Biological Research and Space Health Enabled by Machine Learning to Support Deep Space Missions

Ryan T. Scott Lauren M. Sanders, Ph.D. ASGSR2023, Nov 18, 2023 NASA Ames Research Center KBR & Blue Marble Space Institute of Science

National Aeronautics and Space Administration

Space Travel Introduces Risks for Living Systems

*Data originates from Gene Expression Omnibus (GEO) and EMBL's European Bioinformatics Institute (EMBL-EBI) repositories.

The Challenges of High **Complexity**, High **Dimensionality**, Low **Sample Size** Data

Paradigm Shift in Biological Data Generation

Traditional molecular biology studies a few genes or proteins at a time through High-throughput sequencing ('omics) • gives a readout of the entire genome in a cell or tissue sample Transcription Μ DNA **RNA** Protein Translation Replication Genome **Transcriptome** Proteome Epigenome Epitranscriptome Metabolome

Space biological data analysis challenges

Space Biological Data Challenges

- Small sample *n*
- High feature count
- Heterogeneous data
- Sparse data
- Transfer from model to human

Space biological data analysis challenges

Space Biological Data Challenges

- Small sample *n*
- High feature count
- Heterogeneous data
- Sparse data
- Transfer from model to human

Space biological data analysis challenges

Space Biological Data Challenges

- Small sample *n*
- High feature count
- Heterogeneous data
- Sparse data
- Transfer from model to human

Complex (Biological) Systems need Complex Models Multiple approaches for characterizing patterns in biology

STATISTICAL METHODS

- Draw conclusions from observed data (inference)
- Assume specific data distributions
- Examples: hypothesis testing, correlative analysis

MACHINE LEARNING

- Learn from data to make predictions on unseen data (prediction)
- Able to model nonlinear relationships without assuming a data distribution
- Examples: classification, regression, clustering

ML Learns and Predicts Complex Biological Phenomena

> J Thorac Imaging. 2020 Nov 1;35(6):361-368. doi: 10.1097/RTI.00000000000544.

A Novel Machine Learning-derived Radiomic Signature of the Whole Lung Differentiates Stable From Progressive COVID-19 Infection: A Retrospective Cohort Study

Liping Fu⁻¹, Yongchou Li⁻², Aic > Sci Data. 2021 Apr 29;8(1):121. doi: 10.1038/s41597-021-00900-3.

The opportunity: adapt ML principles to power knowledge discovery and address key challenges in space biological research

COVID-CT-MD, COVID-19 computed tomography scan dataset applicable in machine learning and deep learning

Parnian Afshar ¹, Shahin Heidarian ², Nastaran Enshaei ¹, Farnoosh Naderkhani ¹ Moezedin Javad Rafiee ³, Anastasi; > PLoS One. 2013 Apr 30;8(4):e61318. doi: 10.1371/journal.pone.0061318. Print 2013. Konstantinos N Plataniotis ⁷, Arash

Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties

> Michael P Menden¹¹, Francesco Iorio, Mathew Garnett, Ultan McDermott, Cyril H Benes, Pedro J Ballester, Julio Sai 6th International Conference on Smart Computing and Communications, ICSCC 2017, 7-8 December 2017, Kurukshetra, India

> > Lung Cancer Detection using CT Scan Images

Suren Makaju^a, P.W.C. Prasad['] Review > Iran J Public Health. 2017 Feb;46(2):165-172.

Improving the Prediction of Survival in Cancer Patients by Using Machine Learning Techniques: Experience of Gene Expression Data: A Narrative Review

Azadeh Bashiri ¹, Marjan Ghazisaeedi ¹, Reza Safdari ¹, Leila Shahmoradi ¹, Hamide Ehtesham ¹

Al for Life in Space working group: Al4LS

Leveraging ML and AI methods to model space biology data from the NASA Open Science Data Repository: NASA GeneLab (omics) and NASA Ames Life Sciences Data Archive (ALSDA; phen-omics) to better understand the complex effects of spaceflight on living systems across hierarchical biological levels.

