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Space Travel Introduces Risks for Living Systems

Afshinnekoo et al., Cell, 2020
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Basic Life Processes             Applications for Human Space Travel

Plants

Cells and 
molecules

Microbes

Developing 
organisms

Animals

Space Biology Research
Characterizing the response of living systems to spaceflight
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NASA Open Science Data Repository
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• Spaceflight and space-
relevant biological datasets

• FAIR data: Findable, Accessible, 
Interoperable, Reusable
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The Challenges of High Complexity, High 
Dimensionality, Low Sample Size Data
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broadinstitute.org

https://genius.com/Biology-genius-the-central-dogma-annotated

Genome
Epigenome

Transcriptome
Epitranscriptome

Proteome
Metabolome

Paradigm Shift in Biological Data Generation

• Traditional molecular biology studies a 
few genes or proteins at a time through 

• High-throughput sequencing (‘omics) 
gives a readout of the entire genome in a 
cell or tissue sample
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Space Biological Data Challenges
• Small sample n
• High feature count
• Heterogeneous data
• Sparse data
• Transfer from model to human

High dimensional 
sequencing data

50,000 genes

30 samples

Sample 1
Sample 2

…
Sample n

Gene expression 
matrix

SNP
matrix

Environmental
variables

Drug
treatment Histology

Space biological data analysis challenges
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STATISTICAL METHODS MACHINE LEARNING

• Draw conclusions from 
observed data (inference)

• Assume specific data 
distributions 

• Examples: hypothesis testing, 
correlative analysis

• Learn from data to make 
predictions on unseen data 
(prediction)

• Able to model nonlinear 
relationships without 
assuming a data distribution

• Examples: classification, 
regression, clustering

Bzdok et al., Nature Methods 2018

Complex (Biological) Systems need Complex Models
Multiple approaches for characterizing patterns in biology



ML Learns and Predicts Complex Biological Phenomena
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The opportunity: adapt ML principles to 
power knowledge discovery and address 

key challenges in space biological 
research 
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AI/ML 
Modeling

§ Predictive
§ Hypothesis Driver
§ Countermeasure
§ Repurposing

Basic Tools
§ Computational Analysis

§ Cross-Experiment Analysis
§ Meta Analysis

§ Data Visualization

FAIR and Open Data

§ Metadata: Investigation, Study, Assay
§ Outputs: Raw, Processed

§ Mission-Payload: Environmental, 
Telemetry

AI for Life in Space working group: AI4LS
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Leveraging ML and AI methods 
to model space biology data 
from the NASA Open Science 
Data Repository: NASA 
GeneLab (omics) and NASA 
Ames Life Sciences Data 
Archive (ALSDA; phen-omics) 
to better understand the 
complex effects of spaceflight 
on living systems across 
hierarchical biological levels.

Space-relevant
Data

osdr.nasa.gov
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Explainable ML to Interrogate the Molecular 
Underpinnings of Spaceflight Muscle 

Atrophy
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Spaceflight Changes Muscles at the Cellular Level 

SOLEUS MUSCLE
• “slow-twitch” muscle

TIBIALIS ANTERIOR MUSCLE
• “fast-twitch” muscle

Jensen et al. 2020



17Braun et al., Int J Mol Sci 2021

SOLEUS TIBIALIS ANTERIOR

In spaceflown mice, 
 calcium uptake efficiency decreases in soleus muscle... 
      but increases in tibialis anterior muscle!  

