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Space Travel Introduces Risks for Living Systems

Space risks
NASA hazards Risks and health consequences
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Space Biology Research

Characterizing the response of living systems to spaceflight
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The Challenges of High Complexity, High
Dimensionality, Low Sample Size Data




Paradigm Shift in Biological Data Generation

DNA sequencing costs over time
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Space biological data analysis challenges

High dimensional
sequencing data

 Small samplen 30 samples
* High feature count




Space biological data analysis challenges

* Heterogeneous data
» Sparse data

Sample 1
Sample 2

Sample n

High dimensional
sequencing data

Gene expression
matrix

30 samples

SNP Drug Environmental .
matrix treatment variables Histology




Space biological data analysis challenges

High dimensional
sequencing data
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* Transfer from model to human
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Complex (Biological) Systems need Complex Models

Multiple approaches for characterizing patterns in biology
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STATISTICAL METHODS *, s MACHINE LEARNING

. « Draw conclusions from . |« Learnfrom data to make
observed data (inference) i i predictions on unseen data

: (prediction)
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ML Learns and Predicts Complex Biological Phenomena

> J Thorac Imaging. 2020 Nov 1;35(6):361-368. doi: 10.1097/RTI.0000000000000544.

A Novel Machine Learning-derived Radiomic
Signature of the Whole Lung Differentiates Stable

From Progressive COVID-19 Infection: A l
Retrospective Cohort Study @ @

Liping Fu ', Yongchou Li 2, Aig > Sci Data. 2021 Apr 29;8(1):121. doi: 10.1038/s41597-021-00900-3.

COVID-CT-MD, COVID-19 computed tomography

AlphaFold scan dataset applicable in machine learning and deep
Protein Structure Database learning

Parnian Afshar ', Shahin Heidarian 2 Nastaran Fnshaei ! Farnansh Naderkhani 1
Moezedin Javad Rafiee 3, Anastasic > PLoS One. 2013 Apr 30;8(4):e61318. doi: 10.1371/journal.pone.0061318. Print 2013.

Konstantinos N Plataniotis 7, Arash

Machine learning prediction of cancer cell sensitivity
to drugs based on genomic and chemical properties

Michael P Menden ', Francesco lorio, Mathew Garnett, Ultan McDermott, Cyril H Benes,

Pedro J Ballester, Julio Sa¢ 6th International Conference on Smart Computing and Communications, ICSCC 2017, 7-8
—— December 2017, Kurukshetra, India

Lung Cancer Detection using CT Scan Images

Suren Makaju”, P.W.C. Prasad‘ Review > Iran J Public Health. 2017 Feb;46(2):165-172.

Improving the Prediction of Survival in Cancer
Patients by Using Machine Learning Techniques:
Experience of Gene Expression Data: A Narrative
Review

Azadeh Bashiri !, Marjan Ghazisaeedi ', Reza Safdari !, Leila Shahmoradi !, Hamide Ehtesham !
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Al for Life in Space working group: Al4LS
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Al/ML
Modeling

= Predictive

= Hypothesis Driver
= Countermeasure
= Repurposing

Basic Tools
= Computational Analysis
= Cross-Experiment Analysis
= Meta Analysis
= Data Visualization

FAIR and Open Data

= Metadata: Investigation, Study, Assay

= Qutputs: Raw, Processed

= Mission-Payload: Environmental,
Telemetry
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Explainable ML to Interrogate the Molecular
’ Underpinnings of Spaceflight Muscle
Atrophy
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Spaceflight Changes Muscles at the Cellular Level

TIBIALIS ANTERIOR MUSCLE

SOLEUS MUSCLE e “fast-twitch” muscle

 “slow-twitch” muscle
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Spaceflight Changes Muscles at the Cellular Level

Muscle cells take in calcium for normal contraction

1.04- SOLEUS 1.1- TIBIALIS ANTERIOR
s 1.02- ; 1.04
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§ ‘”GQ — Flight ﬁ oh-
~ 0.98- - GC >
Az — vV 2 o7 -
B 0.6+
& g — Fught
0.94 T T T 1 08 T T 1
0 250 500 750 1000 H 200 oo o R
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In spaceflown mice,
calcium uptake efficiency decreases in soleus muscle...
but increases in tibialis anterior muscle!
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* Train a machine learning model to learn the

relationship between calcium reuptake levels and
molecular changes within the cell

* Interrogate the model to identify molecular predictors

(biomarkers) of calcium reuptake changes in
spaceflight

-
""""
- .
-----------------------------------------------------------------------------------------------------------------------



