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ABSTRACT

One of the critical components in a scramjet is the cavity flame holder. In evaluating the sizing of this
component, the residence time of the fuel in the cavity is a common parameter used. However, to obtain the
residence time via CFD is an expensive undertaking. One method is to perform an LES simulation of the
cavity and use Lagrangian particle tracking to obtain both the mean and probability density function of the
time that the particles remain in the cavity. While this method affords a significant amount of information, it
is very costly in CPU run time. A simpler method involves performing a time accurate RANS simulation of
the cavity, and when converged, overlay a traceable scalar in the cavity region, and then record the decay
of this scalar’s flux at a downstream location. The time scale of the decay rate can then be estimated and
a residence time inferred. This method is less computationally expensive than the LES approach, but still
requires a time-accurate solution while only providing a mean cavity residence time evaluation.

In this paper a method of determining the mean cavity residence time as well as the Probability Density
Function (PDF) of the residence time is proposed and demonstrated. This method is based on Lagrangian
particle tracking modeled by the Generalized Langevin Equation and is implemented as a post-processing
step for a steady RANS solution. Computational cost is on the order of minutes and the results are in
agreement with values obtained by the LES and scalar decay methods.

INTRODUCTION

The cavity is a commonly used flame holding device in high-speed reacting flow paths and operates by
providing a region where fuel and air can react to produce heat and chemical radicals to sustain combustion
in the core flow. When analyzing the cavity operation, one of the important characteristics that needs to be
determined is the fuel residence time. That is, the average amount of time a notional particle of fuel will
spend in the cavity before being ejected into the core flow." Too short a residence time, and the fuel will
not have enough time to react and burn, and so the cavity will be extinguished. Too large a cavity and the
increased size, weight and resulting heat load of this device will be detrimental to optimal performance of a
high-speed engine.

However, despite the residence time being a very simple concept, the methods to obtain this quantity are
not so straightforward. Experimental methods are not simple by the very fact that you have to build and then
test a cavity in a supersonic wind tunnel, and even then, the methods of determining the residence time are
not clear. From a numerical point of view, the situation is a little better with several established methods of
calculating the residence time.

The most comprehensive method is to perform an LES simulation of the cavity flow and track notional fluid
particles in the flow. By recording the amount of time particles spend in the cavity area before being ejected
into the core flow, the statistics of the residence time can be obtained. A good description of this method
can be found in the paper by Bonnani.? In principle, a similar result could be obtained from a Lagrangian
Joint Velocity-Scalar PDF solver,® though no example has been found in the literature.
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Another method involves the “tagging” of a conserved species in a time-accurate RANS simulation and
observing the decay of this species over time.* Specifically, the simulation is run to convergence and then
a conserved scalar in the cavity is tagged by some method. The solution is then advanced and the flux of
the tagged scalar flowing out of the cavity is recorded. The rate of decay of the flux measurement gives an
estimate of the mean residence time.

One thing all these methods have in common is that they require a lot of computational effort. For an engine
designer, where you are evaluating a range of conditions via RANS, the extra time involved in tagging a
suitable scalar and then running the simulation as a time accurate case would be large. And in this case,
you would only obtain a mean residence time, unlike the LES method where the PDF of the residence time
can be obtained. However running all the cases as an LES simulation would be computationally expensive.

It should be noted that for one specific case there is an analytic solution. If fuel is only injected into the cavity,
one can simply divide the mass of fuel atoms in the cavity by the fuel mass flow rate into the cavity, which
yields a mean residence time. However this is not a common fueling situation in most practical applications.

In this paper a method of determining the mean cavity residence time, as well as the PDF of the residence
time, from a steady RANS solution is proposed. The method is applied as a post-processing step to the
RANS solution and only requires a few minutes of computational time to run.

LAGRANGIAN MODEL

Tracking Lagrangian particles to obtain the PDF of the cavity residence time is the approach used in the
LES method. However, particle tracking in a steady RANS solution cannot provide any such information, as
the particles will simply follow the mean streamlines. For the case of a cavity with no internal injection, this
means the particle will either remain in the cavity or remain outside the cavity. There is a dividing streamline
between the two zones that cannot be crossed in a deterministic model.

However, if the particle motion has a component that represents the turbulent diffusion process, it would be
able to cross streamlines and, as a consequence, would represent the path of a particle in a turbulent flow.
The particle path would then represent the Lagrangian motion of a particle in an unsteady turbulent flow
whose Reynolds-averaged properties are given by the steady RANS solution.

From the Eulerian conservation equations, the fluid particle properties X;"(t) and U;" (¢) evolve by

ax;
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where X" is the particle location, U;" is the particle velocity, p is the density, P is the mean pressure, p is
the fluctuating pressure and v is the viscosity. The terms on the right hand side of Eq. 2 need to be modeled
and, by using the Generalized Langevin Equations,®® the modeled Lagrangian fluid particle equations can
be written as
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where (U;) is the mean velocity, w is the turbulent frequency and e is the turbulent dissipation. There are
two constants in the equations; C, is a universal Kolmogorov constant and is assigned a value of 2.1 and
Cr is a tuning constant and assigned an initial value of 1.0. The term dWW; represents independent Wiener
processes which are independent Gaussian random variables with variance of the time step d¢. That is:

szdW7 = 5i{7‘dt. (5)

For the purposes of this study, (U;), P, p, w and e are modeled by the values taken from the RANS solution at
location X;". The model can be expanded to include compressible effects,®° which would involve additional
terms, however the added complexity was not deemed necessary for this application as the flow in the cavity
is always subsonic and thus the compressibility effects should be small.

