
[
NO

]
− C(O)

)
− λE

( Ns∑
k=1

[
Xk

]
êk(T ) − E

)
.

The gradient equation with respect to temperature yields:(
∂S̃

∂T

)∗
= 0 ⇐⇒

Ns∑
k=1

ĉv,k(T ∗)

T ∗
[
Xk

]∗
= λ∗E

Ns∑
k=1

[
Xk

]∗
ĉv,k(T ∗) ⇐⇒ λ∗E =

1

T ∗
.

This relation is key as it enables the gradient equations with respect to the concentrations to simplify to the
chemical equilibrium relations at T = T ∗. Through µ̂k = êk + R̂T − T ŝk, we have:

(
∂S̃

∂
[
Xk

])∗ = 0 ⇐⇒



ŝ∗N2
− R̂ − 2λ∗N − λ∗E ê∗N2

= 0

ŝ∗O2
− R̂ − 2λ∗O − λ∗E ê∗O2

= 0

ŝ∗N − R̂ − λ∗N − λ∗E ê∗N = 0

ŝ∗O − R̂ − λ∗O − λ∗E ê∗O = 0

ŝ∗NO − R̂ − λ∗N − λ∗O − λ∗E ê∗NO = 0

⇐⇒


µ̂∗N2
− 2µ̂∗N = 0

µ̂∗O2
− 2µ̂∗O = 0

µ̂∗NO − µ̂∗N − µ̂∗O = 0.
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The gradient equation with respect to the Lagrange multipliers yield element and energy conservation equa-
tions.

As for the fixed-temperature system, we can show that given equilibrium constants (Keq,1, Keq,2, Keq,3)
and an internal energy model

(
êk
)

1≤k≤Ns
, there exists an implicit thermodynamic entropy. Taking the

logarithm of equation (12) gives:

lnKeq,r = − 1

R̂T

Ns∑
k=1

νr,kµ̂
0
k.

Differentiating with respect to temperature gives the well-known Van’t Hoff equation [3]:

d

dT
lnKeq,r =

1

R̂T 2

Ns∑
k=1

νr,kêk. (38)

We require that the given
(
Keq,r

)
1≤r≤3

and
(
êk
)

1≤k≤Ns
be consistent with equation (38), namely

êN2
= 2êN − R̂T 2 d

dT
ln
(
Keq,1

)
, (39)

êO2 = 2êO − R̂T 2 d

dT
ln
(
Keq,2

)
, (40)

êNO = êN + êO − R̂T 2 d

dT
ln
(
Keq,3

)
. (41)

This constraint implies that given the equilibrium constants and their derivatives, the specific internal
energies are fully determined from of that of the atomic species (êN , êO). We consider the candidate
entropy Sb defined as:

Sb :=
1

T

(
E − F b

)
=

Ns∑
k=1

[
Xk

]
ŝbk, ŝ

b
k :=

1

T

(
êk − f̂ bk

)
. (42)

where the specific free energies f̂ bk follow the previous representation (34). Expanding, we get:

Sb = − R̂

Ns∑
k=1

[
Xk

](
ln
[
Xk

]
− 1

)
+

E

T
− 1

T

(
C(N)b̂N + C(O)b̂O

)
− R̂

( [
N2

]
lnKeq,1 +

[
O2

]
lnKeq,2 +

[
NO

]
lnKeq,3

)
(43)

We require that the thermo-chemical equilibrium solution be found by maximizing Sb under constraints.
The gradient of the corresponding Lagrangian S̃b with respect to temperature is:

∂S̃b

∂T
=

(
1

T
− λE

) Ns∑
k=1

[
Xk

]
ĉv,k −

E

T 2
+

1

T 2

(
C(N)

(
b̂N − T

db̂N
dT

)
+ C(N)

(
b̂O − T

db̂O
dT

) )
− R̂

( [
N2

]d lnKeq,1

dT
+
[
O2

]d lnKeq,2

dT
+
[
NO

]d lnKeq,3

dT

)
Using the Van’t Hoff equations (39)-(41) and the conservation equations to simplify the last three terms
above, we get:

∂S̃b

∂T
=

(
1

T
− λE

) Ns∑
k=1

[
Xk

]
ĉv,k +

C(N)

T 2

(
b̂N − T

db̂N
dT

− êN

)
+

C(O)

T 2

(
b̂O − T

db̂O
dT

− êO

)
.

This equation leads to λ∗E = 1/T ∗ if b̂N and b̂O satisfy:

d

dT

(
b̂N
T

)
= − êN

T 2
,
d

dT

(
b̂O
T

)
= − êO

T 2
. (44)
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This is equivalent to:

b̂N (T )

T
= −

∫ T

T 0

êN (τ)

τ2
dτ +

b̂N (T 0)

T 0
,
b̂O(T )

T
= −

∫ T

T 0

êO(τ)

τ2
dτ +

b̂N (T 0)

T 0
, (45)

where T 0 is a reference temperature. Equation (45) completes the characterization of
(
µ̂bk
)

1≤k≤Ns
. We

recover the chemical equilibrium equations through:

(
∂S̃b

∂
[
Xk

])∗ = 0 ⇐⇒



ln
[
N2

]∗
+ lnKeq,1(T ∗) − 2λ∗N = 0,

ln
[
O2

]∗
+ lnKeq,2(T ∗) − 2λ∗O = 0,

ln
[
N
]∗ − λ∗N = 0,

ln
[
O
]∗ − λ∗O = 0,

ln
[
NO

]∗
+ lnKeq,3(T ∗) − λ∗N − λ∗O = 0.

=⇒ (31)− (33) at T = T ∗.

Finally, Sb is monotone increasing for the kinetic system defined by equations (13) and (37). We have:

∂Sb

∂
[
Xk

] =
1

T

(
êk − µ̂bk

)
.

We can show (lemma 6.7) that the completed representation of the reduced chemical potentials
(
µ̂bk
)

1≤k≤Ns

implies:

∂Sb

∂T
=

1

T

Ns∑
k=1

ĉvk
[
Xk

]
=⇒ dSb

dt
= − 1

T

Ns∑
k=1

µ̂bkΩk > 0.

Ultimately, the implicit entropy writes (we drop the b superscript and ignore the integration constants (45)):

S = − R̂

Ns∑
k=1

[
Xk

](
ln
[
Xk

]
− 1

)
+

E

T
+

(
C(N)

∫ T

T 0

êN (τ)

τ2
dτ + C(O)

∫ T

T 0

êO(τ)

τ2
dτ

)
− R̂

( [
N2

]
lnKeq,1 +

[
O2

]
lnKeq,2 +

[
NO

]
lnKeq,3

)
. (46)

These derivations are generalized in section 6.

5 Numerical Analysis

In this section, we briefly outline how the analysis of sections 3 and 4 can be used for numerical purposes.
For simplicity, we consider the model 5-species system of section 4.1 at fixed temperature T = 10000 K. We
represent the kinetic system (13) in vector form:

dX

dt
= Ω(X), (47)

with Ω :=
(
Ωk
)

1≤k≤Ns
and X :=

([
Xk

])
1≤k≤Ns

. The initial total number of moles is Ntot = 1018/NA,

with NA = 6.023 1023. The initial molar fractions χk :=
[
Xk

]
/Ntot are set to (χN2

, χO2
, χN , χO, χNO) =

(0.78, 0.21, 0.001, 0.001, 0.008). The temporal evolution of the molar fractions is shown in figure 1.
For this system, the free energy F is the relevant thermodynamic function (section 3.3). From section

4.2, we can define the implicit free energy:

F :=

Ns∑
k=1

[
Xk

](
ln
[
Xk

]
− 1

)
+
[
N2

]
lnKeq,1 +

[
O2

]
lnKeq,2 +

[
NO

]
lnKeq,3.

F is a convex function of X. Its hessian B given by:

B :=
∂2F

∂X2
= diag

[ ([
Xk

]−1)
1≤k≤Ns

]
,
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is symmetric positive definite (we assume
[
Xk

]
> 0). The vector of implicit chemical potentials µ is given

by:

µ :=

(
∂F

∂X

)T
=
(
µ̂k
)

1≤k≤Ns
.

