Vertiport Management from Simulation to Flight: Continued Human Factors Assessment of Vertiport Operations

James Unverricht¹, Bill K. Buck², Bryan J. Petty², Eric T. Chancey², Michael S. Politowicz², & Louis J. Glaab²

Analytical Services and Materials¹
NASA Langley Research Center²
SciTech, January 08-12, 2024

This material is a work of the U.S. Government and is not subject to copyright protection in the United States.

Introduction

- Urban Air Mobility (UAM) proposes an innovative way to transform transportation in urban environments.
- Advancements in technology allow for solutions that were not possible prior.
- However, these solutions require more research and development.
- NASA's High Density Vertiplex Sub-project is dedicated to researching and developing critical roles and infrastructure for high volume UAM operations.
- Vertiports are a necessary component in UAM operations.

Introduction

Source: NASA

Introduction

- Research to develop vertiport operations capable for envisioned UAM operations is in its infancy.
- Yet, there are many works describing the infrastructure, roles, and architecture necessary.
- One critical role that is theorized but under researched is the vertiport manager (VM).
- What role the VM will take is currently undefined.
- There is active debate on what role automation should play within the VM role.
- More research on the VM is required.

Current Work

- We investigated the role of a vertiport manager within a remote operations environment across both simulated and live flight operations.
- Five participants monitored five vertipads across three vertiports in a vertiplex located at NASA Langley.
- Participants were exposed to five operational scenarios.
- Several knowledge elicitation techniques and cognitive interviews provided insights on the role of the vertiport manager.

Method

- Apparatus
 - ROAM UAS Operations Center
 - VM Workstation
- Vertiport Manager Task
 - Monitoring all incoming and outgoing traffic
 - Managing the closure and opening of vertipads/vertiports
- Operational Scenarios
 - Five vertipads at 60 operations per hour across

Image credit - Bill Buck (NASA)

Human Factors Data Collection

- An inductive process across multiple types of measurement to make discoveries in this novel environment.
- Methods used:
 - Naturalistic observation
 - Open ended questionnaires
 - After-action review discussion with the participants
 - Cognitive Interviews
 - Critical decision method
 - Applied Cognitive Task Analysis
 - Simulation Interview
 - Task Diagram

Analysis – Thematic Content Analysis

- Thematic Content Analysis (506 statements from open-ended questionnaire)
- Coding of Thematic Content Analysis data comprised the following:
 - All statements were coded into seven initial codes.
 - > Some example codes were display design, procedural, and information requirements.
 - After the initial codes, each statement was re-coded into 19 themes
 - Some example themes were situation awareness or sensemaking, managing attention, and time demand.
 - The aforementioned codes and themes were constructed using the theoretical concept of macrocognition. which encompasses the cognitive functions and processes most relevant to real-world tasks.
 - The purpose of this work was to gain insights and understanding about the role of a vertiport manager. Themes were analyzed and transformed into a list of 13 insights.

Analysis – Example Insights

- Insight 1: VMs need time to make decisions and time demand is a primary factor for vertiport management.
- Insight 6: Communication can support sensemaking for off-nominal events.
- Insight 10: Vertiport and airspace monitoring without an active role can increase boredom and make the task more difficult.

Analysis – Simplified Cognitive Task Diagram

- Assess Vertiport and Airspace
- Decision on the urgency of the off-nominal situation
- Execute default closure
- Communicate default closure.
- Reassess situation
- Execute Additional Actions.
- Conflict Resolution

General Discussion

- The purpose of this work was to explore the role of a vertiport manager
- Vertiport Manager Role
 - Automated
 - Minimum: assess, notice anomalies, and execute and communicate vertipad closures
 - Human
 - Reinforce: adaptability, anticipation of future events, and coordination to resolve conflicts before they occur
 - Human-Autonomy Teaming

Design & Training Recommendations

Design

- Mapped coding
 - Displays should have the same information mapped similarly across different displays or functions.
- Pictorial realism
 - > Displays should represent information as the human mind would conceptualize that information
 - E.g., waterfall display illustrating the arrival and departure of aircraft
- Proximity compatibility principle
 - Displays relevant to a common task should be rendered close together in perceptual space
- Interactivity
- Pre-attentive processing
- Training
 - Checklist for procedures
 - Strengths: deconfliction, communication, and coordination efforts

Limitations & Future Directions

- Exploratory
 - Requires replication
- Data is subjective
 - Influenced by cognitive biases, heuristics, and limited information processing
- Scalability

Conclusion

- Vertiport management will be a critical role as the UAM vision is actualized
- Generated the following:
 - Insights gained from professionals performing simulated and live flight operations
 - Cognitive task diagram of the vertiport manager's primary task
 - Design recommendations
 - Training recommendations
- This work can provide a strong foundation to build the infrastructure required to make the UAM vision a reality
- Human-Autonomy Teaming

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS