

Roman Space Telescope Wide Field Instrument

Grism and Prism Overview, Design, and As-Built Models

Mirror Tech Days, Huntsville, AL 2023-11-15

Bente Eegholm, Ph.D. NASA Goddard Space Flight Center

with C. Marx, V. J. Chambers, M. Dominguez, G. Gao, Q. Gong, E. Bray¹, J. Hagopian², J. P. Lehan, B. Pasquale, J. Schlieder, and L. Seide¹

All NASA except: 1. Peraton, 2. , Alcyon Technical Services, LLC, 3. KBR, Inc.

NASA GODDARD SPACE FLIGHT CENTER • JET PROPULSION LABORATORY •
L3HARRIS TECHNOLOGIES • BALL AEROSPACE • TELEDYNE • NASA KENNEDY SPACE CENTER •
• SPACE TELESCOPE SCIENCE INSTITUTE • IPAC • EUROPEAN SPACE AGENCY •
• JAPAN AEROSPACE EXPLORATION AGENCY • LABORATOIRE D'ASTROPHYSIQUE DE MARSEILLE •
• CENTRE NATIONAL d'ÉTUDES SPATIALES • MAX PLANCK INSTITUTE FOR ASTRONOMY •

Outline

- Brief Introduction of Roman Space Telescope (RST) and Wide Field Instrument (WFI)
- Grism and Prism roles in RST science
- Design challenges
- Grism and Prism As-built Models
- Spectral verification, dispersion and refractive index lessons learned
- Results of as-built modeling work and comparison to test
- Integration to Telescope and end-of-life (EOL) on-orbit performance prediction
- Summary

Grism and Prism Roles in RST Wide Field Instrument Science

Wide Field Instrument (WFI) Introduction

F/8 beam yields 9x tighter focus tolerance as compared to Webb/Hubble F/24

Element Wheel Assembly (EWA) houses:

- 8 science filters, Grism, Prism, and a dark element
- All elements are confocal
- Facilitates direct imaging, spectral imaging, and calibration

Operates at 170K

Focal Plane Assembly

- FPA integrates 18 H4RG detectors
- Each detector is a 4096 x 4096 array of 10μm x 10μm pixels
- FPA is mounted on a hexapod to allow tip/tilt/focus adjustment

Grism and Prism design challenges

Challenges for both Grism and Prism

- f/8 converging beam introduces large aberrations
- Large FOV and wavelength range introduces large field-dependent chromatic aberrations
- Zero beam deviation and parfocality requirements constrain design
- Fit into a tight space in the filter wheel
- 170K cold operation

Grism

- Extra challenge: Diffractive surfaces lead to aberrations difficult to balance with refractive elements
- High dispersion leads to diffractive solution
- 2nd diffractive surface balances aberrations in diffractive disperser
- Zero chief ray beam deviation at 1550 nm requires prismcompensation of diffractive elements deviation
- 2 prisms (E2,E3) after the diffractive element (E1) balance defocus, field and chromatic ab.
- Using 2 prisms allowed diffraction-limited performance over the large field of view and bandwidth using only spherical surfaces
- Material: Fused SIlica

	Grism	Prism				
Wavelength (μ m)	1.0-1.93	0.8-1.60				
FOV at WFI pupil (degree)	22 x 13	22 x 13				
Pupil mask diameter (mm)	89	95				
Beam f-number	Converging, ~f/8	Converging, ~f/8				
Wavefront error	diffraction limit (DL)	For wavelength λ >1um, RMS WFE < λ /10				
Spectral Resolving Power (per 2 pixels)	~700	75 ~180				
0-deviation wavelength (center of field of view)	1.550 μm	1.550 μm				
Confocal	Filter/Grism/Prism have same image surface position					

Prism

- High-index, high-dispersion glass (S-TIH1, n=1.71695, v=29.75) for 1^{st} element (P1) because dispersion yields optimal R vs λ for the science.
- 2nd element, P2, (lower index and dispersion) CaF2, n=1.43479, v=96.66)
 - Wedge placed in opposition to P1
 - Balances the aberrations from P1's tilted surfaces
 - Corrects the chief ray beam deviation
 - Maintains parfocality
- P1 controls the dispersion
- P2 is a corrector element to allow insertion into the telescope without moving the focal plane.
- All-spherical surfaces

As-Designed Grism

As-Designed Prism

Grism and Prism As-built Models Room and Cryogenic Temperatures

- Grism and Prism as-built modeling work simulates the lab alignment and testing activities of Grism and Prism assemblies by the following steps on optical models:
- 1. Apply as-fabricated values of each optical element
- 2. Apply metrology data
- 3. Optimize alignment/fabrication parameters within uncertainty ranges to match Zernike coefficients at each field to interferometric test results
- 4. Verify spectral dispersion performance of as-built models matches results from spectral verification testing

- Starting from room temperature as-built model:
- 5. Apply room temp-to-cryo changes from STOP analysis and cryogenic metrology data
- 6. Adjust/optimize elements' positions within the ancillary metrology uncertainty ranges to match low-order Zernike coefficients from cryo-interferometric tests
- 7. Adjust higher-order Zernikes determined by STOP modeling based on cryogenic interferometric measurements
- 8. Add mid-spatial SFE if needed

- During the Grism and Prism AI&T phase there was not yet any as-built telescope
- Monte Carlo performed based on the *Pseudo* as-built telescope which includes
 - Telescope mirrors' as-fabricated information
 - Alignment errors and compensators' adjustment
 - On-orbit perturbations and refocus performed in Telescope + Filter operational mode
- Grism and Prism mode: No telescope refocus adjustment. FPA position set for Filter mode