Figure 1: Constant-temperature evolution of molar fractions over time for the 5-species air system. ODE
system integrated with backward Euler at ∆t = 10−1τ . τ = 8.2210−8s is a characteristic time obtained by
taking the inverse of the largest eigenvalue of the Jacobian at t = 0s.

5.1 Free Energy Breakdown

The discrete evolution of F over time can be decomposed into contributions from the model (source
terms) and contributions from the temporal integration scheme used.

5.1.1 Model Contribution

Following the procedure of section 3.3, one can prove that Ω always dissipates F . This contribution is
represented by the free energy dissipation term EΩ defined as:

EΩ := − µTΩ > 0.

Introducing the auxiliary rate constants:

KS
1,k := Kf

1,k/Keq,1 = Kr
1,k, K

S
2,k := Kf

2,k/Keq,2 = Kr
2,k, K

S
3,k := Kf

3,k/Keq,3 = Kr
3,k

KS
4 := Kf

4 /Keq,3 = Kr
4/Keq,2, K

S
5 := Kf

5 /Keq,1 = Kr
5/Keq,3,
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one can rewrite the 17 reaction source terms (section 4.1) in potential form:

Reactions (22) → ω1,k =
[
Xk

](
Kf

1,k

[
N2

]
− Kr

1,k

[
N
]2)

=
[
Xk

]
KS

1,k

(
exp

(
µ̂N2

)
− exp

(
2µ̂N

))
,

Reactions (23) → ω2,k =
[
Xk

](
Kf

2,k

[
O2

]
− Kr

2,k

[
O
]2)

=
[
Xk

]
KS

2,k

(
exp

(
µ̂O2

)
− exp

(
2µ̂O

))
,

Reactions (24) → ω3,k =
[
Xk

](
Kf

3,k

[
NO

]
− Kr

3,k

[
N
][
O
])

=
[
Xk

]
KS

3,k

(
exp

(
µ̂NO

)
− exp

(
µ̂O+µ̂N

))
,

Reaction (25) → ω4 = Kf
4

[
NO

][
O
]
− Kr

4

[
O2

][
N
]

= KS
4

(
exp

(
µ̂NO + µ̂O

)
− exp

(
µ̂O2

+ µ̂N
))
,

Reaction (26) → ω5 = Kf
5

[
N2

][
O
]
− Kr

5

[
NO

][
N
]

= KS
5

(
exp

(
µ̂N2 + µ̂O

)
− exp

(
µ̂NO + µ̂N

))
.

The solution of system (47) satisfies

dF

dt
= − EΩ = −

Ns∑
k=1

E1,k −
Ns∑
k=1

E2,k −
Ns∑
k=1

E3,k − E4 − E5 < 0. (48)

with:

E1,k :=
(
µ̂N2 − 2µ̂N

)
ω1,k > 0,

E2,k :=
(
µ̂O2 − 2µ̂O

)
ω2,k > 0,

E3,k :=
(
µ̂NO − µ̂N − µ̂O

)
ω3,k > 0,

E4 :=
(
µ̂NO + µ̂O − µ̂O2 − µ̂N

)
ω4 > 0,

E5 :=
(
µ̂N2 + µ̂O − µ̂NO − µ̂N

)
ω5 > 0.

The relative contributions of these terms are shown in figure 2.

Figure 2: Relative contributions of the different reactions to the overall model dissipation of free energy over
time. The ODE system integrated with backward Euler at ∆t = 10−1τ .
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5.1.2 Discrete Contributions

In order to complete the picture drawn by equation (48), we need to integrate the contribution (positive
or negative) of the temporal scheme. Since F is convex, Tadmor’s analysis [11] can be used for that purpose.

Consider the Backward Euler (BE) scheme:

Xn+1 − Xn = ∆t Ω(Xn+1). (49)

Taking the dot product with the vector of chemical potential at instant n+ 1 gives:(
µn+1

)T (
Xn+1 − Xn

)
= −∆t EΩ(Xn+1).

Tadmor showed (example 7.1 in [11]) that the left hand side term above can be rewritten as:(
µn+1

)T (
Xn+1 − Xn

)
= F (Xn+1) − F (Xn) + EBE

(
µn,µn+1). (50)

with:

EBE
(
µn,µn+1

)
:=

(
∆µn+ 1

2

)T ∫ 1/2

−1/2

(
1

2
− ξ

)
B(µn+ 1

2 )∆µn+ 1
2 dξ > 0,

∆µn+ 1
2 := µn+1 − µn, µn+1/2(ξ) :=

1

2

(
µn + µn+1

)
+ ξ∆µn+ 1

2 .

Therefore, equation (49) implies:

F (Xn+1) − F (Xn) = − ∆t EΩ(Xn+1) − EBE(µn,µn+1) < 0.

In other words, the BE scheme always dissipates free energy. Consider the Forward Euler (FE) scheme:

Xn+1 − Xn = ∆t Ω(Xn). (51)

Tadmor showed (example 7.2 in [11]):(
µn
)T (

Xn+1 − Xn
)

= F (Xn+1) − F (Xn) − EFE
(
µn,µn+1

)
, (52)

with:

EFE
(
µn,µn+1

)
:=

(
∆µn+ 1

2

)T ∫ 1/2

−1/2

(
1

2
+ ξ

)
B(µn+ 1

2 )∆µn+ 1
2 dξ > 0.

Therefore, equation (51) implies:

F (Xn+1) − F (Xn) = − ∆t EΩ(Xn) + EFE(µn,µn+1). (53)

The sign of the right-hand side term is not fixed. In principle, EFE could become larger than ∆t EΩ for
a large enough time step. In practice however, ∆t cannot be arbitrarily large. For the present kinetic
system and configuration (τ depends on the initial composition and temperature), the forward Euler scheme
eventually yields negative concentrations past a threshold time step ∆tFEmax ≈ 0.123τ . Instabilities can still
develop when the right-hand side of equation (53) is negative.

Figures 3 and 4 show the respective contributions of the model (∆t EΩ) and the temporal scheme over
time for the backward Euler and forward Euler schemes, respectively. For the backward Euler scheme, the
discrete contribution to free energy decay is always positive (nonlinear stability) and grows with ∆t until a
threshold value ∆tBEmax ≈ 1.103τ for which the nonlinear solve fails to converge. As ∆t grows, we see that
the model contribution actually decreases. This is consistent with the dynamical prescription of decreasing
free energy (section 3.3) and the definition of chemical equilibrium as a free energy minimizer (section 4.2).
Conversely, as the free energy produced by the forward Euler scheme grows with ∆t, the model contribution
actually increases.

Similar free energy breakdowns can be achieved for higher-order temporal schemes that can be construed
as composite forward/backward Euler schemes. An example derivation can be found in Gouasmi et al.
(section 4.1 in [37]). Unless the temporal scheme is constructed specifically with equations (50) and (52) in
mind, the discrete contributions will be of unknown sign a priori.
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(a) ∆t = 0.1τ

(b) ∆t = τ

Figure 3: Cumulative model (dotted line) and discrete (dashed line) contributions to free energy decay
with backward Euler in time. The full line is the addition of the model and discrete contributions to free
energy variations. The full circle markers represent the decay of free energy directly computed from solution
snapshots (it matches the full line). The backward Euler scheme dissipates free energy, and this contribution
grows with ∆t. The model contribution decreases with ∆t.
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(a) ∆t = 0.05τ

(b) ∆t = 0.1τ

Figure 4: Model and discrete contributions to free energy decay with forward Euler in time (same legend as
figure 3). The forward Euler scheme produces free energy, and as ∆t grows, the dissipation of free energy
due to the model grows to compensate the discrete production.
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5.2 Nonlinear Stability at High Order

Drawing from [12, 14], we introduce a high-order temporal scheme that always dissipates free energy. Con-
sider a piecewise polynomial representation qI of the approximate solution on the interval I :=

[
tn, tn+1

]
:

qI(t) :=

P∑
p=1

ϕp(t) qp, (54)

where P is the polynomial order and
(
ϕp
)

1≤p≤P is the temporal basis. The DG temporal discretization of

equation (47) writes:∫
I

(
dϕp
dt

)
X
(
qI(τ)

)
dτ −

[
ϕp(t

n+1,−) X(qn+1,−
I ) − ϕp(t

n,+) X(qn,−I )
]

= −
∫
I

ϕp(τ) Ω
(
X(qI(τ))

)
dτ,

(55)

qn,−I := qI(t
n,−), qn+1,−

I := qI(t
n+1,−), 1 ≤ p ≤ P.

