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Spaceflight Requires High Velocities >>> High Temperatures
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Plume Heating
Aerodynamic Heating

Returning from Low-Earth-Orbit
7 km/sec

Launch and Ascent
Returning from Moon

11 km/sec

High
Aerodynamic Heating Very-High

Aerodynamic Heating

Launch Vehicles and Space-Return Vehicles Require Thermal Protection and/or Hot Structures

Aborts

Convective Heating Scales with Velocity3

Shock-Layer Radiation Scales with Velocity8+



TPS Selection Process
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Mission 
Requirements

• Destination
• Trip frequency & duration
• Cargo and/or crew

Mission & Vehicle 
Design

• Trajectories
• Vehicle Size/Shape

Design 
Environments

• Rocket motor induced
• Aerodynamic heating & 

pressure
• Shock-layer radiation
• Micrometeroid/Orbital 

Debris Impact

TPS Material 
Trade Study

• Reusable or single use
• Functional over range 

of environments
• Cost/availability

Viable
Options

?

Change Design No

Yes
Trajectories
Drive Environments

Select Types
of TPS

Low-Earth Orbit Operations

Blue Origin/
Sierra Space

Axiom Nanoracks, LM, NG, 
Voyager Space

Lunar Operations

Mars Missions



Types of TPS
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Reusable TPS
• High-temperature insulation attached to monocoque structure
• Flown multiple times (10+) with no to minimal refurbishment
• Usually bonded but not always

Hot Structure
• High-temperature structure
• Insulation on internal components
• Reusability depends on coatings

David Glass, ‘Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) 
and Hot Structures for Hypersonic Vehicles’, AIAA-2008-2682, 2008

Structurally Integrated TPS
• High-temperature structural panels with 

integrated insulation
• Reusable depending on coatings
• Usually attached with fasteners

Ablator
• Material decomposes during heating
• Decomposition gases cool boundary layer
• Recession of surface
• Single use (sometimes refurbished/reused)

Other Types Not Often Used

Heat Sink
Heat Pipe Transpiration

X-15



Flight Proven Reusable TPS
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High-Temperature Tiles
• Shuttle Era

• LI900, LI2200, FRCI-12, BRI-18, AETB
• Silica fiber based
• 2000+ F temperature capability

• Current Tiles
• AETB (Alumina Enhanced Thermal 

Barrier)/BRI (Boeing Reusable Insulation)
• Silica + alumina fibers

• Stronger
• Tougher coating (TUFI)

• Availability
• NASA TPSF (Govt. facility)
• Boeing
• Multiple companies starting to manufacture

NASA Space Shuttle Orbiter
• 5 flight vehicles
• 135 total flights

Air Force X-37B
• 2 vehicles
• 6 missions

High-Temperature Blankets
• Shuttle Era

• AFRSI – Advanced Flexible Reusable Surface Insulation
• Stitched blanket with ceramic fabric & silica 

fiber batting
• <1800 F temperature capability

• FRSI – Felt Reusable Surface Insulation
• Felt with silicone coating
• <800 F temperature capability

• Availability
• NASA TPSF (Govt. facility)
• Boeing
• Hi-Temp

TUFROC
• Flown on X-37B

• High-temperature tile ~3,000 F

• Availability
• NASA Ames
• Boeing

Thermal Barriers
• Shuttle Era

• High-temperature ~2,500 F
• Ceramic fabric tube with silica fiber fill

• Availability
• NASA TPSF
• Boeing
• Hi-temp
• Jackson-Bond Enterprises
• Textum

Wings in Orbit, NASA SP-2010-3409



Flight Proven Ablative TPS – Part 1
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Phenolic-Impregnated 
Carbon Ablator (PICA)

PICA-SpaceX

AVCOAT-5026-HCG

High-Density
Carbon/Silica-Phenolic

• Flight Vehicles
• Honeycomb version – Apollo, 

Orion EFT-1
• Molded block version flown on 

Orion Artemis 1

• Description
• Honeycomb version – gunned 

filling of bonded honeycomb
• Molded version – blocks 

bonded to structure and gaps 
between blocks filled

• Availability
• Order or license from Textron 

Systems

• Flight Vehicles
• Pioneer-Venus, Hayabusa Earth-

return, Galileo
• Ballistic missiles

• Description
• Chopped/molded and tape 

wrapped
• 3D-woven carbon fiber

• Availability
• Northrop Grumman
• Spirit Aerostructures
• Textron Defense Systems
• Solvay

