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State-of-the-art cloud computing platforms such as Google Earth Engine (GEE) enable

regional-to-global land cover and land use change (LCLUC) mapping with machine learning

algorithms. However, collection of high-quality training data, which is necessary for accurate

LCLUC mapping, remains costly and labor-intensive. To address this need, we created a global

database of nearly 2 million training units spanning the period from 1984 to 2020 for seven

primary and nine secondary land cover classes. Our training data collection approach leveraged

GEE and machine learning algorithms to ensure data quality and biogeographic representation.

We sampled the spectral-temporal feature space from Landsat imagery to efficiently allocate

training data across global ecoregions and incorporated publicly available and

collaborator-provided datasets to our database. To reflect the underlying regional class

distribution and post-disturbance landscapes, we strategically augmented the database. We used a

machine learning-based cross-validation procedure to remove potentially mis-labeled training

units. Our training database is relevant for a wide array of studies such as land cover change,

agriculture, forestry, hydrology, urban development, among many others.

Background and summary
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The accuracy of land cover and land cover change maps derived from remote sensing data

depend on training sample size and quality – two key considerations in planning and conducting

supervised classification1,2. The amount of training data required can vary depending on the

classification algorithm, the number of input variables, and the size and spatial variability of the

mapped area 3–5. For example, while most supervised classification algorithms (e.g., Random

Forest) require a large training dataset of ‘pure’ class examples, some classification algorithms

(e.g., Support Vector Machines) require smaller sets of mixed class samples for accurate land

cover mapping 2–4,6–8. Neural networks require a larger high-quality training set relative to other

machine learning classification models 2,9. Despite these differences, there is consensus that 1)

large and accurate training datasets are generally preferable, and 2) classification accuracy

increases with increasing training dataset size 2,5,6,10–13.

As the global impact of climate change and anthropogenic activity has increased in recent

decades, so has the need for high-quality maps of global land cover and land cover change.

These maps require comprehensive, global, and high-quality land cover training datasets that are

adaptable to the needs of a wide range of end users depending on the region of interest and the

classification algorithm used. Currently, only a handful of continental-to-global training 14–18 and

validation 19,20 datasets are publicly available. Several large-scale benchmark remote sensing

datasets, designed to support the development of deep learning algorithms targeting specific

applications, are publicly available (e.g., SpaceNet21, BigEarthNet22, and DeepSat23). While these

datasets are valuable resources, the data collection efforts that produced them were

uncoordinated and not standardized, largely because community-wide best practices for training

data collection are not well established (although, see2). As a result, most of these datasets are
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limited by their geographic coverage, spatial resolution, observation density, time span, or

quality.

The goal of the Global Land Cover Estimation (GLanCE) project is to provide high-quality

long-term records of land cover and land cover change at 30 m spatial resolution for the 21st

century using the Landsat archive 24. As part of the GLanCE project, we present a new land

cover training database that is designed to address the limitations outlined above. In creating this

database, we aim to provide global coverage, ensure accuracy of land cover labels at 30 m spatial

resolution, cover nearly four decades, and produce a geographically dense dataset. Our training

data collection and curation approach leveraged relatively recent technological advances such as

cloud computing (e.g., Google Earth Engine (GEE)) and machine learning algorithms (e.g.,

Random Forest, k-means clustering etc.) to enforce data quality and ecological representation.

Specifically, we implement an iterative quality assessment procedure that relies on expert review

and a machine learning-based cross-validation procedure to remove poorly labeled training data.

Given the global scope of GLanCE, combined with the time and resource-intensive nature of

training data collection, it was necessary to supplement in-house data collection with external

datasets and map products. Specifically, we harmonized seven publicly available land cover

training datasets to be consistent with in-house data and combined them into a global database

14,16–20,25. Similarly, we harmonized and integrated several collaborator-provided datasets 26–28,

along with datasets collected by Boston University team members for various other projects 29–34.

