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2023 PDC Asteroid Impact “Epoch 1" Scenario

Entry modeling and probabilistic risk assessment ARC/TNA

* Diameter: 150-2000 m, most likely 220-660 m, median  1om
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Outline

Entry modeling and probabilistic risk assessment
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» Asteroid properties A L
* Entry and energy deposition Sarous.

Critical RS
» Solver & simulation setup B et

Google Earth

AAAAAA

* Results
— Simulations and ground footprints
— Atmospheric waves
— Radiation analysis

Impact simulation

» Computing resources

« Summary
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Asteroid Properties

Statistical analysis and Bayesian inference to determine likely asteroid properties

ARC/TNA

’ , ’ H magnitude 19.3 19.1 19.3 19.5 19 - 19.6
but have g, r and / band colors Albedo 0.13 0.04 0.09 0.17 0.01-0.15
which inform inference for Diameter @ [m] 721 434 617 901 294 - 880
: : Density [g/ 2.2 1.6 2.0 2.5 1.3-2.6
taxonomic class, density and ensity lg/c]
Mass [kg] 8.5 x 1011 9.6 x1010 | 2.5x 101 7.5x1011 | 4x109-5.4x101"
strength Energy [Mt] 16000 1800 4900 14000 76 - 10000
- High-fidelity simulations e Property Distributions (Wheeler: PDC2023 & Dotson: PDC2023)
will focus on upper end of wl [ 1% ol B Distribution
T ' 3 0 | 1 B ——mean
most likely” (68%) range : | 5 - 2ol .~ median
g 3 3 | e 5th/95th %
= S 5 £ 10% i
5% | 5% |
5%
0% 0% 0% . .
0 500 1000 1500 2000 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Diameter (m) Density (g/cm3) Albedo
14% (e — . : 35% . .
12% i 30%
10% 25%
= 2z 2
% 8% -_.; %20%
g 6% | § §15%
4% + 10%
2% ¢ 5%
0% 0%
102 10° 104 10° 18 18.5 19 19.5 20 20.5 0.1 1 2 3 4 5 6 7 8 9 10
Energy (Mt) H Magnitude Strength (MPa)
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Entry and Energy Deposition

Detailed selection of entry parameters for nominal impact case

Chose nominal impactor to be near large end of the 68%
“most likely case” from risk assessment

- H-mag 19 & albedo 0.069
- Nominal impact case is 800m diameter @ 12.67km/s
- Oblique entry at 2 =54° from horizon

Modeled entry in FCM to get details along trajectory

Kinetic energy at entry, Etot = 10.3 Gt
~1.68 Gt deposited into atmosphere (16.36%)
~8.61 Gt of ground-impacting energy (83.64%)

FCM entry modeling parameters shown at right

Impact in Nigeria has total affected population ~ 10 M
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Solver Overview: Cart3D

Production solver based on cut-cell Cartesian mesh method

» Originally developed for aerospace applications
» Fully-automated mesh generation for complex geometry

» Inviscid solver using Cartesian cells
— Fully-conservative finite-volume method
— Multigrid accelerated 2nd-order upwind scheme
— Dual-time approach for unsteady simulations
— Domain-decomposition for good parallel scalability

* All runs are full 3D
« 220-330M cells with 20-30k time steps

» Excellent scalability
— Typical airburst simulations take 8-16 hrs on ~4000 cores

» One of NASA’s most heavily used production solvers,
large validation database, 900+ users

» Good comparisons w/ CTH, xRAGE & ALE3D at the 2016
Tsunami Workshop
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Solver Overview: Cart3D

Extensive Validation for airburst and entry simulations

ARC/TNA

Chelyabinsk Ground Footprints

Chelyabinsk airburst: AIAA Paper 2016-0998, Jan 2016

» Originally developed for aerospace applications s T ——
REEP ] 00, W
- Fully-automated mesh generation for complex geometry O unbroken
. . . : O broken -
» Inviscid solver using Cartesian cells D — 2Mtapherical Blast °
i 0l -
— Fully-conservative finite-volume method - .. Chelyab
: G Shebarkul
— Multigrid accelerated 2nd-order upwind scheme g ! - Q*'é*“ b
g 15 : ] w- "~.
— Dual-time approach for unsteady simulations 2 1ol > o -
& F
— Domain-decomposition for good parallel scalability s °
o[
: 60
» All runs are full 3D o : e
-10L
. 220-330 M cells with 20-30k time steps gy | Overpressure Glass Damage -
Comparison with xRAGE (DoE) B TS

* Excellent scalability at 2016 Tsunami Workshop
— Typical airburst simulations take 8-16 hrs on ~4000 cores

» One of NASA’s most heavily used production solvers, L3

large validation database, 900+ users

» Good comparisons w/ CTH, xRAGE & ALE3D at the 2016
Tsunami Workshop

Blast Arrival Time

—ﬁ
Image credit AIAA 20716-0998, used with permission.
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2023 PDC Impactor — Simulation setup Entry Profile: energy, mass & velocity

19| ——— mass/entryMass ey

54° entry of @ 800 m, asteroid at 12.673 km/s, p = 2000 kg/m3 S A [ AR
|
 Entry profile from FCM with deposition of mass, momentum & energy l
0.8

* Evot = 10.3Gt, ~200 times more energy than median 2021 PDC case _
—16.36% (1.68 Gt) of Etot released in atmosphere 06|
— 83.64% (8.61 Gt) of Etot remains at impact !