Spaceflight Changes Muscles at the Cellular Level
Muscle cells take in calcium for normal contraction
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GOAL
• Train a machine learning model to learn the 

relationship between calcium reuptake levels and 
molecular changes within the cell 

• Interrogate the model to identify molecular predictors 
(biomarkers) of calcium reuptake changes in 
spaceflight
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Calcium 
Uptake 
Levels

MOUSE SOLEUS

MOUSE TIBIALIS ANTERIOR

OSDR Datasets:
OSD-104
OSD-105
OSD-488

DNA 
methylation

DNA 
methylation

RNA
sequencing

RNA
sequencing

Proteomics

NASA Open Science Data Repository
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Data Pipeline and Model Training

• Data preprocessing
• Multi modal data 

integration
• Dimensionality 

reduction and feature 
selection

Train ML model to 
predict calcium levels 
using molecular data

Identify predictive 
features 

(biomarkers)

• Leave-one-out-cross-validation (LOOCV) due to low 
sample sizes (n=12)

• Model performance calculated as an average across 
LOOCV runs

• Top features across all LOOCV runs evaluated as 
biomarkers

Kevin Li
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Explainable ML for Biomedical Research

21

What is the biological 
interpretation of this 
intermediate value in the 
32nd layer?

Gene 1

Gene 2

Gene 2450

Gene 2451

.

.

.

Calcium Uptake
Level

Layer 1            Layer 2              …                   Layer 53         Output
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A computational 
graph predicting 
short term rental 
prices from data 

Abzu AI, 2021

QLattice Symbolic Regression Machine Learning Algorithm
Interpretable computational graphs represent mathematical relationships
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Novel Biomarkers for Calcium Uptake Changes in Muscle

Ø Top Biomarkers for Calcium Uptake in 
Tibialis Anterior Muscle: 
1. Acyp1

• Inhibits calcium transport in 
fast-twitch muscles (tibialis)

• Enhances calcium transport in 
slow-twitch muscles (soleus)

2. Rps7
• Downregulated by nitrosative 

stress which decreases calcium 
transport

TIBIALIS ANTERIOR
Increased Calcium 

Transport Efficiency in 
Spaceflight

Decreased Acyp1 in flight allows increased calcium transport...

...and increased Rps7 in flight shows low nitrosative stress.

Li et al., npj Microgravity, In Review
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Novel Biomarkers for Calcium Uptake Changes in Muscle

Ø Top Biomarkers for Calcium Uptake in 
Tibialis Anterior Muscle: 
1. Acyp1

• Inhibits calcium transport in 
fast-twitch muscles (tibialis)

• Enhances calcium transport in 
slow-twitch muscles (soleus)

2. Rps7
• Downregulated by nitrosative 

stress which decreases calcium 
transport

Decreased Acyp1 in flight means decreased calcium transport...

...and decreased Rps7 in flight shows high nitrosative stress.

SOLEUS
Decreased Calcium 

Transport Efficiency in 
Spaceflight

Li et al., npj Microgravity, In Review
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LOOCV run 1 

LOOCV run 2 

LOOCV run 3 

Ø QLattice identifies mathematical relationships 
between Acyp1 and Rps7

• Gaussian
• Multiply, then tanh

Li et al., npj Microgravity, In Review

Symbolic Regression Identifies Biomarker Relationships
Biological features operate in interconnected networks
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• Explainable ML methods can provide insight to complex biological 
relationships

• Explainable ML analysis of multi-modal biological datasets from the 
NASA Open Science Data Repository resulted in: 
• Novel biomarkers
• Mathematical relationships between biomarkers
• Consistency with previous biological knowledge
• Starting point for new investigations

Summary of Outcomes
Explainable ML to Interrogate the Molecular Underpinnings of Spaceflight Muscle Atrophy
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Large Pre-trained Models to Connect 
Biomedical Knowledgebases with Small 

Spaceflight Datasets 
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RNA gene expression matrix
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Biological Data and the Curse of HDLSS
• High-throughput sequencing provides a readout of the molecular 

makeup of cells
• Genome sequencing (3 billion nucleotides: A,C,G,T)
• Gene expression sequencing (text readout converted to numerical 

values: ~50,000 genes)

• This leads to high dimensionality and low sample size (HDLSS)

Kevin Li
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Large 
Pretraining 

Dataset

Generalized ML Model
(not specific to a task)