In reference coordinates τ := 2
∆t

(
t − 1

2 (tn + tn+1)
)
∈ [−1, 1], this gives:∫ 1

−1

(
dϕp
dτ

)
X
(
qI(τ)

)
dτ −

[
ϕp(1) X(qn+1,−

I ) − ϕp(−1) X(qn,−I )
]

= −∆t

2

∫ 1

−1

ϕp(τ) Ω
(
X(qI(τ))

)
dτ.

Using a quadrature rule (τq, wq)1≤q≤nq
for the temporal integrals, leads the discrete system:

nq∑
q=1

wq

(
dϕp
dτ

)
τ=τq

X
(
qI(τq)

)
−
[
ϕp(1) X(qn+1,−

I )− ϕp(−1) X(qn,−I )
]

= −∆t

2

nq∑
q=1

wqϕp(τq) Ω
(
X(qI(τq))

)
,

(56)
which we solve with nq = 2P , Legendre basis functions and Gauss-Legendre quadrature rules. The solution
at time instant n + 1 is obtained by solving the system (56), and evaluating the representation (54) at
t = tn+1.

Setting q := X leads to the standard DG scheme in time, which is linearly stable [48]. Early work by
Hughes et al. [12] and Barth [14] demonstrated that a nonlinearly stable variant can be obtained by assigning
a polynomial form to the entropy variables (see section 7.1). In the present context, this is equivalent to
assigning a polynomial form to the chemical potentials:

µI(t) :=

P∑
p=1

ϕp(t) µp.

This is proved as follows. First, consider an equivalent weak form obtained by integrating equation (55) by
parts: ∫

I

ϕp

(
dX
(
qI
)

dt

)
dτ − ϕp(t

n,+)
(
X(qn,+I ) − X(qn,−I

))
=

∫
I

ϕp(τ) Ω
(
X(qI(τ))

)
dτ (57)

Injecting the representation q := µ and multiplying by each modal equation by corresponding degree of
freedom, we get, for 1 ≤ p ≤ P :∫

I

ϕpµ
T
p

(
dX
(
µI
)

dt

)
dτ − ϕp(t

n,+)µTp
(
X(µn,+I ) − X(µn,−I

)
=

∫
I

ϕp(τ)µTp Ω
(
X(µI(τ))

)
dτ.

Summing over all degrees of freedom, we get:∫
I

µTI

(
dX
(
µI
)

dt

)
dτ −

(
µn,+I

)T (
X(µn,+I ) − X(µn,−I )

)
=

∫
I

µTI Ω
(
X(µI(τ))

)
dτ,

⇐⇒
∫
I

(
dF
(
µI
)

dt

)
dτ −

(
µn,+I

)T (
X(µn,+I ) − X(µn,−I )

)
= −

∫
I

EΩ(µI)(τ) dτ,

⇐⇒ F
(
µn+1,−
I

)
− F

(
µn,+I

)
−
(
µn,+I

)T (
X(µn,+I ) − X(µn,−I )

)
= −

∫
I

EΩ(µI(τ)) dτ.
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Using equation (50):(
µn,+I

)T (
X(µn,+I ) − X(µn,−I )

)
= F (µn,+I ) − F (µn,−I ) + EBE

(
µn,−I ,µn,+I

)
, (58)

we have, finally:

F
(
µn+1,−
I

)
− F

(
µn,−I

)
= − EBE

(
µn,−I ,µn,+I

)
−
∫
I

EΩ(µI) dτ. (59)

Equation (59) is satisfied provided the integrals are evaluated accurately enough. Since the right-hand side
terms of equation (59) can be readily computed, we can use the above relation to assess the reliability of a
quadrature rule (good agreement is found with nq = 2P ).

For stiff systems, implicit schemes are preferred to explicit ones [29, 30, 32]. That is because explicit
schemes have stringent time step restrictions. This is commonly established through a model scalar ODE:

dx

dt
= kx, x(0) = x0.

where k ∈ C is such that Re(k) < 0, guaranteeing a stable solution. A temporal scheme is termed linearly
stable if it satisfies |xn+1| < |xn| for any such k. Explicit schemes are only stable if z = k∆t lies in a certain
region of the complex left half plane. Implicit schemes are found to be either unconditionally stable or
stable within regions that are typically larger than that of explicit schemes. Such analyses have driven many
advances in time integration techniques for stiff systems (see Kennedy & Carpenter [32] for an extensive
review). However, their scope is limited.

For problems of engineering interest such as reacting flows, executing an implicit scheme requires a system
of nonlinear equations to be solved using iterative methods. Here we use a Newton method coupled with a
standard line search (the Jacobians are evaluated analytically and directly inverted). Linear stability analysis
can hardly predict whether a solution to the nonlinear system actually exists for a given ∆t. In practice, one
finds that the larger ∆t, the less likely the nonlinear solve will converge below a set threshold residual value.
This limitation can be tied to the accuracy of the temporal scheme itself. For chemically reacting systems,
this practical limitation is easy to comprehend. For example, our model kinetic system has an equilibrium
solution X∗ which cancels out Ω. The backward Euler scheme is unconditionally stable yet it cannot reach
the equilibrium composition in one single step. Setting Xn+1 = X∗ in equation (49) leads to Xn = X∗.

The implicit nonlinearly stable DG scheme we introduced has similar time step limitations. However,
we report that the maximum time step that can be resolved is larger than for the standard DG scheme and
some DIRK schemes taken from the literature [30, 31]. In addition, the maximum resolved time step tends
to grow with the polynomial order P . This is shown in figure 5. Future work will examine the performance
of these schemes in more detail.

6 Generalization

6.1 Model assumptions

We consider reacting systems of the form (13), with the forward and backward reaction rates (Kf
r ,K

b
r)

related through the corresponding equilibrium constant Keq,r. The gas mixture consists of Ns species made
up of NL < Ns elements. At least NIR = Ns −NL independent chemical reactions are involved. We index
the species as follows:

- The linear independence of the element conservation equations implies the existence of NL distinct
species

(
Xl

)
1≤l≤NL

such that
[
Xl

]
features in the l-th element conservation equation. These species

are indexed from 1 to NL.

- The remaining NIR species are indexed from NL + 1 to NS .

We consider the evolution of the ODE (13) with a fixed-temperature and with a temperature that varies .
In either configuration, we assume the existence of a unique strictly positive chemical equilibrium solution
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Figure 5: Largest resolved time-step (1000 Newton iterations, residual tolerance 10−15) for different temporal
schemes of varying orders of accuracy P . The standard DG scheme (polynomial representation of

[
Xk

]
)

is represented by the circle marker. Its nonlinearly stable variant (polynomial representation of µ̂k) is
represented by the triangle marker. The DIRK schemes of Crouzeix [30] (2 ≤ P ≤ 4) are represented by the
cross marker. The ES-DIRK-SA schemes (4 ≤ P ≤ 6) recently introduced by Kennedy & Carpenter [31] are
represented by the square marker.
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( [
Xk

]∗ )
1≤k≤Ns

that is the solution of NIR independent chemical equilibrium equations

Ns∑
k=1

νr,k ln
[
Xk

]∗
= lnKeq,r, 1 ≤ r ≤ NIR, (60)

coupled with Nl linearly independent element conservation equations

Ns∑
k=1

cl,k
[
Xk

]
= C(l), 1 ≤ l ≤ NL. (61)

In the temperature-varying case, the equilibrium temperature at which the chemical equilibrium relations
are to hold is determined by the energy conservation equation:

Ns∑
k=1

[
Xk

]∗
êk(T ∗) = E. (62)

We assume the chemical equilibrium constants to be strictly positive. For the temperature-varying config-
uration, we require that they satisfy the Van’t Hoff equations (38), which can be thought of as consistency
relations between the internal energy model and the chemical equilibrium model.

We reckon the above assumptions to be reasonable for a large class of reacting systems. We refer the
reader to Krambeck’s work [23], Giovangigli’s book [1] and references therein for detailed analyses of the
well-posedness of reaction kinetics.