OSD-104

OSD-105 ONA RNA
0SD-488 methylation sequencing

Calcium

) NG /
DNA RNA Proteomics
methylation sequencing




Data Pipeline and Model Training

» Data preprocessing

* Multi modal data Train ML model to
integration gl predict calcium levels

* Dimensionality using molecular data
reduction and feature
selection

|dentify predictive
features
(biomarkers)

* Leave-one-out-cross-validation (LOOCV) due to low
sample sizes (n=12)

* Model performance calculated as an average across
LOOCV runs

* Top features across all LOOCV runs evaluated as
biomarkers




Explainable ML for Biomedical Research

What is the biological
interpretation of this

intermediate value in the Deep neural network
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QLattice Symbolic Regression Machine Learning Algorithm

Interpretable computational graphs represent mathematical relationships

X

x1
: multiply

x1
x8

tanh

x1

x0

tanh

Loss: 3.09E+03

A computational
graph predicting
short term rental
prices from data



Novel Biomarkers for Calcium Uptake Changes in Muscle
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*  Downregulated by nitrosative Decreased Acypl in flight allows increased calcium transport...
stress which decreases calcium
transport ...and increased Rps7 in flight shows low nitrosative stress.



Novel Biomarkers for Calcium Uptake Changes in Muscle
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Symbolic Regression Identifies Biomarker Relationships

Biological features operate in interconnected networks

> QLattice identifies mathematical relationships
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Summary of Outcomes
Explainable ML to Interrogate the Molecular Underpinnings of Spaceflight Muscle Atrophy

* Explainable ML methods can provide insight to complex biological
relationships

* Explainable ML analysis of multi-modal biological datasets from the
NASA Open Science Data Repository resulted in:
* Novel biomarkers
« Mathematical relationships between biomarkers
» Consistency with previous biological knowledge
 Starting point for new investigations
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Large Pre-trained Models to Connect
Biomedical Knowledgebases with Small
Spaceflight Datasets
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Biological Data and the Curse of HDLSS

* High-throughput sequencing provides a readout of the molecular

makeup of cells
* Genome sequencing (3 billion nucleotides: A,C,G,T)

* Gene expression sequencing (text readout converted to numerical
values: ~50,000 genes)

 This leads to high dimensionality and low sample size (HDLSS)
RNA gene expression matrix

10 samples

50 genes

1]

10,000 samples

50,000 genes

What we have What we want




Transfer Learning: Pretrained Models

* General knowledge about a particular domain is o
useful for any specific task within that domain ~—
Lo
. Large
Strategy. Pretraining
* Pre-train a model on a large training dataset in DRl
the desired domain Generalized ML Mode
* For other tasks (“downstream tasks”) in the (not specific to a task)
domain, start with the pre-trained model and
. Small task- ey Py
fine-tune specific S = =
« General knowledge carries over and does not need to datasets
be re-learned
 Fine tuning requires fewer samples than training from ,@, @ @)
scratch
Models that perform well on individual tasks




Pretrained Model for Gene-Gene Interaction Networks

* Overview:
* Pre-train a model on a huge gene activity dataset to learn the relationships
between all genes in human (or mouse) cells in general
* Fine-tune for specific tasks on smaller datasets
« Example: identify gene-gene network dysregulation in spaceflight compared
to ground control samples

* Pretraining dataset: recount3
* 750,000+ publicly available, uniformly processed human and mouse RNA
sequencing samples
» Captures a huge amount of biological complexity and variability

Hrecount3
BN "'l W "



Gene-Gene Interaction Model

Encoder Latent Decoder
Space

< > +

* Deep learning model architecture:
SCBERT: encoder-decoder

 Self-supervised pre-training on
massive amounts of unlabeled data

1 t

Input Data Encoded Data Reconstructed Data

iFIores 201 9i



Masking Values for Training

Encoder Latent Decoder
Space

* Randomly mask (hide) expression
values of some input genes

1 t

Input Data Encoded Data Reconstructed Data
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* Context Learning: Train
model to use the values of
other, non-masked gene
expression values to
reconstruct the masked values

* Minimize the difference

between the reconstructed
and original (hidden)
expression values



Learn General Gene-Gene Knowledge

Latent
Space

Encoder Decoder

* Inthe process, general
knowledge about gene-gene
Reconstructed interactions is learned and

Gene 2 Hidden ;