Small task-
specific 
datasets

Models that perform well on individual tasks 

Transfer Learning: Pretrained Models
• General knowledge about a particular domain is 

useful for any specific task within that domain

Strategy: 
• Pre-train a model on a large training dataset in 

the desired domain 
• For other tasks (“downstream tasks”) in the 

domain, start with the pre-trained model and 
fine-tune
• General knowledge carries over and does not need to 

be re-learned
• Fine tuning requires fewer samples than training from 

scratch
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Pretrained Model for Gene-Gene Interaction Networks

• Overview: 
• Pre-train a model on a huge gene activity dataset to learn the relationships 

between all genes in human (or mouse) cells in general 
• Fine-tune for specific tasks on smaller datasets

• Example: identify gene-gene network dysregulation in spaceflight compared 
to ground control samples

• Pretraining dataset: recount3 
• 750,000+ publicly available, uniformly processed human and mouse RNA 
sequencing samples 
• Captures a huge amount of biological complexity and variability

Kevin Li
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(Flores 2019)

Gene 1

Gene 2

Gene n

.

.

.

.

.

• Deep learning model architecture: 
scBERT: encoder-decoder 

• Self-supervised pre-training on 
massive amounts of unlabeled data 

Gene-Gene Interaction Model

Kevin Li Yang et al., Nat Mach Intel 2022
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Gene 1

Gene 2

Gene n
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.
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Hidden

Hidden

Masking Values for Training

• Randomly mask (hide) expression 
values of some input genes

Kevin Li Yang et al., Nat Mach Intel 2022
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Gene 1

Gene 2

Gene n

.

.
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Hidden

Hidden

Minimize Error

• Context Learning: Train 
model to use the values of 
other, non-masked gene 
expression values to 
reconstruct the masked values

• Minimize the difference 
between the reconstructed 
and original (hidden) 
expression values

Reconstructed 
Gene 2

Reconstructed 
Gene n

Kevin Li Yang et al., Nat Mach Intel 2022
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Gene 1
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Gene n

.

.

.

.

.

Hidden Reconstructed 
Gene 2

Hidden
Reconstructed 
Gene n

Learn General Gene-Gene Knowledge

• In the process, general 
knowledge about gene-gene 
interactions is learned and 
stored in the encoder weights

• The pre-trained weights are a 
good starting point for gene-
gene interaction tasks in 
general, and they can then be 
fine-tuned to specific 
downstream tasks

Kevin Li Yang et al., Nat Mach Intel 2022



Transfer learning outperforms traditional training

36

Lo
ss

Ac
cu

ra
cy

High model 
performance 
prior to 
overfitting

Traditionally Trained Model Transfer Learning Model

Kevin Li
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• Pretrained a large encoder model to learn gene-gene interaction 
networks in general

• Tested the trained model on a downstream, supervised task using a 
tiny space biology dataset

• Pretrained model outperforms traditionally trained model

• Future vision: “model zoo” of many pretrained models available to 
the space biology research community 

Summary of Outcomes
Large Pre-trained Models to Connect Biomedical Knowledgebases with Small Spaceflight Datasets
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A Suite of Standardized and ML-ready 
Training Datasets for Space Biology
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• Scientific ML 
benchmarking—Best ML 
algorithm for this problem

• Application 
benchmarking—Algorithm 
performance 

• System benchmarking—
Hardware and software 
architecture 

Benchmark Datasets for Space Biology

NASA Science Mission Directorate Thiyagalingam et al, Nature Reviews 2022
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GeneLab 
Data Set Tissue Spaceflight 

Mission
47 liver RR1 CASIS
48 liver RR1 NASA

168 liver RR1 NASA
RR3 CASIS

137 liver RR3 CASIS
173 liver STS-135
242 liver RR9
245 liver RR6

Real dataSynthetic data

NASA Science Mission Directorate
James Casaletto & NASA GeneLab

Sample n 

RNA sequencing benchmark dataset
Scientific motivation: Effects of spaceflight on mouse liver health

Gene expression 
matrix

112 samples

30
,0

00
 g

en
es

Gene expression 
matrix

6832 samples30
,0

00
 g

en
es

for synthetic 
samples

for statistical 
replicates

Gaussian 
noise

Generative 
Adversarial 

Network (GAN) AI readiness 
pipeline:
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Fluorescence microscopy benchmark dataset
Scientific motivation: simulated space radiation causes cellular DNA damage