Lastly, following numerous recent studies (e.g., 3,5,35,36), we sampled existing land cover map

products (i.e., 18,37,38) to fill geographic and thematic gaps in the dataset.
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The objective of this paper is to describe the GLanCE training dataset, which is available to the

public for use in regional-to-global land cover and land cover change studies. The dataset is

global, medium spatial resolution (30 m), designed to be geographically and spectrally

representative of all global ecoregions 39, and spans the time period between 1984 and 2020. It

provides a harmonized, standardized, and comprehensive database with up to 23 land cover

characteristics per sample. To support land cover change mapping, the dataset includes up to 36

years (in select regions of the world) and, notably, includes information about abrupt and gradual

land cover change processes. It is designed to be global in scope but can be sub-sampled and

adapted depending on the study region of interest, the classification algorithm used, and the

classification legend desired (e.g., broad classes, land use, leaf type and phenology, etc.).

Methods

1. Training data collection

In-house training data were collected by a team of trained image analysts at Boston University

using the land cover key shown in Fig. 2 and a suite of online tools

(https://github.com/parevalo/measures_collector, using Google Earth Engine API). Image

analysts interpreted land cover on-screen using a combination of high-resolution Google Earth

imagery, Landsat imagery, time series of spectral reflectance, vegetation indices, and

Landsat-derived Tasseled Cap transformations. In addition, image analysts used Google Earth

photos and StreetView (where available) to aid their interpretations. Hereafter we refer to each

entry in the database, which represents individual Landsat pixels, as a training unit. Each training

unit corresponds to an interpretation by a research assistant of Continuous Change Detection and

Classification (CCDC) time segments (explained below) (Fig. 1). Each unit was assessed for

quality and potentially flagged for review by a second research assistant. If one research assistant
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disagreed with another on the land cover label of a given training unit, a third team member

reviewed and, if necessary, re-interpreted or removed the unit. Units were removed if there was

no high-resolution imagery available and team members had no way of determining the land

cover with high confidence.

Over the course of data collection, the team of image analysts consisted of 6 to 12 members who

were trained to interpret satellite imagery for land cover attributes. Analysts alternated between

interpreting sets of randomly assigned training units and reviewing peers' interpretations. All

image analysts received the same training to ensure consistency in their interpretation, followed

by a practice training set for each continent that was collectively discussed so that analysts

learned from their errors and followed consistent interpretation protocols. Training included

image interpretation, guidance on how to use software tools that were developed to support this

activity40 (https://github.com/parevalo/measures_collector), use of ancillary data (Table 1), and

class definitions (Table 2). In addition, quarterly refresher trainings and weekly meetings were

conducted to provide analysts with feedback regarding errors and inconsistencies in

interpretations discovered during the review process. As a final step, all training data were

reviewed for clerical errors and compiled into unique databases for each continent.

Because a single Landsat pixel can include multiple land cover types over time, an important

component of our training data collection protocol was the interpretation of land cover change.

The core algorithm used in this project, the CCDC algorithm 41, operates on time series of

satellite data to identify abrupt and transitional changes, and stable land cover. The concept of a

time segment—the period for which the intra- and inter-annual patterns of surface reflectance

can be described by a single model fit—is central to the CCDC algorithm. To illustrate this

concept, Fig. 1 shows a time series of shortwave infrared reflectance values for two Landsat
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pixels that both correspond to forest at the beginning of their time series, which then transition to

grasslands and evolve either to shrubs in Fig. 1a or back to forest in Fig. 1b. at the end of the

time series. To confirm that various types of land-cover change are represented in the training

database, changes such as those exemplified in Fig. 1 were explicitly included in the dataset and

labeled according to the type of change (as described above). In the examples shown in Fig. 1,

CCDC identifies distinct time segments between detected change events on the land surface

(shown in different colors); each segment is assigned a single land cover label. The time

segments representing stable land cover correspond to the subsets of Landsat time series with

relatively constant spectral and temporal reflectance patterns over several consecutive years. In

Fig. 1a, the forest was represented by a stable segment from 2000 to 2009. In contrast,

transitional segments correspond to land cover that gradually transforms over the time, where

consecutive annual patterns of surface reflectance change in a constant manner. For example, in

Fig. 1b, forest regrowth from 2005 to 2019 is evident in the Landsat time series and identified by

CCDC in the two segments after 2006. Abrupt changes, such as the logging event in 2009 in Fig.