6.2 Convergence to Equilibrium

The procedure we introduced in section 4 can be generalized by formally introducing the equilibrium
composition into the derivations. For the fixed-temperature case, we rewrite equation (36) without the R̂T
factor and the last two terms:

F =
∑
k

[
Xk

](
ln
[
Xk

]
− 1

)
+

([
N2

]
lnKeq,1 +

[
O2

]
lnKeq,2 +

[
NO

]
lnKeq,3.

)
(63)

The last three terms above can be rewritten in terms of the equilibrium concentrations through:

lnKeq,1 = 2 ln
[
N
]∗− ln

[
N2

]∗
, lnKeq,2 = 2 ln

[
O
]∗− ln

[
O2

]∗
, lnKeq,3 = ln

[
N
]∗

+ln
[
O
]∗ − ln

[
NO

]∗
.

Therefore[
N2

]
lnKeq,1 +

[
O2

]
lnKeq,2 +

[
NO

]
lnKeq,3 = −

∑
k

[
Xk

]
ln
[
Xk

]∗
+ C(N) ln

[
N
]∗

+ C(O) ln
[
O
]∗
, (64)

and equation (63) simplifies to:

F =
∑
k

[
Xk

]∗ Xk( lnXk − 1

)
+ C(N) ln

[
N
]∗

+ C(O) ln
[
O
]∗

where Xk :=
[
Xk

]
/
[
Xk

]∗
denotes the ratio between the current composition and the equilibrium one. The

remaining two terms can be discarded. We have the following theorem:

Theorem 6.1 (Relative Free Energy). Under the assumptions of section 6.1, the function F defined by:

F :=

Ns∑
k=1

[
Xk

]∗Xk( lnXk − 1
)
.

is monotone decreasing for the reacting system (13) evolving at fixed temperature. F converges to its value
at chemical equilibrium.
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Proof. The monotonicity of F can be proved in a way similar to Krambeck’s proof (section 3.3). By
definition, we have:

Kf
r (T )

Ns∏
k=1

( [
Xk

]∗ )αr,k = Kb
r(T )

Ns∏
k=1

( [
Xk

]∗ )βr,k . (65)

Therefore, we can rewrite the source term ωr as:

ωr = − K∗r

[
exp

( Ns∑
k=1

αr,k lnXk
)
− exp

( Ns∑
k=1

βr,k lnXk
)]
, K∗r :=

[
Kf
r (T )

Ns∏
k=1

( [
Xk

]∗ )αr,k

]
.

and we obtain the desired result:

dF
dt

=

Ns∑
k=1

lnXk
Nr∑
r=1

νr,kωr

=

Nr∑
r=1

[ Ns∑
k=1

αr,k lnXk −
Ns∑
k=1

βr,k lnXk
]
ωr

= −
Nr∑
r=1

K∗r

[ Ns∑
k=1

αr,k lnXk −
Ns∑
k=1

βr,k lnXk
]

×
[

exp

( Ns∑
k=1

αr,k lnXk
)
− exp

( Ns∑
k=1

βr,k lnXk
)]
≤ 0.

F converges because, as a function of Xk, it is bounded from below (F writes as a positive combination
of x lnx − x ≥ −1 functions). F converges to the composition that cancels out the sum of negative terms
above. This completes the proof.

The temperature-varying case is more subtle. Using an integral form of the Van’t Hoff equation (38):

ln

(
Keq,r

K∗eq,r

)
=

1

R̂

Ns∑
k=1

νr,k

∫ T

T∗

êk
τ2

dτ, (66)

where Keq,r := Keq,r(T ) and K∗eq,r := Keq,r(T
∗), we can rewrite and simplify equation (46) ( T 0 := T ∗) to

S = − R̂

Ns∑
k=1

[
Xk

]∗Xk[ ( lnXk −
1

R̂

∫ T

T∗

êk(τ)

τ2
dτ

)
− 1

]
+

E

T
. (67)

We can prove that S defined by equation (67) is monotone increasing for the kinetic system (13) whose
temperature varies according to equation (37). Here again, we can adapt Krambeck’s derivations. We have
to work with equation (65) evaluated at T ∗, that is:

Kf
r (T ∗)

Ns∏
k=1

( [
Xk

]∗ )αr,k = Kb
r(T
∗)

Ns∏
k=1

( [
Xk

]∗ )βr,k . (68)

We rewrite the source term ωr in two steps. First, using equation (68), we have:

ωr = − K∗∗r

[
Kfr (T ) exp

( Ns∑
k=1

αr,k lnXk
)
− Kbr(T ) exp

( Ns∑
k=1

βr,k lnXk
)]
,

K∗∗r :=

[
Kf
r (T ∗)

Ns∏
k=1

( [
Xk

]∗ )αr,k

]
, Kfr (T ) :=

Kf
r (T )

Kf
r (T ∗)

, Kbr(T ) :=
Kb
r(T )

Kb
r(T
∗)
.
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Second, the nonequilibrium rate ratios Kfr and Kbr are related through the Van’t Hoff equation (38). We
have:

Kfr (T )

Kbr(T )
=

Keq,r(T )

Keq,r(T ∗)
= exp

(
1

R̂

Ns∑
k=1

νr,k

∫ T

T∗

êk(τ)

τ2
dτ

)
.

We then introduce another auxiliary rate constant KSr :

KSr := Kfr exp

(
1

R̂

Ns∑
k=1

αr,k

∫ T

T∗

êk(τ)

τ2
dτ

)
= Kbr exp

(
1

R̂

Ns∑
k=1

βr,k

∫ T

T∗

êk(τ)

τ2
dτ

)
,

which leads to:

ωr = − K∗∗r KSr
[

exp

( Ns∑
k=1

αr,k

(
lnXk −

1

R̂

∫ T

T∗

êk(τ)

τ2
dτ

) )

− exp

( Ns∑
k=1

βr,k

(
lnXk −

1

R̂

∫ T

T∗

êk(τ)

τ2
dτ

) ) ]
. (69)

That S is monotone decreasing follows from equation (69) and

∂S

∂
[
Xk

] = R̂ lnXk −
∫ T

T∗

êk(τ)

τ2
dτ − êk

T
,
∂S
∂T

= − 1

T

Ns∑
k=1

ĉvk
[
Xk

]
.

To conclude regarding convergence, we need to show that S is bounded from above. This is accomplished
by noting that conservation of energy implies:

Ns∑
k=1

[
Xk

] ∫ T

T∗

êk(τ)

τ2
dτ = E

∫ T

T∗

dτ

τ2
=

E

T ∗
− E

T
. (70)

Using equation (70), we can rewrite S as:

S = − R̂

Ns∑
k=1

[
Xk

]∗Xk( lnXk − 1
)

+
E

T ∗
.

The last term above is a constant of the system, therefore S is bounded from above. This proves the following
theorem:

Theorem 6.2 (Relative Entropy). Under the assumptions of section 6.1, the function S defined by:

S = −
Ns∑
k=1

[
Xk

]∗Xk[ ( lnXk −
1

R̂

∫ T

T∗

êk(τ)

τ2
dτ

)
− 1

]
+

E

R̂T
.

is monotone increasing for the reacting system (13) whose temperature varies according to conservation of
energy (37). S converges to its value at chemical equilibrium

([
Xk

]∗)
1≤k≤Ns

. S also writes:

S := −
Ns∑
k=1

[
Xk

]∗Xk( lnXk − 1
)

+
E

R̂T ∗
. (71)

6.3 Algebraic Constructions

We now detail the construction of the implicit free energy and implicit entropy of chemically reacting
systems from their equilibrium data. The idea is to break down the sums in theorems 6.1 and 6.2 as:

Ns∑
k=1

[
Xk

]∗Xk( lnXk − 1
)

=

Ns∑
k=1

[
Xk

](
ln
[
Xk

]
− 1

)
−

Ns∑
k=1

[
Xk

]
ln
[
Xk

]∗
.

and demonstrate that the second sum on the right hand side is a function of known quantities. For the
fixed-temperature configuration, we have:
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Lemma 6.3. Under the assumptions of section 6.1, the chemical equilibrium composition
([
Xk

]∗)
1≤k≤Ns

of the reacting system (13) evolving at a fixed temperature satisfies:

−
Ns∑
k=1

[
Xk

]
ln
[
Xk

]∗
= −

NL∑
k=1

( NL∑
l=1

dk,lC(l)

)
ln
[
Xk

]∗ − Ns∑
k=NL+1

[
Xk

](NIR∑
r=1

ak−NL,r lnKeq,r

)
, (72)

with constant coefficients
(
aq,r

)
1≤q,r≤NIR

and
(
dk,l
)

1≤k,l≤NL
determined by the stochiometric coefficients(

νr,k
)

1≤r≤NIR, 1≤k≤Ns
and element conservation coefficients

(
cl,k
)

1≤l≤NL, 1≤k≤Ns
.