• Flight Vehicles
• Stardust, Mars Science Lab, 

Mars 2020

• Description
• Carbon fiber preform infiltrated 

with phenolic resin
• Blocks bonded to structure and 

gaps filled

• Availability
• NASA Ames

• Flight Vehicles
• SpaceX Dragon capsule

• Description
• Carbon felt infiltrated with 

phenolic resin
• Blocks bonded to structure and 

gaps filled

• Availability
• SpaceX

SpaceX DragonMars Science Lab

Planetary Mission Entry Vehicles
Quick Reference Guide, Version 3.0
NASA/SP-2006-3401



Flight Proven Ablative TPS Part 2
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Silicone Syntactic Foam Cork/MCC-1Boeing 
Lightweight Ablator

(BLA)

Boeing CST-100

• Flight Vehicles
• SpaceX Dragon Backshell
• Mars Science Lab and Mars 

2020

• Description
• Light-weight silicone foam
• RF transparent
• Hand molded onto structure 

and cured or blocks bonded 
to structure and gaps 
between blocks filled

• Availability
• SPAM – SpaceX Proprietary 

Ablative Material
• Acusil ® - Peraton

SpaceX Dragon

• Flight Vehicles
• Launch vehicles 

including SLS

• Description
• Natural material
• Sheets bonded to 

structure and gaps 
between filled

• MCC-1 – Marshall 
Convergent Coating

• Epoxy, cork and 
microballoons

• Sprayable

• Availability
• Cork – Amorim
• MCC-1 – NASA MSFC

• Flight Vehicles
• CST-100 Heat Shield

• Description
• Filled silicone resin
• Hand-packed into 

honeycomb and cured

• Availability
• Boeing

SLA-561V

• Flight Vehicles
• Viking, Pathfinder, MER, 

Insight, Shuttle External 
Tank

• Description
• Honeycomb version –

hand-packing of bonded 
honeycomb

• Molded version – blocks 
bonded to structure and 
gaps between blocks 
filled

• Availability
• Lockheed Martin

Pyron

• Flight Vehicles
• SpaceX Falcon

• Description
• Coated carbon felt

• Availability
• Zoltek

Davis, D, ‘Fundamentals of Launch 
Vehicle Ablative Thermal Protection 
System (TPS) Materials’, TFAWS-2017



Flight Proven Hot Structures
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The IXV Experience, from the mission conception to the flight results, G. Tumino, S.Mancuso, J-
M.Gallego, S.Dussy, J-P. Preaud, G. DiVita, P. Brunner, Acta Astronautica 124 (2016) 2–17.

Space Shuttle Orbiter – Leading Edge Sub-System
(135 flights)

ESA Intermediate Experimental Vehicle (IXV)
(1 flight)

Carbon/Silicon-Carbide Nose Cap and Body Flap

Reinforced Carbon-Carbon (RCC) Nose Cap and Wing Leading Edges

• Description
• Ceramic Matrix Composite
• Carbon/Silicon Carbide materials

• Availability
• HERAKLES Group Safran, France

• Description
• Carbon/carbon structure with 

silicon carbide coating
• Internal insulation
• High-temperature metallic 

attachments

• Availability
• RCC is no longer available
• ACC-6 is similar – C-CAT (Carbon-

Carbon Advanced Technologies)

David Glass, ‘Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) 
and Hot Structures for Hypersonic Vehicles’, AIAA-2008-2682, 2008



Developed But Not Flown TPS
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X-33 Metallic Panels

HEEET
(Heatshield for Extreme Entry 

Environment Technology)

Flexible TPS
(One flight 2022)

X-38 Body Flap

Dillman et al, Planned Orbital Flight Test of a 6m HIAD, 

2018 International Planetary Probe Workshop
David Glass, ‘Ceramic Matrix Composite (CMC) 
Thermal Protection Systems (TPS) and Hot Structures 
for Hypersonic Vehicles’, AIAA-2008-2682, 2008