% . .
}‘\‘f,;% Gene 2 stored in the encoder weights
U
s«w‘q /\

.,"‘9/\ ‘\ S . .
?;"éfﬁ‘n N\ * The pre-trained weights are a

good starting point for gene-
gene interaction tasks in

Gene n B ociuciod general, and they can then be
Gene n fine-tuned to specific
T f downstream tasks
Input Data Encoded Data Reconstructed Data



Transfer learning outperforms traditional training

Traditionally Trained Model Transfer Learning Model Training
ol _— wo Validation
> %
O
© .
[ — val z &
> — train % e val
o &
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< = | .
m .
8! ; High model
- performance
B | ™ prior to
= % - - = overfitting
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Summary of Outcomes

Large Pre-trained Models to Connect Biomedical Knowledgebases with Small Spaceflight Datasets

* Pretrained a large encoder model to learn gene-gene interaction
networks in general

* Tested the trained model on a downstream, supervised task using a
tiny space biology dataset

* Pretrained model outperforms traditionally trained model

* Future vision: “model zoo” of many pretrained models available to
the space biology research community
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A Suite of Standardized and ML-ready
Training Datasets for Space Biology




Benchmark Datasets for Space Biology

Dataset(s) \ / Reference

implementation

Benchmark




RNA sequencing benchmark dataset

Scientific motivation: Effects of spaceflight on mouse liver health

Gene expression Gene expression
o . .
8 matrix e _ Generative o matrix
. [0) aus_S|an Adversarial tq:)
Al readiness > noise Network (GAN) &
plpel’ne: 8 ----.-j-.-... --------- ‘- » 8
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Fluorescence microscopy benchmark dataset

Scientific motivation: simulated space radiation causes cellular DNA damage

Simulated galactic
cosmic rays

15 mouse

’ 70 - :
maximum 60 1 nfoci10++
intensity automatically 2 50
projection estimated nfoci 40
--------- » PR ]
16-bit @ 30 )
el conversion E 20 - i
Raw Dataset (n = 94,193): Max Intensity Dataset (1)0 i .
32-bit Z stacks (9 indices) (n=94,193): nfoci0 [nfoci1-9nfoci10+
16-bit single-index TIFFs




Cloud-based ML-ready Data Increase Scientific Community Engagement
UC Irvine CS175: “Project in Artificial Intelligence” Senior Course

» BPS Microscopy benchmark dataset formed the basis Image Segmentation and Foci Detection
for UCI CS175 senior ML projects

» Real-world data and scientific problems inspired the
students to generate creative solutions

» ML-ready dataset allowed students to spend time on
ML rather than preprocessing

» 9 teams focused on a variety of scientific questions:
* Supervised classification
* Unsupervised learning
* Self-supervised learning
* Segmentation and detection
* Graph neural networks
* Generating synthetic data
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Deep space exploration challenges

NASA Mission Goals: Deep Space Exploration

Distance from earth

High latency communications
Data bandwidth and power
constraints

Infrequent resupply

Inability to evacuate

Limited crew time

Moon to Mars Mission Goals can be supported by current
terrestrial capabilities in Al and ML




Al/ML Architecture to Support Deep Space MlSSlon Goals
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Hardware for ML-enabled in-situ Data Collection and Analysis

HPE’s Spaceborne Computer

Category Technology Relevance to
spaceflight

In situ capabilities: Neuromorphic Space-borne computing with

small footprint processors very low power, little or no

and resilient to Edge computing®* cooling, high efficacy for Al

environmental algorithms and resilience to

factors (radiation, radiation'*%*

acceleration, Process and analyse data

vibration) collected in deep-space
missions on board for input to
the PSH system

NVIDIA Jetson
edge Al and
robotics platform
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ML-enabled “Self-Driving” Laboratories

Category Technology Relevance to
spaceflight

In situ data Active learning'”’ Train and deploy a model,

analysis which continuously monitors

and retrains itself with
self-assessments and regular
human inspection

Current paradigm

Organic redox flow batteries

Material
concept

Molecular
[ .
S synthesis
—t
[S}
8
E Device = l'nﬂ =l
= construction =

Testing and S
characterization

g Scaling and manufacturing

AQDS
molecule

Device
prototype

Stability,
solubility,
voltammetry

“Closing the loop”

Inverse design

Generative Simulation/
process optimization

Integrated pipeline

Al/ML
Software ﬁ
Robotics

« “Self-driving” automated laboratory capabilities enable in-situ data collection
* Active learning & edge computing would allow in-situ data analysis
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ML Approaches to Support Remote Data Management