Proof. Using the indexing introduced in section 6.1, we rewrite equation (60) as:

Ns∑
k=NL+1

νr,k ln
[
Xk

]∗
= lnKeq,r −

NL∑
l=1

νr,l ln
[
Xl

]∗
(73)

and equation (61) as:
NL∑
k=1

cl,k
[
Xk

]
+

Ns∑
k=NL+1

cl,k
[
Xk

]
= C(l). (74)

We introduce the following vectors:

XL :=

([
Xl

])
1≤l≤NL

∈ RNL×1, XR =

([
Xk

])
NL+1≤k≤Ns

∈ RNIR×1,

GL :=

(
ln
[
Xl

]∗)
1≤l≤NL

∈ RNL×1, GR =

(
ln
[
Xk

]∗)
NL+1≤k≤Ns

∈ RNIR×1,

K :=

(
lnKeq,r

)
1≤r≤NIR

∈ RNIR×1, C0 =
(
C(l)

)
1≤l≤NL

∈ RNL×1,

and the following matrices:

VL :=
(
νr,k
)

1≤r≤NIR, 1≤k≤NL
∈ RNIR×NL , VR :=

(
νr,NL+k

)
1≤(r,k)≤NIR

∈ RNIR×NIR ,

CL :=
(
cl,k
)

1≤l≤NL, 1≤k≤NL
∈ RNL×NL , CR :=

(
cl,k
)

1≤l≤NL, NL+1≤k≤Ns
∈ RNL×NIR .

With these we rewrite equation (73) as:

VRGR = K − VLGL, (75)

and equation (74) as:
CLXL + CRXR = C0. (76)

A key relation is the consistency of every reaction with element conservation:

Ns∑
k=1

νr,kcl,k = 0, 1 ≤ r ≤ NIR, 1 ≤ l ≤ NL ⇐⇒ VLCT
L + VRCT

R = 0. (77)

In the above, VR and CL are invertible matrices. Multiplying equation (77) on the right by C−TL :=
(
CT
L

)−1

and on the left by V−1
R , we obtain the remarkable relation:

−V−1
R VL = CT

RC−TL (78)
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Through equations (75), (78) and (76), we show:

−
Ns∑
k=1

[
Xk

]
ln
[
Xk

]∗
= −XT

LGL − XT
RGR

= −XT
LGL − XT

R

(
V−1
R K − V−1

R VLGL

)
= −

(
XT
L − XT

RV−1
R VL

)
GL − XT

RV−1
R K

= −
(
XT
L + XT

RCT
RC−TL

)
GL − XT

RV−1
R K

= −
(
XT
LCT

L + XT
RCT

R

)
C−TL GL − XT

RV−1
R K

= −
(
C−1
L C0

)T
GL −

(
V−1
R K

)T
XR.

This completes the proof. The dk,l are the coefficients of C−1
L , and the aq,r are the coefficients of V−1

R . As
a direct consequence of theorem 6.1 and lemma 6.3, we have:

Theorem 6.4 (Implicit Free Energy). Under the assumptions of section 6.1, there exists constant coefficients(
aq,r

)
1≤q,r≤NIR

such that the following functional

F

R̂T
=

Ns∑
k=1

[
Xk

](
ln
[
Xk

]
− 1
)
−

Ns∑
k=NL+1

[
Xk

]NIR∑
r=1

ak−NL,r lnKeq,r,

is monotone decreasing for the reacting system (13) at fixed-temperature. The chemical equilibrium composi-
tion

([
Xk

]∗)
1≤k≤Ns

minimizes F under element conservation constraints. F is called an implicit free energy

of the system.

For the isolated reacting system, we have

Lemma 6.5. Under the assumptions of section 6.1, the chemical equilibrium composition
([
Xk

]∗)
1≤k≤Ns

of the reacting system (13) whose temperature evolves according to conservation of energy (37) ( denote T ∗

its equilibrium value) satisfies the relation:

Ns∑
k=1

[
Xk

]
ln
[
Xk

]∗
=

Ns∑
k=NL+1

[
Xk

](NIR∑
r=1

ak−NL,r lnKeq,r

)
+

E

R̂

(
1

T
− 1

T ∗

)

+

NL∑
k=1

( NL∑
l=1

dk,lC(l)

)(
ln
[
Xk

]∗
+

1

R̂

∫ T

T∗

êk
τ2
dτ

)
(79)

with the same constant coefficients
(
aq,r

)
1≤q,r≤NIR

and
(
dk,l
)

1≤k,l≤NL
as in lemma 6.3.

Proof. Adapting lemma 6.3, we can write:

Ns∑
k=1

[
Xk

]
ln
[
Xk

]∗
=

NL∑
k=1

( NL∑
l=1

dk,lC(l)

)
ln
[
Xk

]∗
+

Ns∑
k=NL+1

[
Xk

](NIR∑
r=1

ak−NL,r lnK∗eq,r

)
(80)

The last term on the right-hand side can be decomposed as follows

Ns∑
k=NL+1

[
Xk

](NIR∑
r=1

ak−NL,r lnK∗eq,r

)
=

Ns∑
k=NL+1

[
Xk

](NIR∑
r=1

ak−NL,r lnKeq,r

)

−
Ns∑

k=NL+1

[
Xk

](NIR∑
r=1

ak−NL,r ln

(
Keq,r

K∗eq,r

))
(81)
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We introduce the following vectors:

H :=

(
ln

(
Keq,r

K∗eq,r

) )
1≤l≤NIR

∈ RNIR×1,

QL :=

(∫ T

T∗

êl(τ)

τ2
dτ

)
1≤l≤NL

∈ RNL×1, QR :=

(∫ T

T∗

êk(τ)

τ2
dτ

)
NL+1≤k≤Ns

∈ RNIR×1

The Van’t Hoff equation (38) writes:
H = VLQL + VRQR (82)

Conservation of energy (62) implies the matrix equation:

XT
LQL + XT

RQR = E

(
− 1

T
+

1

T ∗

)
(83)

Through equations (76), (78), (82), and (83) we show:

−
Ns∑

k=NL+1

[
Xk

](NIR∑
r=1

ak−NL,r ln

(
Keq,r

K∗eq,r

))
= − 1

R̂
XT
RV−1

R H

= − 1

R̂
XT
RV−1

R

(
VLQL + VRQR

)
= − 1

R̂

(
XT
RV−1

R VLQL + XT
RQR

)
= − 1

R̂

(
XT
RV−1

R VLQL − E

(
1

T
− 1

T ∗

)
− XT

LQL

)
=

1

R̂

(
E

(
1

T
− 1

T ∗

)
+ XT

LQL + XT
RCT

RC−TL QL

)
=

1

R̂

(
E

(
1

T
− 1

T ∗

)
+ C0C

−T
L QL

)
Combining equations (80), (81) and the above completes the proof. As a direct consequence of theorem 6.2
and lemma 6.5, we have:

Theorem 6.6 (Implicit Entropy). Under the assumptions of section 6.1, there exists constant coefficients(
aq,r

)
1≤q,r≤NIR

and (dk,l)1≤k,l≤NL
such that the following functional:

S

R̂
= −

Ns∑
k=1

[
Xk

](
ln
[
Xk

]
− 1
)

+

Ns∑
k=NL+1

[
Xk

]NIR∑
r=1

ak−NL,r lnKeq,r +
E

R̂T

+
1

R̂

NL∑
k=1

( NL∑
l=1

dk,lC(l)

)∫ T

T0

êk
τ2
dτ, (84)

is monotone increasing for the reacting system (13) whose temperature evolves according to conservation of
energy (37). The equilibrium composition

([
Xk

]∗)
1≤k≤Ns

and temperature T ∗ maximize S under element

and energy conservation constraints. S is called an implicit entropy of the system.