1a, corresponded to high magnitude breaks in the CCDC time segments.
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Figure 1. Continuous Change Detection and Classification (CCDC) model fits for two pixels,
one in Sweden (a) and the other in California (b), that were converted from forest to grassland,
eventually transitioning to shrubs in (a) and back to forest in (b). The time series plots show all
Landsat observations (points) in the Landsat SWIR1 band, and the CCDC model fits (lines). The
high-resolution images illustrate the land cover change on the ground.

2. In-house data sources

Image analysts collected observations from three sources: 1) the System for Terrestrial

Ecosystem Parameterization (STEP) training database 18, 2) a sample generated via unsupervised

clustering of Landsat spectral-temporal features, and 3) a sample of feedback points generated to
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improve the accuracy of land cover classes or regions that were persistently misclassified. The

STEP database, which was created to provide a representative sample of land cover from all

global ecoregions, was created to support the MODIS Collection 6 Land Cover Type Product

(MCD12Q1)18. To adapt the STEP database for GLanCE, we randomly selected 10 Landsat

pixels within each MCD12Q1 500 m training site and visually interpreted them using the

procedure outlined in Section 1 (above) and labeled them using the GLanCE land cover key (Fig.

2, Table 2). Only pixels representing homogenous land cover were collected as training data;

pixels containing mixed land covers were removed.

The second set of training data that image analysts collected was based on unsupervised

clustering of spectral-temporal features estimated from Landsat image time series using the

CCDC algorithm. This approach was stratified using the World Wildlife Fund (WWF)

ecoregions39 to ensure that each ecoregion was adequately represented in the training database.

While STEP-based training data were designed to capture homogeneous land cover, a key goal

of cluster-based sampling was to locate and collect training units with more heterogeneous land

cover composition. Including units that represent heterogeneous land cover in the training dataset

has been shown to improve classification results and is an efficient way to collect training

samples at continental-to-global scales because a relatively small number of training units

captures the variability in land cover spectral properties from each ecoregion 3,4,6–8. As such, the

cluster-based training data represented variation in land cover composition, stability, and intra-

and inter-class spectral variability at the regional scale.

Our cluster-based approach included two main steps: 1) principal component analysis (PCA) to

reduce the dimensionality of the data; and 2) k-means clustering on the principal components

(PCs) to identify the optimal partitioning of the training data. For each ecoregion, we selected a
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maximum of 10 PCs to capture at least 80% of the variance, although 99% of the variance was

frequently captured in fewer PCs. We ran k-means clustering for a range of K values from 5 to

400 and for each value, and then calculated the sum of squared distances from each point to its

assigned center to select the optimal (fewest) number of clusters that were well separated from

one another. As a result, we selected 30 to 60 clusters – for a maximum of 500 training units -

per ecoregion. The resulting dataset was representative of the distribution of land cover at the

regional scale and included a mix of homogeneous and heterogeneous training units. Because the

STEP- and cluster-based datasets were collected explicitly for the purposes of the GLanCE

project, together they represent the most thematically detailed and complete data in our database,

with up to 23 recorded attributes per sample site.

The third set of training data were generated to iteratively improve the accuracy of land cover

maps. Despite our best efforts to represent all ecoregions in the training data, examples of some

specialized and regionally relevant land uses (e.g., greenhouses in Spain and China, sparse

orchards and plantations in India etc.) were missing in our training database and resulted in

obvious errors in the map results. To ameliorate these issues, we collected “Feedback” training

data for these locations around the globe using the interpretation tools described above.

3. Supplementary data sources

Given the global scale of the GLanCE project and the lack of available high-resolution imagery

in some parts of the world, the in-house dataset described in Section 2 was insufficient to capture

the full range of geographic, temporal, and spectral heterogeneity in global land cover. To

address this, we supplemented the in-house training database by leveraging existing publicly

available, collaborator-contributed, and team-collected datasets that we harmonized and

standardized to conform to the GLanCE land cover classification key. The sources and key
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features of these data are summarized in Table 1. As part of this process, we worked with

collaborators and team members with regional expertise in land cover and land use change to

harmonize their land cover legend with the GLanCE legend. Note that several of these data sets

are publicly available and peer-reviewed, and all datasets were extensively vetted for quality

control as described below.

Unfortunately, even after the data collected in-house were combined with the supplementary

datasets described above, some land cover classes, especially rarer classes (e.g., developed,

water, shrub), were underrepresented. To address this, we augmented the database with training

data derived from the World Settlement Footprint product37, the global surface water product38,

and by implementing the algorithm developed by Zhang & Roy (2017)36 that uses the MODIS

Land Cover Type Product18 to automatically select candidate training units at Landsat resolution.