15 mouse 
strains

Simulated galactic 
cosmic rays

Fibroblasts

• 53PB1+ 
immunocytochemistry

• High-throughput imaging
• Automated quantification 

of 53 PB1+ radiation-
induced foci

Penninckx et al. Radiation Research 
2019

NASA Science Mission Directorate
Radiation Biophysics Laboratory, NASA ARC

Raw Dataset (n = 94,193): 
32-bit Z stacks (9 indices)

Max Intensity Dataset 
(n=94,193):

16-bit single-index TIFFs

maximum 
intensity 

projection

16-bit 
conversion

automatically 
estimated nfoci

AI readiness pipeline:

nfoci10++
+ Labels:

• nfoci (number of 
53BP1+ DNA 
damage foci)

• Radiation (X-ray, 
56Fe…)



43

Ø BPS Microscopy benchmark dataset formed the basis 
for UCI CS175 senior ML projects

Ø Real-world data and scientific problems inspired the 
students to generate creative solutions

Ø ML-ready dataset allowed students to spend time on 
ML rather than preprocessing 

Ø 9 teams focused on a variety of scientific questions:
• Supervised classification
• Unsupervised learning
• Self-supervised learning
• Segmentation and detection
• Graph neural networks
• Generating synthetic data

Image Segmentation and Foci Detection

Professor Nadia Ahmed, UCI

Cloud-based ML-ready Data Increase Scientific Community Engagement
UC Irvine CS175: “Project in Artificial Intelligence” Senior Course
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Opportunities and Applications for 
Machine Learning to Support Deep Space 

Exploration



Required: maximally autonomous and automated 
systems for science and health data collection, 
analysis, and real-time decision-making
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NASA Mission Goals: Deep Space Exploration

Moon to Mars Missions: Human and Biological 
Sciences Goal: Advance understanding of how 
biology responds to the environments of Moon, 
Mars, and deep space to advance fundamental 
knowledge, support safe, productive human space 
missions and reduce risks for future exploration.

Moon to Mars Mission Goals can be supported by current 
terrestrial capabilities in AI and ML 

Deep space exploration challenges
• Distance from earth
• High latency communications
• Data bandwidth and power 

constraints
• Infrequent resupply
• Inability to evacuate
• Limited crew time
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AI/ML Architecture to Support Deep Space Mission Goals

Scott et al., Nature Machine Intelligence 2023
Sanders et al., Nature Machine Intelligence 2023
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Hardware for ML-enabled in-situ Data Collection and Analysis 

Scott et al., Nature Machine Intelligence 2023
Sanders et al., Nature Machine Intelligence 2023

HPE’s Spaceborne Computer

NVIDIA Jetson 
edge AI and 

robotics platform
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ML-enabled “Self-Driving” Laboratories

• “Self-driving” automated laboratory capabilities enable in-situ data collection
• Active learning & edge computing would allow in-situ data analysis

Scott et al., Nature Machine Intelligence 2023
Sanders et al., Nature Machine Intelligence 2023 Sanchez-Lengeling, Aspuru-Guzik, Science 2018
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• ML methods such as federated learning, 
transfer learning, and few-shot learning 
support deep space data transfer

ML Approaches to Support Remote Data Management

Scott et al., Nature Machine Intelligence 2023
Sanders et al., Nature Machine Intelligence 2023
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• Multi-layered monitoring of spacecraft and 
habitats & in-situ computing capabilities for real-
time recommendations

Scott et al., Nature Machine Intelligence 2023
Sanders et al., Nature Machine Intelligence 2023

ML-enabled Biomonitoring Approaches
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• ML to support modeling, prediction and recommendations for a Precision Space 
Health system for real-time decision-making in deep space

ML-aided Precision Space Health System

Scott et al., Nature Machine Intelligence 2023
Sanders et al., Nature Machine Intelligence 2023
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