6.3.1 Example applications

For the 5-species model of section 4.1, the implicit free energy and entropy of sections 4.2 and 4.3 are
recovered through:

(X1, X2, X3, X4, X5) := (N, O, N2, O2, NO)

=⇒ VR =

−1 0 0
0 −1 0
0 0 −1

 = V−1
R , CL =

[
1 0
0 1

]
= C−1

L .
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For kinetic models that include ionization reactions, the same formalism can be used by assimilating
the charge conservation equation as an element conservation equation. For an 11-species air model [27]
(N2, N, O2, O, NO, N

+
2 , N

+, O+
2 , O

+, NO+, e−) where e− represents free electrons, chemical equilib-
rium is characterized by three conservation equations:

2
[
N2

]∗
+ 2

[
N+

2

]∗
+
[
N
]∗

+
[
N+
]∗

+
[
NO

]∗
+
[
NO+

]∗
= C(N), (85)

2
[
O2

]∗
+ 2

[
O+

2

]∗
+
[
O
]∗

+
[
O+
]∗

+
[
NO

]∗
+
[
NO+

]∗
= C(O), (86)[

N+
2

]∗
+
[
O+

2

]∗
+
[
N+
]∗

+
[
O+
]∗

+
[
NO+

]∗ − [
e−
]∗

= C(e), (87)

and eight independent chemical equilibrium relations. We can define:

lnKeq,1 := 2 ln
[
N
]∗ − ln

[
N2

]∗
, lnKeq,2 := 2 ln

[
O
]∗ − ln

[
O2

]∗
,

lnKeq,3 := ln
[
N
]∗

+ ln
[
O
]∗ − ln

[
NO

]∗
, lnKeq,4 := ln

[
N+

2

]∗
+ ln

[
e−
]∗ − ln

[
N2

]∗
,

lnKeq,5 := ln
[
O+

2

]∗
+ ln

[
e−
]∗ − ln

[
O2

]∗
, lnKeq,6 := ln

[
NO+

]∗
+ ln

[
e−
]∗ − ln

[
NO

]∗
,

lnKeq,7 := ln
[
N+
]∗

+ ln
[
e−
]∗ − ln

[
N
]∗
, lnKeq,8 := ln

[
O+
]∗

+ ln
[
e−
]∗ − ln

[
O
]∗
.

With the following indexing:

(X1, X2, X3) := (N, O, e−)

(X4, X5, X6, X7, X8, X9, X10, X11) := (N2, O2, NO, N
+
2 , O

+
2 , NO

+, N+, O+)

the matrices VR ∈ R8×8 and CL ∈ R3×3 write:

VR =



−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
−1 0 0 1 0 0 0 0
0 −1 0 0 1 0 0 0
0 0 −1 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


= V−1

R , CL =

1 0 0
0 1 0
0 0 −1

 = C−1
L . (88)

An implicit free energy F 11 is given by:

F 11

R̂T
=

11∑
k=1

[
Xk

](
ln
[
Xk

]
− 1

)
+

([
N2

]
ln
(
Keq,1

)
+
[
O2

]
ln
(
Keq,2

)
+
[
NO

]
ln
(
Keq,3

)
+
[
N+

2

]
ln

(
Keq,1

Keq,4

)
+
[
O+

2

]
ln

(
Keq,2

Keq,5

)
+
[
NO+

]
ln

(
Keq,3

Keq,6

)
−
[
N+
]

ln
(
Keq,7

)
−
[
O+
]

ln
(
Keq,8

))
−
∫ T

T 0

1

τ2

(
C(N)êN + C(O)êO − C(e)êe−

)
dτ, (89)

and an implicit entropy S11 given by:

S11

R̂
=

1

R̂T

(
E − F 11

)
.

A model for Mars’ atmopshere [28] complements that of air with
(Ar, Ar+, C, C2, CN, CO, CO2, CNO, C

+, C+
2 , CN

+, CO+) for a total of 23 species. Chemical
equilibrium is defined by five conservation equations:

2
[
N2

]∗
+ 2
[
N+

2

]∗
+
[
N
]∗

+
[
N+
]∗

+
[
NO

]∗
+
[
NO+

]∗
+
[
CN

]∗
+
[
CNO

]∗
+
[
CN+

]∗
= C(N),

2
[
O2

]∗
+ 2
[
O+

2

]∗
+
[
O
]∗

+
[
O+
]∗

+
[
NO

]∗
+
[
NO+

]∗
+
[
CNO

]∗
+
[
CO
]∗

+ 2
[
CO2

]∗
+
[
CO+

]∗
= C(O),[

C
]∗

+ 2
[
C2

]∗
+
[
CN

]∗
+
[
CO
]∗

+
[
CO2

]∗
+
[
CNO

]∗
+
[
C+
]∗

+ 2
[
C+

2

]∗
+
[
CN+

]∗
+
[
CO+

]∗
= C(C),[

Ar
]∗

+
[
Ar+

]∗
= C(Ar),[

N+
2

]∗
+
[
O+

2

]∗
+
[
N+
]∗

+
[
O+
]∗

+
[
NO+

]∗
+
[
Ar+

]∗
+
[
C+
]∗

+
[
C+

2

]∗
+
[
CN+

]∗
+
[
CO+

]∗− [e−]∗ = C(e),

33



and eighteen chemical equilibrium relations:

lnKeq,9 := 2 ln
[
C
]∗ − ln

[
C2

]∗
, lnKeq,10 := ln

[
C
]∗

+ ln
[
N
]∗ − ln

[
CN

]∗
,

lnKeq,11 := ln
[
C
]∗

+ ln
[
O
]∗ − ln

[
CO
]∗
,

lnKeq,12 := ln
[
C+

2

]∗
+ ln

[
e−
]∗ − 2 ln

[
C
]∗
, lnKeq,13 := ln

[
CN+

]∗
+ ln

[
e−
]∗ − ln

[
C
]∗ − ln

[
N
]∗
,

lnKeq,14 := ln
[
CO+

]∗
+ ln

[
e−
]∗ − ln

[
C
]∗ − ln

[
O
]∗
, lnKeq,15 := ln

[
CO
]∗

+ ln
[
O
]∗ − ln

[
CO2

]∗
,

lnKeq,16 := ln
[
N2

]∗
+ ln

[
CO
]∗ − ln

[
CNO

]∗ − ln
[
N
]∗
,

lnKeq,17 := ln
[
C+
]∗

+ ln
[
e−
]∗ − ln

[
C
]∗
, lnKeq,18 := ln

[
Ar+

]∗
+ ln

[
e−
]∗ − ln

[
Ar
]∗
.

With the following indexing:

(X1, X2, X3, X4, X5) := (N, O, C, Ar, e−)

(X6, X7, X8, X9, X10, X11, X12, X13) := (N2, O2, NO, N
+
2 , O

+
2 , NO

+, N+, O+)

(X14, X15, X16, X17, X18, X19, X20), := (C2, CN, CO, C
+
2 , CN

+, CO+, CO2)

(X21, X22, X23) := (CNO, C+, Ar+)

Here VR ∈ R18×18, CL ∈ R5×5. An implicit free energy F 23 is given by:

F 23

R̂T
=

23∑
k=1

[
Xk

](
ln
[
Xk

]
− 1

)
+

([
N2

]
ln
(
Keq,1

)
+
[
O2

]
ln
(
Keq,2

)
+
[
NO

]
ln
(
Keq,3

)
+
[
N+

2

]
ln

(
Keq,1

Keq,4

)
+
[
O+

2

]
ln

(
Keq,2

Keq,5

)
+
[
NO+

]
ln

(
Keq,3

Keq,6

)
−
[
N+
]

ln
(
Keq,7

)
−
[
O+
]

ln
(
Keq,8

)
+
[
C2

]
ln
(
Keq,9

)
+
[
CN

]
ln
(
Keq,10

)
+
[
CO
]

ln
(
Keq,11

)
−
[
C+

2

]
ln
(
Keq,12

)
−
[
CN+

]
ln
(
Keq,13

)
−
[
CO+

]
ln
(
Keq,14

)
+
[
CO2

]
ln
(
Keq,15Keq,11

)
+[

CNO
]

ln
(
Keq,16Keq,11Keq,1

)
−
[
C+
]

ln
(
Keq,17

)
−
[
Ar+

]
ln
(
Keq,18

))
−

∫ T

T 0

1

τ2

(
C(N)êN + C(O)êO + C(C)êC + C(Ar)êAr − C(e)êe−

)
dτ, (90)

and an implicit entropy S23 by:
S23

R̂
=

1

R̂T

(
E − F 23

)
.