Briefly, this algorithm estimates the 20th, 50th, and 80th percentile for thirteen different Landsat

variables (bands and band ratios) for a total of 39 predictors, calculates the metric centroid (a

vector of 39 metric average values) of all 30 m pixels located within 500 m MODIS pixels, and

then selects the 30 m Landsat pixel with the smallest absolute difference from the metric

centroid. Since the World Settlement Footprint and Global Surface Water products are produced

at spatial resolutions that are comparable to Landsat , we drew a random sample of points for

each ecoregion from each product in each continent. We used these samples to ensure that the

training data were representative of the underlying distribution of land cover, both regionally and

globally, which is a common problem in machine learning-based land cover classification 6,42.

Table 1. Summary of data sources used to compile the GLanCE training database. STEP stands
for System for Terrestrial Ecosystem Parameterization; ABoVE stands for Arctic Boreal
Vulnerability Experiment; LCMAP stands for Land Change Monitoring, Assessment, and
Projection; LUCAS stands for Land Use and Coverage Area frame Survey; GLC30 stands for
Global Land Cover product with Fine Classification System; ASB stands for Aral Sea Basin.
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Dataset Spatial extent Years Number of
samples

Original source

STEP Global 1990-2020* 26,918 Re-interpreted in-house 18

CLUSTERING Global 1990-2020* 33,385 Interpreted in-house

Feedback Global 1990-2020 23,271 Interpreted in-house

GeoWiki Global 2000-2012 11,833 17

GLC30 Global 2015 25,632 19

Training_augment Global 2015 14,080 37,38

MODIS-algo Global 2018 4,583 36

LandCoverNet
(Radiant Earth)

Africa, Asia,
Australia

2018 73,469 14

ABoVE Canada and Alaska 1984-2014* 6,547 34

LCMAP Conterminous
United States

1984-2018 16,939 20

MapBiomas South America
(northern)

1985-2020 800,150 27

LUCAS Europe 2009, 2012,
2015, 2018

587,753 16

ASB_crop Aral Sea Basin 2008, 2011,
2015, 2016,
2017, 2018

6,202 25

BU team collected southern South
America

1999-2019
17,471

32,33

Colombia 2001-2017* 31

West Africa 2001-2020* Interpreted in-house

Georgia 2000* 29

Laos 2017*, 2019* 30

Collaborator data Ethiopia 2018 226,762 Unpublished

Zambia 2008 Unpublished
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Ghana 2017 28

Australia 1985-2019 26

*Collected to align with CCDC model fits

4. Pre-processing and harmonization of supplementary data sources

Pre-processing and harmonization of supplementary datasets consisted of four steps: 1) if

available, each dataset was filtered based on interpreter confidence (highest) or consensus score

(100% agreement among interpreters); 2) the land cover legend for each data set was harmonized

with the GLanCE legend (crosswalk tables available here); 3) each dataset was compared against

an existing land cover product (ESA World Cover43, Copernicus Global Land Cover Layers44, or

the MODIS Land Cover Type product18 depending on the time period of the supplementary data

source), and training units were discarded where they disagreed with the existing product; and 4)

we visually inspected approximately 30% of each harmonized and cleaned supplementary

dataset in Google Earth using high resolution imagery to evaluate the overall quality and remove

mislabeled training units. Step 3 provided an automated way to eliminate or reduce the number

of poor-quality training units by ensuring that supplementary land cover labels agreed with at

least one other data source. Note that this approach is susceptible to errors of omission and

commission in the existing map sources, but because we only retain labels where both data sets

agree, we assume this strategy is conservative and leads to relatively few errors. Step 4 is

designed to ensure the overall quality of the training dataset and enables us to iterate on the

ingestion process if necessary. For example, Step 4 occasionally resulted in supplementary

datasets being reviewed and reinterpreted by in-house image analysts. Details regarding legend

harmonization for each data set are included in the data records repository (linked here).