As-built Models

Cryogenic (175K) modeling and testing results comparison @1053 nm wavelength *Z3 data is a combination of 2 measurements so has ~ 3x more uncertainty

- Grism
 - 10 nm (0.0095λ RMS) max. difference

– 13 nm (0.0123λ) RMS max. difference

	Delta (Model-Test)								
RMS ZFR	Field	Field	Field	Field	Field	Field	Field	Field	Field
[nm]	1	2	3	4	5	6	7	8	9
Z3*(Power)	-3	-10	0	-3	4	-8	-4	0	8
Z4(X-Astig)	-1	-2	-1	-1	-3	-2	-3	-4	0
Z5(Y-Astig)	0	0	-1	7	-3	2	1	3	-2
Z6(X-Coma)	0	0	-1	-2	2	-2	1	-1	1
Z7(Y-Coma)	0	0	-1	1	-1	1	0	1	0
Z8(Spherical)	3	3	5	4	4	3	3	3	5
ZFR9	0	-1	-1	-3	0	-2	0	-1	1
ZFR 10	-1	-1	0	1	-3	0	-2	1	1
ZFR 11	-2	-2	0	-1	1	-2	-1	0	0
ZFR 12	0	1	-1	-1	1	0	1	-1	0
ZFR 13	1	1	1	2	-1	2	0	1	0
ZFR 14	1	2	0	1	2	2	2	1	1
ZFR 15	3	3	-1	3	3	3	4	1	0

	Delta (Model-Test)									
RMS ZFR	Field	Field	Field	Field	Field	Field	Field	Field	Field	Field
[nm]	1	2	3	4	5	6	7	8	9	10
Z3*(Power)	-11	-9	0	-5	11	6	-13	-1	5	-4
Z4(X-Astig)	2	3	-3	6	6	2	0	2	1	4
Z5(Y-Astig)	3	0	-2	-4	3	4	1	-1	-2	1
Z6(X-Coma)	1	2	-3	3	0	0	2	0	-1	2
Z7(Y-Coma)	1	6	2	4	2	3	2	3	2	4
Z8(Spherical)	0	1	-2	0	1	1	0	0	-1	-1
ZFR9	-1	0	0	1	-2	0	-1	-1	0	1
ZFR 10	-1	1	-1	0	1	0	0	1	0	1
ZFR 11	-1	1	1	-1	-1	-1	1	-2	-2	1
ZFR 12	-2	1	0	-1	-1	-1	0	-1	1	0
ZFR 13	1	2	2	4	0	1	0	3	2	4
ZFR 14	1	2	2	1	2	2	2	1	2	2
ZFR 15	2	2	2	3	0	0	1	1	2	2

Prism

Calibration and Characterization

- The Ellipse Testbed was developed to test
 - Diffraction efficiency
 - Throughput
 - Radiometric calibration
 - Bandpass filter edge measurement
 - Dispersion scale
- Spectral accuracy and wavelength knowledge is the most challenging test.
- Slitless spectrometers strongly rely on the dispersion scale and BP filter edge sharpness to determine absolute λ
- Testbed provides better than diffraction limited beam for Grism/Prism
- White light laser 700 nm –2000 nm
- Comb filters: spectral line series with the desired spacing and bandwidth.
- Argon source calibrated FFT based Optical Spectral Analyzers used to calibrate source wavelengths.
- Automated data collection and analysis

- Dispersion of Prism measured in Ellipse testbed
- Measurement geometry has to carefully match the telescope focal plane geometry for verification of the specifications
- At first, the resultant spectrum was slightly shorter than expected
- Data deviates from the model despite measuring the lot indices and careful characterization of the elements
- Dispersion still in spec but the model is not good enough for science simulations
 - Does not meet the knowledge goals
- Interferometry performed and modeled at 1053 nm and 1546 nm to optimize equipment use schedule
- The 1053nm/1046nm models suggested slightly different alignments, but individually consistent

- Trouble-shooting ruled out everything but refractive index value in the Prism
- CaF2 a pure substance with very small lot-to-lot variation, ruled out as source of error
- S-TIH-1 solid solution with small variability

- Raw ellipse testbed data used
- Optical model-based fit
- Only employed field with performance most tolerant to alignment difference between 1053 and 1546 nm models
- Assume CHARMS lot measurement index is the same as our component's index at the short end (nearest VIS)
 - No arc-sec level angle measurement available to establish a zero deviation to high certainty
- Index a free variable at all other λ
- Interpolate resultant indices with a 3-term Sellmeier dispersion formula
- New indices determined at room temperature (Prism operates at 175K)
- New dispersion allows a single alignment to describe interferometric data and power measurements at 1053nm & 1546nm to within error bars
- Cryogenic dispersion and focus will be measured during WFI testing

- Catalog indices get more uncertain as the spectral region deviates from VIS
- Single lot measurements are not adequate for precision work
- Sample the *exact blank*

Summary

- The design and modeling efforts presented have helped overcome the many challenges in designing, implementing, testing, and calibrating the RST Grism and Prism optical instruments.
- We generated as-built Grism and Prism models based on data at the component and assembly level and augmented the data with STOP results to inform and bound them
- Both room temperature and cryogenic models mimic the test results within the tests' experimental errors
- We predicted the observatory level end-of-life performance of Grism and Prism, and both meet requirements with adequate margin
- Going forward, these models will be further refined as the testing progresses and will serve as starting points for on orbit models that can be used for science simulations
- The Grism and Prism have now been successfully built and tested at the instrument level, delivered and incorporated into the WFI
- The WFI is currently undergoing thermal vacuum test at Ball Aerospace in Boulder, CO.
- When WFI element level test is complete, it will be integrated to the RST telescope at NASA Goddard Space Flight Center in Greenbelt, MD.

Prism

Thank you for your attention!