Explainable ML to Interrogate the Molecular Underpinnings of Spaceflight Muscle Atrophy

Spaceflight Changes Muscles at the Cellular Level

SOLEUS MUSCLE

• "slow-twitch" muscle

TIBIALIS ANTERIOR MUSCLE

• "fast-twitch" muscle

Spaceflight Changes Muscles at the Cellular Level Muscle cells take in calcium for normal contraction

In spaceflown mice, calcium uptake efficiency *decreases* in **soleus** muscle... but *increases* in **tibialis anterior** muscle!

GOAL

- Train a machine learning model to learn the relationship between calcium reuptake levels and molecular changes within the cell
- Interrogate the model to identify molecular predictors (biomarkers) of calcium reuptake changes in spaceflight

Data Pipeline and Model Training

Kevin Li

Explainable ML for Biomedical Research

QLattice Symbolic Regression Machine Learning Algorithm Interpretable computational graphs represent mathematical relationships

Novel Biomarkers for Calcium Uptake Changes in Muscle

- Top Biomarkers for Calcium Uptake in Tibialis Anterior Muscle:
 - **1. Acyp1**
 - <u>Inhibits</u> calcium transport in fast-twitch muscles (tibialis)
 - <u>Enhances</u> calcium transport in *slow-twitch* muscles (soleus)
 - 2. Rps7
 - Downregulated by *nitrosative stress* which decreases calcium transport

Decreased **Acyp1** in flight allows increased calcium transport...

...and increased **Rps7** in flight shows low nitrosative stress.

Novel Biomarkers for Calcium Uptake Changes in Muscle

b	Feature	Models (n)	С		0.894
	Acyp1 (proteomics)	89		T10 CV R ²	0.711
	Rps7 (proteomics)	27		RNA-seq features (n)	12
	Cct6a (proteomics)	5		Proteomic features (n)	38
	Glt28d2 (RNA-seq)	4			

- Top Biomarkers for Calcium Uptake in Tibialis Anterior Muscle:
 - **1. Acyp1**
 - <u>Inhibits</u> calcium transport in *fast-twitch* muscles (tibialis)
 - <u>Enhances</u> calcium transport in *slow-twitch* muscles (soleus)
 - 2. Rps7
 - Downregulated by nitrosative stress which decreases calcium transport

Decreased Acyp1 in flight means decreased calcium transport...

...and decreased **Rps7** in flight shows high nitrosative stress.

Symbolic Regression Identifies Biomarker Relationships Biological features operate in interconnected networks

QLattice identifies mathematical relationships between Acyp1 and Rps7

- Gaussian
- Multiply, then tanh

Li et al., npj Microgravity, In Review

Summary of Outcomes

Explainable ML to Interrogate the Molecular Underpinnings of Spaceflight Muscle Atrophy

- Explainable ML methods can provide insight to complex biological relationships
- Explainable ML analysis of multi-modal biological datasets from the NASA Open Science Data Repository resulted in:
 - Novel biomarkers
 - Mathematical relationships between biomarkers
 - Consistency with previous biological knowledge
 - Starting point for new investigations

Large Pre-trained Models to Connect Biomedical Knowledgebases with Small Spaceflight Datasets

Biological Data and the Curse of HDLSS

- High-throughput sequencing provides a readout of the molecular makeup of cells
 - Genome sequencing (3 billion nucleotides: A,C,G,T)
 - Gene expression sequencing (text readout converted to numerical values: ~50,000 genes)
- This leads to high dimensionality and low sample size (HDLSS)

RNA gene expression matrix

Kevin Li

Transfer Learning: Pretrained Models

• General knowledge about a particular domain is useful for any specific task within that domain

Strategy:

- **Pre-train** a model on a large training dataset in the desired domain
- For other tasks ("downstream tasks") in the domain, start with the pre-trained model and **fine-tune**
 - General knowledge carries over and does not need to be re-learned
 - Fine tuning requires fewer samples than training from scratch