Data Records
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The GLanCE land cover training dataset includes two nested sets of classes: seven broad,

mutually exclusive classes (Level 1) and nine secondary classes (Level 2) (Table 2, Fig. 2)24. The

GLanCE land cover classification scheme is designed to focus primarily on land cover and is

compatible with common land use categories for greenhouse gas inventory reporting45 land

cover classification systems such as the IPCC and the FAO Land Cover Classification System

(LCCS)24,46. Land cover labels were assigned for 30 m Landsat pixels based on fractional cover

thresholds (Fig. 2). To label each training unit, we followed the stepwise decision-making

process shown in Fig. 2. In addition to Level 1 & 2 land cover and land use labels, the dataset

includes eight additional attributes that provide complementary information related to land cover

and land use properties (Table 3). Each training unit's land cover label corresponds to a specific

Landsat pixel and time period between 1984 and 2020 (Table 3). IDs are assigned based on

latitude and longitude, so units with duplicate location and different ID indicate units that

experienced land cover abrupt or gradual change. However, each training unit has a unique

‘Glance_ID’. Table 3 includes a complete list of attributes and descriptions.

Table 2. GLanCE Level 1 and 2 land cover legend definitions. The integer values assigned to
land cover classes are indicated in parentheses for Level 1 and Level 2 labels.

Level 1 Level 2 Description
Water
(1) Water (1) Areas covered with water throughout the year: streams, canals, lakes,

reservoirs, oceans.
Ice/snow (2) Ice/snow (2) Land areas with snow and ice cover greater than 50% throughout the year.

Developed (3) Developed (3) Areas of intensive use; land covered with structures, including any land
functionally related to developed/built-up activity.

Barren/sparsely
vegetated (4)

Land comprised of natural occurrences of soils, sand, or rocks where less than
10% of the area is vegetated.

Soil (4) Land covered with less than 10% vegetation and dominated by soil.

Rock (5) Land covered with less than 10% vegetation and dominated by rocks.
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Beach/sand
(6) Land covered with less than 10% vegetation and dominated by beach/sand.

Trees (5)
Land where tree cover is greater than 30%. Note that cleared trees (i.e.,
clear-cuts) are mapped according to current cover (e.g., barren/sparsely

vegetated, shrubs, or herbaceous).

Deciduous (7) Land with tree cover greater than 30% and all trees present are deciduous.

Evergreen (8) Land with tree cover greater than 30% and all trees present are evergreen.

Mixed (9) Land with tree cover greater than 30% and neither deciduous nor evergreen
trees dominate.

Shrub (6) Shrub (10) Land with less than 30% tree cover, where total vegetation cover exceeds
10% and shrub cover is greater than 10%.

Herbaceous (7) Land covered by herbaceous plants. Total vegetation cover exceeds 10%, tree
cover is less than 30%, and shrubs comprise less than 10% of the area.

Grassland
(11) Herbaceous land covered with grass.

Agriculture
(12) Herbaceous land covered with cultivated cropland.

Moss/lichen
(13) Herbaceous land covered with lichen and/or moss.

Figure 2. Training data key used to assign land cover attributes to training sites. Green boxes
show Level 1 land cover classes and yellow boxes show Level 2 classes.
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Because land cover is dynamic and can change due to natural or anthropogenic processes,

GLanCE training units are characterized as either ‘stable’ or ‘transitional’ (Segment_Type in

Table 3) based on time series of both high-resolution imagery and Landsat observations (detailed

description in Section 1). A “stable” unit is defined as a time segment with a single land cover

and consistent annual patterns of spectral reflectance across the length of the segment.

Conversely, a “transitional” unit is a time segment in which the land cover gradually changes

over the time, such as degrading or recovering forests (Fig. 1), where the change is reflected in

the annual patterns of surface reflectance. For continuous change processes that slowly transform

landscapes, such as vegetation regrowth during ecological succession, the land cover was

recorded at both the beginning and end of the time segment (typically the first and last three

years) when the Level 1 land cover attributes do not change (Fig. 1).

Table 3. Full list of sample attributes and descriptions.

Column Name Description
Lat Latitude
Lon Longitude
Start_Year Start year of segment, ranging from 1984 to 2019 (integer)
End_Year End year of segment, ranging from 1985 to 2020 (integer)

LC_Class
Level 1 land cover label (string). See Table 1 for detailed class
definitions.