Equation 3 gives the change in location of the particle due to the particle velocity while Eq. 4 gives the
change in the particle velocity and has two main parts. The first two components on the right hand side
represent a relaxation process, which causes the particle velocity to be influenced by the pressure gradient,
mean flow velocity and turbulence time scale. The last component is the turbulence term, which provides
the turbulent diffusion to the particle velocity, based on the turbulent dissipation.

Implementation is fairly straightforward, with the particle location and velocity updated via the Modified Euler
Method (Explicit Midpoint Method) '° and the mean flow field quantities interpolated from the RANS solution.
The boundary conditions for walls are treated in a slightly different manner than those of RANS. The random
component added to the particle motion makes it possible for a particle to cross a solid boundary. To prevent
this nonphysical behavior, any particle that crosses the solid boundary is reflected back into the main flow.
Periodic and exit conditions are treated as in a RANS solver, with the particles entering and exiting the
solution domain as appropriate. Computational needs are small, with the whole process running on a
single processor.

One item that needs some care is the selection of the time step used to advance the particle. Based on the
recommendations of Pope,® the time step is required to be significantly less than the integral time scale of
the mean flow field, 7. That is:

dt < Tp =

3C,w’ (6)

For the cases described here, a value two orders of magnitude smaller than the integral time scale was
selected.

RC19 GEOMETRY

The first test of the Langevin method is performed on the RC19 planar cavity experiment!' shown in Fig.
1. The geometry of the experiment is that of a single planar cavity, 0.65 inches deep and 3.38 inches from
the cavity lip to the end of the closeout. In this particular test, a nonreacting mixing case is simulated, with
C2H4 injected into the cavity at the base of the rear closeout wall. As mentioned earlier, when the cavity is
fueled directly, an analytic value for the mean residence time can be obtained, which will provide a useful
benchmark against other methods and allow the tuning constant, C to be set.

A RANS simulation was performed for the conditions in Table 1. The computational domain (Fig. 2) con-
sisted of a one inch thick slice of the full domain, with no end walls and two injectors. This was solved
from upstream of the nozzle to just after the exit of the cavity closeout. Periodic boundary conditions were
enforced for the sides of the slice. In addition, an LES simulation with particle tracking was performed in
addition to an unsteady RANS case for the decay of a scalar. In all cases the cavity was defined as the
volume under a straight line from the cavity lip corner to the cavity closeout corner. For the Langevin model,
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a series of particles were released at the exit of the cavity fuel injector and tracked. The amount of time
each particle spent in the cavity was computed and the values averaged to obtain a mean cavity residence
time.

-—nozzle 47 isolator } test section

Y
L‘ Mach 2 air

T

Figure 1. Sketch of the flowpath of the RC19 scramijet rig.'" The upper diagram shows the side
profile of the computational domain, while the bottom shows a perspective view of the cavity.

Figure 2. lllustration of the computational domain used for this study with flow from left to right.

The average residence times obtained by the different methods are given in Table 2. The Lagrangian model
was run with 500 particles and a good agreement with the other mean residence times was obtained with
a tuning constant of Cr = 2.0. Of particular note is that the computational time required to obtain the
residence time is a matter of a few minutes, compared to the hours and/or days required by other numerical
techniques. In all cases this estimate of computational time does not include the time required for the initial
steady RANS solution to be performed. The path of the particles is illustrated in Fig. 7, where a small
number of the particle paths are shown. The particle tracks illustrate what we would expect from tracking a
particle, with the vast majority circling the cavity and exiting at the top.
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Table 1. Flow properties for RC19 cavity.

Property  Value Units
Grid Size 1,627,000 Cells
P, 70 PSI
T, 589 K

my 56 SLPM
Mach 2.0

Table 2. Mean residence time for RC19 cavity.

Method Residence Time Computional time

LES 1.73e-03 sec. days
Decay 1.65e-03 sec. hours
Analytic  1.75e-03 sec. seconds
Langevin 1.71e-03 sec. minutes

Figure 3. Paths of 50 notional fluid particles calculated by the Lagrangian model. Particle paths
originate near the bottom right of the cavity and exit at the right.

In addition to the mean residence time, the PDF of the residence time can also be obtained from the
Lagrangian model. In Fig. 4 the probability density function (PDF) of the residence time is shown for a
sample of 500 particles compared to the PDF of residence time obtained from an LES simulation with over
500,000 particles tracked. Both distributions exhibit a similar shape, approximating a log-normal distribution,
with fairly tight clustering of the residence times around the mean value.