0.4
 Impact Modeling
— Model impact as entry + detonation 0.2)
— 2018 studies with ALE3D (Robertson) indicate 3-5% of impact energy o T
couples to airblast o0 30 U Al ) 10 0
Computational domain (not to scale) FCM Entry Profile: 2023 PDC
. ‘ 640 km d R T =20 o0 Neminal mpscier

70 *+ Peak Edep: 0 km, 16.36% Energy|-
. | 10% Energy Alt: 3.14 km
12.673 km/sec 60 | ¥
95 km 54° Entry
&/ 501 @ =800m

1.68 Gt released in atm
8.61 Gt remains at impact

Starting

V| = 12.673km/s
54° altitude 70km - |V

X = 54°
30r p=2.0g/cc
Strength = 2MPa

<

Altitude (km)
.
o

20 Porosity = 30%
10+ Weibull = 0.2
v Sea Level v v Energy = 10.3Gt at entry
0 1 A 1 Fod | M Yo | A e | 2 | 5
107 10° 10" 102 10° 10* 10° 10°

Energy Deposition (kt/km)
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Blast Propagation for 2023 PDC

54° entry of @ 800 m, asteroid at 12.67 km/s

» Full 3D simulations of the obligue entry and blast evolution

- 1.68 Gt energy deposited during entry
— Very strong atmospheric blast

— Ground impact at elapsed time t = 6.62 s

» Impact energy is 8.61 Gt
— 95% goes into ground
— ~5% (430.5Mt) couples to atmosphere
— Impact modeled as detonation (430.5 Mt) near ground

- Simulation spans more than 20min of real time to observe
atmospheric response

— Blast first reaches downrange domain boundary (320km
from impact) about 12 min after entry
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Local Mach Number 54° entry of @ 800 m asteroid at 12.67km/s

40 Km




Blast Propagation for 2023 PDC

54° entry of @ 800 m, asteroid at 12.67 km/s ARC/TNA

. |Iso-Mach contours R 4820000 e g &
sqrt(Mach) 0 02 04 06 08 1 12 14 16 18 2 1 60

- Blast from entry corridor and :
impact disrupts entire {1
atmosphere [ B
* Supersonic spreading at B B S A R 3
altitude creates oblique %
shocks which lead the main 1 60
blast on the ground {40
- 10 psi overpressures extend =
75-80 km from impact —_—
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* 4 psi overpressure extends to

~150 km J 1%

* 1 psi overpressure extends to 54"

domain boundary 520

0

- At later times, energy release e e j'.'.'.'.'.'. T ——————— '.'.'.’_80
fills entire domain, and E

atmosphere oscillates like an 1 50

elastic membrane - 40

1 20

b | & I

320 300 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0o -20 -4 -60 -8 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320
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Blast Propagation for 2023 PDC

54° entry of @ 800 m, asteroid at 12.67 km/s ARC/TNA

Footprint of Peak Ground Overpressures

320
- Ground overpressure footprint evolves for over ! psi <
12 mins to cover the entire 640 x 640km domain =0
240
» 10 psi contours nearly circular, mean radius of 74 km Overpressure
200 (%)
- Lower overpressure contours slightly elliptical due to 60 256
obligue entry
120 128
 1psi contour driven by oscillation of the atm & 64
extends > 320 km to domain boundary c 50
= 40 32
)
S 16
z 8
é’ -40
Mean blast Area S e 4
radius (km) (km?) 2
-120
SHETRAE S 10 psi 74 17,203 1
-160
Critical 4 psi 155 75,477 200
Severe 2 psi 235 173,494 240
280 =)
Serious 1 psi > 320 > 321,700 . 5 mif

20
320 280 240 200 160 120 80 40 O -40 -80 -120 -160 -200 -240 -280 -320 -360

X-Distance (km)
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Blast Propagation for 2023 PDC

54° entry of @ 800 m, asteroid at 12.67 km/s ARCITNA

Peak Wind Speed
320
» Wind is supersonic for over 15 km from impact |
280
» Category 5 winds extend 80-100 km from impact -
» Category 1-2 winds extend 180 km from impact and 200 V| mph
sustain for several minutes 160 840
» Speeds near edge likely contaminated by domain . 320
boundary conditions 540
—~ 80
o . . £ 160
Saffir-Simpson Hurricane wind scale = W 120
e 0
SSHWS Mean % 100
Category Speed (mph) radius (km) 0 0 | 50
> 80
5 157 95 12 60
' 40
4 130 140 160 =
3 111 155 -200
2 96 180 =il
1 74 210 =0
320 B EEEn m= ANEE AN e S NS N e (]