6.4 Final Characterization

Theorem 6.6 provides the general form of the reduced chemical potential functions introduced in section 4.
We can rewrite equation (84) as:

S =

Ns∑
k=1

[
Xk

]
ŝk, ŝk =

1

T

(
êk − µ̂k

)
+ R̂, µ̂k = µ̂0

k + R̂T ln
[
Xk

]
,

with:

µ̂0
k := − T

∫ T

T 0

êk
τ2
dτ, 1 ≤ k ≤ NL (91)

µ̂0
k := − T

NL∑
l′=1

( NL∑
l=1

dl′,lcl,k

)∫ T

T 0

êl′

τ2
dτ − R̂T

NIR∑
r=1

ak−NL,r lnKeq,r, NL + 1 ≤ k ≤ Ns. (92)

To reach this expression, the molar element concentrations
(
C(l)

)
1≤l≤NL

have been substituted with their

expression in terms of the species concentrations (equation (61)). This is a necessary step towards the
mathematical modeling of compressible reacting flows discussed in the next section. The following lemma
will prove useful:
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Lemma 6.7. The reduced chemical potential functions
(
µ̂0
k

)
1≤k≤Ns

defined by equations (91) and (92)

satisfy the following relations:

Ns∑
k=1

[
Xk

]( dµ̂0
k

dT
− µ̂0

k

T

)
= − 1

T

Ns∑
k=1

[
Xk

]
êk, (93)

d

dT

(
µ̂0
k

T

)
= − êk

T 2
. (94)

Proof. Equation (93) is equivalent to:

Ns∑
k=NL+1

[
Xk

] NIR∑
r=1

ak−NL,r R̂T
2 d lnKeq,r

dT
+

NL∑
l=1

( NL∑
l′=1

dl,l′C(l′)

)
êl =

Ns∑
k=1

[
Xk

]
êk. (95)

We introduce the following vectors:

EL :=
(
êl
)

1≤l≤NL
∈ RNL×1, ER :=

(
êk
)
NL+1≤k≤Ns

∈ RNIR×1.

By definition, we have:

XT
LEL + XT

RER =

Ns∑
k=1

[
Xk

]
êk.

The left hand side term in (95) writes:

Ns∑
k=NL+1

[
Xk

] NIR∑
r=1

ak−NL,r R̂T
2 d lnKeq,r

dT
+

NL∑
l=1

( NL∑
l′=1

dl,l′C(l′)

)
êl = XT

RV−1
R

(
R̂T 2 dK

dT

)
+
(
C−1
L C0

)T
EL

The Van’t Hoff equation (38) also writes:

R̂T 2 dK

dT
= VRER + VLEL. (96)

Using equations (76), (78) and (96), we reach the desired result:

XT
RV−1

R

(
R̂T 2 dK

dT

)
+
(
C−1
L C0

)T
EL = XT

R

(
ER + V−1

R VLEL

)
+
(
XL + C−1

L CRXR

))T
EL

= XT
LEL + XT

RER + XT
R

(
V−1
R VL + CT

RC−TL
)
EL

= XT
LEL + XT

RER.

To prove relation (94), we introduce the following vectors:

ML :=

(
µ̂l
T

)
1≤l≤NL

∈ RNL×1, MR :=

(
µ̂k
T

)
NL+1≤k≤Ns

∈ RNIR×1.

We already have the desired result for the first NL species, namely:

dML

dT
= − 1

T 2
EL.

For the remaining NIR species, we have:

dMR

dT
= − 1

T 2

(
C−1
L CR

)
EL − R̂V−1

R

dK

dT

= − 1

T 2

( (
C−1
L CR

)
EL + V−1

R

(
R̂T 2 dK

dT

) )
= − 1

T 2

( (
C−1
L CR + V−1

R VL

)
EL + ER

)
= − 1

T 2
ER.

This completes the proof.
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7 Compressible Flow

We are ultimately interested in the development of CFD algorithms for compressible reacting flows.
In this final section, we establish that the thermodynamic entropy we constructed from equilibrium data is
compatible with the mathematical structure that underlies numerical schemes for (non-reacting) compressible
flows. The integration of multi-component and radiative transport phenomena will be treated in future work.

7.1 Mathematical Entropy

A number of systems of conservation laws, represented as

∂u

∂t
+

d∑
j=1

∂fj
∂xj

= 0, (97)

where u ∈ RN is the vector of conserved variables and
(

fj(u)
)

1≤j≤d ∈ RN×d is the set of flux vectors in d

spatial dimensions, are known to imply an additional conservation equation for a convex scalar function U
of the conserved variables [17, 20, 16]:

∂U

∂t
+

∂Fi
∂xi

= 0, Fi = Fi(u) ∈ R. (98)

When these conditions are met, U is termed a mathematical entropy of the system (97). Mathematical
entropies are paramount in the analysis of such systems, especially when it comes to their well-posedness
(the existence of U implies the system is symmetric hyperbolic [20, 16]) and the selection of physically
relevant weak solutions through entropy inequalities [18]:

∂U

∂t
+

∂Fi
∂xi

< 0. (99)

Mathematical entropies are key in the development of robust numerical schemes. For flows involving strong
discontinuities, schemes that satisfy a discrete version of (99) are preferred. Such schemes are termed entropy
stable. This guideline guided the development of the popular upstream-based and Godunov-type schemes
in the 80s [19]. A different approach to enforcing entropy-stability at the discrete level [12, 11] has gained
significant attention over the last decade [35, 36, 34, 41, 45] in the context of under-resolved turbulent flow
simulation (inequality (99) can imply integral nonlinear stability depending on the boundary conditions). It
makes an extensive use of the so-called entropy variables v ∈ RN defined by:

v :=

(
∂U

∂u

)T
. (100)

The present work is part of an effort to develop this framework towards reacting flows (mathematical and
numerical developments for non-reacting multicomponent flows can be found in [38, 39]). A compressible
reacting flow can be represented as system (97) complemented with a chemical source term R(u) ∈ RN :

∂u

∂t
+

d∑
j=1

∂fj
∂xj

= R. (101)

We emphasize the distinction between the concepts of mathematical entropy (proper to systems of conser-
vation laws) and of thermodynamic entropy. For compressible flows, these two concepts are tightly linked
[12, 1, 13, 38]. Our goal here is to find U(u) convex such that system (101) implies:

∂U

∂t
+

∂Fi
∂xi

= vTR with vTR < 0. (102)
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7.2 Multicomponent Reacting Flow

In three dimensions (d = 3), the compressible reacting Euler system [1] is defined by:

u :=
[(
ρk
)

1≤k≤Ns
ρu ρv ρw ρetot

]T
,

f1 :=
[(
ρku
)

1≤k≤Ns
ρu2 + p ρuv ρuw (ρetot + p)u

]T
,

f2 :=
[(
ρkv
)

1≤k≤Ns
ρuv ρv2 + p ρvw (ρetot + p)v

]T
,

f3 :=
[(
ρkw

)
1≤k≤Ns

ρuw ρvw ρw2 + p (ρetot + p)w
]T
,

R :=
[(
Rk
)

1≤k≤Ns
0 0 0 0

]T
.

The species partial densities are denoted by
(
ρk
)

1≤k≤Ns
and are related to molar concentrations through

ρk = mk

[
Xk

]
, where mk is the molar mass of species k. ρ :=

∑Ns

k=1 ρk denotes the total density,
and Yk := ρk/ρ denotes the mass fraction of species k. The mean flow velocities are represented by the
vector ~u :=

[
u v w

]
. The total energy per unit volume is defined by ρetot := ρe + 1

2ρ||~u||
2, where

ρe :=
∑Ns

k=1 ρkek. The source terms are related by those of equation (13) through Rk := mkΩk.
If the equilibrium constants embedded in R are evaluated through the law of mass action, an admissible

mathematical entropy for this system is given by:

U := −ρs, ρs :=

Ns∑
k=1

ρksk, sk :=

∫ T

T 0

cvk
τ
dτ − rk ln

(
ρk
ρ0
k

)
+ s0

k, rk := R̂/mk. (103)

In this section, the proof of this result [1] is reviewed. In order to prove that U satisfies a conservation
equation, one begins by expressing the flow equations in total derivatives:

Dρ

Dt
= −ρ∇ · ~u, DYk

Dt
=

1

ρ
Rk,

De

Dt
= −p

ρ
∇ · ~u, (104)

D

Dt
:=

∂

∂t
+ ~u · ∇.