• Description
• Designed and fabricated by 

Goodrich Aerospace for Lockheed 
SkunkWork’s X-33

• Metallic bond panel with enclosed 
insulation bag

• Thermal/structural testing 
completed

• Ship set fabricated but X-33 
canceled due to LH2 tank failure

• Availability
• No longer available

• Description
• Designed and fabricated by Man 

Technologie for NASA X-38
• Coated Carbon/Silicon Carbide 

Ceramic Matrix Composite
• Thermal/structural testing 

completed
• Ship set fabricated but X-38 

canceled

• Availability
• Similar materials used for 

ESA IXV

• Description
• Develop and designed by 

NASA LaRC and GRC for 
Hypersonic Inflatable 
Aerodynamic Decelerator 
(HIAD)

• Nextel fabric with Pyrogel
insulative layers and a gas 
barrier layer

• Availability
• Jackson Bond Enterprises

• Description
• Designed and 1-meter diameter 

Engineering Test Unit fabricated by 
NASA Ames

• 3D woven carbon fiber with 
phenolic resin

• Dual-layer high-density outer layer 
and medium-density insulation 
layer

• Thermal/structural testing 
completed

• Availability
• NASA Ames

Ellerby, D. ‘Overview of Heatshield for Extreme 
Entry Environment Technology (HEEET)’, 
International Conference on Flight Vehicles, 
Aerothermodynamics and Re-entry Missions & 
Engineering, 2019

Bouslog, S. ‘An Overview of the X-33 Thermal 
Protection System’, NASA/CR-2003-212660



Current TPS Challenges
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Supply Chain
• Raw Materials

• Limited aerospace-grade 
domestic suppliers

• Specialty materials not 
commercially available

• Limited TPS Vendors
• State of Art Reusable TPS 

not readily available
• Ablators limited to Govt. 

and large aerospace 
companies

• Hot structure demand 
driven by DoD

Testing
• High-temperature Material 

Property Testing
• Few facilities available
• Testing is difficult

• High-Enthalpy (Arc-jet) Testing
• Few facilities available
• Very expensive

• Radiant Heat Testing
• Minimal investment

• Guidance lacking for what is 
required for TPS certification

Costs and Production Rates
• Manual processes dominate
• Focus on performance 

improvement and not cost 
reduction

• Manufacturing infrastructure 
not available

• Not optimized for production

Past
1) Government operated vehicles for government-defined needs;
2) Infrequent flights

Consequence:
Commercial space companies develop 
own infrastructure and capability to 
produce TPS at significant cost

Consequences:
1) Hesitancy to develop new TPS
2) Reduce testing and take the risk 

with potential flight failures

Consequences:
1) Vehicle development and flight 

delays
2) Fewer companies successful

Changing the Mind Set:
Future

1) Commercially operated vehicles;
2) Routine flights



Future of TPS/Hot-Structures
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Focus on Reusable TPS and Hot-Structures
&

Advanced Manufacturing

• Commercial Space companies are driving these missions and 
need new lower cost, readily available TPS and Hot-structures. 
• Cost reduction is a major driver. 
• Reusable vehicles needed to reduce costs.
• Lower cost coated ceramic tiles is current need.
• Ceramic matrix composites (CMCs) wanted but expensive 

with limited availability.

Hypersonic Technology Project/NASA

Missions to Earth Vicinity Missions to Lunar-Vicinity

• High Earth-return velocities result in high heat fluxes
• Ablators needed for heat shield
• Lower cost ablators are needed

• Propulsive landings on Moon will drive base heat shield designs
• Reusable lunar landers will require base heat shield 

innovation
• Commercial Space companies are establishing role in lunar 

sample-return and lunar crew/cargo transportation
• Mission design options and TPS innovation needed

Innovation in the world of TPS and Hot-Structures is just beginning!

Planetary Missions

• Low flight frequency results in using current ablator options
• NASA focus will be on sustaining current suppliers

• Commercial Space role is developing
• TPS needs are TBD

NASA is incentivizing the development of a commercial space economy – starting with 
Low-Earth Orbit and rapidly extending to the Moon and eventually to humans on Mars.