Glance_Class_ID_level1
Level 1 land cover value (integer). See Table 1 for detailed class
definitions.

Glance_Class_ID_level2
Level 2 land cover value (integer). See Table 1 for detailed class
definitions.

Leaf_Type Tree leaf type: broadleaf (1), needleleaf (2), and mixed (3).

Impervious_Percent
Impervious percent for developed samples: low 0%-30% (1),
medium 30%-60% (2), and high 60%-100% (3).

Tree_Location
Binary integer indicating whether trees are on the interior (0) or edge
(1) of a forest.

Veg_Density Vegetation density for trees and shrubs: sparse 0%-30% (1), open
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30%-60% (2), and closed 60%-100% (3).

Veg_Modifier

Vegetation modifiers, which can include one or more of the
following: Cropland, Plantation, Wetland, Riparian/Flood,
Mangrove, Greenhouse, and Trees/Shrub Present.

Segment_Type
Indicates whether a segment is stable (0) or transitional (1). See
Section 1 for a detailed description.

Change

Presence (1) or absence (0) of land cover change for Level 1 land
cover labels. Includes both abrupt change and gradual change
(transitional segments (1) from the Segment_Type attribute).

LC_Confidence
Interpreter confidence in the Level 1 land cover label from 1
(lowest) to 3 (highest).

Level1_Ecoregion

Ecoregion Level 1 number based on World Wildlife Fund
definitions39. For North America we used ecoregions based on the
Environmental Protection Agency’s Ecoregions of North America
product
(https://www.epa.gov/eco-research/ecoregions-north-america).

Level2_Ecoregion

Ecoregion Level 2 number based on the Environmental Protection
Agency’s Ecoregions of North America product. This field is
available only for North America and is assigned a value of 0 for all
other continents.

Continent
Continent abbreviation: North America (NA), South America (SA),
Africa (AF), Europe (EU), Asia (AS), and Oceania (OC).

Continent_Code
Assigned continent number: North America (1), South America (2),
Africa (3), Europe (4), Asia (5), and Oceania (6).

Dataset

Source of training datasets: STEP, CLUSTERING, LCMAP,
ABoVE, MapBiomas, Feedback, Training_augment, MODIS_algo,
GeoWiki, RadEarth, Collaborator_data, BU_team_collected,
GLC30, LUCAS, ASB_crop. For details see Table 1.

Dataset_Code

Assigned dataset number: 1, 2, 3, 4, 5, 902, 999, 700, 701, 702, 703,
704, 705, 706, and 707. Numbers correspond to each Dataset listed
above.

Glance_ID Unique ID for each sample.

ID
ID for each unique combination of latitude and longitude. Change
units have the same ID but different Glance_ID.

The V1.0 training dataset consists of 1,874,995 training units distributed across the globe

representing seven broad land cover classes at Level 1 and nine classes at Level 2.

Approximately 79% and 21% of the dataset correspond to stable land cover and change,
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respectively. Note that change does not always indicate land cover label change but change

processes such forest regrowth, coastal water dynamics etc. At global scale, change is a rare

occurrence but because it is inherently hard to map, change needs to be captured in the training

database. Fig. 3 and Fig. 5a show the class frequency and geographic distribution of the training

database for Level 1 land cover, while Fig. 4 and Fig. 5b display the distribution for Level 2 land

cover and land use. Level 1 training data are well distributed and representative of all ecoregions.

However, only 50% of the training data contain Level 2 legend information (Fig. 4, Fig. 5).

Despite our efforts to include Level 2 labels for supplementary datasets whenever possible, only

half of the training units contain this information in the final training database. Relatively rare

classes on the landscape such as developed, barren/sparsely vegetated and shrubs are

well-represented in the training database. In contrast, ice/snow is not well represented because it

tends to be located in areas where Landsat data density is insufficient for CCDC (Fig. 3). The

distribution of Level 2 labels is dominated by herbaceous classes such as grasslands and

croplands (Fig. 4, Fig. 5b). The detailed quality control procedures, described in the Methods

section, were applied to Level 1 land cover labels only. Therefore, Level 2 labels and all other

land cover attributes (e.g., leaf phenology) may not always meet the highest standards of quality

and may need to be further filtered or processed to fit the user's region and research of interest.
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Figure 3. GLanCE global training samples class distribution for Level 1 land cover. Note that the
Bare label is shorthand for Barren/sparsely vegetated.
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Figure 4. GLanCE global training data distribution for Level 2 land cover. Note that this figure
doesn’t display the Moss/lichen category because it includes only 640 training units.