Pretrained Model for Gene-Gene Interaction Networks

• Overview:

- Pre-train a model on a huge gene activity dataset to learn the relationships between all genes in human (or mouse) cells in general
- Fine-tune for specific tasks on smaller datasets
 - Example: identify gene-gene network dysregulation in spaceflight compared to ground control samples
- Pretraining dataset: recount3
 - 750,000+ publicly available, uniformly processed human and mouse RNA sequencing samples
 - Captures a huge amount of biological complexity and variability

Gene-Gene Interaction Model

- **Deep learning model architecture:** scBERT: encoder-decoder
- Self-supervised pre-training on massive amounts of unlabeled data

Masking Values for Training

• Randomly mask (hide) expression values of some input genes

Minimize Error

• **Context Learning:** Train model to use the values of other, non-masked gene expression values to reconstruct the masked values

• Minimize the difference between the reconstructed and original (hidden) expression values

Learn General Gene-Gene Knowledge

- In the process, general knowledge about gene-gene interactions is learned and stored in the encoder weights
- The pre-trained weights are a good starting point for genegene interaction tasks in general, and they can then be fine-tuned to specific downstream tasks

Transfer learning outperforms traditional training

Kevin Li

Summary of Outcomes

Large Pre-trained Models to Connect Biomedical Knowledgebases with Small Spaceflight Datasets

- Pretrained a large encoder model to learn gene-gene interaction networks in general
- Tested the trained model on a downstream, supervised task using a tiny space biology dataset
- Pretrained model outperforms traditionally trained model
- Future vision: "model zoo" of many pretrained models available to the space biology research community

A Suite of **Standardized** and **ML-ready** Training Datasets for Space Biology

Benchmark Datasets for Space Biology

- Scientific ML
 benchmarking—Best ML
 algorithm for this problem
- Application benchmarking—Algorithm performance
- System benchmarking— Hardware and software architecture

NASA Science Mission Directorate James Casaletto & NASA GeneLab

Cloud-based ML-ready Data Increase Scientific Community Engagement UC Irvine CS175: "Project in Artificial Intelligence" Senior Course

- BPS Microscopy benchmark dataset formed the basis for UCI CS175 senior ML projects
- Real-world data and scientific problems inspired the students to generate creative solutions
- ML-ready dataset allowed students to spend time on ML rather than preprocessing
- > 9 teams focused on a variety of scientific questions:
 - Supervised classification
 - Unsupervised learning
 - Self-supervised learning
 - Segmentation and detection
 - Graph neural networks
 - Generating synthetic data

Image Segmentation and Foci Detection

Opportunities and Applications for Machine Learning to Support Deep Space Exploration

NASA Mission Goals: Deep Space Exploration

Deep space exploration challenges

- Distance from earth
- High latency communications
- Data bandwidth and power constraints
- Infrequent resupply
- Inability to evacuate
- Limited crew time

Moon to Mars Missions: Human and Biological Sciences Goal: Advance understanding of how biology responds to the environments of Moon, Mars, and deep space to advance fundamental knowledge, support safe, productive human space missions and reduce risks for future exploration.

Required: maximally autonomous and automated systems for science and health data collection, analysis, and real-time decision-making

Moon to Mars Mission Goals can be supported by current terrestrial capabilities in AI and ML