The Gibbs differential equation writes:

Tds = de − p

ρ2
dρ −

Ns∑
k=1

µkdYk, µk :=
1

T

(
ek − sk

)
+ rk. (105)

Equations (105) and (104) imply the transport equation:

Ds

Dt
= − 1

ρT

Ns∑
k=1

mkµkΩk, (106)

which combined with conservation of total mass yields the conservation equation:

∂(ρs)

∂t
+ ∇ · (ρ~us) = − 1

T

Ns∑
k=1

mkµkΩk = − 1

T

Ns∑
k=1

µ̂kΩk > 0. (107)

Using the relation between the specific entropies and specific chemical potentials:

sk =
1

T

(
ek − µk

)
+ rk, (108)

one can show that the Gibbs equation (105) is equivalent to

Td(ρs) = d(ρe) −
Ns∑
k=1

µkdρk ⇐⇒ TdU = −d(ρe) +

Ns∑
k=1

µkdρk (109)
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To obtain the differential relation with respect to u, use:

d(ρe) = d(ρetot) + ud(ρu) + vd(ρv) + wd(ρw) − 1

2

Ns∑
k=1

||~u||2dρk.

This leads to the following expression for the entropy variables:

v =
1

T

[(
µk − 1

2 ||~u||
2
)

1≤k≤Ns
~u −1

]
. (110)

The convexity of U is established through its Hessian matrix G

G :=
∂2U

∂u2
=

∂v

∂u
.

which needs to be positive definite. This is shown by congruence [16, 1, 38] through the matrix H defined
by:

H :=

(
∂u

∂z

)T
G

(
∂u

∂z

)
, z :=

[(
ρk
)

1≤k≤Ns
~u T

]
.

With sk defined by equation (103), this gives:

H =

(
∂u

∂z

)T
∂v

∂z
= diag

([(
ρk
)

1≤k≤Ns

(
ρ
T

)
1≤j≤d ρcv/T

2
])

, (111)

and convexity is obtained provided ρk > 0, cvk > 0 and T > 0.

7.3 Implicit Mathematical Entropy

In the proof we just reviewed, the chemical potential are defined by the specific entropies (equation
(105)). Conversely, the implicit thermodynamic entropy we introduced is derived from the chemical potentials
µk := µ0

k + rkT ln ρk with:

µ0
k := − T

∫ T

T 0

ek
τ2
dτ, 1 ≤ k ≤ NL (112)

µ0
k := − T

NL∑
l′=1

( NL∑
l=1

dl′,lcl,k

)∫ T

T 0

el′

τ2
dτ − rkT

NIR∑
r=1

ak−NL,r lnKeq,r(T ), NL + 1 ≤ k ≤ Ns (113)

We consider the same candidate mathematical entropy U = −ρs with the implicit definition of sk instead.
The flow equations (104) and the relation (108) between sk and µk still hold. Therefore, the conservation
(107) holds if the differential relation (109) holds. We have:

Td(ρs) = Td

(
1

T

Ns∑
k=1

ρkek

)
− Td

(
1

T

Ns∑
k=1

ρkµk

)
+ Td

( Ns∑
k=1

rkρk

)

= d(ρe) −
Ns∑
k=1

µkdρk −
Ns∑
k=1

ρkdµk + T

Ns∑
k=1

rkdρk +
dT

T

Ns∑
k=1

ρk(ek − µk)

The last three sum terms cancel out as we have:

Ns∑
k=1

ρkdµk − T

Ns∑
k=1

rkdρk −
dT

T

Ns∑
k=1

ρk(ek − µk) =

Ns∑
k=1

ρkdµ
0
k −

dT

T

Ns∑
k=1

ρk
(
ek − µk + rkT ln ρk

)
=

Ns∑
k=1

ρkdµ
0
k −

dT

T

Ns∑
k=1

ρk
(
ek − µ0

k

)
=

[ Ns∑
k=1

ρk

(
dµ0

k

dT
− µ0

k

T

)
− 1

T

Ns∑
k=1

ρkek

]
dT

= 0 (Lemma 6.7)
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This proves conservation. Similarly, the convexity of U is established through the congruence transform
(111) which yields the exact same diagonal matrix (it can be shown that the off-diagonal terms of H cancel
out if and only if the reduced chemical potentials satisfy relation (94) in lemma 6.7). This proves the final
result:

Theorem 7.1 (Implicit Mathematical Entropy). The compressible reacting Euler system whose chemical
nonequilibrium model

(
Ωk
)

1≤k≤Ns
satisfies the assumptions of section 6.1 admits the mathematical entropy

U := −
Ns∑
k=1

ρksk, sk(ρk, T ) :=
1

T

(
ek(T ) − µk(ρk, T )

)
+ rk.

with µk(ρk, T ) := µ0
k(T ) + rkT ln ρk and µ0

k(T ) defined by equations (112)-(113). The corresponding
entropy variables are given by equation (110).

8 Conclusions

In the present work, we demonstrated that chemical thermodynamics can be used as a nonlinear analysis
tool in the temporal integration of reaction kinetics. For ODE systems that fix the temperature, the second
law imposes a free Helmholtz energy that is monotone decreasing. If the temperature varies as to make
the gas mixture isolated, the second law imposes that the thermodynamic entropy is monotone increasing.
These prescription are nonlinear and can be probed and enforced at the discrete level, thanks to well-
established results [14, 11]. Preliminary numerical experiments with a DG in time scheme based on a
polynomial representation of the chemical potentials shows improved robustness and larger resolvable time
steps compared to its standard version and some DIRK-type schemes designed for stiff systems. In addition,
the respective contributions of the physical model and the discretization to free energy decay, a measure of
convergence to equilibrium, can be computed and compared. These insights will play an important role in
improving numerical methods for chemical kinetics and, more broadly, to relaxation dynamics.

A significant contribution of this work is the finding that the chemical equilibrium constants of the kinetics
model do not need to be evaluated following Gibbs’ formalism for these prescriptions to be applicable. We
demonstrated how one can actually infer the implicit chemical thermodynamics embedded in a chemical
equilibrium model built from data, provided reasonable conditions are met. We believe these derivations
will spur progress in the development of advanced chemistry models for reacting flows. The prescriptions
of this work can be leveraged by the reduced-order and data-driven modeling communities, as optimization
constraints for example.

While the present work was mainly concerned with chemical relaxation, it has also laid theoretical
ground for compressible fluid dynamics simulations. We proved that the implicit thermodynamic entropy
we constructed can also be used as a mathematical entropy, a core concept for systems of conservation
laws [16, 20, 17, 12, 1], shock-capturing [18] and entropy-stable discretizations [11, 39, 45]. Continuing on
our recent work on entropy-stable schemes [38, 39], we will explore the long-time challenge of integrating
compressible flow physics and chemical relaxation together [43, 44, 46]. We will seek to leverage the knowledge
of discrete entropy dynamics [40] to develop more efficient time-integration and solution methods within a
multi-physics space-time Finite-Element Solver under development at NASA Ames Research Center [42].

For flows in strong thermo-chemical non-equilibrium, thermal relaxation time scales become comparable
to the chemical time scales, and the common assumption of one single temperature characterizing the internal
energy distributions of the entire gas mixture is no longer valid (early work by Candler [47] shows errors
in shock standoff distance predictions). Multi-Temperature models [7, 26] are currently standard for these
applications, and a characteristic feature of their formulation is that for some reactions the forward and
reverse rates are no longer related by an equilibrium constant at all times. In this configuration, Krambeck’s
proof does not apply anymore and classical thermodynamics shows its limits [5, 13]. We address these issues
through a self-consistent statistical approach in a forthcoming paper.
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