Category Technology Relevance to
spaceflight

Limiting data Federated Train a model on data collected

transfer to Earth learning™® in a deep-space mission and on

Earth-based data for stronger
inference

Distilling and
maximizing
computing needs
in space

Transfer learning
Dimensionality
reduction'*®
TinyML™®

Few-shot learning™®

Train large models on Earth and
deploy on data collected in-flight
Identify key features to reduce
data size

Prune large neural networks to
deploy on spacecraft or habitats
with operational constraints
Learn from few data points

by leveraging contextual
information

Space

P
N Space data relay
*/ y \ Active mission environment data
R
]

Al-assisted metadata harmonization

Automated analysis
Off-world

Autonomous labs
- Edge-computing
- Experimental data
« Environmental data

Space data center
Crewed labs

« Experimental data
- Vehicle data

Crew health
Crew health - Precision space health
« Precision space health
Data @ Data
9
Open science data repositories ‘&’

Raw experimental data
Experimental environmental data
Al-enhanced analytics

Data standards

vl AR,

Open science Researchers
Public Accessed by
Education/training scientists
Citizen science Ground-based
Earth data analysis

* ML methods such as federated learning,
transfer learning, and few-shot learning
support deep space data transfer
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ML-enabled Biomonitoring Approaches

Category

Technology

Relevance to
spaceflight

Methods to train

Translation?'5®

For example, train on radiation

example, outliers)
from training data

representation
learning‘54"55

on data that differ exposure data in animals and
from inferencing predict radiation risks for human
context crew members

Methods for when  Generalization: Prediction in a situation where
inferencing data Risk an astronaut’s biosensor data
are extremely extrapolation™*>® are outliers compared to the
different (for Domain invariant terrestrial clinical data used for

model training

Multi-layered monitoring
O with Al algorithms

Precision

Space —
. Health g } =)
A —

Molecular and
physiological monitoring

((« &))

Wearables and point-of-care devices

High-latency
communication
Deep space missions

LEO

S
’
0
’
,

No rescue

. e No evacuation
Real time »* Infrequent resuppl
support o q PRy

— B

T e

Earth Continuous environmental sensing

3

Methods for when
inferencing data
are persistently
different from
training data

Adaptation'®

For example, adapting a

model trained using terrestrial
electrocardiogram data to a ‘new
normal’ of electrocardiogram
readings from astronauts whose
heart physiology has changed in
spaceflight

* Multi-layered monitoring of spacecraft and
habitats & in-situ computing capabilities for real-
time recommendations




ML-aided Precision Space Health System

Research and terrestrial support

2
7
¥

Biomarker discovery,

validation

Radiation, cardiovascular,

CNS dysfunction biomarkers

Successful countermeasure
biomarkers

Pairing with phenotypes

Health assessment

Pre-, mid-, post-flight

Longitudinal observation
-omic baselines

Enable Al anomaly detection

Experimental models
Human analogues
Model organisms
Biological mechanisms
Modelling

Mission control center
Medical consults
(life support)

Prioritized upload/
download data/models
Crew health management
Environmental control

management

!

Spaceflight hazards

and stressors

Hostile confinement,
distance, radiation,
microgravity, regolith,
temperature, atmosphere

Dosimetry
DNA damage
Pharmaceutical
stability

o

Wristband [

Vital signs .@ ))) -—
Movement

UJ
Glucose

Smart toilet
Urinalysis = /
Stool analysis

Microbiome

Real-time support and operations

D ™~

Environmental Monitoring
Vibration, radiation,
carbon dioxide, oxygen,
relative humidity,
acoustics, temperature,
partial pressures

Fundoscopy

Intraocular
>\ pressure,
retina, OCT

Voice, behaviour

+.+
—_ analysis
Stress, mood,

psychological
ﬂ’)) factor

Ultrasound

Al-guided
diagnostics
Blood flow

Internal organ
imaging

Countermeasures

l

A’\F\’ 13

®
&y

/; w“'?f:\

Al/ML risk prediction
Pattern recognition
Predictive modelling
Actionable response

Digital twin

Simulated human

Model organism replicate
Augmented deployment

Personalized medicine
Procedural-specific Al
Human-machine pairing
Al-assisted learning
Augmented reality

Intervention determined
through Al/ML, crew,
and CMO

Behaviour change
Specific testing

Early intervention

* ML to support modeling, prediction and recommendations for a Precision Space
Health system for real-time decision-making in deep space
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