AI/ML Architecture to Support Deep Space Mission Goals

nature machine intelligence Review article Biomonitoring and precision health in espace supported by artificial intelligence	42256-023-00617-5 deep	nature Powerin A revolution in roboti	Peatures Research and reviews Spontor	in y f
Received: 23 December 2021 Ryan T. Scott ^{© 152} , Lauren M. Sanders ^{© 2.52} , Erik L. Antonser	nature machine ir Review article Biological r deep space	ntelligence research and supported by	self-driving la y artificial inte	038/s42256-023-00618-4 bs in elligence
Stanford University SAN JOSE STATE LUNIVERSITY SAN JOSE STATE LUNIVERSITY SAN JOSE STATE LUNIVERSITY GOOGLE WIVERSITY UNIVERSITY	Received: 23 December 2021	Lauren M. Sanders® ¹⁵ Baylor College of Medicine Caltech	¹² , Ryan T. Scott ^{© 2.52} , Jason H. Yang (SALK INSTIT FOR BIOLOGICAL ST FOR BIOLOGICAL ST LIVESITY OF ALABAMA AT BIRMINGHAM UNIVERSITY OF NORTH FLORIDA.	D ³ , Amina Ann Qutub ⁴ , UDTES MEDICAL SCHOOL UNIVERSITY OF MINNESOT Driven to Discover' Weill Corne Medicine
Scott et al., Nature Machine Intelligence 2023	T Y			46

Hardware for ML-enabled in-situ Data Collection and Analysis

Category	Technology	Relevance to spaceflight
In situ capabilities: small footprint and resilient to environmental factors (radiation, acceleration, vibration)	Neuromorphic processors Edge computing ⁴⁴	Space-borne computing with very low power, little or no cooling, high efficacy for AI algorithms and resilience to radiation ^{146,147} Process and analyse data collected in deep-space missions on board for input to the PSH system

HPE's Spaceborne Computer

NVIDIA Jetson edge AI and robotics platform

ML-enabled "Self-Driving" Laboratories

- "Self-driving" automated laboratory capabilities enable in-situ data collection
- Active learning & edge computing would allow in-situ data analysis

ML Approaches to Support Remote Data Management

Category	Technology	Relevance to spaceflight
Limiting data transfer to Earth	Federated learning ¹¹⁶	Train a model on data collected in a deep-space mission and on Earth-based data for stronger inference
Distilling and maximizing computing needs in space	Transfer learning Dimensionality reduction ¹⁴⁸ TinyML ¹⁴⁹ Few-shot learning ¹⁵⁰	Train large models on Earth and deploy on data collected in-flight Identify key features to reduce data size Prune large neural networks to deploy on spacecraft or habitats with operational constraints Learn from few data points by leveraging contextual information

• ML methods such as federated learning, transfer learning, and few-shot learning support deep space data transfer

ML-enabled Biomonitoring Approaches

Category	Technology	Relevance to spaceflight
Methods to train on data that differ from inferencing context	Translation ^{152,153}	For example, train on radiation exposure data in animals and predict radiation risks for human crew members
Methods for when inferencing data are extremely different (for example, outliers) from training data	Generalization: Risk extrapolation ^{154,155} Domain invariant representation learning ^{154,155}	Prediction in a situation where an astronaut's biosensor data are outliers compared to the terrestrial clinical data used for model training
Methods for when inferencing data are persistently different from training data	Adaptation ¹⁵⁶	For example, adapting a model trained using terrestrial electrocardiogram data to a 'new normal' of electrocardiogram readings from astronauts whose heart physiology has changed in spaceflight

• Multi-layered monitoring of spacecraft and habitats & *in-situ* computing capabilities for real-time recommendations

ML-aided Precision Space Health System

• ML to support modeling, prediction and recommendations for a Precision Space Health system for real-time decision-making in deep space

Acknowledgements

Al for Life in Space

- Kevin Li
- Riya Desai
- Adrienne Hoarfrost
- James Casaletto
- Nadia Ahmed
- Sylvain Costes

- Radiation Biophysics Lab
- Egle Cekanaviciute
- Connie Pasternak
- Sylvain Costes

Open Science for Life in Space Teams

2021 AI/ML Workshop Participants

Open Science Analysis Working Group Members

Compute

NASA Center for Climate Simulation Science Managed Compute Environment

- Aaron Skolnik
- Andre Avelino Paniagua
- Ellen Salmon
- Daniel Duffy

Support

- NASA Space Biology Program
- NASA Science Mission Directorate
- NASA Human Research Program
- NASA Biological and Physical Sciences
- NASA Postdoctoral Program