19



Figure 5. Global spatial distribution of GLanCE training site database for Level 1 (a) and Level 2
(b) land cover.

To our knowledge, the dataset presented in this study is the longest, most extensive, and

comprehensive publicly available global land cover and land use training database. We

standardized and harmonized 22 disparate sources of land cover labels into a single unified

training database that is comprised of 39% publicly available data, 55% collaborator-provided

data, 4% in-house data (collected explicitly for the purposes of the GLanCE product), 1% Boston

University team collected data, and 0.2% MODIS-derived training data (Table 1, Fig. 6a).

Among the various data sets incorporated into the data set, the GLanCE in-house training data

20



contain the highest level of detailed ancillary information on secondary land cover attributes and

change information, and frequently span 20 years between 1999 and 2019 (Fig. 6b). Some

collaborator-provided data sources such as MapBiomas, LCMAP, and ABoVE (Table 1) include

up to 35 years of land cover labels and change information, while most publicly available data

were limited to a single year (Fig. 6b).

Figure 6. The distribution of training units across the different sources of data (a) and across time
(b). Panel (b) shows the number of training samples that belong to different bins of time segment
lengths. BU stands for Boston University. MODIS-derived units accounted for 0.2% of the total
dataset so they are not shown in panel (a).

Technical Validation

Human error is inherent to all land cover training data sets, especially those compiled by

on-screen interpretation2. However, the size of our database precludes manual quality assurance

for each training unit. Hence, to minimize errors and maximize the dataset's quality, we used a

two-step machine learning-based cross-validation procedure adapted from Brodley & Friedl

(1999) 47 to remove poorly labeled training data. In the first step, we divided the training data in

each continent into up to 9 biogeographical regions determined based on k-means clustering of
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maximum temperature, minimum temperature, precipitation, latitude, and longitude. Before

clustering, the four climate variables were normalized to unit variance, and we included latitude

and longitude to create spatially coherent clusters. In the second step, we used the ranger

package in R to estimate unique random forest models for each cluster and to estimate class

membership probabilities for each class for each training site using a combination of remote

sensing and ancillary features as predictors at each unit (see 24 for details). We then examined the

difference between the 1st and 2nd most likely classes; training data with margins less than 0.05

were discarded because they represented cases where the two most likely classes were easily

confused. We then removed all misclassified cases for which the margin between the predicted

label and the label assigned to the sample in the database was in the upper quartile of margins for

each class. In other words, we removed data where the assigned label differed from the label

predicted by random forest, and where the class probability for the label assigned by random

forest was high. Using this procedure, we removed ~15% of the training data in each continent

(Fig. 7 - removed data shown in gray).

22

https://www.zotero.org/google-docs/?riCoPN


Figure 7. Class distribution before and after the filtering procedure. Gray bars show the removed
samples per class based on the cross-validation procedure. Note that the Bare label is shorthand
for Barren/sparsely vegetated.

As an additional technical validation, we followed an approach used by Doda et al. (2022)48 to

compare classification results based on our training data against reference data. We created the

reference set by splitting our final training database into train (70%) and test (30%) data and

withholding the test data from the model, and we used the random forest classification algorithm

in the scikit-learn package (version 0.22.2) in Python 3.6.7. We selected random forest because it

is 1) a widely-used model suitable for land cover mapping, 2) relatively resistant to overfitting,

and 3) efficiently handles noisy input data 49,50. To optimize random forest, we used a grid search

to automatically fine-tune model parameters and 3-fold cross-validation to assess model

performance. To estimate the final model used in this technical validation, we used the parameter
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combination with the lowest root-mean-squared error (RMSE). To train the model, we used

predictors derived from the CCDC parameters based on harmonic models fit to time series of

Landsat surface reflectance bands (e.g., green phase, green amplitude, etc.) as well as a variety of

ancillary layers (e.g., topography, population, etc.)24. In total, each training sample had 56

features.

Figure 8. User’s accuracy (a), producer’s accuracy (b), and F1 score (c) for each continent and
each land cover class (except Ice/Snow as there weren’t enough points available for this class). N
America stands for North America, and S America for South America.