LAZARUS RIG GEOMETRY

The other test of the Lagrangian model was conducted using the AFRL Lazarus rig, ' shown in Fig. 5. This
is an axisymmetric geometry with the fuel injected upstream of the cavity. The dimensions are similar to the
previous example, with the cavity being 0.734 inches deep and 4.159 inches from cavity lip to end of cavity
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Figure 4. Histograms representing the probability density function of the cavity residence time
distribution for the RC19 simulation. The left figure shows the results obtained from 500 particles
using the Lagrangian model, while the right figure shows the results from over 500,000 tracked
particles obtained from an LES study.

closeout. As in the previous example, the fuel is C2H4, and it is again a non-reacting case. However, in
this experiment the fuel is not injected directly into the cavity but rather from an upstream location. Because
of this, there is no analytic solution for the residence time as the mass flow of fuel into the cavity is an
unknown. An asymptotic limit where all the fuel is assumed to be entrained in to the cavity can be evaluated
however, which will give a lower bound to the residence time.
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Figure 5. Sketch of the flowpath of the Laz scramjet rig 2.

The computational domain, shown in Fig. 6, consists of a 45 degree sector of the article flowpath, starting
before the facility nozzle and ending just after the cavity closeout. One upstream injector is included and pe-
riodic boundary conditions are enforced on the sides of the sector. As with the RC19 cavity, the Lagrangian
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model was applied to the results of a steady RANS simulation, performed for the conditions shown in Ta-
ble 3. The tuning constant from the previous test was left unchanged. In addition, a time-accurate RANS
solution for the scalar decay method was also computed to obtain the mean residence time. The cavity
was defined as the volume above a straight line connecting the cavity lip to the closeout corner and rotated
around the axis. The notional fluid particles in this case were not released at the exit of the injector, but
rather at a location just upstream of the cavity. This was to limit the number of particles that do not get
entrained into the cavity and thus serve no part in evaluating the cavity residence time. Particles were not
released directly in the cavity because it is not known where the fuel enters the cavity and so would skew
the calculated residence time calculations.

Figure 6. The computational domain used for the Lazarus Rig simulations. This is a 45 degree
sector, with the flow starting in the plenum (left) and exiting just aft of the cavity (right). A normal
injector is present upstream of the cavity.

Table 3. Flow properties for Lazarus simulation.

Property  Value Units
Grid Size 1,289,000 Cells
P, 50 PSI
T, 397 F

my 1076 SLPM
M 2.0

The average residence time for the cavity is listed in Table 4 along with the value obtained by the scalar
decay method and also the asymptotic limit for all the fuel being entrained into the cavity. As can be seen,
there is a good agreement with the scalar decay value and Lagrangian model. The ratio between the
asymptotic limit and the calculated residence time can be used to provide an estimate of the amount of fuel
that does not get entrained into he cavity. In this case, the ratio suggests that only 8% of the injected fuel
becomes entrained into the cavity.

Sample paths of the particles are shown in Fig 7, and again we see the trajectories that we would expect
from a particle in a turbulent flow. Of note is that many particles just dip inside of the defined cavity volume
and then escape downstream, rather than being entrained into the cavity recirculation. This is an artifact of
the cavity definition and could be addressed with a more sophisticated definition of what defines the cavity
volume. An option would be to define the cavity boundary as the dividing streamline between the core flow
and the cavity flow. However, for simplicity, the simple linear definition of the cavity boundary was retained.
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Table 4. Mean residence time for Lazarus cavity.

Method Residence Time Computional time

Limit 0.158e-03 sec. seconds
Decay 1.89e-03 sec. hours
Langevin 1.80e-03 sec. minutes

Figure 7. Particle paths of 50 notional fluid particles calculated by the Lagrangian model. The
particles start just upstream of the cavity (to the left) and exit downstream to the right.

The probability density function of the residence time for a sample of 500 particles is shown in Fig. 8. At the
current time no LES simulation of the results is available. This distribution shows a much increased range
of residence times than the RC19 case. Part of this is the peak at about 1.0e-04 s, which represents the
particles that just dip into the cavity and do not get caught up in the recirculation. The distribution of the
residence times cannot be said to be log normal, but rather a bimodal combination of two approximately
log normal distributions, one representing the fly-by particles and the other the particles entrained into the
recirculating flow in the cavity.

CONCLUSIONS

A Lagrangian-particle-based model has been developed to obtain the residence time of a flame holding cav-
ity. The method is based on the Generalized Langevin Equation working with the mean flow field obtained
by a RANS simulation and operates as a post processing tool. The mean residence time obtained from the
new model compares well to the results obtained from other methods. The shape of the probability density
function of residence time compares well with that obtained from LES. The computational time required to
obtain the results with the new model is several orders of magnitude quicker than the other methods. In the
future, the model would benefit from further testing against LES results, as well as with reacting flows and
more complex cavity shapes. However initial results presented here are promising.
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Figure 8. Histogram representing the probability density function of the cavity residence time dis-
tribution for the Lazarus Rig simulation. Results are from the Lagrangian model using 500 particles.
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