320 280 240 200 160 120 80 40 0 -40 -80 -120-160-200-240-280-320-360
X-Distance (km)
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Lamb Wave Formation
54° entry of @ 800 m, asteroid at 12.67 km/s

- Can compute the expected period of a Lamb
wave from detonations in the atmosphere as a
function of the energy released (Revelle, 1996)

* Well known, and is basis for
- CTBT infrasound monitoring
- Infrasound estimates of bolide energy release

» Observed oscillation period of upper atmosphere
in simulation is around 180-240s

- Total energy in simulation is sum of E-dep during
entry + energy coupling to airblast at impact

« Observed frequency in simulation matches
classical prediction extremely well

Hunga-Tonga eruption in 2022 (VEI 5-6) created Lamb
wave with max. overpressure of 780Pa.

2023 PDC impact is at least an order of
magnitude more energetic
— Will resonate around the globe for several days
— Potential for triggering tsunamis far from impact

SC|23 - Asteroid Threat Assessment Project (ATAP
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Source Energy as a function of Lamb wave Peri:}
m=2XRo; n=2XRo
Total 8 |
1"10 Lamb/acoustic
energy . 1x107 |
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4 |
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|
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|
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2 : !
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|
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200s

Revelle & Whitaker, “Lamb wave from airborne explosion sources: Viscous effects and
comparisons to ducted acoustic arrivals.” LANL Report, LA-UR-96-3594, Dec. 1996

ARC/TNA
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Thermal Radiation

B e |

1-D radiation analysis T[K] 100 300 500 700 900 1100 1300 ARC/TNA

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllll'llllll'lll!llll|ll|lllllllllllllllllll_
, N 80

P ~ n \ Temperature f
1 60
1 40

Thermal radiation G- e
O MIN g4l

to ground . :
after impact g )

320 300

280 260 240 220 200 180 160 140 120 100 80 60 40 20 O -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320
Downrange distance, [km]

- Wide flat atmospheric slab (640 x 640 km) allows use of 1-D radiation approx. via Stephan-Boltzmann Law

- Radiative heatingis ¢q = 80’(T;LL — Tf)Ah, where o is the Stephan-Boltzmann constant, Th = Thot gas, Tc = Tambient

- Used emissivity, €, of 0.1 for hot air

 Gives heating of approx. q = 77 Watts/m?

* Be
* Be

ow threshold to ignite forest floors and damp leaves (Durda & Kring, 2004)

ow ignition threshold of fescue grass, pine needles & paper (Pitts, 2007)

Not enough energy to ignite entire domain, but
easy to see that earlier in the evolution,
significant regions of the domain could ignite.

SC|23 - Asteroid Threat Assessment Project (ATAP 16



Computing Resources :
NASA Advanced Supercomputing Center

ARC/TNA

Simulation

» 280M cells in computational domain

e Manufacturer: HPE

o 32 , OOO 't| me Steps e 4 E-Cells (1,152 nodes), 16 Apollo 9000 racks (2,048 nodes)
e 13.12 Pflop/s theoretical peak
» ~12 sub-iterations per time step (adaptive) « 9.07 Pflop/s LINPACK rating (#58 on June 2022 TOP500 list &)
_ _ « 172.38 Tflop/s HPCG rating (#44 on June 2022 HPCG list &)
» 2.1M total residual evaluations -

e Total memory: 1.27 PB

Resources
» Aitken computer in NAS’s Modular Supercomputing Facility

» 64 nodes x 128 cores: AMD EPYC Rome processors on Total of 8,192 cores
» Total wallclock time of ~8hrs per simulation

- Parallel efficiency of ~98% with each subdomain containing ~32k cells
 Estimated 0.25 Pflop/s sustained mean performance (including 10)
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Summary

ARC/TNA

- Probabillistic risk assessment and statistical inference was used to develop a nominal impactor and entry profiles
for hypothetical asteroid “2023 PDC” in sufficient detail to enable high-fidelity simulation.

- Performed high-fidelity 3D entry simulations for self-consistent @800 m asteroid entering at 12.67 km/s and 54° to
compute ground overpressure footprints and maps of local maximum wind speed to drive hazard modeling using
NASA’s Cart3D simulation package.

- Ground footprints show very large areas of devastation from both blast and wind and generally exceed those
predicted by the fast-running engineering methods in PAIR

Wind Speed
. Mean blast Area e
Blast Severity . ; Hurricane Mean
radius (km) (km?) Gatsaory Speed (mph) edile )
Unsurvivable JERIVEe] 74 17,203 5 157 95

Critical 4 psi 155 75,477 4 130 140
Severe 2 psi 235 173,494 3 111 155

2 96 180
Serious 1 psi >320 > 321,700 1 74 210

 |In addition to local blast damage:

— Simulations showed initiation of atmospheric Lamb waves with initial overpressures of ~1 psi which will travel
around the globe for days after impact and may pose a significant tsunami threat

— 1-D thermal analysis shows radiation from post-impact energy lingering in upper atmosphere may pose a
credible ignition threat to grasslands and forests near the impact
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