Table 4 shows the confusion matrix between the observed and predicted land cover labels. Even

though the overall accuracy is high (greater than 0.8 across all continents), there is confusion

between some classes (e.g., shrub and herbaceous vegetation). Note that producer’s accuracy

and F1-score are generally high for most classes, but low for trees in almost every continent

except for the F1-score in Oceania. User’s accuracy is high across all classes and continents (Fig.

8). Producer’s accuracy is low for trees almost everywhere (except for Oceania) and for

developed and bare ground, especially in South America.

Table 4. Error matrices for GLanCE land cover training database for each continent. N America
stands for North America and S America stands for South America. Note that the Bare label is
shorthand for Barren/sparsely vegetated.
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Africa Water Developed Bare Shrub Trees Herbaceous

Water 7926 0 0 5 0 66

Developed 2 4310 30 43 2 364

Bare 20 22 2373 14 13 340

Shrub 2 22 2 22314 11 588

Trees 0 11 101 180 418 1265

Herbaceous 13 88 133 427 53 35188

Asia Water Developed Bare Shrub Trees Herbaceous

Water 1224 3 0 13 0 63

Developed 2 4790 18 42 0 202

Bare 10 4 1972 5 1 238

Shrub 0 36 0 8795 28 523

Trees 0 5 44 342 698 646

Herbaceous 6 63 175 326 31 9662

Europe Water Developed Bare Shrub Trees Herbaceous

Water 3146 1 0 41 0 19

Developed 0 2728 0 67 0 347

Bare 11 3 0 60 2 149

Shrub 21 88 0 96183 4 2064

Trees 0 4 0 638 94 384

Herbaceous 0 167 0 1690 7 74758

N America Water Developed Bare Shrub Trees Herbaceous

Water 914 0 0 7 1 3

Developed 0 807 29 20 35 70

Bare 10 20 497 33 87 207

Shrub 4 5 0 4129 74 173

Trees 0 6 51 329 797 699
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Herbaceous 8 16 53 253 175 4893

Oceania Water Developed Bare Shrub Trees Herbaceous

Water 1434 0 3 9 0 25

Developed 0 5105 0 31 0 124

Bare 2 11 20 1 0 113

Shrub 0 12 0 12751 84 393

Trees 0 0 0 125 2758 262

Herbaceous 1 27 0 342 37 9456

S America Water Developed Bare Shrub Trees Herbaceous

Water 40745 0 2 101 0 116

Developed 8 507 22 10 0 281

Bare 60 0 1661 28 5 712

Shrub 55 0 0 138198 16 2584

Trees 3 0 26 105 417 959

Herbaceous 40 19 132 2671 24 61766

Usage Notes

Because the process of acquiring supplementary datasets was opportunistic and non-systematic

based on data availability and quality, the full database includes geographic variation in data

density. For example, some regions have training units that are geographically clumped (e.g.,

Ghana) or land cover classes that are overrepresented (e.g., herbaceous) (Fig. 3, Fig. 4, Fig.5).

Some users may need to sub-sample the dataset or enforce constraints on data density depending

on their research question, application, or area of interest. For example, in the GLanCE project,

we use a 100 x 100 km grid to assign weights such that if more training data are present in a

single grid cell, the data are sub-sampled (and vice-versa) to ensure pseudo-uniform density of

26



training data across space. Users may also need to sub- or resample the database to enforce

uniform or proportional class distributions.

For applications focused on land cover change, for which our database includes proportionally

less data, we recommend retaining all change training data (for guidance see 3,11,13).

Code availability

We used open-source tools to ensure transparency and reproducibility of our research, including

R (4.3.0), Python 3.6.7, and Google Earth Engine. Time series tools for training data collection

are available on GitHub (https://github.com/parevalo/measures_collector) as is the repository for

filtering training data (https://github.com/ma-friedl/GlanceFiltering). Custom continental

definitions can be found at this repository:

https://measures-glance.github.io/glance-grids/params. Continuous Change Detection and

Classification (CCDC) tools and applications can be found on Google Earth Engine

(https://glance.earthengine.app/view/fulltstools) and python

(https://github.com/repository-preservation/lcmap-pyccd).
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